
1 Risk Bounds with Known Marginal
Distributions

As described in the introduction, a key problem of risk analysis is to derive (sharp)
risk bounds on a portfolio S = X1+ · · ·+ Xn under the given distributional information
on a risk vector X = (X1, . . . , Xn). In this chapter, we derive several explicit results
for this problem under the assumption that only the marginal distributions Fj of X j

are known, but the dependence structure of X is completely unknown. In particular we
introduce some basic notions of risk theory, such as worst case value-at-risk and tail
value-at-risk portfolios, comonotonic risk vectors, the connection of upper risk bounds
to convex ordering, and some basic results to obtain worst case value-at-risk portfolios.
A more detailed presentation and extension of these results is given in Rüschendorf
(2013, Chapters 2–4). Some detailed mixing results in Section 1.4 are due to several
papers of Wang and coauthors (see Wang and Wang, 2011).

1.1 Some Basic Notions and Results of Risk Analysis: VaR, TVaR,
Comonotonicity, and Convex Order

There are several risk measures of interest, like the value-at-risk (VaR), the tail value-
at-risk (TVaR), and the classes of convex risk measures or of distortion risk measures.
The VaR risk measure at level α, VaRα, α ∈ (0, 1) of the portfolio S is defined as the
α-quantile of the distribution of S, i.e.,

VaRα (S) = F−1
S (α) = inf{x ∈ R; FS (x) ≥ α}; (1.1)

we also make use of the upper VaR as an upper α-quantile, i.e.,

VaR+α (S) = sup{x ∈ R; FS (x) ≤ α}. (1.2)

The TVaR risk measure at level α, TVaRα, takes into account also the magnitude
of the risk above the α-quantile and is defined as

TVaRα (S) =
1

1 − α

∫ 1

α
VaR+u (S) du =

1
1 − α

∫ 1

α
VaRu (S) du. (1.3)

From the definition it follows that TVaR is an upper bound of VaR, i.e., for α < 1 it
holds that

VaRα (S) ≤ VaR+α (S) ≤ TVaRα (S). (1.4)
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6 Risk Bounds with Known Marginal Distributions

In comparison to VaR, TVaR has the important property of being a convex risk measure.
A risk measure � is said to be convex (Föllmer and Schied, 2004) if it is monotone,
translation invariant, and satisfies the important convexity condition,

TVaRα (aX + (1 − a)Y ) ≤ a TVaRα (X ) + (1 − a) TVaRα (Y ). (1.5)

If the risk measure � is also positive homogeneous, then it is called coherent.
Thus, using TVaR as a risk measure, a diversified portfolio is preferred concerning

the magnitude of risk in comparison to an undiversified portfolio. The left TVaR
measure at level α, LTVaRα is similarly defined and considers the left tails (best case)
of risks:

LTVaRα (S) =
1
α

∫ α

0
VaRu (S) ds. (1.6)

An important property of a risk measure that is convex law invariant, i.e., one that
only depends on the marginal distribution, is its consistency with respect to convex
order ≤cx.

Definition 1.1 (Convex order) Let X and Y be two random variables with finite
means. X is smaller than Y in convex order, denoted by X ≤cx Y , if for all convex
functions f ,

E f (X ) ≤ E f (Y ), (1.7)

whenever both sides of (1.7) are well defined.

A law-invariant convex risk measure � (e.g., TVaR) is consistent with respect to
convex order on proper probability spaces such as L1 (integrable random variables)
and L∞ (bounded random variables). In consequence it holds that X ≤cx Y implies

TVaRα (X ) ≤ TVaRα (Y ), (1.8)

see Chapter 4 of Föllmer and Schied (2004), Jouini et al. (2006), Bäuerle and Müller
(2006), and Burgert and Rüschendorf (2006). From this section on, we consider as
the basic space of risks X = L1 and assume that all marginal distributions of a risk
vector X have finite first moments when dealing with TVaR. For given distribution
functions F1, . . . , Fn, let F (F1, . . . , Fn) denote the Fréchet class of all n-dimensional
distribution functions F with marginal distribution functions F1, . . . , Fn. The classical
Fréchet bounds characterize the Fréchet class F (F1, . . . , Fn).

Theorem 1.2 (Fréchet bounds)
a) For F ∈ F (F1, . . . , Fn) it holds that

F−(x) :=
( n∑
i=1

Fi (xi) − (n − 1)
)
+

≤ F (x)

≤ F+(x) := min
1≤i≤n

Fi (xi), x ∈ Rn.

(1.9)

F−, F+ are called lower resp. upper Fréchet bounds (also called Hoeffding–Fréchet
bounds).
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b) F+ ∈ F (F1, . . . , Fn); if n = 2 then F− ∈ F (F1, F2).
c) For a distribution function F on Rn, it holds that

F ∈ F (F1, . . . , Fn) ⇐⇒ F− ≤ F ≤ F+.

In particular, there exists for any n a largest distribution function with marginals
Fi , the upper Fréchet bound F+. For n = 2 there exists a smallest distribution function
with marginals Fi , the lower Fréchet bound. In general, the upper and lower bounds in
(1.9) are sharp. The upper bound F+ is attained by the comonotonic risk vector.

Definition 1.3 (Comonotonicity, countermonotonicity)
Let F1, . . . , Fn be one-dimensional distribution functions, and let U ∼ U (0, 1) be
uniformly distributed on [0, 1]. Then:

a) X c := (F−1
1 (U), . . . , F−1

n (U)) (1.10)

with F−1
i (α) = inf{x ∈ R : Fi (x) ≥ α} is called a comonotonic risk vector.

b) For n = 2,

Xc := (F−1
1 (U), F−1

2 (1 − U)) (1.11)

is called a countermonotonic (antimonotonic) risk vector.

Comonotonic risk vectors X are characterized by the fact that the components of X
are ordered in the same way.

