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Abstract

For ensuring food demand of the fast growing population in developing countries, quantifi-
cation of crop yield gaps and exploring production constraints are very crucial. Sorghum is
one of the most important climate change resilient crops in the rainfed farming systems of
semi-arid tropics. However, there is little information about yield gaps and production con-
straints. This study aimed at analysing existing yield gaps and exploring major constraints of
sorghum production in Southwest Ethiopia. A crop simulation model approach using
AquaCrop and DSSAT was used to estimate potential yield and analyse the yield gaps.
Model calibration and evaluation was performed using data from field experiments conducted
in 2018 and 2019. Sorghum production constraints were assessed using a survey. The actual
and water-limited yield of sorghum ranged from 0.58 to 2.51 and 3.6 to 6.47 t/ha, respectively
for the period 2003–17. The regional yield gaps of sorghum for the targeted period were 3.02–
3.95 t/ha with a mean value of 3.51 t/ha. Majority of respondent farmers considered seasonal
rainfall risk (98%), poor soil fertility (86%), lack of improved varieties (78%) and inadequate
weed management (56%) as major factors responsible for the existing yield gaps. The mean
exploitable yield gap (2.5 t/ha) between water-limited and actual yield showed the level of
existing opportunity for improvement in the actual productivity of sorghum. The gaps also
call for introduction of proper interventions such as adoption of improved varieties, planting
date adjustment, conservation tillage, fertilizer application and on time weed management.

Introduction

The rapid population growth accompanied by natural resource degradation, dependence on
rainfed agriculture and impact of climate change has constrained food security of developing
countries such as Ethiopia (Endalew et al., 2015; Reynolds et al., 2015; Mekuria, 2018).
Increased agricultural production in developing countries mainly comes from area expansion
and little from technological interventions (Tilman et al., 2011; Van Loon et al., 2019). Small
shares of land by farmers due to population pressure and also its degradation limit production
and productivity of crops in Ethiopia, which altogether call for designing strategies to maxi-
mize productivity per unit of existing cultivated land (Gebreselassie, 2006; Najafi et al.,
2018). Additionally, food production capacity of farm land, change in crop yield and the exist-
ing yield gaps need to be evaluated in a holistic approach to provide information for policy
makers and farmers to optimize the management system of their farm lands and increase
food production by reducing further area expansion (van Wart et al., 2013a; Anderson
et al., 2016; Najafi et al., 2018).

Quantification of crop yield gaps (Yg) provides key information as a basis for identifying
production constraints, exploring ways to increase crop productivity and prioritization of
intervention areas (Chapagain and Good, 2015; FAO, 2017; Eash et al., 2019). Moreover,
exploring existing yield gaps together with production constraints is the key for accurate
assessment of future food security, land use change and productivity (Van Ittersum et al.,
2013). In this regard, a number of findings having global, regional and local emphasis have
been reported and generated important information using different methodologies for the
last few decades (Lobell et al., 2009; Van Wart et al., 2013b; Anderson et al., 2016; Beza
et al., 2017; Soltani et al., 2020).

Benchmarking of potential yield (Yp) from maximum farmer yield, field experiments and
crop model simulations are the three common methods to estimate potential yield of crops for
employing Yg analysis (Laborte et al., 2012; FAO and DWFI, 2015). There are different limita-
tions when Yp is taken from maximum farmer yield and field experiments (Lobell et al., 2009).
For instance, for the estimation of Yp from field experiments perfect growth conditions have to
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be implemented throughout the growing season over a number of
years to reflect the effect of climatic variation, which is quite dif-
ficult to realize. Similarly, maximum farmers’ yield is based on the
report of individual farmers, which may be prone to data quality
problems. On the contrary, crop simulation models have quite
significant importance because models account for the variability
of multiple years’ weather conditions and allow interactions
among crops, soil, weather, water regime and management to
come up with a better estimate of Yp (Van Ittersum et al.,
2013). Thus crop models provide the most accurate ceiling of
Yp for a particular location despite having uncertainties related
to parameter estimation or structural functioning (Lobell et al.,
2009; Soltani and Sinclair, 2012; Eitzinger et al., 2013).

Sorghum (Sorghum bicolar (L.) Moench) is the fifth most
important cereal crop next to maize, rice, wheat and barley glo-
bally (FAOSTAT, 2017). It is grown in semi-arid tropics including
Ethiopia where other crops perform poorly, making it an import-
ant climate change resilient and food security crop (Amelework
et al., 2016; Hadebe et al., 2017a; Smale et al., 2018; Eggen
et al., 2019). Sorghum is the third widely cultivated cereal crop
next to Teff and maize and took third rank on its productivity
next to maize and wheat in Ethiopia (CSA, 2016, 2017). South
Omo and Segen Area People’s Zones are its production belts in
Southwest Ethiopia (CSA, 2016, 2017). Most parts of this region
are located in hot arid and semi-arid agro-ecological zones with
recurrent droughts, which exerts a negative impact on food secur-
ity of the population (Gebremichael et al., 2014; Enyew and
Hutjis, 2015). Hence, it is essential to deal with the existing pro-
duction status of crops such as sorghum, which have better adap-
tation capacity to such environments (Hadebe et al., 2017a).

Bottom-up approaches, up scaling site-specific Yp and Yg esti-
mates to regional and national scales according to Global Yield
Gap Atlas (www.yieldgap.org) is praiseworthy methodology for
the estimation of regional and national Yp and Yg of crops (van
Wart et al., 2013b; van Bussel et al., 2015). Robust, calibrated
and evaluated models for Yp and Yg estimates based on in-season
time series of crop and soil states and weather data have para-
mount importance for generating valid information (Rötter
et al., 2012; Kassie et al., 2014; Pradhan et al., 2015). In this
regard, estimates of sorghum water-limited yield (Yw) ranging
from 0.9 to 11.1 t/ha and Yg of 4.9 t/ha were done in Ethiopia
using a crop model (WOFOST) to generate data for the Global
Yield Gap Atlas (Van Bussel et al., 2015; www.yieldgap.org). In
this study, calibration of the model and simulation of Yw of sor-
ghum were done using soil data generated from ISRIC World Soil
information having 30–70% uncertainty that limits the accuracy
of model simulation (https://www.isric.org/explore/soilgrids/faq-
soilgrids). Furthermore, crop and management data were taken
from previous studies and expert judgement, which altogether
raise question on input data quality and reduce accuracy of
model simulation by introducing additional uncertainty (Bao
et al., 2017). In the current study, observed crop and soil data
for model calibration and evaluation were taken from field experi-
ment conducted for this purpose in Southwest Ethiopia.
Furthermore, the Yw and existing Yg of sorghum in the region
were addressed using two crop models (AquaCrop and DSSAT)
that use different crop coefficients and simulate crop yield
based on different input data requirement (Raes et al., 2018;
Hoogenboom et al., 2019a). In addition, the current yield gap
analysis was linked to identification of the factors responsible
for the existing yield gap in order to indicate possible areas of
intervention. Hence, this study was carried out with objectives

of analysing existing yield gaps and exploring major production
constraints of rainfed sorghum production in Southwest Ethiopia.

