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Processing of complementary food does not increase hair zinc levels and
growth of infants in Kilosa district, rural Tanzania
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A community-based, randomized, placebo-controlled, double-blind trial was conducted from March 2001 to March 2002 in Kilosa, a rural district of
Morogoro Region in Tanzania. One hundred and fifty-eight infants were selected randomly from lists of local Maternal and Child Health Care Centres
and received either processed complementary food (PCF) or unprocessed complementary food (UPCF) from age 6 to 12 months. Processing increased
Zn solubility and energy density of the porridge prepared from the complementary food (CF) as determined in vitro. Phytate:Zn molar ratio of the
PCF and UPCF was 25-8 and 47-5, respectively. Under the study conditions, the processing of CF did not improve Zn status as measured by hair analysis.
No significant correlations were found between hair Zn values and anthropometric measurements. Our findings suggest that processing alone of cereal-
based CF may be insufficient to ensure an adequate supply of Zn to improve growth and Zn status of infants. Dietary modification to tackle

Zn deficiencies in similar target groups may therefore only be successful when other Zn-rich foods such as meat and fish are included.

Complementary food: Zinc status: Infant growth: Tanzania

In developing countries, micronutrient deficiencies are wide-
spread and manifest in the early stages of infant life. Zn
deficiency is of particular importance (Salgueiro et al. 2002)
and may result in retarded skeletal development and increased
susceptibility to infections mediated via defects in the immune
system (Food and Agriculture Organization/World Health
Organization, 2002). The deficiency state of Zn is, however,
difficult to diagnose because a reliable laboratory index to
estimate Zn nutritional status is currently lacking (Wood,
2000; Hotz et al. 2003). Infants grow fairly well during the
first months of life when they are exclusively breast-fed but,
with the introduction of complementary foods (CF), a distinct
plunge of mean weight-for-age or height-for-age is common.
CF are typically cereal-based porridges with little vegetable
or animal products (Michaelsen & Friis, 1998; Davidsson,
2003). Both the high degree of phytates (myo-inositol hexa-
phosphate) present in whole-grain cereals and legumes and
the poor quality in terms of the presence of minerals and vita-
mins lead to micronutrient deficiencies (Food and Agriculture
Organization/World Health Organization, 2002). Phytate:Zn
molar ratios >15 are believed to reduce Zn absorption
levels to 15 % (World Health Organization, 1996). Reduction
of the phytate:Zn molar ratio is therefore a possible strategy to
enhance Zn absorption (Manary et al. 2000). Hotz et al

(2001) demonstrated how household preparation techniques
can enhance in vitro Zn bioavailability of locally prepared
maize-based CF in Malawi.

Interventions that target Zn deficiencies in developing
countries are commonly based on food supplementation or
fortification (World Health Organization, 2002). However, a
food-based approach is generally believed to be a feasible
and sustainable strategy to address Zn deficiencies (Gibson
& Ferguson, 1998).

The main hypothesis of the present trial was that an increased
solubility of Zn through processing of CF would improve Zn
status and growth of infants. The trial was part of a larger study
that appraised the effects of locally prepared CF on growth and
Fe status (Mamiro et al. 2004). Because low-cost, home-based
strategies to alleviate Zn deficiencies are still not available in
many developing countries, it was decided to document the
effect of processing CF on Zn and growth in the present paper.

Materials and methods

Study area

The study was conducted in Kilosa district in Morogoro
Region of the United Republic of Tanzania from March
2001 to March 2002. The region is located approximately

Abbreviations: CF, complementary food; LAZ, length-for-age Z-score; PCF, processed complementary food; UPCF, unprocessed complementary food; WAZ,

weight-for-age Z-score; WLZ, weight-for-length Z-score.
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300 km west of Dar es Salaam and has a population of about
350000 inhabitants. Kilosa was chosen for the present trial
because of its high prevalence of nutritional Fe deficiency,
which is believed to coincide with Zn deficiency (Gibson
et al. 2002; Lind et al. 2003). Specific data on Zn deficiencies
for Kilosa district were not found.