The co- resp. countermonotonic risk vectors realize the upper resp. lower Fréchet
bounds F+, F−, i.e.,

X c ∼ F+ and for n = 2, Xc ∼ F−. (1.12)

In terms of the lower orthant order ≤lo defined by the pointwise ordering of the
distribution functions, therefore, for any vector X with marginal distributions Fi it
holds by the Fréchet bounds that

X ≤lo X c (1.13)

and for n = 2,

Xc ≤lo X . (1.14)

The following basic result due to Meilijson and Nadas (1979) describes the role of the
comonotonic vector as a worst case model for the portfolio S =

∑n
i=1 Xi with respect

to all law-invariant convex risk measures.

Theorem 1.4 (Comonotonic risk vector and convex order)
Let X = (X1, . . . , Xn) be a risk vector with marginal distributions Fi . Then

a)
n∑
i=1

Xi ≤cx

n∑
i=1

X c
i , (1.15)

i.e., the portfolio of comonotonic risks is the worst case portfolio with respect to
convex order.
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b) E
( n∑
i=1

Xi − t
)
+

≤ E
( n∑
i=1

X c
i − t

)
+

(1.16)

for all t. Moreover, E
( ∑n

i=1 X c
i − t

)
+
=: Ψ+(t), where

Ψ+(t) = inf∑
vi=t

n∑
i=1

E(Xi − vi)+. (1.17)

The statement in b) says that the excess of loss risk functional of the portfolio is
maximized by the comonotonic risk vector.

For n = 2, a countermonotonic risk vector Xc = (F−1
1 (U), F−1

2 (1 − U)) realizes the
convex minimum of portfolio sums of variables Xi with distribution functions Fi .

Proposition 1.5 (Countermonotonic risk vector and convex order) Let X =

(X1, X2) be a risk vector of size n = 2 with marginal distribution functions Fi . Then
for all Xi ∼ Fi it holds that

F−1
1 (U) + F−1

2 (1 − U) ≤cx X1 + X2. (1.18)

In consequence, for n = 2 we have for all Xi ∼ Fi ,

X1,c + X2,c ≤cx X1 + X2 ≤cx X c
1 + X c

2 , (1.19)

where Xc = (X1,c, X2,c ).
We define the worst case risks of the portfolio S =

∑n
i=1 Xi , where Xi have marginal

distribution functions Fi with respect to VaR and TVaR by

VaRα := sup
{

VaRα (S); S =
n∑
i=1

Xi, Xi ∼ Fi, 1 ≤ i ≤ n
}

and TVaRα := sup
{

TVaRα (S); S =
n∑
i=1

Xi, Xi ∼ Fi, 1 ≤ i ≤ n
}
.

(1.20)

Similarly, the best case of risks at level α is defined as

VaRα := inf
{

VaRα (S); S =
n∑
i=1

Xi, Xi ∼ Fi, 1 ≤ i ≤ n
}

and TVaRα := inf
{

LTVaRα (S); S =
n∑
i=1

Xi, Xi ∼ Fi, 1 ≤ i ≤ n
}
.

(1.21)

Then we get by means of Theorem 1.4 the following important connections between
these notions. For a risk vector X , let S =

∑n
i=1 Xi be the portfolio sum and Sc =∑n

i=1 X c
i be the corresponding portfolio sum of the comonotonic risk vector X .

Theorem 1.6 Let X be a risk vector with distribution function F ∈ F (F1, . . . , Fn).
Then for the portfolio S =

∑n
i=1 Xi , it holds that

a) VaRα (S) ≤ TVaRα (S) ≤ TVaRα (Sc) =
n∑
i=1

TVaRα (Xi), (1.22)

b)
n∑
i=1

LTVaRα (Xi) = LTVaRα (Sc) ≤ LTVaRα (S) ≤ VaRα (S), (1.23)

https://doi.org/10.1017/9781009367189.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009367189.004
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c) VaRα ≤ TVaRα =
n∑
i=1

TVaRα (Xi)

and LTVaRα =
n∑
i=1

LTVaRα (Xi) ≤ VaRα,
(1.24)

d) VaRα (Sc) =
n∑
i=1

VaRα (Xi). (1.25)

Proof The inequality VaRα (S) ≤ TVaRα (S) is immediate from the definition of
TVaRα (S). Since TVaRα is a convex law-invariant risk measure, we obtain the in-
equality TVaRα (S) ≤ TVaRα (Sc) by the consistency with respect to convex order
from Theorem 1.4.

Using that

α LTVaRα (S) + (1 − α) TVaRα (S) = ES, (1.26)

we obtain

LTVaRα (Sc) =
n∑
i=1

LTVaRα (Xi) ≤ LTVaRα (S) ≤ VaRα (S).

Finally for Sc =
∑n

i=1 F−1
i (U), it holds by the comonotonicity of the summands:

Sc ≥ VaRα (Sc)

if and only if for all i, Xi = F−1
i (U) ≥ VaRα (Xi), i.e.,

VaRα (Sc) =
n∑
i=1

VaRα (Xi), (1.27)

and TVaRα (Sc) =
1

1 − α

∫ 1

α
VaRu (Sc) du (1.28)

=
1

1 − α

∫ 1

α

n∑
i=1

VaRu (Xi) du =
n∑
i=1

TVaRα (Xi). �

Remark 1.7 The inequalities (1.22) and (1.24) give a simple way to calculate an
upper bound for the worst case VaR, whereas inequality (1.23) gives a lower bound for
the best case VaR. The VaR of the comonotonic risk portfolio is easy to calculate, but
it turns out that it is not a worst case with respect to VaR. The comonotonic portfolio is,
however, a worst case portfolio with respect to TVaR, and hence the worst case TVaR
bound is easy to determine. ♦