Materials and methods

Description of study area

The study was conducted in two administrative zones (South
Omo and Segen Area People’s zones) of Southwest Ethiopia
(Fig. 1), which are known for sorghum production in acreage
and productivity in the region (CSA, 2016). From the cultivated
land in the region, sorghum area coverage ranked second (20%)
next to maize (CSA, 2020). South Omo zone has an altitude ran-
ging from 376 to 3500 m a.s.l. and located between 35°97′–36°6′E
and 4°43′–6°46′N (BoFED, 2012). Similarly, Segen Area People’s
zone has an altitude ranging from 501 to 3000 m a.s.l. and located
between 37°1′–38°01′E and 5°17′–5°59′N. The region has a mean
annual rainfall of 435–1211 mm while annul maximum and min-
imum temperature ranges from 27.8 to 33.7 and 14.4 to 23.7°C,
respectively.

Description of the field experiment

A field experiment was conducted during the main cropping
season (February to June) for 2 years (2018 and 2019) to collect
crop and soil data for model calibration and evaluation. The
experiments were run at two locations, Jinka Agricultural
Research Centre having an altitude of 1380 m a.s.l. (hereafter
called Jinka) and Kako Farmers Training Centre having elevation
of 1196 m a.s.l. found in Benatsemay district (hereafter called
Benatsemay), in South Omo zone, Southwest Ethiopia (Fig. 1).
Benatsemay and Jinka were selected to represent low land and
areas near-mid land conditions where sorghum is commonly pro-
duced in the region, respectively. The study involved two
improved sorghum cultivars (Melkam and Teshale) that were
introduced to the area by Ethiopian Institute of Agricultural
research. Both cultivars are adopted by farmers in the region
although still many used their local cultivars. Teshale is relatively
high yielder, more susceptible to bird attack and have short stor-
age life compared to Melkam. On the contrary, Melkam has short
plant height and mature relatively earlier than Teshale (Jinka,
unpublished). Four rates (0 50, 100 and 150 kg/ha) of the blended
fertilizer consisting of nitrogen, phosphorus, sulphur and boron
(NPSB) based on the recommendation by EhtioSIS soil Fertility
Map (EthioSIS 2016, unpublished) were considered as the second
factor for the field experiment. Higher rates of nutrients were
included to determine the best genetic coefficients of the sorghum
cultivars used. The treatments were combined in factorial
arrangement and laid out in randomized complete block design
with three replications.

Models and data requirement

AquaCrop and DSSAT models
A model-based approach was selected for this study from the dif-
ferent methods available for yield gap analysis. Two crop models,
CERES-Sorghum model that is embedded in the Decision
Support System for Agrotechnology Transfer (DSSAT v. 4.7.5 –
a complex model (Jones et al., 2003; Hoogenboom et al., 2019a,
2019b)) and AquaCrop (Version 6.1, an intermediate model
(Steduto et al., 2009; Raes et al., 2018)) were employed. The
two models were selected based on their wide applicability and
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acceptance for the estimation of potential yield, adaptation option
evaluation, impact assessment of climate change and optimization
of field managements (Tsegay et al., 2012, 2015; Kassie et al.,
2014; Lopez et al., 2017; Adam et al., 2018).

Differences in input data requirement and simulation pro-
cesses were the other reasons for selecting the two models, as indi-
cated below. Furthermore, the interest in using the two models
was to compare their performance in predicating Yw of sorghum
cultivars without considering the essence of a multimodel
approach. AquaCrop, developed by the FAO, is a user-friendly
and practitioner-oriented model, which maintains an optimal bal-
ance between accuracy, robustness and simplicity (Steduto et al.,
2009; Raes et al., 2018). It uses only a relatively small number
of explicit parameters and mostly intuitive input variables that
can be determined by using simple methods, while the calculation
procedures are based on basic and often complex biophysical pro-
cesses to guarantee an accurate simulation of the crop response in
the plant–soil system (Raes et al., 2009; Steduto et al., 2009). It
simulates biomass and yield production based on the amount of
water transpired from green canopy cover under the governing
environmental conditions. Aboveground biomass (B) is produced
as a function of the daily ratio of crop transpiration Tri (mm) and
reference evapotranspiration (ETo) via crop water productivity
WP* (g/m2) that is normalized for EToi (mm) and atmospheric
CO2 concentration (Steduto et al., 2009; Raes et al., 2018):

B = WP∗·
∑n
i=1

Tri
EToi

( )

where n is the sequential days spanning the period when B is
produced.

DSSAT is the most widely used crop model globally, which
consists of a collection of independent programmes (crop, wea-
ther, soil and water modules) that operate together, with the crop-
ping system model embedded in its heart (Jones et al., 2003).
DSSAT simulates growth and development of a crop grown
under prescribed or simulated management, soil water, carbon
and nitrogen. Phenological development and growth of a crop
are specified in DSSAT by cultivar-specific genetic coefficients
(Hoogenboom et al., 2019a).

Input data sets and observed data for model calibration
AquaCrop uses inputs from climate, crop, soil and management
files (Hsiao et al., 2009). The climate data include daily values
of minimum and maximum air temperature, rainfall, reference
evapotranspiration (ETo), which can be computed from wind
speed, relative humidity, sunshine hours and minimum and max-
imum air temperatures (Raes et al., 2018). Climate data measured
by the National Metrology Agency of Ethiopia (NMA) from 2003
to 2019 at two weather stations (Jinka and Keyafer) located near
the experimental sites were collected and quality control was
checked using the Rclimdex software program (Zhang and
Yang, 2004).

