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Abstract For q a non-negative integer, we introduce the internal q-homology of crossed modules and
we obtain in the case q = 0 the homology of crossed modules. In the particular case of considering a
group as a crossed module we obtain that its internal q-homology is the homology of the group with
coefficients in the ring of the integers modulo q.

The second internal q-homology of crossed modules coincides with the invariant introduced by
Grandjeán and López, that is, the kernel of the universal q-central extension. Finally, we relate the
internal q-homology of a crossed module to the homology of its classifying space with coefficients in the
ring of the integers modulo q.
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1. Introduction

Crossed modules, introduced in [18], provide a simultaneous generalization of the con-
cepts of normal subgroups and modules over a group. Norrie [15] has shown that the
category of crossed modules has many formal properties analogous to those of groups
and there she introduced concepts such as commutator and centre. A first approach to
the homology of crossed modules in low dimensions was done in [7,12]. In [3], Carrasco,
Cegarra and Grandjeán introduced an ‘internal’ homology theory of crossed modules in
the spirit of [1] and Grandjeán and López [9] introduce, for q a non-negative integer, an
invariant Hq

2 for a crossed module that generalizes the second homology group with coef-
ficients in Z/qZ and that coincides with the kernel of the universal q-central extension.
Baues [2] and Ellis [6] introduced the homology of crossed modules via classifying space
with coefficients in a π1-module, where π1 is the first homotopy group of the crossed
module.

In this paper, we introduce an internal q-homology theory for a crossed module, Hq
n,

obtaining on the one hand, for q = 0, the homology theory given in [3], and on the other,
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for n = 2, the invariant Hq
2 introduced in [9], and we study its relationship with the

homology of groups with coefficients in Z/qZ and the homology of the classifying space
of a crossed module with coefficients in Z/qZ.

The article is divided into five sections. In § 2, we give some concepts in the theory of
crossed modules, with special mention to q-commutator and q-centre. In § 3, we introduce
the internal q-homology of a crossed module and its relationship with the homology
of groups with coefficients in Z/qZ. In § 4, we give an exact sequence of five terms
associated with an extension of crossed modules from which we deduce an expression
for the second internal q-homology that extends Hopf’s formula in group homology, and
that allows us to identify such second internal q-homology with the invariant introduced
in [9], which coincides with the kernel of the universal q-central extension of a q-perfect
crossed module. We also obtain a version in crossed modules of the ‘basic theorem’
of Stallings [16] relating nilpotent groups to their homology. Finally, in § 5, we relate
the internal q-homology of a crossed module with the homology of its classifying space
introduced in [2,6] via a natural long exact sequence. In the case q = 0, we obtain the
result established in [10].

2. Preliminaries

Let us remember [18] that a crossed module T = (T, G, ∂) consists of a group homomor-
phism ∂ : T → G, the boundary map, together with a group action g →g t of G on T sat-
isfying ∂(gt) = g∂(t)g−1 and ∂(t)t′ = tt′t−1, for all t, t′ ∈ T and g ∈ G. If T ′ = (T ′, G′, ∂′)
is another crossed module, a crossed module morphism f = (f1, f2) : T → T ′ is a pair
of group homomorphisms f1 : T → T ′ and f2 : G → G′, such that ∂′f1 = f2∂ and, for
all g ∈ G, t ∈ T , f1(gt) = f2(g)f1(t). The corresponding category of crossed modules is
denoted by CM.

We can consider a group as a crossed module via the following functors

G CM G CM,
ι �� ε ��

where G is the category of groups and ι(G) = (1, G, i), ε(G) = (G, G, idG). If we also
consider the functors

CM G CM G,
κ �� ζ ��

given by κ(T, G, ∂) = G and ζ(T, G, ∂) = T , then we get the adjoint pairs ι � κ, κ � ε

and ε � ζ [3].
A crossed submodule N = (N, R, ∂) of a crossed module T is given by the subgroups

R of G and N of T , if these inclusions define a crossed module morphism. If R is a
normal subgroup of G and for all elements g ∈ G, n ∈ N , r ∈ R and t ∈ T we have
gn ∈ N and rtt−1 ∈ N , then N is a normal crossed submodule of T . In this case we can
consider the triple (T/N, G/R, ∂̄), where ∂̄ is induced by ∂, and the new action is given
by gR(tN) = (gt)N . This is the quotient crossed module of T by N .