Study design

The study was part of a larger, double-blind, randomized con-
trolled trial in which the main investigator and the mothers
had no knowledge of the type of food given to the infants.
A CF quite similar to local traditional CF in Tanzania was for-
mulated by the authors and produced locally. The effect of a
processed complementary food (PCF) was then measured
against that of an unprocessed complementary food (UPCF)
which served as control.

The trial was approved by the ethics committees of both the
Tanzanian Food and Nutrition Centre and Ghent University,
Belgium. Parents of 364 infants aged O to 6 years gave
verbal consent to participate and were randomized. Only
three parents who were contacted refused to participate.
Prior to enrolment, the health status of the infants was
assessed by a medical doctor. Infants who were too ill to par-
ticipate in the study were excluded and received medical care.
Infants were continuously enrolled and entered the study when
they were 6 months old and followed until the age of 12
months. Because of logistical difficulties, some time elapsed
between initial randomization and enrolment. This resulted
in the drop-out of fifty-five participants. Allocation to the
treatment or control group was determined using a block ran-
domization technique. Individuals were randomized on the
basis of pre-established census lists. The code was not
broken to the main investigator before the end of the data
collection. Of the 309 infants who participated in the trial,
133 infants had enough hair to provide samples (Fig. 1). We
subsequently computed whether this sample size allowed
detection of meaningful differences in hair Zn levels between
infants from the control and intervention group. Given the
apparent large inter-subject variation in hair Zn content of
the samples, a meaningful difference between the groups
was arbitrarily defined as half the sD from the hair Zn analysis.
Taking into account a significance level of 0-05 and the sD
obtained from the hair analysis, this sample size showed a
power of 88 % to detect such difference and allows us to
expose differences in change of mean weight-for-length
Z-score (WLZ), weight-for-age Z-score (WAZ) and length-
for-age Z-score (LAZ) of 0-54sp, 0-38sDp and 0-37sD, respect-
ively. This power was considered sufficient to proceed with
further computations. Calculations were done with Gpower
version 2.0 (Erdfelder et al. 1996).

Complementary food

The CF was a mixture of finger millet (Eleusine corocana),
kidney beans (Phaseolus vulgaris), peanuts (Arachis hypgoea)
and mango (Mangifera indica). Processing involved roasting
of peanuts to improve protein digestibility and destroy patho-
genic micro-organisms (Brown et al. 1998; Gibson et al.
1998) and germination of finger millet and beans to increase
solubility of Zn and Fe (Mbithi-Mwikya et al. 2002). The

finger millet and beans were sorted, cleaned and soaked in
pre-boiled water for 2 and 7 h, respectively, and subsequently
germinated for 48 h at 30°C. The batch was then autoclaved
and solar-dried for about 6 h. Proliferation of pathogens such
as Staphylococcus aureus and Bacillus cereus during germina-
tion was controlled with appropriate hazard analysis and criti-
cal control point procedures (Kimanya et al. 2003). Total
phytate content of the CF was measured using colorimetric
assays as described by Mbithi-Mwikya et al. (2002).

PCF and UPCF did not differ significantly in energy content
(P>0:05), which was 1731 (sp 11) and 1731 (sp 18) kJ/100 g
DM, respectively. The energy density of the porridge prepared
with the PCF was 6100kJ/l, compared with 1700kJ/1 for the
UPCF. The amounts of CF were such to provide at least
1151 kJ/d for infants of 6—8 months and 1883 kJ/d for infants
9-11 months according to WHO guidelines (Brown et al.
1998) to meet the expected deficit in energy and protein.
Since 30-45% of daily energy intake from fat is rec-
ommended for children less than 2 years old (Michaelsen &
Jorgensen, 1995), nurses advised to add 1-2 teaspoons
(about 4 g) of sunflower seed oil for each portion of the CF.
Every two weeks, 1 and 1-6 kg of CF were provided for infants
6—8 and 9—11 months of age, respectively. On a daily basis,
each child was supplied with 69 and 113 g CF as DM. Mothers
were instructed to prepare a fixed amount of this DM into por-
ridge to give the child and to add 1-2 teaspoons of sunflower
seed oil. A thorough description of the materials, methods and
plan for hazard analysis and critical control point for the prep-
aration of the CF has been given by the authors previously
(Mamiro et al. 2004).