The crop data for AquaCrop include, time of emergence, max-
imum canopy cover, days to flowering, senescence and maturity
that were used to simulate dry aboveground biomass and grain
yield. Seasonal canopy cover, dry aboveground biomass and soil

Fig. 1. Map of study area. SNNPR, Southern Nations Nationalities and Peoples’ Regional State.
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water content were the data collected to be used for model calibra-
tion and evaluation. Canopy cover was determined using ‘sample-
point’ software by taking digital pictures perpendicular to the
experimental plot at a height of 2 m (Booth et al., 2006).
Phenology data were collected by field observation when 50% of
plants in each experimental unit reached the respective stages.
Green canopy cover and aboveground biomass were measured
at 10-day interval starting from emergence to maturity.
Similarly, the soil inputs included texture, number of horizons
in the root zone, initial soil water content, field capacity (FC), per-
manent wilting point (PWP) and soil nutrient content. The initial
soil conditions of experimental sites (Table 1) were determined
after excavating a soil profile at each site during planting at a
depth of 1.2 m. Apart from the nutrient analysis (used during
simulation of DSSAT and not shown here), soil texture, total
available water and bulk density were determined at soil labora-
tories of Hawassa University and Jinka. The soil water retention
at PWP, FC and saturation (SAT) were determined using a pedo-
transfer function based on the textural class of the soil (Saxton
and Rawls, 2006). Seasonal available soil water content was mea-
sured using a gravimetric method at 10-day interval starting from
sowing to crop maturity. Additional information on soil texture,
organic matter content, electric conductivity, pH and exchange-
able potassium was used from the data generated by Kebede
et al. (2017) for different soil conditions of Jinka.

The DSSAT model uses soil, crop management and daily
meteorological data as input to simulate daily leaf area index
(LAI) and vegetation status parameters, biomass production and
final yield (Jones et al., 2003; Hoogenboom et al., 2019a). The
daily meteorological data include solar radiation, rainfall and
maximum and minimum air temperatures. The main soil data
include soil type, slope and drainage characteristics, and physico-
chemical parameters for each soil layer. The crop management
data include variety, planting date, plant density and fertilizer
application. The entire crop, soil and management data were
taken from the field experiment. Solar radiation was estimated
from the available sunshine hours using the Angstrom formula
(Allen et al., 1998):

Rs = (0.25+ 0.5
n
N

( )
Ra

where Rs is the solar radiation (MJ/m2/day), Ra is the extra-
terrestrial radiation (MJ/m2/day), n is the actual duration of sun-
shine (h) and N is the maximum possible sunshine duration (h).

Model calibration and evaluation

Model calibration is an adjustment of system parameters for gain-
ing a good overall agreement between simulated and observed
values, so that simulation output would fairly fit the reality
(Sannagoudar et al., 2019). Calibration of both AquaCrop and
DSSAT models was done using relevant data (phenology, canopy
cover, soil water content, LAI, biomass and yield) from the field
experiment conducted in 2018 for the two improved sorghum
cultivars (Melkam and Teshale) recommended for the area.

Four coefficients (canopy growth, maximum canopy cover,
average canopy decline and water productivity) were manually
adjusted until the simulated seasonal green canopy cover, above-
ground biomass and soil water content approximated to the
observed values during the calibration of AquaCrop. Similarly,
during calibration of DSSAT, genetic coefficients that influence

phenology, growth and yield were developed by employing a
GLUE coefficient estimator (Jones et al., 2011) using data from
the field experiment of 2018. Cultivar parameters that influence
biomass accumulation and grain yield were determined after
adjusting the coefficient for phenology (anthesis and maturity
dates).

Performance evaluation of the two models was done to test if
the output of model simulations reaches an adequate level of
agreement with the observed values (Tsegay et al., 2012).
Evaluation of AquaCrop performance was done using independ-
ent data sets from field experiment of 2019 involving green can-
opy cover, soil water content and aboveground biomass without
making any changes on the calibrated crop file. Similarly,
DSSAT was evaluated using point data from a specific period
such as days to anthesis and physiological maturity and time ser-
ies data of biomass, LAI and soil water content collected from the
same field experiment.

Statistical indicators that were used to compare the deviation
between observed and simulated values were root mean squared
error (RMSE) (Chai and Draxler, 2014) and index of agreement
(d) (Willmott, 1982). The RMSE is a measure of the mean devi-
ation between observed and simulated values that indicate the
absolute model uncertainty. It has the same unit as the variable
being simulated, and a value closer to zero indicates better
model simulation performance:

RMSE =
��������������������
1/N

∑N
i=1

(Oi − Si)
2

√√√√

where Oi and Si are the observed (measured) and simulated
values, respectively and N is the number of observations. The

Table 1. Soil properties at Benatsemay and Jinka experimental sites, Southwest
Ethiopia

Benatsemay

Soil depth
(cm) 0–20 20–40 40–80 80–120

Texture
Sandy
loam

Sandy
loam

Loamy
sand

Sandy
loam

BD (g/cm3) 1.52 1.38 1.42 1.39

SAT (vol%) 43.8 43.2 44.1 43.0

FC (vol%) 16.5 19.9 14.0 21.2

PWP (vol%) 9.7 12.1 8.5 13.2

TAW (mm) 98 84 85 80

Jinka

Texture Clay loam Clay loam Clay Clay

BD (g/cm3) 1.35 1.36 1.32 1.3

SAT (vol%) 48.9 48.6 50.2 50.8

FC (vol%) 37.9 36.8 40.3 41.8

PWP (vol%) 23.9 22.3 27.0 29.1

TAW (mm) 145 140 130 130

BD, bulk density; SAT, soil water retention at saturation; FC, soil water retention at field
capacity; PWP, soil water retention at permanent wilting point; TAW, total available water in
the root zone of 1.2 m.
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index of agreement is a measure of relative error in model esti-
mates that ranges from 0 to 1.0, where 0 and 1 describe complete
disagreement and agreement between estimated and observed
values, respectively:

d = 1−
∑N

i=1 (Si − Oi)
2

∑N
i=1 (|Si − �O| + |Oi − �O|)2

where Ō is the mean of observed (measured) values. Additionally
percent bias (PBIAS) was used to measure the tendency of simu-
lated data to be smaller or larger than the observed data (Moriasi
et al., 2007):

PBIAS =
∑N

I=1 100 (Oi − Si)∑N
I=1 (Oi)

Positive values indicate underestimation, negative values indi-
cate overestimation and zero value indicates agreement of
averages of simulated and measured values.