If S = (S, H, ∂) and N are normal crossed submodules of T , the commutator crossed
submodule of S and N is ([R, S][H, N ], [H, R], ∂), where [R, S] = 〈{rss−1 | s ∈ S, r ∈ R}〉
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is the displacement subgroup of S relative to R [15]. In particular, the commutator
crossed submodule of T is [T ,T ] = ([G, T ], [G, G], ∂), where [G, G] is the commutator
subgroup of G.

The centre of T is the crossed module Z(T ) = (TG, Z(G) ∩ stG(T ), ∂), where TG =
{t ∈ T | gt = t for all g ∈ G}, Z(G) is the centre of G and stG(T ) = {g ∈ G | gt =
t for all t ∈ T} [15]. A crossed module T is abelian if T = Z(T ), in other words, G and
T are both abelian groups and G acts trivially on T . We will denote the category of
abelian crossed modules by ACM, which is a Birkhoff variety [14] of CM, that is, closed
under the formation of products, submodules and quotients.

Let q be a non-negative integer.

Definition 2.1. Let N = (N, R, ∂) be a normal crossed submodule of T . The q-
commutator crossed submodule of T and N is T#qN = ([R, T ](G#qN), G#qR, ∂),
where G#qN = 〈{gnn−1mq | g ∈ G, n, m ∈ N}〉 is a subgroup of N , [R, T ] is the
displacement subgroup of T relative to R, and G#qR is the q-commutator subgroup of
G and R [17].

The q-commutator crossed submodule T#qN is a normal crossed submodule of T and,
by normality conditions of N , it is contained in N [9]. In the particular case N = T ,
we obtain the q-commutator of T , (G#qT, G#qG, ∂) [5]. In the case q = 0, it is the
commutator crossed submodule defined by Norrie [15].

Example 2.2. If N is a normal subgroup of a group G, the q-commutator crossed
submodule of (N, G, i) is (G#qN, G#qG, i). So, if G is any group, the q-commutator of
ε(G) and ι(G) are (G#qG, G#qG, id) and (1, G#qG, i), respectively.

The quotient of a crossed module T by its q-commutator, Tq = T /(T#qT ), is an
abelian crossed module; in fact, it is even more, it is an abelian crossed module of expo-
nent q, that is it is an abelian crossed module and T/G#qT and G/G#qG are both of
exponent q and G/G#qG acts trivially on T/G#qT . We can construct a functor from
the category of crossed modules to that of abelian crossed modules, called abelianization
modulo q, (−)q : CM → ACM, in the following way: if T is a crossed module, (T )q = Tq,
and if f : T → T ′ is a morphism of crossed modules, (f)q : Tq → T ′

q is the induced map.

Definition 2.3. Let T be a crossed module. The q-centre of T , Zq(T ), is the crossed
module ((TG)q, Zq(G) ∩ stG(T ), ∂), where

(TG)q = {t ∈ T | tq = 1 and gt = t, for all g ∈ G},

Zq(G) = {g ∈ Z(G) | gq = 1},

stG(T ) = {g ∈ G | gt = t, for all t ∈ T}.

The q-centre of T is a normal crossed submodule of T and T#qT is the smallest
normal crossed submodule N of T such that T /N coincides with its q-centre [5]. In the
case q = 0, it is the centre defined by Norrie [15].

Example 2.4. If N is a normal subgroup of a group G, the q-centre of (N, G, i)
is (N ∩ Zq(G), Zq(G), i). So, if G is any group, the q-centre of ε(G) and ι(G) are
(Zq(G), Zq(G), id) and (1, Zq(G), i), respectively.
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Example 2.5. If A is a G-module, the q-centre of (A, G, 0) is (H0(G, A; Z/qZ), Zq(G)∩
stG(A), 0), where H0(G, A; Z/qZ) is the zeroth mod q cohomology group introduced in [4].

3. Internal q-homology and connection with the homology of groups

In [3], a left adjoint to the faithful functor to groups, V : CM → G, (T, G, ∂) → T ×G, is
given as follows: if H is any group, get the free product group H∗H with the injections ui :
H → H∗H, i = 1, 2, and let H̄ = Ker(p2 : H ∗ H → H) be the kernel of the retraction p2,
determined by the conditions p2u1 = 0 and p2u2 = idH . The triple (H̄, H ∗ H, in) is a
crossed module with the inclusion as boundary map. The functor H → (H̄, H ∗ H, in) is
left adjoint to V.