Compliance and assessment of dietary intake

The required amount of CF was distributed to the villages
where it was stored in a securely closed cupboard to prevent
spoilage. The mothers came to the health centre every two
weeks to collect the CF. The nurses of the local health
centre recorded every food collection using a list of the infants
and demonstrated how to prepare the CF. In case of absence,
the nurse ensured that a message was sent to the responsible
mother or caregiver to collect her consignment on the same
day. Nutrition officers from the health centres visited the
mothers in their dwellings at least twice a week to verify
that the CF was prepared and used correctly. They also
made frequent surprise visits to observe compliance and
solve any problems encountered. To estimate the amount of
CF consumed by the infants, a 24 h dietary recall was carried
out by a nutritionist assisted by a village health worker. Of the
mothers of the 309 infants in the main trial, seventy-five were
randomly selected in each intervention group, yielding sev-
enty-one responses in the PCF and sixty-six in the UPCF
group. The food consumed by the infants was estimated by
the mothers and weighed using digital scales. FAO food com-
position tables were used to calculate macro- and micronutri-
ent intakes (Food and Agriculture Organization, 1984).

Zinc analysis

Higher levels of soluble Zn in cereal-legume mixtures are
associated with higher Zn uptake (Agte et al. 1997). In vitro
solubility of Zn was therefore used in this study as a measure
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Fig. 1. Study design. Number of infants from the initial trial receiving processed (intervention group) or unprocessed complementary food (placebo group) and

those providing hair samples for zinc analysis.

for Zn bioavailability in the CF. Extraction of Zn was carried
out by wet-acid digestion using a nitric acid—perchloric acid
mixture (5:1), 0-03-M HCI and atomic absorption spectropho-
tometry as described by Kumar & Chauhan (1993).

Zn status of infants was assessed using hair Zn. Because of
the difficulty of drawing blood in our population (infants aged
6—12 months with high prevalence of anaemia), we wanted to
limit the number of blood specimens and restrict those to
finger pricks for Hb. Biochemical indices of Zn status, such
as serum and erythrocyte Zn, or tests of immune competence
were not attempted. Gibson er al. (1989) have proposed the
cut-off value of hair Zn levels below 110 pg/g (1-68 pmol/g)
as an indicator of sub-optimal Zn status. Scalp hair was col-
lected at baseline (6 months of age) and at the end of the
trial (12 months of age) and analysed for Zn content. All
measures were taken to avoid external sources of adventitious
contaminations such as nits and lice during collection and

preparation of the hair samples. The hair was cut with stainless
steel scissors from the occipital region of the head as close to
the scalp as possible. The samples were collected in small,
clean, sterile plastic envelopes with a self-adhesive mechan-
ism. The envelopes were coded, stored in a securely closed
plastic bag and transported by airfreight to a laboratory in Bel-
gium for analysis. Only the proximal 1-2cm of the hair shaft
was used since this part reflects recent trace element uptake by
the follicles. Hair grows on average 1 cm per month (Wade &
Sinclair, 2002), so that the Zn content of hair 1-2 cm in length
represents Zn uptake 2 to 3 months before sample collection
(Dombovari & Papp, 1998). Hence, in the present study, Zn
concentrations in hair samples probably represent Zn status
at age approximately 4 and 10 months, and not 6 and 12
months, respectively.