Approaches for yield gap and variability analysis

Water-limited yield and yield gaps existing in the region were esti-
mated with the two models using multi-year simulations based on
historical weather data. Yield gap analysis can be done by com-
paring two levels of yield from different yield categories (Lobell
et al., 2009; Kassie et al., 2014; FAO and DWFI, 2015) involving
potential yield, water-limited yield, attainable yield and average
farmers yield (actual yield). Potential yield is the maximum
yield of a crop cultivar grown in an environment to which it is
adapted with nutrients and water non-limiting and pests, diseases,
weeds, lodging and other stresses effectively controlled.
Water-limited yield (Yw) is similar to potential yield, except
that yield is limited by water supply, and hence influenced by
soil type (water holding capacity and rooting depth) and field top-
ography. The former and later are used as the benchmark of prod-
uctivity to irrigated and rainfed crops, respectively.

Attainable yield is the best yield achieved through skilful use of
the available technologies by avoiding the effect of weeds, pests
and diseases while water and nutrients limit the yield. Similarly,
average farmers yield (Ya) is the yield achieved using the available
resources and current practices of the farmers and determined
from an area and production data of a crop for a given district
and time period. In addition, on farm trial yield data were
taken from experiments conducted at Farmers Training Centre
of three districts in South Omo (Benatsemay, Nangaton and
Dasenech) by researchers from Jinka. The trial was conducted
to evaluate adaptation of improved sorghum cultivars using
recommended technologies such as spacing (75 by 15 cm2), fertil-
ization (100 kg/ha urea), weed control (three times weeding) and
planting date (varied from February to March). Water-limited
yield, attainable yield and actual yield were represented with
data generated from crop simulation models, farm trials and aver-
age farmers’ yield (from Central Statistical Agency (CSA)),
respectively. Due to rainfed nature of sorghum production in
the country including the study area, Yw was used instead of Yp

during yield gap analysis. Accordingly, the following three types
of Yg analyses were done: (i) the gap between water-limited and
attainable yield, (ii) the gap between water-limited and actual
yield and (iii) the gap between attainable and actual yield.
Comparison of actual yield from CSA, average yield value at the

zone level, with water-limited yield of sorghum from two sites
within the zone was the limitation of this study. Hence there
was a possibility of over or under estimation of the yield gap to
some extent.

Sorghum production constraints

In addition to the field experiment, a survey was conducted in
2019 to identify sorghum production constraints in South Omo
and Segen Area People’s zones. For this study, four kebeles (the
lowest administrative unit in Ethiopia) were selected using multi-
stage sampling techniques. First, South Omo and Segen Area
People’s zones were selected purposefully owing to their potential
of sorghum production in the southern region. Similarly,
Benatsemay district from South Omo zone and Konso district
from Segen Area People’s zone were selected based on the same
criteria and two kebeles from each district were picked randomly.
Based on the following sample size determination formula
(Yamane, 1967), the total sample size of the four identified kebeles
was 354:

n = N
1+ N e2

where n is the sample size and N is the population size (3055) and
e is the desired level of precision (0.05). However, due to the scat-
tered settlement of the population and harsh environmental con-
ditions, the total sample size was reduced to 245. By using the list
of household heads from each district agricultural office, 245 farm
household heads from the four kebeles were sampled randomly
using probability proportional to the size of the total households
of each kebele. A semi-structured questionnaire was used to gather
information on farm history, agronomic practices used by farmers
and challenges they faced in relation to reduced productivity of
sorghum in the area. Descriptive data analysis was done to sum-
marize responses from the farmers on the factors reducing sor-
ghum yield.

Results

Model calibration and evaluation

The crop parameters adjusted for cultivars Melkam and Teshale
during the calibration of AquaCrop were maximum canopy
cover, canopy growth coefficient, normalized water productivity
and average canopy cover decline. These parameters influence
the expansion of green canopy cover, biomass accumulation
and yield formation of a given crop. The adjusted values of
Teshale and Melkam were 48.6 and 56.4% for maximum canopy
cover, 8.29 and 10.26% for canopy growth coefficient, 0.84 and
0.94%/day for average canopy decline and 9.6 and 9.3 g/m2 for
normalized water productivity, respectively (Table 2). After cali-
bration, the RMSE values were 6.2 and 6.3% for canopy cover,
0.65 and 0.68 t/ha for dry aboveground biomass of Melkam and
Teshale, respectively (Table 3). In addition, the RMSE for soil
water content was 8.7 mm (Table 3). Similarly, the values of d
and PBIAS ranged from 0.95 to 0.97 and −9.18 to −3.2%,
respectively.

The evaluation of AquaCrop using independent observation
data of seasonal green canopy cover, aboveground biomass and
soil water content from 2019 (Figs 2 and 3) confirmed a good
agreement between simulations and observations during the
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calibration year 2018 (Table 3). Simulation of available soil water
content in the root zone showed a deviation of 2.2 mm (Table 4).
The average observed canopy covers of 33.4% for Melkam and
30.7% for Teshale were simulated by the model with deviation
of 0.9 and 2.4%, respectively (Table 4). Similarly, simulation of
aboveground biomass showed a deviation of 0.11 t/ha for
Melkam and 0.1 t/ha for Teshale.

The d values were >0.9 for all cases of green canopy cover and
dry aboveground biomass except for seasonal soil water content
for which d was 0.83 (Figs 2 and 3) during the evaluation of
AquaCrop. Similarly, the RMSE were 6.9 and 5.8% for green can-
opy cover and 0.55 and 0.96 t/ha for dry aboveground biomass of
Teshale and Melkam, respectively. In addition, the RMSE for soil
water content was 7.6 mm. Furthermore, the slopes of correlation
lines between observed and simulated seasonal soil water content
and crop parameters were almost parallel and approached to 1 : 1
plot and the statistical measures were adequate to show the accur-
acy of the model to simulate soil water content, green canopy
cover and dry aboveground biomass (Figs 2 and 3).

