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QUADRATIC REVERSES OF THE TRIANGLE INEQUALITY FOR
BOCHNER INTEGRAL IN HILBERT SPACES

SEVER S. DRAGOMIR

Some quadratic reverses of the continuous triangle inequality for the Bochner integral
of vector-valued functions in Hilbert spaces are given. Applications for complex-
valued functions are provided as well.

1. INTRODUCTION

Let / : [a, b] —> K, K = C or R be a Lebesgue integrable function. The following

inequality is the continuous version of the triangle inequality

(1.1) |jT f(x)dx

and plays a fundamental role in Mathematical Analysis and its applications.

It seems, see [6, p. 492], that the first reverse inequality for (1.1) was obtained by
Karamata in his book from 1949, [4]:

(1.2) cosS f \f(x)\dx^ \f f{x)dx
J a \J a

provided

| < 0 , xe[a,b],

where 6 is a given angle in (0, TT/2).

This integral inequality is the continuous version of a reverse inequality for the
generalised triangle inequality

(1.3) cos0
t=i

provided

a - 6 < a rg(z j ) ^ a + 6, for i €{!,...,n},
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where a e M. and 6 € (0,7r/2), which, as pointed out in [6, p. 492], was first discovered
by Petrovich in 1917, [7], and, subsequently rediscovered by other authors, including
Karamata [4, p. 300-301], Wilf [8], and in an equivalent form by Marden [5].

The first to consider the problem for sums in the more general case of Hilbert and
Banach spaces, were Diaz and Metcalf [1].

In our previous work [2], we pointed out some continuous versions of Diaz and Met-
calf results providing reverses of the generalised triangle inequality in Hilbert spaces. We
mention here some results from [2] which may be compared with the new ones obtained
in Sections 2 and 3 below.

We recall that / € L([a, b];H), the space of Bochner integrable functions defined on
[a, b) and with values in the Hilbert space H, if and only if the function f : [a, b] —> H is
Bochner measurable on [a, b] and | | / | | is Lebesgue integrable on [a, b] (see for instance [9,
pp. 132 et seq.]).

THEOREM 1 . If f € L([a, b]; H) and there exists a constant K ^ 1 and a vector

e € H, \\e\\ — 1 such that

(1.4) ||/(i)|| < KRe(f(t),e) for almost allt£ [a,b],

then we have the inequality:

(1.5) j)\f(t)\\dt$KJ£ f(t)dt

The case of equality holds in (1.5) if and only if

(1.6)

As particular cases of interest that may be applied in practice, we note the following
corollaries established in [2].

COROLLARY 1 . Let e be a unit vector in the Hilbert space (H; (•, •)), p € (0,1)
and f € L([a,b]\H) so that

(1.7) \\f(t) - e\\ ^ p for almost every t € [a, b].

Then we have the inequality

(1.8) s/rr? f\\f{t)\\dt^\f f{t)dt
Ja \Ja

with equality if and only if

(1.9) ^ f(t) dt = N / T ^ ^ V W I I dtj • e.
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COROLLARY 2 . Let e be a unit vector in H and M ^ m > 0. If f € L([a, b}; H)

is such that

(1.10)

or, equivalently,

(1.11)

Re(Me-f{t)J{t)-me)

\\m -M + m
- TO)

for almost every t G [a, b], then we have the inequality

2y/mM rb ' rb

(1.12)

or, equivalently

(1.13) OS

M + m
f(t)dt

The equality holds in (1.12) for in the second part of (1.13)^ if and only if

The case of additive reverse inequalities for the continuous triangle inequality has
been considered in [3].

We recall here the following general result.