Before hair of the infants was analysed, the sample extrac-
tion methodology was optimized using extra hair samples
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from Belgian barber shops. Two methods of sample extraction
were compared: dry ashing (Dombovari & Papp, 1998) and
wet digesting (Harrison ef al. 1969), with Zn concentration
determined by atomic absorption spectrophotometry. All pre-
liminary analysis was carried out in duplicate. Mean Zn
with wet digestion was 114-8 (sD 3-6) pg/g dry hair and
108-3 (SD 5-9) wg/g dry hair for dry ashing (n 10). Recovery
was assessed for addition of 100ml and 200 ml 0.015 mmol/l
Zn(NO3),. Wet digestion showed a comparatively larger
recovery for Zn compared with dry ashing (106-0% and
91-2 %, respectively). Mean differences for preliminary anal-
ysis were 14-8 wg Zn/g dry hair for the wet digestion (n 12)
method and 15-7 wg Zn/g dry hair for the dry ashing method
(n 11). Repeatability sp was 14-0 and 17-6, respectively.
The wet digestion method was subsequently adopted as the
reference method for the determination of Zn in the hair
samples from Tanzania. Hair of 6- and 12-month-old infants
was analysed concurrently. Because of the limited amount
of hair that could be obtained from the infants, Zn analysis
could not be performed in duplicate.

Statistical analyses

Data were entered in EPI-INFO (version 6.04d, 1996; Centers
for Disease Control and Prevention, Atlanta, GA, USA/WHO,
Geneva, Switzerland) and analysis was done using the Stata
package (version 8.0; Stata Corp., College Station, TX,
USA). Anthropometric indicators were computed using
EPINUT according to 1977 growth reference data from the
National Center for Health Statistics (Hyattsville, MD,
USA). Descriptive statistics were computed for each variable
to identify outliers and assess the normal distribution of con-
tinuous variables. Outliers were defined from the box plot as
values more extreme than three interquartile ranges of the
box. In the presence of outliers, a new variable was created
excluding these values. However, in case of doubt, the data
set was cross-checked with original data in the rosters. All
tests were done first with the original variable, and then
redone with the new variable to assess the influence of such
outliers. Normal distribution of continuous variables was
appraised by the Kolmogorov—Smirnov test. In the case of
departure from normality, the variables were log-transformed
(InskewO command in Stata) to apply statistics. Geometric
means are presented in the tables where appropriate.

The « error was set at 5 % and all tests were two-sided. A
difference at 12 months between the two intervention groups
was assessed for the primary outcome of mean Zn concen-
tration in hair and anthropometric indicators, i.e. mean WLZ
and mean LAZ. A standard ¢ test was used for continuous vari-
ables. The general trend in main outcomes between the begin-
ning and the end of the trial was assessed by applying a paired
t test or a McNemar test for categorical variables.

Results
Subjects

In the main trial, the birth weight of the infants was 2-9 (sD
0-5) kg for the PCF group and 3-1 (sp 0-5) kg for the UPCF
group and did not differ significantly between groups
(P=0-06). Sex ratio was 1:1. The prevalence of wasting was

significantly different between groups, while stunting, weight
and length were equal in both groups. At baseline, infants
with insufficient hair for analysis did not differ significantly
in mean birth weight (P=0-15) and WLZ (P=0-80), WAZ
(P=0-95) and LAZ (P=0-80) from those who provided hair
samples. Of the infants who provided hair samples, no differ-
ences in mean WLZ, WAZ and HAZ were found at baseline
between infants receiving PCF and UPCF (Table 1).

Complementary food

Phytate content was reduced significantly by processing
(P=0-04) and was 660 (sp 20) mg/100g DM for PCF and
1150 (sp 30) mg/100g DM for UPCF. The processing of
CF decreased the phytate:Zn molar ratio which indicates a
successful improvement of absorption potential for Zn from
the PCF compared with the UPCF. Table 2 describes the Zn
content of the CF as obtained from analysis of twelve samples
taken randomly every month from each CF production unit.