Table 5 shows the cultivar coefficients adjusted during DSSAT
calibration for simulating development and growth of sorghum
cultivars. Evaluation of DSSAT using these calibrated cultivar
coefficients showed a good agreement between observed and
simulated phenology and growth of sorghum cultivars
(Table 6). The observed days to anthesis and maturity were 71
and 106 for Melkam and 76 and 114 for Teshale, respectively.
Deviations of simulated value for days to anthesis and maturity
were 2 and 6 for Melkam and 1 and 3 for Teshale, respectively.
Similarly, maximum LAI was simulated with a deviation of 0.17
for Melkam and 0.54 for Teshale. The simulated seasonal top
weight, LAI and water available in the root zone showed a good
fit with the observed values and the regression lines between
simulated and observed values were almost parallel and
approached to 1 : 1 plot (Figs 4 and 5).

A grain yield of 4.2 t/ha for the cultivar Melkam and 4.7 t/ha for
Teshale were obtained from the field experiment of 2019 (Table 7).
During model evaluation, grain yields of 5.1 and 5.6 t/ha were
achieved from the simulation of AquaCrop for cultivar Melkam
and Teshale, respectively (Table 7). Similarly, simulation by
DSSAT resulted in a grain yield of 4.6 t/ha for Melkam and 4.9 t/
ha for Teshale, which were lower than the values obtained from
AquaCrop. There was a good agreement between observed and
simulated values of grain yield for both models (Table 7).
However, grain yield was simulated with lower deviation using
DSSAT (average deviation of 0.3 t/ha) than AquaCrop (average
deviation of 0.9 t/ha) compared to the average measured yield of
the two cultivars over locations. Also simulated grain yield of
both cultivars had lower PBIAS for DSSAT than AquaCrop
(Table 7). The maximum PBIAS (−21.4%) was observed for
grain yield of Melkam simulated with AquaCrop and the minimum
PBIAS (4.3%) was observed for Teshale simulated with DSSAT.

Yield levels, variability and gaps

The regional actual yield of sorghum for the period 2003–17 var-
ied from 0.58 to 2.51 t/ha with an average of 1.51 t/ha and coeffi-
cient of variation (CV) of 40.3% (Table 8, Fig. 7). Similarly, the
mean attainable yield of sorghum for the period 2014–17 was
3.06 t/ha with a CV of 30.8% (Table 8). The Yw of Melkam as
simulated with AquaCrop ranged from 4.55 to 5.78 t/ha with an
average of 5.14 t/ha at Jinka and from 3.51 to 6.28 t/ha at
Benatsemay with a mean value of 5.01 t/ha (Fig. 6). The values

with DSSAT were 3.1–6.5 t/ha with a mean of 4.69 t/ha at Jinka
and 3.13–7.44 t/ha with a mean of 5.12 t/ha at Benatsemay
(Fig. 6). Cultivar Teshale had Yw of 5.15–6.24 t/ha with a mean
of 5.49 t/ha and 3.81–6.53 t/ha with a mean of 4.92 t/ha as simu-
lated with AquaCrop and DSSAT, respectively, at Jinka. The Yw of
this cultivar ranged from 4.03 to 5.91 t/ha with an average of 5.24
t/ha for AquaCrop and from 3.12 to 7.08 t/ha with an average of
4.83 t/ha for DSSAT at Benatsemay (Fig. 6). Inter-annual variabil-
ity was also observed from the time series analysis of Yw (Table 8,
Fig. 7). Coefficients of variation for Yw averaged for the two cul-
tivars were 4.5% at Jinka and 12.2% at Benatsemay for AquaCrop.
Similarly, CV for Yw averaged for two cultivars were 19.3 and
22.3% at Jinka and Benatsemay, respectively, with DSSAT.

The 90th percentile of Melkam Yw was 5.75 t/ha at both Jinka
and Benatsemay using AquaCrop and 6.01 t/ha at Benatsemay
and 5.74 t/ha at Jinka using DSSAT (Fig. 6). Similarly, for the cul-
tivar Teshale the values were 5.85 t/ha at Benatsemay and 5.24 t/
ha at Jinka using AquaCrop, and 5.72 t/ha at Benatsemay and
5.42 t/ha at Jinka using DSSAT (Fig. 6). Also, higher medians of
Yw were recorded for both cultivars at Benatsemay than Jinka
with the two crop models except for Melkam using AquaCrop
at Jinka (Fig. 6).

The regional yield gaps between actual yield and Yw (mean of
the two cultivars) simulated using AquaCrop and DSSAT ranged
from 2.39 to 4.69 t/ha and 1.15 to 5.51 t/ha, respectively (Fig. 7).
The average Yg between actual yield and Yw, averaged for the two
cultivars were 3.62 and 3.44 t/ha at Benatsemay and 3.81 and 3.23
t/ha at Jinka simulated with AquaCrop and DSSAT models,
respectively, with an average value of 3.53 t/ha (Table 9). The dif-
ferences between Yw and attainable yield of sorghum ranged from
1.75 to 2.26 t/ha simulated with AquaCrop and DSSAT (Table 9).
Additionally, the regional gap between attainable and actual yield
was 1.55 t/ha (Table 9).

Table 3. Statistical measures for soil moisture and crop growth after calibration
of AquaCrop in 2018

Parameter Cultivar RMSE d PBIAS (%)

Soil moisture (mm) 8.7 0.95 −8.43

Canopy cover (%) Melkam 6.2 0.95 −8.43

Dry aboveground
biomass (t/ha)

0.65 0.96 −3.2

Canopy cover (%) Teshale 6.3 0.96 −9.18

Dry aboveground
biomass (t/ha)

0.68 0.97 −8.95

RMSE, root mean squared error; d, index of agreement; PBIAS, percent bias.