THEOREM 2 . Iff € L([a, b}; H) is such that there exists a vector e € H, \\e\\ = 1
and k : [a, b] —> [0, oo) a Lebesgue integrable function such that

(1.14) | | / ( i ) | | - Re(/( t) ,e) ^ k(t) for almost every t € [a,b],

then we have the inequality:

(1.15) (0 £) f \\f(t)\\ dt-\ f" f(t) dt\\ ^ f k(t) dt.
Ja I Ja II Ja

The equality holds in (1.15) if and only if

(1.16)

and

(1.17)

[\\f{t)\\
J a

dt2 [ k{t)dt

dt = - j\{t)
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This general result has some particular cases of interest that may be easily applied
[3].

COROLLARY 3 . If f e L([a, b};H) is such that there exists a vector e £ H,
\\e\\ = 1 and p € (0,1) such that

(1.18)

then

(1.19)

— e|| ^ p for almost every t € [a, b],

+
Re( / f(t)dt,e).

COROLLARY 4 . If f e L([a, b];H) is such that there exists a vector e £ H,
\\e\\ — 1 and M ^ m > 0 such that either

(1.20)

or, equivalently,

(1.21)
II

for almost every t E [a, b], then

(1.22)

Re (Me - f(t), f(t) - me) ^ 0

M + ra II 1

(y/M- / f
\ Ja

Re( / f(t)dt,e
2\JmM

COROLLARY 5 . If f € L([a,b];H) and r e L2([a,b]), e £ H, \\e\\ = 1 are such

||/(i) - e|| ^ r(t) for almost every t € [a, b],

that

(1.23)

then

(1.24)

The main aim of this paper is to point out some quadratic reverses for the continuous
triangle inequality, namely, upper bounds for the nonnegative difference

2

under various assumptions on the functions / 6 L([a,b];H). Some related results are
also pointed out. Applications for complex-valued functions are provided as well.
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2. Q U A D R A T I C R E V E R S E S OF T H E T R I A N G L E INEQUALITY

The following lemma holds.

LEMMA 1. Let f € L(\a,b],H) be such that there exists a function k : A C R2

-> R, A := {(t, s) | a ̂  t ^ s ̂  b} with the property that k € L(A) and

(2.1) (0 <)||/(0|| | |/(*)| | - Re</(«),/(*)> < k(t,s),

for almost every (t, s) G A. Tien we have the following quadratic reverse of the contin-
uous triangle inequality:

(2.2) (jHl/Wll*)
The case of equality holds in (2.2) if and only if it holds in (2.1) for almost every (t, s) € A.

P R O O F : We observe that the following identity holds

(2.3) (/

a */a

a Ja
Re(f(t),f(s))dtds

= £ j'\\\f(t)\\\\M\\ -Re</(*),/(«)>] dtds := I.

Now, observe that for any (t, s) £ [a,b] x [a,b], we have

H/Wll||/(*)|| -R*</(*)./(*)> = II/WIIH/WII -Re</(*),/(«)>
and thus

(2.4) I = 2 jj^ [\\f(t)|| ||/(»)|| - Re (f{t), f(s))} dtds.

Using the assumption (2.1), we deduce

fj [11/WIIII /WII " Re </(*), /(«)>] ̂  ds ^ JJ k(t, s) dt ds,
and, by the identities (2.3) and (2.4), we deduce the desired inequality (2.2).

The case of equality is obvious and we omit the details. D

REMARK 1. From (2.2) one may deduce a coarser inequality that can be useful in some
applications. It is as follows:

(O^)j)\f(t)\\dt- | j T * / ( t ) dt / ^ J J ^

https://doi.org/10.1017/S0004972700034699 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034699


456 S.S. Dragomir [6]

REMARK 2. If the condition (2.1) is replaced with the following refinement of the
Schwarz inequality

(2.5) (<U)*(*,«) ^ | | /(t) | | | | /(s) | |-Re(/«,/(s)>

for almost every (t, s) € A, then the following refinement of the quadratic triangle in-
equality is valid

(26) (/Veil*) > /W<"|

The equality holds in (2.6) if and only if the case of equality holds in (2.5) for almost
every (t, s) e A.

The following result holds.