Average dietary zinc supply

Food consumption data from the 24 h recall showed no signifi-
cant differences in daily intake of energy (1752 v. 1679KklJ,
P=0-99) and protein (179 v. 18-3 g/d, P=0-68) from the CF
between UPCF and PCF groups. The addition of oil increased
the intake of energy from CF to 1943 and 1922kJ (P=0-47)
and for lipids to 31-3 v. 29.9¢g/d (P=0-24) for UPCF and
PCF, respectively. The CF alone contributed >50 % of the
total daily energy intake and exceeded the age-specific
WHO recommendations. The total number of meals of CF
given to the child differed considerably between the groups,
with 1-2 meals in the processed group v. 5—6 meals in the
non-processed group. The overall average consumption of
CF for both groups was 104 g DM/d. Using soluble Zn as
proxy for bioavailability and the total Zn content of the CF,
the total amount of available Zn received by the infants was
thus: 2-53mg Zn/100g X 104g CF/d X 6:24% soluble
Zn=0-164mg Zn/d for PCF and 24mg Zn/100g
CF X 104 g CF/d X 274 % soluble Zn = 0-0684 mg Zn/d for
UPCF. Taking into account the Zn losses and allowing for
growth, the Zn requirements for infants aged 6 to 12 months
are estimated to be 2-8 mg/d (Brown et al. 1998). Our PCF
met these requirements for 5-8% ((0-164/2-8) X 100) and
UPCF for 2-4 % ((0-068/2-8) X 100).

Hair zinc levels

Mean Zn hair concentration at baseline was 2729 (sp 115-0)
png/g for the control group and 253-4 (sp 100-0) pg/g for the
intervention group. At the end of the trial, these levels were
2449 (sp 120-0) and 246-2 (sp 103-5) wg/g, respectively
(Fig. 2). There was no significant difference (P=0-25) in
mean hair Zn concentrations at baseline and at 12 months
(P=0-75) between infants receiving PCF and those receiving
UPCF. The intervention did not produce a significant effect
in both PCF (P=0-33) and UPCF (P=0-06) groups in terms
of mean hair Zn concentration. Additionally, change in hair
Zn at 6 and 12 months between PCF and UPCF was not sig-
nificantly different (P=0-30).

ssald Aussanun abpuquwed Ag auluo paysiiqnd 0191500ZNfg/6£01°01/610"10p//:sdny


https://doi.org/10.1079/BJN20051610

178 C. K. Lachat et al.
° o 0 Al
% P Table 2. Zinc content of the complementary foods
g (Mean values and standard deviations)
g 5| &
> o [CHN R Complementary food
2 & £]1222
«© o T| e C" Processed Unprocessed
& £ § (n12)* (n12)
S @ = .
S f:’ Variable Mean SD Mean SD P
o
o @ —
S 2 |2 88K Zn (mg/100g DM 253 009 240 008 001
b Z|s |2 2&a
S 2| c Soluble Zn (%) 6-24 247 2.74 1-49 0-003
= £ ; )
g 8 LOL clgus Phytate:Zn molar ratio 25-8 47-5
2 gl |8|asd “ '
g. 3]:, D | s T Twelve random samples of production batches.
S 5
3 S| _|olBee . . . .
i S8t At baseline, 7-9 % of the infants receiving the PCF had hair
& ©ls Zn concentrations <110 ug/g compared with 57 % in the
g ng/'g p
3 51g|38F UPCF group. After the intervention, 6:3% of the infants
8 “ s g receiving PCF and 7-1 % receiving UPCF had hair Zn concen-
£ trations below the cut-off value. The percentages below the
g a | P82 cut-off at baseline and end were not significantly different
= S oo _
5 (P=0-60).
) © For all infants combined, infants with a hair Zn level below
o . . . .
S S the cut-off value at baseline had an average increase in hair Zn
o gl &3 of 159-0 (sp 127-8) pg/g while the infants with hair Zn levels
o = > .
2 ° 99 higher than the cut-off showed an average decrease of 31-0 (SD
E @ 3 103-1) pg/g. The difference of mean changes in hair Zn levels
= % = between these groups was highly significant (P<<0-001).
S € © © —
z (5|8 888
= gl IS e Effect of complementary food on growth
[} c -
9 w ..
o ; o8 288 At 12 months, WLZ, WAZ and LAZ were not significantly
s S|I21°T7T different between PCF and UPCF groups. Furthermore, the
< change in mean , an rom 6 to months
< hang WLZ, WAZ and LAZ from 6 to 12 month
=3 513 8E35 was not significant (Table 1).
o -
= ©
3 S
X slsl28s
@ -
% o > C‘> ([ 350 ~
5
£ u| 328
% ocoo 325 -
; —_
= ] g
J 5 2
= slgee = 300}
CH % oo o -g
s 5 cl 1 ©
» ® — I -]
NG 2 S $ 275
£2 g 2
[S= Q o
< 8 S * o
2E eclo|gl&83 c
5o P T R N 250
T 5| £1]1& - -:%
< T ¢ o)
25 8| 2 Glc|lwan |8 T
o8| 2|55 58T ¢ 225}
% :(E é 2 - = | T % -
EX o 2
5% 3 obo | E 1 L
Z > 28 ~|8|laox | g 200
So & 3 Anialh ol I Baseline End
29 S S
g2 2 - . o
£E o Sl 585 |5
8 % § o § SO~ g Fig. 2. Hair zinc concentration (i.g/g) at baseline and end of the trial for
. g § L § infants who received processed complementary food (PCF; ——) or unpro-
; % c g cessed complementary food (UPCF; ----). Values are means with their 95 %
% IS 3 N E g 3 ClI shown by vertical bars for sixty-three subjects in the PCF group and sev-
E3 2 ==z3|° enty subjects in the UPCF group.