Table 2. Adjusted crop coefficients during calibration of AquaCrop for sorghum
cultivars in Southwest Ethiopia

Coefficient
Cultivar

Teshale Melkam

Maximum canopy cover (%) 48.6 56.4

Canopy growth coefficient (%) 8.29 10.26

Average canopy decline (%/day) 0.84 0.94

Water productivity (g/m2) 9.6 9.3
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Production constraints of sorghum

The existing yield gaps in Southwest Ethiopia were attributed to
different factors as indicated by the survey (Fig. 8). Majority of
respondent farmers (98%) considered seasonal rainfall risks as
the first major factor for low productivity of sorghum. The survey
result was in agreement with the correlation analysis of actual and
water-limited yield of sorghum with growing season rainfall vari-
ability and patters (Figs 9 and 10). The regional growing season
rainfall (averaged for eight weather stations of the region) and
the actual regional yield had a correlation coefficient of 0.63 for
the period 2003–17. Similarly, the correlation coefficient between
growing season rainfall and water-limited yield of Melkam and
Teshale simulated with AquaCrop and DSSAT at Benatsemay
and Jinka ranged from 0.52 to 0.74. Furthermore, the water-
limited yield generally increased with increasing of rainfall and
vice versa. Similarly, farmers identified poor soil fertility (86%)
as the second factor that limit sorghum productivity in the region.
In agreement with farmers’ assessment, field experiment result
confirmed that grain yield of sorghum cultivars increased by
77.3 to 83.6% due to the application of 150 kg NPSB/ha as com-
pared to unfertilized plants (Table 10). Additionally, farmers
identified a lack of improved varieties (78%) and poor weed man-
agement (56%) as other major factors limiting potential yield

Fig. 2. Observed and simulated (AquaCrop) canopy cover (a) and aboveground biomass (b) of cvs. Melkam and Teshale, as well as regression between observed
and simulated canopy cover (c) and aboveground biomass (d) of cv. Melkam during evaluation of AquaCrop at Jinka. The vertical bars indicate ±standard deviation
(n = 3).

Fig. 3. Observed and simulated seasonal available soil water content in the root zone
(1.2 m) during evaluation of AquaCrop at Jinka. The vertical bars indicate ±standard
deviation (n = 3)
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production of sorghum. Furthermore, disease and pest problem,
poor extension services and market access, low purchasing
power of input and the absence of weather information (data
not shown) contributed to low productivity of sorghum in the
region.

Discussion

Evaluation of models

Evaluation of the two models after calibration showed a good
agreement between observed and simulated growth of sorghum.
Simulations of seasonal soil water content, green canopy cover
and dry aboveground biomass using AquaCrop and phenology,
growth and development using DSSAT performed reasonably
well. This was supported by an adequate level of statistical mea-
sures and a good fit of regression lines. The evaluation results

indicated also a good accuracy of the two models to predict
grain yield of sorghum under water-limited conditions in
Southwest Ethiopia. Previous studies showed that the simulation
of sorghum yield in a water-limited environment using these
models was promising (Hadebe et al., 2017b; Sannagoudar
et al., 2019). Although the two models simulated grain yield rea-
sonably well, AquaCrop relatively overestimated the grain yield as
compared to DSSAT. This variation might be attributed to the dif-
ferences on overall yield simulation process of the two models.
AquaCrop simulates yield of crops in response to various degree
of soil moisture availability as a function of water consumption
where transpiration is first calculated and then translated into bio-
mass through water productivity function. Finally, yield is derived
from biomass and harvest index relations (Raes et al., 2009;
Steduto et al., 2009). On the contrary, estimation of crop yield
in DSSAT is a function of growth rate and duration (Tsuji
et al., 1998; White et al., 2015). Growth rate involves mass

Table 5. Calibrated genetic coefficients of sorghum cultivars used for evaluation of DSSAT model in Southwest Ethiopia

Code Description Melkam Teshale

P1 Thermal time from seedling emergence to the end of the juvenile phase (degree days) 352.8 369.2

P2O Critical photoperiod or the longest day length (hours) at
which development occurs at a maximum rate

13.33 13.25

P2R Phasic development leading to panicle initiation (degree days) 198.8 231.1

P3 Thermal time from end of flag leaf expansion to anthesis (degree days) 293.7 311.7

P4 Thermal time from anthesis to beginning of grain filling (degree days) 88.2 95.3

P5 Thermal time from beginning of grain filling to physiological maturity (degree days) 525.4 502.4

G1 Scaler for relative leaf size 4.4 2.9

G2 Scaler for partitioning of assimilates to the panicle (head) 6.2 6.3

Table 4. Comparison of observed and simulated average seasonal available soil water content, green canopy cover and aboveground biomass of sorghum cultivars
in Southwest Ethiopia during evaluation of AquaCrop

Parameters

Melkam Teshale

Observed Simulated Observed Simulated

SWC (mm) 172.6 174.8 172.6 174.8

Canopy cover (%) 33.4 34.3 30.7 33.1

Dry aboveground biomass (t/ha) 3.52 3.63 3.22 3.32

SWC, available soil water content in the root zoon. Unit of soil water content was changed from g/g to mm/m as per the requirement of AquaCrop.

Table 6. Comparison of observed and simulated phenology and growth of sorghum cultivars in Southwest Ethiopia during evaluation of DSSAT

Parameters Cultivar Observed Simulated RMSE d

Days to anthesis 71 73 1.4 0.58

Days to maturity Melkam 106 112 4.6 0.55

LAI (max) 4.54 4.71 0.57 0.61

Days to anthesis 76 77 1.7 0.61

Days to maturity Teshale 114 117 2.9 0..57

LAI (max) 4.67 5.21 1.2 0.67

RMSE, root mean squared error; d, index of agreement; LAI (max), maximum leaf area index measured at the time of heading.
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accumulation and area expansion that principally depends on
amount of photosynthetically active radiation, temperature, nutri-
ent and water availability. Growth duration involves phasic and
morphological developments that are principally controlled by
temperature. So, involving more number of processes in DSSAT
than AquaCrop might have led to estimate yield relatively closer
to the measured value.

Additionally, plant growth in DSSAT is governed by conver-
sion of intercepted radiation to biomass during which the LAI
is one of the key factors that determine the amount of light inter-
ception (Jones et al., 2003). On the contrary, AquaCrop uses can-
opy cover to determine the amount of water transpired that later
reflected on crop yield through its relation with biomass simula-
tion (Steduto et al., 2009). Accuracy of canopy cover estimates
using digital image analysis limited by angle of view during aerial
image capturing and canopy closure at later stage of crop growth
resulting in saturation signal (Fiala et al., 2006; Raj et al., 2021).
On the contrary, LAI estimates using a direct method as done
in this study gives the most accurate values (Raj et al., 2021).
Hence, using LAI by DSSAT and canopy cover by AquaCrop as
primary engine for capturing resources during the formation of
biomass and subsequent yield might be additional reasons for
variation in the accuracy of yield estimation between the two

Fig. 5. Observed and simulated water available in the root zone at Jinka during
evaluation of DSSAT. The vertical bars indicate ±standard deviation (n = 3).