1.2 Standard Bounds, VaR Bounds, and Worst Case Distributions

It is an important task to describe good upper bounds for the value-at-risk and to
determine worst case portfolios. The insight that the comonotonic portfolio is not the
worst case VaR portfolio was a surprise in the practice of risk analysis and led to a
rethinking of basic recommendations in risk regulation.

https://doi.org/10.1017/9781009367189.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009367189.004


10 Risk Bounds with Known Marginal Distributions

The standard bounds for the distribution function of the sum

M ≤
n (t) = sup

{
P
( n∑
i=1

Xi ≤ t
)
; Xi ∼ Fi, 1 ≤ i ≤ n

}
,

m≤
n (t) = inf

{
P
( n∑
i=1

Xi ≤ t
)
; Xi ∼ Fi, 1 ≤ i ≤ n

}
,

resp. for the corresponding tail risks

Mn(t) = sup
{
P
( n∑
i=1

Xi ≥ t
)
; Xi ∼ Fi, 1 ≤ i ≤ n

}
,

mn(t) = inf
{
P
( n∑
i=1

Xi ≥ t
)
; Xi ∼ Fi, 1 ≤ i ≤ n

}
,

have been known in the literature for a long time, see Sklar (1973), Moynihan et al.
(1978), Denuit et al. (1999), and Rüschendorf (2005).

Theorem 1.8 (Standard bounds) Let X = (X1, . . . , Xn) be a random vector with
marginal distribution functions F1, . . . , Fn. Then for any t ∈ R, it holds that

( n∨
i=1

Fi (t) − (n − 1)
)
+

≤ P
( n∑
i=1

Xi ≤ t
)

≤ min
( n∧
i=1

Fi (t), 1
)
, (1.29)

where
∧n

i=1 Fi (t) = inf{∑n
i=1 Fi (ui);

∑n
i=1 ui = t} is the “infimal convolution” of the

(Fi), and
∨n

i=1 Fi (t) = sup{∑n
i=1 Fi (ui);

∑n
i=1 ui = t} is the “supremal convolution” of

the (Fi).

Proof For any u1, . . . , un with
∑n

i=1 ui = t, it holds that

P
( n∑
i=1

Xi ≤ t
)

≥ P
( n⋃
i=1

(Xi ≤ ui)
)
,

≥
n∑
i=1

Fi (ui), (1.30)

which implies the upper bound in (1.29). Similarly, using the Fréchet lower bound in
(1.9) we obtain

P
( n∑
i=1

Xi ≤ t
)

≥ P
(
X1 ≤ u1, . . . , Xn ≤ un

)

≥
( n∑
i=1

Fi (ui) − (n − 1)
)
+
. (1.31)

�
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In general, the standard bounds in Theorem 1.8 are not sharp and can be considerably
improved. Define for general n,

An(t) :=
{
(x1, . . . , xn);

n∑
i=1

xi ≤ t
}
,

A+n (t) :=
{
(x1, . . . , xn);

n∑
i=1

xi < t
}
, t ∈ R1,

and let

(F1 ∧ F2)−(t) = inf{F1(x−) + F2(t − x); x ∈ R1}

denote the left continuous version of F1 ∧ F2; similarly, let (F1 ∨ F2)−(t) be the left
continuous version of F1 ∨ F2. In the case n = 2, it was proved independently in
Makarov (1981) and Rüschendorf (1982) that the standard bounds are sharp.

Theorem 1.9 (Sharpness of standard bounds, n = 2) If Xi have distribution
functions Fi , 1 = 1, 2, then

P(X1 + X2 ≤ t) ≤ M ≤
2 (t) = (F1 ∧ F2)−(t) (1.32)

and

P(X1 + X2 < t) ≥ m<
2 (t) = ((F1 ∨ F2)−(t) − 1)+. (1.33)

The proof of Theorem 1.9 given in Makarov (1981) uses direct arguments on the
copulas, while the proof in Rüschendorf (1982) is based on duality theory. This latter
proof allows us also to determine the worst case dependence structure.

On the unit interval [0, 1] supplied with the Lebesgue measure λ, define the random
variables

Y1(s) = F−1
1 (s), Y2(s) = F−1

2 (ϕ(S)), (1.34)

with ϕ(s) = 1 − s, 0 ≤ s ≤ h(t), and ϕ(s) = s, h(t) ≤ s ≤ 1. Then the random
variables Y1, Y2 maximize the distribution function of the sum at point t, i.e., they
maximize P(X1+ X2 < t). This means that they minimize the tail risk P(X1+ X2 ≥ t).

Proposition 1.10 (Maximizing (best case) pairs) The random variables defined
in (1.34) satisfy:

a) Y1 ∼ F1, Y2 ∼ F2,

b) P(Y1 + Y2 ≤ t) = M ≤
2 (t) = (F1 ∧ F2)−(t). (1.35)

Proof The Lebesgue measure λ is invariant with respect to ϕ, i.e., λϕ = λ. Therefore,
λYi = λ f −1

i ◦ϕ = λF
−1
i , and thus Yi ∼ Fi , i = 1, 2. Since F−1

i ◦ Fi (x) ≤ x, we obtain for
s = F1(u),

F−1
1 (s) + F−1

2 (h(t) − s) = F−1
1 ◦ F1(u) + F−1

2 (h(t) − F1(u))

= u + F−1
2 (F2(t − u)) ≤ u + (t − u) = t.
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12 Risk Bounds with Known Marginal Distributions

For the sup in the definition of g(t) = F−1
1 ∨ F−1

2 (t), it is enough to consider s of the
form F1(u). This implies g ◦ h(t) ≤ t, and it follows that

λ({Y1 + Y2 ≤ t}) ≥ h(t) = (F1 ∧ F2)−(t).