THEOREM 3 . Let f € L([a, b]\ H) be such that there exists M ^ 1 ̂  m ^ 0 such
that either

(2.7) Re (Mf{s) - f(t), f(t) - mf(s)) ^ 0 for almost every (t, s) e A,

or, equivalently,

(2-8) \\f(t) - ^±Hlf{s)\ ^ \{M - m)\\f(s)\\ for almost every (t, s) e A.

Then we have the inequality:

(2.9) ( j f ||/(t)|| tf < I jf/(') *|f + \ • ̂ ^ jf (- " a)\\f(s)\\2ds.
The case of equality holds in (2.9) if and only if

(2-10) II/WIIH/WII - R < / ( * ) / ( ) > ^ ?(»)> 5 ^ ? l l / ( - ) l l
for almost every (t, s) € A.

P R O O F : Firstly, observe that, in an inner product space (H;(•,•)) and for x,z,

Z S H, the following statements are equivalent

(i) Re(Z - x, x - z) ^ 0 and

(ii) \\X-{Z + Z)/2\\^\\Z-Z\\I2.

This shows that (2.7) and (2.8) are obviously equivalent.

Now, taking the square in (2.8), we get

(f(t)t Z±2f(.)) + \(M -
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for almost every (t, s) € A, and obviously, since

we deduce that

giving the much simpler inequality:

(2-11) II/

M + m

\

for almost every (t, s) G A.
Applying Lemma 1 for k(t,s) := 1/4 • (M — m)2/(M + m)\\f(s)\\ , we deduce

(2.12)
1 (M - m)2

2 ' M + m

with equality if and only if (2.11) holds for almost every (t, s) 6 A.
Since

JJjf( 8)\\2ds = = j\s-a)\\f{a)\fd3,

then by (2.12) we deduce the desired result (2.9). D

Another result which is similar to the one above is incorporated in the following
theorem.

THEOREM 4 . With the assumptions of Theorem 3, we have

f{t) dt(2.13)

or, equivalently,

2y/Mm

The case of equality holds in (2.13) or (2.14) if and only if

(2-15) ||/(*)|| | |/(s)| | ;

for almost every (t, s) € A.
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PROOF: From (2.7), we deduce

| | / ( i ) | | 2 + M m \ \ f ( s ) \ \ 2 < ( M +

for almost every (t, s) € A. Dividing by s/Mm > 0, we deduce

/Mm
VM^\\f(s)\\U^±^Re(mf(s))

and, obviously, since

hence

'Mm
Re

for almost every (t, s) E A, giving

\\f(t)\\\\f(s)\\-Re(f(t),f(s))s

Applying Lemma 1 for k(t,s) := (\/M - ^/m) jy/MmRe (f(t), f(s)), we deduce

Re(f(t),f(s)).

On the other hand, since

Re (/(<), /(*)) = Re </(s), /(«)> for any (t, s) € [a, b}2,

hence

I Re(f(t),f(s))dtds

and thus, from (2.16), we get (2.13).
The equivalence between (2.13) and (2.14) is obvious and we omit the details. D
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3. RELATED RESULTS

The following result also holds.

THEOREM 5 . Let f e L(\a, b]; H) and 7, T € K be such that either

(3.1) Re <r / ( s ) - /(*), f{t) - 7 / (s ) ) > 0 for almost every [t, s) 6 A,

or, equivalently,

(3.2) | / ( t ) _ £ ± T : / ( , ) | | ^ I | r - 7 | | | / ( a ) | | for almost every (t,s)&A.

Then we have the inequality:

(3.3) jf [(6 - a) + 7r(s - a)] ||/(s)||2 ds f(s) ds
2

The case of equality holds in (3.3) if and only if the case of equality holds in either (3.1)
or (3.2) for almost every (t, s) € A.