Fig. 4. Observed and simulated top weight (a) and LAI (b) of sorghum cultivars and regression between observed and simulated top weight (c) and LAI (d) of
Melkam cultivar at Jinka during evaluation of DSSAT.
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models. Furthermore, DSSAT simulates a detailed plant and soil
nutrient balance whereas AquaCrop simply evaluates crop
response to different soil fertility regimes from poor to non-stress
conditions (Jones et al., 2003; Steduto et al., 2009; Raes et al.,
2018). Consideration of nutrient balance instead of soil fertility
regime is more realistic to see the effect of nutrients on plant
growth and yield formation. Moreover, quantifying the effect of
solar radiation in addition to water in DSSAT is likely to be an

additional advantage in estimating crop yield as close as possible
to the measured value.

Yield levels, variability and gaps

During the targeted period, the actual yield of the crop showed an
increasing trend. However, such a significant increment on the
actual yield was accompanied by high year-to-year variability,

Table 8. Different yield levels of rainfed sorghum production in Southwest Ethiopia

Yield category (t/ha)

Benatsemay Jinka
Mean

Mean CV (%) Mean CV (%)

Actual yielda 1.51 40.3 1.51 40.3 1.5

Attainable yieldb 3.06 30.8 3.06 30.8 3.06

Simulated water-limited yield

AquaCrop 5.13 12.2 5.32 4.5 5.23

DSSAT 4.98 22.3 4.81 19.3 4.90

CV, coefficient of variation.
aActual yield was considered for the period 2003–17 from Central Statistics Agency of Ethiopia. The actual yield and Yw were averaged for the period 2003–17.
bAttainable yield was average of 4 years (2014 to 2017). Simulated water-limited yield was averaged for the two cultivars over locations.

Fig. 6. Water-limited yield of Melkam (AquaCrop) (a),
Melkam (DSSAT) (b), Teshale (AquaCrop) (c) and
Teshale (DSSAT) (d) at two locations (Benatsemay
and Jinka) in Southwest Ethiopia for the period
2003–17. Boxes indicate the lower and upper quartiles.
The solid line within the box is the median. Whiskers
indicate the minimum and maximum values and
dots outside the whiskers are outliers.

Table 7. Observed and simulated grain yields of sorghum cultivars and PBIAS (%) for simulation of grain yield during evaluation of AquaCrop and DSSAT in
Southwest Ethiopia

Cultivar

Grain yield (t/ha) PBIAS (%)

Observed Simulated (AquaCrop) Simulated (DSSAT) DSSAT AquaCrop

Melkam 4.2 5.1 4.6 −9.5 −21.4

Teshale 4.7 5.6 4.9 −4.3 −19.2

PBIAS, percent bias.
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which might be attributed to the existing variability of rainfall.
This was confirmed by the existing correlation between growing
season rainfall and annual actual yield of the region for the period
2003–17. The increase in actual yield could be the result of change
in the adoption of improved agronomic measures in the region
during the stated period although it is found at its early stage
(Shiferaw and Yoseph, 2014; Yoseph and Sorsa, 2014).

Higher inter-annual variability of Melkam and Teshale Yw was
observed at Benatsemay than Jinka for both models and this could
be attributed to differences in edaphic and climatic conditions of
the area. For instance, the soil textural classes of Jinka and
Benatsemay were clay loam and sandy loam, respectively. Such
soil texture difference has a significant effect on availability of
water and crop yield when water is the yield-limiting factor
(Silungwe et al., 2019). Similarly, the Yw of the crop showed
some differences with respect to the same yield level of other
regions of Ethiopia where the potential yield of the crop was
determined based on field experiment (5.15 t/ha) (Kinfe and
Tesfaye, 2018) and crop model (2.8–10.2 t/ha) (Van Bussel

et al., 2015). Divergence of potential yield from field experiment
and crop model is expected since under field conditions main-
taining all management practices to their best level and control-
ling all biotic and abiotic factors throughout the growing season
are quite difficult. Employing different models could be other
source of variation during estimation of Yw. For instance, during
estimation of Sorghum Yw in Global Yield Gap Atlas, Van Bussel
et al. (2015) used WOFOST, which has a different approach to
describe crop growth dynamics as compared to DSSAT and
AquaCrop. Additionally, the Yw of crops found to be different
across different locations due to variation in growth duration
and local weather conditions specially temperature and rainfall
which do have significant direct and indirect effects on the crop
growth and yield response (Deng et al., 2019).

The attainable yield (3.06 t/ha) of the crop in the study area
was lower than the same yield level of other sorghum producing
areas of the country such as the 5.71 t/ha in Eastern Hararghe
(Abady et al., 2017; Abduselam et al., 2018) and the 4.41 t/ha in
Afar (Dilnesaw et al., 2018), which could be due to local
agro-ecological variation and the extent of harmonious application
of agronomic practices (Fujimura et al., 2010; Mundia et al., 2019).
Furthermore, the attainable yield was below the water-limited yield
by 1.97 t/ha indicating existence of limitations in soil nutrients and
water, which reduce sorghum yield performance in the area.

The average regional actual yield was below attainable and water-
limited yield by 1.56 and 3.52 t/ha indicating loss of 51 and 70%,
respectively. Such yield gaps are common under rainfed and subsist-
ence farming system where crop production is constrained by water,
nutrients and other environmental factors (Lobell et al., 2009). This
Yg indicates the opportunity to enhance sorghum production by
reducing the yield-limiting factors in the region. However, it is
not possible to completely close the Yg between actual yield and
Yw since the average yield of farmers would not reach to the ceiling
of potential yield due to two main reasons (Van Ittersum et al.,

Table 9. Existing yield gaps among actual, attainable and water-limited yield as
simulated with AquaCrop and DSSAT for rainfed sorghum in Southwest Ethiopia

Yield comparison (t/ha)a Benatsemay Jinka

Attainable – actual yield 1.55 1.55

Water-limited yield (AquaCrop) – actual yield 3.62 3.81

Water-limited yield (DSSAT) – actual yield 3.44 3.23

Water-limited yield (AquaCrop) – attainable yield 2.07 2.26

Water-limited yield (DSSAT) – attainable yield 1.92 1.75

aThe data represent the average yield gaps for the period 2003–17 except for attainable yield
for which yield data was available for the years from 2014 to 2017.