This implies b) and moreover

h(t) = λ({Y1 + Y2 ≤ t}) = F−1
1 ∨ F−1

2 (t) = g(t). �

A similar construction yields a worst case pair of risks minimizing the probability
P(X1 + X2 < t) or equivalently maximizing P(X1 + X2 ≥ t).

Define Y1(s) = F−1
1 (s), Y2(s) = F−1

2 (ϕ(s)), s ∈ [0, 1] with

ϕ(s) = s, 0 ≤ s ≤ h(t) and ϕ(s) = 1 − s, h(t) ≤ s ≤ 1. (1.36)

Then Y1, Y2 are obtained by a countermonotonic coupling in the upper part of the
distributions, and we obtain in a similar way as in Proposition 1.10 that the risk
variables Y1, Y2 determine a worst case pair of risks.

Proposition 1.11 (Worst case risks) The random variables Y1, Y2 defined in (1.36)
satisfy

a) Y1 ∼ F1, Y2 ∼ F2

and
b) P(Y1 + Y2 ≥ t) = M2(t) = 1 − m<

2 (t)

= min(2 − (F1 ∨ F2)−(t), 1)

= sup{P(X1 + X2 ≥ t); Xi ∼ Fi }.
(1.37)

Definition 1.12 (Rearrangements) Let f , g be measurable, real functions on [0, 1].
Then f is a rearrangement of g (with respect to the Lebesgue measure λ), notation
f ∼r g, if λ f = λg, i.e., f , g have the same distribution with respect to λ.

The best resp. worst case couplings with respect to the tail risk can also be described
by rearrangements.

Corollary 1.13 (Best and worst case risks by rearrangements) For any t ∈ R, it
holds that

a) α∗ = M ≤
2 (t) = sup

{
α ∈ [0, 1] : ∃ f αj ∼r F−1

j on [0, α], (1.38)

such that f α1 (s) + f α2 (s) ≤ t, for all s ∈ [0, α]
}

= inf
{
α ∈ [0, 1] : ∃ f αj ∼r F−1

j on [α, 1],

such that f α1 (s) + f α2 (s) > t, for all s ∈ [α, 1]
}

b) β∗ = M2(t) = sup{P(X1 + X2 ≥ t), Xi ∼ Fi, i = 1, 2} (1.39)

= inf{α ∈ [0, 1] : ∃ f −1
j ∼r F−1

j on [α, 1],

such that f α1 (s) + f α2 (s) ≥ t, for all s ∈ [α, 1]}.

This rearrangement description also characterizes worst and best case couplings in
the general case n ≥ 2 (see Rüschendorf, 1983a; Puccetti and Rüschendorf, 2012a).
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Theorem 1.14 (Structure of worst and best case couplings) For all distribution
functions F1, . . . , Fn and t ∈ R, it holds that

M ≤
n (t) = sup

{
α ∈ [0, 1]; there exist f αj ∼r F−1

j on [0, α], (1.40)

0 ≤ j ≤ n, such that
n∑
j=1

f αj ≤ t on [0, α]
}
.

Similarly,

Mn(t) = 1 − mn(t) = inf
{
α ∈ [0, 1]; there exist f αj ∼ F−1

j on [α, 1],

such that
n∑
j=1

f αj ≥ t on [α, 1]
}
. (1.41)

By Theorem 1.14, the problem of getting sharp bounds on the distribution function
of the sum is reduced to a rearrangement problem. This rearrangement formulation
motivates the construction of a fast algorithm to approximate the sharp bounds numer-
ically – the rearrangement algorithm (RA) (see Puccetti and Rüschendorf, 2012b and
Chapter 3). The proposed algorithm works well for general inhomogeneous portfolios,
also those with high dimensions (i.e., d in the thousands).

The results of Propositions 1.10 and 1.11 imply that for n = 2, the worst case
distribution maximizing Mn(t) resp. maximizing VaRα (X1 + X2) is obtained by the
countermonotonic coupling in the corresponding upper part of the distributions (see
(1.36) and (1.37)), and the best case distribution minimizing Mn(t) resp. minimizing
VaRα (X1 + X2) is obtained by the countermonotonic coupling in the lower part of the
distributions (see (1.34)).

Let Fαi (Fi,α) denote the distribution Fi restricted to the upper (lower) α-part of Fi ,
i.e., formally Fαi (Fi,α) is the distribution of F−1

i (U), where U is uniformly distributed
on [α, 1] ([0, α]). Then by Propositions (1.4) and (1.5), the worst case distribution
(resp. best case distribution) minimizes (resp. maximizes) the distribution function of
the portfolio sum in the upper part (resp. in the lower part) of the distribution. In other
words, the upper resp. the lower parts of the distributions are flattened as much as
possible. This principle also extends to n ≥ 2: see Bernard et al. (2017c, Theorem 2.5).

Theorem 1.15 (VaR-bounds and convex order) Let Fαi denote the upper α-part
of Fi . Then

a)
VaR

+

α = sup
Xi∼Fi

VaR+α
( n∑
i=1

Xi

)
= sup

Yα
i ∼Fα

i

VaR+0
( n∑
i=1

Yαi
)
. (1.42)

b) If Xα
i , Yαi ∼ Fαi and

Sα =
n∑
i=1

Yαi ≤cx

n∑
i=1

Xα
i , then (1.43)

VaR+0
( n∑
i=1

Xα
i

)
≤ VaR+0

( n∑
i=1

Yαi
)
.
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If it is possible to minimize the sum in the upper part of the distributions, i.e.,
for Fαi in convex order, then one obtains as in the case n = 2 a worst case joint
distribution, maximizing the VaR. This minimization of the convex order in the upper
part is achieved in particular in the mixing case.

Definition 1.16 (Mixability)

a) Distribution functions F1, . . . , Fn on R are called mixable if there exist Xi ∼ Fi

such that
∑n

i=1 Xi = μ a.s. for some μ ∈ R1.
b) A distribution function F on R is called n-mixable (with center μ) if F1 =

F, . . . , Fn = F are mixable.