ssald Aussanun abpuquwed Ag auluo paysiiqnd 0191500ZNfg/6£01°01/610"10p//:sdny


https://doi.org/10.1079/BJN20051610

Complementary food and zinc status, Tanzania 179

Discussion

The present paper presents a secondary analysis of a trial
investigating the effect of an improved processed CF on Hb
status and growth of infants of aged 6 to 12 months. The
results of the trial were reanalysed for their impact on Zn
status and growth. Of the 309 infants in the main trial, 158
had sufficient hair for Zn analysis. Ex-post calculations
showed that adequate detection power was obtained to show
differences of at least 0-5SD in mean hair Zn concentration
and WLZ, WAZ and LAZ between those receiving PCF and
UPCF. No significant differences were found for the main
indicators of nutritional status between infants with and with-
out sufficient hair at baseline, suggesting that the analysis of a
subgroup of the original sample was not a source of bias.

Although processing of a cereal-based CF resulted in higher
energy density, higher levels of soluble Zn and lower phyta-
te:Zn molar ratio, no significant expression of improved
growth or Zn status was observed in the infants under the
study conditions. Analysis of hair Zn levels showed no signifi-
cant differences in hair Zn concentrations between the two
groups post intervention, even though calculated intakes of
the Zn were higher in the intervention group compared with
the control group. Furthermore, regardless of food, infants in
the present study with initial Zn deficiency as determined by
cut-off levels of hair Zn managed to increase the Zn levels
in hair while a decrease was observed for infants who were
classified as not Zn-deficient at baseline. This could be due
to gastrointestinal regulatory mechanisms for Zn homeostasis
as has been observed earlier in human subjects with prolonged
Zn deficiency (Lee et al. 1993; King et al. 2000).

It is evident that the interpretation of the study results is ham-
pered by the lack of a reliable index for Zn status in man and
reference data for the study population. It is noteworthy that
the hair Zn values in our study exhibited large variations. Similar
values, in terms of absolute levels and variability, were also
observed in Indonesian infants aged 5 months (Kolsteren et al.
1998) and Jamaican children aged 6-24 months (Meeks
Garner et al. 1998). The large variations in the present study
are unlikely to be attributable to the laboratory technique since
the precision of the analyses as assessed by the recovery exper-
iments was satisfactory and may be physiological. This study did
not address seasonal influences, which may have a marked effect
on hair Zn concentrations as described by Gibson et al. (1989).
Infants in the present study were enrolled over a relatively
long period of one year from March 2001 and March 2002,
which arguably has levelled out seasonal variations.