Fig. 7. Time series comparison of actual yield with water-limited yield and yield gaps (using DSSAT and AquaCrop) of rainfed sorghum production in Southwest
Ethiopia. Actual yield was taken from CSA of Ethiopia for the period from 2003 to 2017. Simulated yield was average of Melkam and Teshale from the two sites
(Jinka and Benatsemay) using DSSAT and AquaCrop for the period 2003–17.
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2013; Van Wart et al., 2013a). First, there is a diminishing marginal
yield benefit from application of additional input as yield
approaches to the ceiling, and second, not all farmers in a given
region have perfection on soil and crop management. Van
Ittersum et al. (2013) asserted that average yield of farmers tend
to plateau when they reach 75–80% of Yp or Yw and the exploitable
yield gaps could be considered between average farm yield and 80%
of Yp or Yw. Hence the exploitable yield gap of rainfed sorghum
production in Southwest Ethiopia was 2.5 t/ha.

There was considerable variability on the existing Yg between
actual yield and Yw of the crop within the 15 years of the tar-
geted period. This could be attributed to differences in climatic
conditions, management practices and adoption of improved

technologies. At later years of production, the yield gaps became
narrowed compared to the earlier one’s mainly because of an incre-
ment on average farmers yield due to adoption of improved tech-
nologies to some extent. Najafi et al. (2018) stated that crop
productivity over time would be improved due to changes in tech-
nology and economic growth, improvement in input supply, release
of new varieties and better agronomic practices. A trade-off exists
between number of years considered for Yg analysis and robust esti-
mation of the Yg with respect to environmental differences (Van
Ittersum et al., 2013; Van Wart et al., 2013a). In favourable envir-
onments, the most recent 5–7 years are adequate for estimation of
average farmers yield and simulation of Yw with relatively low CV.
On the contrary, 10–20 years are need to be considered in harsh
environments having lower rainfall to compromise capturing
adequate yield variability and avoiding the inclusion of climate
change impact and adoption of technology. With this regard, the
number of years considered in this study to estimate Yg was
adequate since it was conducted in rainfall-limited environments
of Southwest Ethiopia.

Production constraints of sorghum

Exploring the underlying factors of yield gaps is very important to
increase the future food production and closing the existing gaps
(Meng et al., 2013). A number of factors for existing sorghum Yg

in Southwest Ethiopia were identified during the survey from
which rainfall variability, poor soil fertility, lack of improved var-
ieties and poor weed managements were the major ones. These
production constraints are commonly experienced by other sor-
ghum producing area of Ethiopia (Schneider and
Anderson, 2010; FAO and DWFI, 2015). Similarly, in
sub-Saharan Africa sorghum is considered as poor-man crop
and its production has been carried out in marginalized areas
with no or low inputs and improved agronomic practices, poor
extension services and market linkage (Tonitto and
Ricker-Gilbert, 2016).

Fig. 9. Actual yield v. regional growing season rainfall for the period 2003–17 in
Southwest Ethiopia. r is the correlation coefficient.

Fig. 8. Major sorghum production constraints identi-
fied by household heads (%) during the survey in
2018, Southwest Ethiopia.
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Even though sorghum is one of most important crops in a
harsh environment, the adverse weather conditions particularly
rainfall during the growing season penalize farmers yield (Singh
et al., 2014; Msongaleli et al., 2017; Zewdu et al., 2020). There
has been a consistent effort on developing improved varieties in
Ethiopia but they do have little adoption by the farmers due to
poor extension service, bird attack specially for early maturing
varieties, higher post-harvest loss due to pest and lower biomass
as compared to the land races (Beshir and Sime, 2013; Kinfe
and Tesfaye, 2018). Additionally, economical problem related to
lower market prices of grain as compared to other cereals and
higher input prices such as chemical fertilizers demotivated farm-
ers to use the improved agronomic practices during sorghum pro-
duction (Tonitto and Ricker-Gilbert, 2016). Under such situations
closing the Yg by achieving 80% of Yw needs a big effort involving
supply of improved seeds, chemical fertilizers and pesticides,
effective weeds and pest management schemes, adoption of

recommended agronomic practices and access to timely weather
information (Deng et al., 2019).

Conclusions

Calibration and evaluation results of AquaCrop and DSSAT
showed that observed and simulated soil and crop parameters
were in good agreement. The yield gaps between actual and water-
limited yield simulated using DSSAT and AquaCrop ranged from
1.2 to 5.5 t/ha and 2.4 to 4.7 t/ha, respectively indicating the pres-
ence of 3.53 t/ha actual and 2.5 t/ha exploitable yield gaps in the
region. Seasonal rainfall variability, poor soil fertility, lack of
improved varieties and poor weed managements were the major
production constraints of sorghum in Southwest Ethiopia. The
existing yield gap could be managed by employing classic agro-
nomic practices and technologies with the participation of different
stakeholders. However, these classic agronomic practices and
improved technologies would not be realized by subsistence farm-
ers in Southwest Ethiopia particularly and Ethiopia generally unless
effective technical and economic support goes to these farmers.
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Fig. 10. Growing season rainfall v. simulated water-limited yield of sorghum cultivars: (a) simulation with AquaCrop at Jinka, (b) simulation with AquaCrop at
Benatsemay, (c) simulation with DSSAT at Jinka and (d) simulation with DSSAT at Benatsemay, in Southwest Ethiopia. r is the correlation coefficient.

Table 10. Comparison of grain yield (t/ha) response of sorghum cultivars with
and without fertilizer (NPSB) application in southwest Ethiopia

Number of
samples

Unfertilized
plot

(0 kg/ha)

Fertilized
plot

(150 kg/ha)
t test

(α = 0.05)

Melkam 6 2.78 4.91 0.01

Teshale 6 2.93 5.31 0.03
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