Since for n-mixable distributions the mixing variables realize the convex minimum,
we obtain as an immediate consequence of Theorem 1.15:

Corollary 1.17 If Yαi ∼ Fαi , 1 ≤ i ≤ n exist, such that Sα =
∑n

i=1 Yαi = c, i.e.,
(Fαi ), 1 ≤ i ≤ n are mixable, then for all Xi ∼ Fi , 1 ≤ i ≤ n, it holds that

VaR+α
( n∑
i=1

Xi

)
≤ VaR+0 (Sα) = c. (1.44)

Remark 1.18

a) As stated in (1.43), the worst value for VaRα (S) is attained by the lower support point
of some minimal element in convex order in this class F α =

{ ∑n
i=1 Yi;Yi ∼ Fαi

}
. For

d = 2, a smallest element in this class exists and is given by the countermonotonic
pair Yα1 = (Fα1 )−1(U), Yα2 = (Fα2 )−1(1 − U), where U is uniformly distributed on
[α, 1]. The resulting VaR+0 (Yα1 + Yα2 ) is by Proposition 1.11 a sharp upper bound
and is identical to the solution of this case in Rüschendorf (1982).

b) Similarly to Theorem 1.15, we obtain a corresponding result for the lower bound for
VaRα

( ∑n
i=1 Xi

)
. Let Fi,α denote the distributions Fi restricted to the lower α-part.

For Xi,α, Yi,α ∼ Fi,α we get: If Sα =
∑n

i=1 Yi,α ≤cx
∑n

i=1 Xi,α = S′
α, then

VaR1(Sα) ≤ VaR1(S′
α). (1.45)

In consequence we obtain: If Sα is a smallest sum with respect to (Fi,α) in convex
order, then

VaR1(Sα) = inf
{

VaRα
( n∑
i=1

Xi

)
; Xi ∼ Fi

}
. (1.46)

c) n-mixability has been established for uniform U (0, 1)-distributions and binomial
distributions in Gaffke and Rüschendorf (1981) and Rüschendorf (1982, 1983b),
and for symmetric unimodal distributions in Rüschendorf and Uckelmann (2002).
Wang and Wang (2011) established n-mixability for distributions with a decreasing
density on [0, 1] under a moderate moment condition. Mixing in the case of concave
densities on an interval (a, b) was established in Puccetti et al. (2012). For n small,
say n = 2, 3, mixing is a rare property while for large enough n, by the abovemen-
tioned results mixing typically holds on bounded domains under monotonicity or
concavity conditions. For more details on mixing, see Section 1.4. ♦
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1.3 Worst Case Risk Vectors: The Conditional Moment Method and the
Mixing Method

The conditional moment method gives an upper bound on the tail risk of the portfolio
in terms of conditional moments of the marginals. Combined with a mixing condition
on the marginal distributions, the upper bound is attained. This method was introduced
in the case of homogeneous portfolios with monotone densities on [0, 1] in Wang and
Wang (2011). It was extended to general inhomogeneous distributions F1, . . . , Fn in
Puccetti and Rüschendorf (2012b) and in Wang et al. (2013). In fact, it turns out that the
conditional moment bounds have to be improved to be attainable. This improvement is
given in a direct constructive way in Wang et al. (2013), while it is obtained in Puccetti
and Rüschendorf (2012b) based on duality theory (see Chapter 3).

Let Xi ∼ Fi , Gi = F−1
i , the generalized inverse of Fi , G =

∑n
i=1 Gi , and assume

that μi = EXi exists. For a ∈ [0, 1] define Ψ(a) as the sum of the conditional first
moments, given Xi ≥ Gi (a), i.e.,

Ψ(a) =
1

1 − a

∫ 1

a

G(t) dt =
n∑
i=1

E(Xi | Xi ≥ Gi (a)). (1.47)

Then Ψ is monotonically non-decreasing and Ψ(0) = μ =
∑n

i=1 μi .

Theorem 1.19 (Method of conditional moments) Let Xi ∼ Fi have first moments
μi , 1 ≤ i ≤ n. Then, for s ≥ μ, we have

Mn(s) = sup
{
P
( n∑
i=1

Xi ≥ s
)
; Xi ∼ Fi, 1 ≤ i ≤ n

}
≤ 1 − Ψ−(s), (1.48)

where Ψ−(s) = sup{t ∈ [0, 1];Ψ(t) ≤ s} is the left-continuous generalized inverse of
Ψ.

Proof With Xi ∼ Fi and S =
∑n

i=1 Xi , we have

μ =

n∑
i=1

μi = E[S] ≥ E
[
S1{S<s }

]
+ sP(S ≥ s) (1.49)

=

∫ P(S<s)

0
G(t) dt + sP(S ≥ s) = μ −

∫ 1

P(S<s)
G(t) dt + sP(S ≥ s).

If P(S ≥ s) > 0, this implies that Ψ(P(S < s)) ≥ s and thus

P(S < s) ≥ Ψ−(s).

As a consequence, we obtain

P(S ≥ s) ≤ 1 − Ψ−(s). �

Remark 1.20
a) Sharpness of conditional moment bounds. The conditional bound in (1.48) is

sharp if and only if the estimate in (1.49) is an equality, that is, if for the optimal
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coupling it holds true that {S ≥ s} = {S = s} a.s. This means, by Theorem 1.14,
that the corresponding optimal rearrangements f αi on [α, 1] satisfy

n∑
i=1

f αi (u) = s for all u ∈ [α, 1],

with 1 − α = M (s), i.e., the random variables are mixing on the upper part of the
distribution.

b) For unbounded domains, the bound in (1.48) typically fails to be sharp. To be a
good bound it is indeed necessary that

n∑
i=1

E (Xi | Xi ≥ Gi (α)) ≈ s.

c) The method to get upper bounds for M (s) implies directly also a lower bound for
P(S > s). Denoting by H the conditional moment function associated with the
random variable −Xi , we obtain

P(S > s) = 1 − P((−S) ≥ (−s)) ≥ H−1(−s).

