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Atom probe tomography (APT) is a state-of-art advanced microanalytical technique, capable of three-

dimensional elemental mapping at the atomic scale. It is a combination of ion projection microscopy and 

time-of-flight (TOF) mass spectrometry. During APT analysis, a high positive voltage (a few kV) is 

applied to the sharp, needle-sharped specimen (radius of curvature<200 nm) to create a strong standing 

electric field (in the range of 1010 Vm-1). In addition to this base field, high-voltage (HV) pulses or laser 

pulses are used to trigger and time-control the field evaporation of the surface atoms of the specimen, a 

process where they are emitted as ions. These positively charged ions are then accelerated and projected 

onto a detector. Upon hitting the detector, their arrival sequences (corresponding to the Z coordinate), 

impact positions (corresponding to the X and Y coordinates) and TOFs (corresponding to the elemental 

identity) are recorded, which are used to reconstruct the three dimensional elemental map [1]. Therefore, 

the accuracy of the measurement largely depends on the capability of the detector to properly resolve and 

detect the hit events. 

 

Field evaporation is a probabilistic process. All the surface atoms have a certain probability to field 

evaporate. Hence, the emission of a pulse can induce blank events (no ion is evaporated), single events 

(only one ion is evaporated) or multiple events (more than one ion are evaporated). Besides, correlated 

evaporation, where the departure of one atom leads to the successive evaporation of its close neighbors at 

the surface, has previously been reported [2], which also contributes to the amount of multiple events. In 

some extreme cases, ‘catastrophic’ evaporation where a burst of ions are evaporated nearly simultaneously 

may also take place [3]. Furthermore, dissociation of metastable molecular ions under the influence of the 

strong electrical field is also known to give rise to multiple events [4]. 

 

Current detectors utilized in the commercial APT instruments are delay-line detectors (DLD), consisting 

of a stack of microchannel plates (MCP) and three delay-lines (DL) [5]. It is a proven technique with a 

very good performance on the detection of single and multiples events. However, like most DLDs, the 

existence of the electronic ‘dead time’ and ‘dead zone’ after each hit will limit their multiple event 

detectability. If the constituent ions of the multiple event are too closely correlated in time and space, i.e. 

the intervals between their arrival time are shorter than the ‘dead time’ and the distances between their 

impact positions are within the ‘dead zone’, some signals will be lost and the resulting 3D elemental 

information will be biased [6,7]. 

 

In this work, we use cemented tungsten carbide because it is a well-known issue that APT analysis of 

618
doi:10.1017/S1431927617003762

Microsc. Microanal. 23 (Suppl 1), 2017
© Microscopy Society of America 2017

https://doi.org/10.1017/S1431927617003762 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927617003762


carbides suffered from the above mentioned problem [8], which is normally referred to as ion pile-up or 

detector saturation effect. Two cutting-edge atom probe microscopes, namely LEAPTM 5000 XS and 

LEAPTM 5000 XR (CAMECA Instruments, Madison, WI, USA) are applied. Detailed analysis of multiple 

events were done with the implantation of DFT (density-functional theory) calculation. Information about 

the detector dead time and dead zone are extracted and the seriousness of the ion pile-up effect are 

discussed on the basis of the intrinsic character of the multiple events. Figure 1 shows the spatial distance 

between the successive ions detected in multiple events as a function of their TOF differences, which 

highlights the non-trivial nature of the potential losses of signals on a CAMECA LEAP 5000 XS device. 

We can see that the behaviors of carbon and tungsten are different, which could explain some species-

specific losses that result in compositional biases. 
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Figure 1. (a) Fractions of different ion pairs detected in the multiple events. Here, only the pairs consisting 

of the same type of ions are included because they are the only ones suffering from the detector pile-up 

effect and may not be properly recorded by the detector. That the amount of the carbon ion pairs is much 

higher than the tungsten ion pairs is the essential reason why the resulting chemical composition is biased. 

(b) 3D map showing the distribution of TOF and impact position differences between the two constituent 

ions of all the ion pairs listed in (a). Each dot represents one ion pair. The high density areas, marked in 

red, are the domains in time and space where second ion in the pair has been detected. While, the low 

density areas with very limited amount of ion pairs represent the status when the detector did not work 

properly, i.e. they are regions of the detector dead time and dead zone. 
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