PROOF: The inequality (3.1) is obviously equivalent to

(3.4) \\f(t)\\2 + 7r| | /(s)| |2 ^ (r + 7) Re </(*), /(«))

for almost every (t, s) € A.
Integrating (3.4) on A, we deduce

(3.5)

rb
^ ( r + 7)

It is easy to see, on integrating by parts, that

and

Since

= bf'\\f(a)\\2d8- [bs\\f(s)\\2ds
Ja Ja

- f\b-s)\\f(s)\\
2ds

Ja

fb(\\f(s)\\2 [' dt)ds= [\s-a)\\f(S)\\
2ds.

Ja Ja Ja

«)> f fit) dt) + (£ f(t) dt,

= 2 Re ^jf'/(«)<«,/(*)),
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hence

jf'QT Re </(*), /(«)) «ft) ds = £**( f /(*) *, /(*))

i
Ja

dt\\ .

Utilising (3.5), we deduce the desired inequality (3.3).
The case of equality is obvious and we omit the details.

REMARK 3. Consider the function ip(s) := (b - s) + jF(s — a), s 6 [a, 6]. Obviously,

<£,(s) = ( r7 -l)s + b- jTa.

Observe that, if F7 ^ 1, then

b-a = <p(a) < (p(s) < <p{b) = jT(b-a), s £ [a,b]

and, if Fj < 1, then

D

- a) ^ (p(s) ^b-a, s € [a, 6].

Taking into account the above remark, we may state the following corollary.

COROLLARY 6 . Assume that f, 7, F are as in Theorem 5.

(a) I/T7 ^ 1, then we have the inequality

(b) If 0 < F7 < 1, then we have the inequality

7r(6-a)

4. APPLICATIONS FOR COMPLEX-VALUED FUNCTIONS

Let / : [a, 6] —¥ C be a Lebesgue integrable function and M ^ 1 ^ m ^ 0. The
condition (2.7) from Theorem 3, which plays a fundamental role in the results obtained
above, can be translated in this case as

(4.1) Re[(M/(s) -

for almost every a ^ t < s ^ b.

0
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Since, obviously

Re [{Mf(s) - /(«)) (JW) - mW))] = [(M Re f(s) - Re f(t)) (Re f{t) - m Re /(s))]

+ [(M Im f(s) - Im /(t)) (Im f{t)-m Im /(s))]

hence a sufficient condition for the inequality in (4.1) to hold is

(4.2) mRe/(s) < Re/(i) ^ MRe/(s) and mlm/(s) ^ Im/(t) < Mlmf(s)

for almost every a ^ t ^ s ^ b.

Utilising Theorems 3,4 and 5 we may state the following results incorporating
quadratic reverses of the continuous triangle inequality:

PROPOSITION 1. With the above assumptions for f,M and m, and if (4.1)
holds true, then we have the inequalities

+ (%iT f(jf

and

REMARK 4. One may wonder if there are functions satisfying the condition (4.2) above.
It suffices to find examples of real functions y>: [a, b] —¥ R verifying the following double
inequality

(4.3) 7¥>(s) ^ tp(t)

for some given 7, F with 0 ^ 7 ^ 1 ^ r < o o f o r almost every a ^ t ^ s < b.

For this purpose, consider ip : [a, b) —¥ 1R. a, differentiable function on (a, b), continuous

on [a, b] and with the property that there exists 0 ^ 0 ^ 6 such that

(4.4) 9 ^ ip'{u) < 0 for any u E (a, b).

By Lagrange's mean value theorem, we have, for any a ^ t ^ s ^ b

rP(s) - 4>(t) = V'(0(* - t)

with t ^ ^ ^ s. Therefore, for a ^ t ^ s ^ b, by (4.4), we have the inequality

0(b - a) ^ 0(s - t) ^ V(«) - V>(*) ^ ©(s - <) ^ 6(6 - a).

If we choose the function ip : [a, b] -* R given by

and 7 := exp[0(6 - a)] ^ 1, T := exp[0(6 - a)] ^ 1, then (4.3) holds true for any a ^ t
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