In fact the conditional moment bound in Theorem 1.19 for the tail risk is equivalent
to the TVaR bound for VaR in (1.22). The sharpness statement in Remark 1.20 a)
corresponds to the sharpness of the bounds in Corollary 1.17,

VaR+α
( n∑
i=1

Xi

)
≤ VaR+0 (Sα) = c, (1.50)

under the mixing condition on the {Fαi }, 1 ≤ i ≤ n. Note that under this condition
VaR+0 (Sα) = c = TVaRα (S). ♦

A modification of the method of conditional moments in Theorem 1.19 as in Remark
1.20 allows us to give improved bounds and even sharpness results not only for bounded
domains but also for unbounded domains. Define for s ≥ μ and t ∈ [0, 1] the function
Ht (t1) as the conditional expected moment function on the interval [t, t1], i.e.,

Ht (t1) =
1

t1 − t

∫ t1

t

G(u) du = EG(U[t,t1]). (1.51)

Here U[t,t1] denotes a random variable uniformly distributed on [t, t1]. Ht is increasing
in t, t1. Let Ht (1) ≥ s and G(t) ≤ s. This allows us to define

t1 = t1(t) = H−1
t (s). (1.52)

If we assume continuity of the Fi , then we get that the conditional expectation on
[t, t1(t)] is identical to s:

Ht (t1(t)) = s. (1.53)

Without continuity we postulate (1.53) for the risk level considered. Next we define
the optimal choice of such t’s with (1.52) and (1.53):

t0 = t0(s) = inf{t; Gi | [t, t1(t)], 1 ≤ i ≤ n are mixing with value s}, (1.54)
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that is, t0 is the infimum of all those t’s such that there exist rearrangements f ti ∼r Gi |
[t, t1(t)], which satisfy

n∑
i=1

f ti = E
n∑
i=1

Gi | [t, t1(t)] = s. (1.55)

Proposition 1.21 (Extended conditional moment method) Let Xi ∼ Fi , 1 ≤ i ≤ n,
be risk variables, and assume that the mixing condition (1.55) holds for some t. Then
for s ≥ μ we obtain the upper tail risk bound

Mn(s) = sup
{
P
( n∑
i=1

Xi ≥ s
)
; Xi ∼ Fi

}
≤ 1 − t0(s). (1.56)

Proof Under the “mixing assumption” (1.55) to t0 ∈ [0, 1], we have t1(t0) > t0,
and the restricted distributions of (Gi | [t0, t1(t0)]) are mixing. Therefore, there exist
Ṽi ∼ U[t0,t1 (t0)] such that

∑n
i=1 Gi (Ṽi) = s. Consequently this implies the existence of

Vi ∼ U[t0,1] such that
n∑
i=1

Gi (Vi) ≥ s, (1.57)

and the result follows. �

In a second step, the bound in (1.56) is further improved. This improvement has
been shown in general classes of examples to yield sharp VaR bounds in Puccetti and
Rüschendorf (2012a), Wang et al. (2013, Section 2.3), and Wang (2015).

Theorem 1.22 (Improved extended conditional moment bounds) Assume that
the risk variables Xi ∼ Fi , 1 ≤ 1 ≤ n satisfy the mixing condition (1.55), with t0 < 1
and let t1 = t1(t0). Define

t2 = t2(s) = inf
{
t ≤ t0; there exists a coupling (1.58)

Ui ∼ U[t,t0]∪[t1,1] with
n∑
i=1

Gi (Ui) ≥ s
}
.

Then

Mn(s) ≤ 1 − t2(s). (1.59)

Proof The admissible coupling (Ṽi) on [t0, t1] in the proof of Proposition 1.21 can
be improved using the admissible coupling (Ui) on [t2, t0] ∪ [t1, 1] to an admissible
coupling, say (Vi) on [t2, 1], satisfying

∑n
i=1 Gi (Vi) ≥ s on [t2, 1]; this implies (1.59).

�

Remark 1.23 (Structure of the worst case risks) The structure of the “optimal”
coupling yielding worst case portfolios thus has a mixing part on [t0, t1] and is admis-
sible on [t2, 1]. In the homogeneous case Fi = F, 1 ≤ i ≤ n, it turns out that for the
admissible part on [t2, t0]∪ [t1, 1] it is often sufficient to couple one “large” observation
corresponding to u ∈ [t1, 1] with n − 1 “small” observations in [t2, t0] chosen to be
identical (see the following discussion of this structure and the approach via duality in
Chapter 3). ♦
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1.4 Mixability and Convex Minima of Portfolios

As seen in Theorems 1.19 and 1.22, an important ingredient of the structure of worst
case portfolios is played by the mixing part of this dependence structure. Next we dis-
cuss some basic results and conditions on distributions yielding n-mixing of F1, . . . , Fn.

Proposition 1.24 (Mixabililty) Let F be a distribution function on R1.

a) F is 2-mixable if and only if F is symmetric, i.e., there exists a ∈ R, such that
X ∼ F implies a − X ∼ F.

b) If F is n-mixable and T is linear, then FT is n-mixable.
c) The binomial distribution B(n, pq ) is q-mixable.
d) The uniform distribution U (a, b) on an interval (a, b) is n-mixable for any n ≥ 2.
e) Any continuous distribution function having a symmetric unimodal density is n-

mixable for any n ≥ 2.