Few infants had initial hair Zn levels below cut-off, which
is consistent with Meeks Garner et al. (1998). In that Zn sup-
plementation trial of stunted children aged 6 to 24 months,
13 % of the Zn-supplemented group and 19 % of the control
group had hair Zn levels lower than 70 ng/g. None of the
infants in our study had hair Zn levels lower than this cut-
off. Hair Zn content, however, may lack validity in cases of
severe Zn deficiency (Gibson, 2004). The causes of stunting
are complex and remain poorly understood. For children
with impaired linear growth, Zn may not necessarily be the
first limiting nutrient (Hautvast et al. 2000). Linear growth fal-
tering may arise from multiple causes including the effects of
chronic infections and prenatal and inter-generational effects
of multiple micronutrient inadequacies in the diet, especially

when the habitual diet is cereal-based. In these circumstances
children are unlikely to show any improvement in linear
growth in response to a Zn supplement unless Zn is the first
limiting nutrient (Bates et al. 1993; Ferguson et al. 1993;
Friis et al. 1997). Additionally, children in rural Tanzania
are subjected to a multitude of infections. Environmental fac-
tors such as parasitic infections may have interfered with the
effects of the intervention in terms of growth response.
Mamiro et al. (2004) showed how nutritional status as
measured by WLZ and LAZ deteriorated significantly during
the intervention period for both the PCF and the UPCF
groups. The elevated level of stunting amongst the infants in
our study reflects an array of underlying deficiencies which
may have masked the effect of the improved CF.

For ethical considerations, the mothers were asked to pre-
pare a fixed amount of CF, similar in both groups, every
day, which resulted in equal amounts of energy intake
between the groups. Energy density of the UPCF was more
than three times lower than the PCF. Mothers had to adminis-
ter the UPCF more than five times per day, compared to two
times per day for the PCF, to obtain similar energy intakes.
This may have introduced a bias in the study. Under less
intense follow-up, the effect of the energy-dense CF may
have been more pronounced (Mamiro et al. 2004).

Higher Zn content of the CF failed to improve growth signifi-
cantly in terms of WLZ, LAZ and WAZ. This is in contrast to the
results of a study by Umeta et al. (2000), who showed a signifi-
cant improvement of linear growth, weight, WLZ, WAZ and
LAZ in stunted Ethiopian infants. Hair Zn concentration was
positively correlated with increased growth in the supplemented
children. In Ethiopia, however, Zn was the primary growth-
limiting nutrient in the infants (Gibson, 2000) and the trial used
10mg Zn as ZnSO, daily for 6d per week during 6 months,
which is considerably higher than in the present trial using dietary
modification. Our findings are in line with the results of a study in
Ghana, in which four groups of infants aged 6—12 months were
fed for 6 months with different types of improved centrally
processed CF. The study found no significant difference in Zn
status measured by plasma Zn, WAZ and LAZ between 6 and
12 months in the infants who received the different CF
(Lartey et al. 1999). Presumably, the levels of dietary intake in
the present study are too low to produce any measurable effect
in infants who are likely to be deficient in a number of nutrients.

Although processing decreased the phytate:Zn molar ratio
considerably, the phytate content of the PCF still remained
high. Even when Zn would have been 100 %, our cereal-
based CF was unable to provide enough Zn. Bearing in
mind that refined diets low in cereals and rich in animal
foods rarely surpass absorption levels of 50% (Hotz &
Brown, 2004), it is obvious that processing will remain
inadequate under the study conditions. Surprisingly, the pre-
sent study showed a decrease (not significant) in mean hair
Zn levels after 6 months of intervention. This trend was also
found in the control group. This observation seems to support
our conclusions that the CF was unable to provide enough Zn,
regardless of the processing, and therefore suggests that home-
based processing of cereal-based CF will not be able to
improve growth and Zn status. Fortification of CF or Zn sup-
plementation may be an alternative in this respect. Given the
intricate relationship between micronutrient status and growth,
however, a food-based approach has the considerable advan-
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tages of supplying a vast array of additional dietary com-
pounds which are naturally present. Adding supplementary
sources of Zn-rich foods, such as meat and fish, to CF
seems to be indispensable to ensure an adequate and sustain-
able supply of sufficient micronutrients.
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