The statements in a), b) are obvious; for c) see Rüschendorf (1983a). The minimal
variance νk (ϑ) of

∑k
i=1 Xi , Xi ∼ B(1, ϑ) has been determined in Snijders (1984):

νk (ϑ) = a(k, ϑ)(1 − a(k, ϑ)), a(k, ϑ) = kϑ(mod1). (1.60)

d) is established in Gaffke and Rüschendorf (1981), while e) is proved in Rü-
schendorf and Uckelmann (2002). In particular, several standard distributions, like the
normal and Cauchy, are mixing. Some general mixing results are established in Wang
and Wang (2011, 2016), Wang et al. (2013), and Puccetti et al. (2012). We highlight
some important results from the ample theory developed in these papers.

Theorem 1.25 (Monotone densities) Let F be a distribution function on [a, b] with
lower (upper) support point a (b) and mean μ.

a) If F has an increasing density and μ ≤ b − 1
n (b − a), then F is n-mixable.

b) If F has a decreasing density and μ ≥ a + 1
n (b − a), then F is n-mixable.

The proof of Theorem 1.25 and of related mixing results is based on combinatorial
approximation by discrete uniform distributions on n points, which are n-mixable. In
this connection, a useful result states the convexity of the class of n-mixable distribu-
tions having the same center μ.

Proposition 1.26 (Convexity of n-mixable distributions)

a) A countable convex combination of n-mixable distribution functions with the same
center μ is n-mixable.

b) A discrete distribution F is mixable with center μ if and only if it is a countable
convex combination of n-discrete uniform n-mixable distributions.

This proposition leads to the following result concerning concave densities.

Theorem 1.27 (Concave densities) Any distribution on a bounded interval (a, b)
with a concave density is n-mixing for any n ≥ 3.

For an extension to the inhomogeneous case F1, . . . , Fn, the following conditions
are shown to be necessary in Wang and Wang (2016).
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Proposition 1.28 (Necessary conditions for mixability) If F1, . . . , Fn are mixable
with support (ai, bi) and means μ1, . . . , μn, then with the lengths 
1 = bi − ai it holds
that

a) mean inequality:
n∑
i=1

ai + max
1≤i≤n


i ≤
n∑
i=1

μi ≤
n∑
i=1

bi − max
1≤i≤n


i; (1.61)

b) norm inequality: For any p-norm, ‖ ‖ = ‖ ‖p , p ≤ ∞ and Xi ∼ Fi holds
n∑
i=1

‖Xi − μi ‖ ≥ 2 max
1≤i≤n

‖Xi − μi ‖; (1.62)

c) length inequality:
n∑
i=1


i ≥ 2 max
1≤i≤n


i; (1.63)

d) variance inequality:
n∑
i=1

σi ≥ 2 max
1≤i≤n

σi, (1.64)

where 0 ≤ σ2
i ≤ ∞ are the variances of Fi .

The convexity property as in Proposition 1.26 also holds in the inhomogeneous
case:
If F1, . . . , Fn and G1, . . . ,Gn are mixable, then

αF1 + (1 − α)G1, . . . , αFn + (1 − α)Gn are also mixable. (1.65)

These properties lead to an extension of Theorem 1.25 to the inhomogeneous case.

Theorem 1.29 (Decreasing densities) If F1, . . . , Fn are distributions with bounded
supports and decreasing densities, satisfying the mean inequality (1.61), then
F1, . . . , Fn are mixable.

As shown in Theorem 1.15, Corollary 1.17, and Theorem 1.22, mixing allows us
to determine sharp bounds for the value-at-risk and for the tail risk of the portfolio.
The tail risk bounds in these results depend on the determination of the largest mixing
intervals (a, b) for the tail levels allowing the construction of an admissible coupling
on these intervals.

Let F be a distribution function on [0, 1] with a decreasing density. For 0 ≤ c ≤ 1
n

we define a copula QF
n (c) as follows:

The random variables (U1, . . . ,Un) have distribution QF
n (c) if

1) For each i with Ui ∈ [1 − c, 1] we have Uj = (n − 1)(1 − Ui) for all j � i;
2) F−1(U1) + · · · + F−1(Un) is a constant when any of the Ui ∈ ((n − 1)c, 1 − c),
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i.e., a large Ui is coupled with n−1 identical small Uj , and if one of the Ui takes values
in the intermediate interval then it is mixing with the other Uj and in fact all other Uj

lie in the intermediate interval. Denote

H (t) = (n − 1)F−1((n − 1)t) + F−1(1 − t). (1.66)

Similarly, in the case of increasing density, define QF
n (c) by the properties:

1) For each i with Ui ∈ [0, c] we have Uj = 1 − (n − 1)Ui , for all j � i, and
2) G(U1) + · · · + G(Un) = const., when any of the Ui ∈ (c, 1 − (n − 1)c), G = F−1.

In this case define

H (t) = G(t) + (n − 1)G(1 − (n − 1)t). (1.67)

Proposition 1.30

a) In the case of monotone densities and c ∈ [0, 1
n ], there exists a copula QF

n (c)
satisfying 1), 2) if ∫ 1

n

c

H (t) dt ≤
( 1

n
− c

)
H (c). (1.68)

b) The smallest c such that a copula QF
n (c) with 1), 2) exists is given by

cn = min
{
c ∈

[
0,

1
n

]
; inequality (1.68) holds

}
. (1.69)

Proof For the proof we use that the assumed mixability for QF
n (c) implies the mod-

erate moment condition in Theorem 1.25 on [c, 1 − (n − 1)c] in the increasing case
resp. on [(n − 1)c, 1 − c] in the decreasing case.

In consequence, if QF
n (c) exists, it follows that in the increasing case the (G(Uj ))

are mixable on [c, 1 − (n − 1)c] when Xi ∈ [c, 1 − (n − 1)c], and thus
n∑
j=1

G(X j ) = E
( n∑
j=1

G(X j ) | c ≤ Ui ≤ 1 − (n − 1)c
)

=
n

1 − nc

∫ 1−(n−1)c

c

G(t) dt;

similarly in the decreasing case. By the necessary moderate moment condition in
Proposition 1.28, this implies that the conditional mean is less than or equal to
G(c)

n+n−1)
G(1−n−1)c)

n , and thus∫ 1−(n−1)c

c

G(t) dt ≤
( 1

n
− c

)
(G(c) + (n − 1)G(1 − (n − 1)c).

This implies (1.68).
In the increasing case, G(t) and thus H (t) is concave on [0, 1

n ]. Thus the set of all
c satisfying (1.68) is a closed interval [ĉn, 1

n ], and by (1.68), ĉn ≤ c ≤ 1
n and thus

cn ≥ ĉn. Since by Proposition 1.30 a) it follows that QF
n (ĉn) exists, we obtain cn = ĉn.

The case of decreasing densities is similar. �
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An interesting consequence of Proposition 1.30 is the following convex ordering
result for the portfolios.

Theorem 1.31 (Convex minima of portfolios) Let F have a monotone density,
and let (U1, . . . ,Un) be a copula vector corresponding to QF

n = QF
n (cn); then for all

Xi ∼ F, 1 ≤ i ≤ n, it holds that

a)
n∑
i=1

Xi ≥cx

n∑
i=1

G(Ui), G = F−1. (1.70)

b) For any convex function f , it holds that

min
Xi∼Fi,
1≤i≤n

E f
( n∑
i=1

Xi

)
= n

∫ cn

0
f (H (t)) dt + (1 − ncn) f (H (cn)). (1.71)

Proof For the proof of Theorem 1.31 a) it is established that the excess function of
the right-hand side dominates that of the left-hand side (see Theorems 3.4, 3.5 in Wang
and Wang, 2011), while b) is direct from construction. �

The coupling QF
n also solves the following minimization problem, which has an

ample historical background.

Proposition 1.32 For (U1, . . . ,Un) ∼ QF
n it holds that

Λn = min
Xi∼U (0,1)

E
n∏
i=1

Xi = E
n∏
i=1

Ui

= e−n +
n
2

e−2n +O(n4e−3n).

(1.72)

In the case of decreasing density on the support [0, 1] with moderate moment
condition, it also implies sharpness of the upper bound for the tail risk in the conditional
moment method in Theorem 1.19.

Theorem 1.33 Let F have a decreasing density on its support [0, 1] with mean μ

and moderate moment condition E(X | X ≥ t) ≥ t + 1−t
n for X ∼ F and any t ∈ [0, 1].

Then for Ψ(t) = E(X | X ≥ G(t)), G = F−1, it holds that

M+n (s) = sup
{
P
( n∑
i=1

Xi ≥ s
)
; Xi ∼ Fi, 1 ≤ i ≤ n

}

= 1 − mn(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, s ≤ nμ,

1 − Ψ− ( s
n

)
, nμ < s < n,

0, s ≥ n.

(1.73)

Proof By Theorem 1.19, the right-hand side of (1.73) is an upper bound for the tail
risk. By Theorem 1.25, G(V ) is n-mixable for V ∼ U[a, 1], a = Ψ−( s

n ). Thus there exist
Vi ∼ V such that

∑n
i=1 G(Vi ) = nΨ(a) = s. Defining Yi = G(U)1(U≤a) +G(Vi )1(U>a) ,

U ∼ U (0, 1) independent of (Vi), we find Yi ∼ F and

P
( n∑
i=1

Yi ≥ s
)
= P(U ≥ a) = 1 − a = 1 − Ψ−

( s
n

)
for nμ < s < n. �
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In the non-mixable case of general support there is the following variant of Theorem
1.33.

For F with decreasing density and a ∈ [0, 1], define modifications of H , cn, Φ by

Ha (t) = (n − 1)F−1(a + (n − 1)t) + F−1(1 − t), t ∈
[
0,

1 − a
n

]
, (1.74)

cn(a) = min
{
c ∈

[
0,

1
n

(1 − a)
]

: (1.75)∫ 1
n (1−a)

0
Ha (t) dt ≥

( 1
n

(1 − a) − c)
)
Ha (c)

}
,

and Φ(a) =
⎧⎪⎨⎪⎩

Ha (cn(a)), if cn(a) > 0,

nΨ(a), if cn(a) = 0.
Similarly for F with increasing density, a ∈ [0, 1] define

Ha (t) = F−1(a + t) + (n − 1)F−1(1 − (n − 1)t), (1.76)

cn(a) = min
{
c ∈

[
0,

1
n

(1 − a)
]

: (1.77)∫ 1
n (1−a)

c

Ha (t) dt ≤
( 1

n
(1 − a) − c

)
Ha (c)

}
,

and Φ(a) =
⎧⎪⎨⎪⎩

Ha (0), if cn(a) > 0

nΨ(a), if cn(a) = 0.
With Φ−(t) = 0 if t < Φ(0) and Φ−(t) = 1 if t > Φ(1), then it holds that:

Theorem 1.34 If F has a monotone density on its support, then the maximal tail
risk M+n (s) is given by

M+n (s) = 1 − mn(s) = 1 − Φ−(s). (1.78)

The method of proof is similar to that of the improved extended conditional moment
method in Theorem 1.22. That 1−Φ−(s) is an upper bound follows from the conditional
moment method. The attainment follows by the property of an optimal coupling X that
{S ≥ s} = {Xi ≥ F−1(a)}, a = mn(s), implying that mn(s) = Φ−(s).

As a result, in the case of tail-decreasing densities, Theorem 1.34 implies a formula
for the maximal tail risk for all sufficiently high risk levels s and similarly gives the
worst case VaRα-bounds for all levels α ≥ α0 that are sufficiently large.
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