By composition with the usual forgetful functor G → Set we get the underlying set
functor U : CM → Set, (T, G, ∂) → T × G. Since the forgetful functor G → Set has the
free group functor, X → F (X), as a left adjoint, the functor U : CM → Set has a left
adjoint F : Set → CM given by X → F(X) = (F (X), F (X) ∗ F (X), in). In [3] it is also
shown that U is tripleable, hence, for any set X, the free crossed module on X, F(X),
is projective with respect to regular epimorphisms (f1 and f2 are surjective morphisms),
and every crossed module T admits a projective presentation by means of the free crossed
module on its underlying set and the co-unit of the adjunction.

Let U , F : CM → Set be the tripleable pair of adjoint functors defined before and
let u : idSet → UF and v : FU → idCM denote the adjunction transformations. We
will denote by (G, w, v) the induced co-triple on the category of crossed modules; thus,
G = FU : CM → CM, the co-multiplication is w = Fu U : G → G

2, and the co-
unit is v : G → idCM. Then, any crossed module T has a standard free simplicial
resolution G•T

�� �� T . Namely, G•T is the simplicial crossed module defined by
GnT = G

n+1(T ), n � 0, with face and degeneracy operators

di = G
n−ivG

i(T ) : GnT → Gn−1T , 0 � i � n,

si = G
n−i−1wG

i(T ) : Gn−1T → GnT , 0 � i � n − 1.

Applying the functor, (−)q : CM → ACM, we obtain an augmented simplicial complex
of abelian crossed modules:

(G•T )q
�� �� Tq .

If we take the alternating sum of the abelianized modulo q face operators, we get the
chain complex of abelian crossed modules

((G•T )q, δ) = · · · (GnT )q
δn �� (Gn−1T )q

δn−1 �� · · · δ1 �� (G0T )q
�� 0.

We define the nth internal q-homology crossed module by

Hq
n(T ) = Hn−1((G•T )q, δ), n � 1.

The following properties of the internal q-homology are a special case of well-known
basic results of co-triple cohomology [1] in a general setting.
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Proposition 3.1.

(i) Hq
n(−) : CM → ACM is a functor for all n � 1.

(ii) Hq
1(T ) = Tq for any crossed module T .

(iii) If T is a projective crossed module, then Hq
n(T ) = 0 for all n � 2.

Example 3.2. Hq
1(N, G, i) = (N/G#qN, Hq

1(G), i), where N is a normal subgroup
of G.

Example 3.3. If A is a G-module, then (A, G, 0) is a crossed module with
Hq

1(A, G, 0) = (q − H0(G, A), Hq
1(G), 0), because Z/qZ ⊗G A ∼= A/(G#qA), and where

q − Hn(G, A) = TorZG
n (Z/qZ, A) are the q-homology groups introduced in [11].

In the following theorem we show the connection between our internal q-homology
of crossed modules and the homology of groups with coefficients in Z/qZ, Hq

n(G) =
Hn(G, Z/qZ).

Theorem 3.4. Let T = (T, G, ∂) be a crossed module. Then

(i) Hq
n(ι(G)) ∼= ι Hq

n(G) and Hq
n(ε(G)) ∼= ε Hq

n(G);

(ii) κ Hq
n(T ) ∼= Hq

n(G);

(iii) if ∂ is injective, there exists a natural long exact sequence of abelian groups

· · · Hq
n+1(G)

p̄r �� Hq
n+1(G/∂T ) �� ζ Hq

n(T ) ∂̄ �� Hq
n(G) · · ·

Hq
3(G/∂T ) �� ζ Hq

2(T ) �� Hq
2(G) �� Hq

2(G/∂T )

�� T

G#qT
�� Hq

1(G) �� Hq
1(G/∂T ) �� 0 .

Proof. (i) As was shown in [1], the Eilenberg–MacLane homology groups can be
computed through free simplicial resolutions. Hence, if G is a group and F•

�� �� G
is a free simplicial resolution of it, and since Z/qZ ⊗G IG ∼= G/(G#qG), there is a
natural isomorphism Hn+1(G, Z/qZ) ∼= Hn+1((F•)q, δ), n � 0, where ((F•)q, δ) is the
chain complex obtained by applying the functor G → Ab, G � G/G#qG and taking
alternating sums of the induced face operators. By [3, Proposition 5] the augmented
simplicial crossed modules ιF•

�� �� ιG and εF•
�� �� εG are projective simplicial

resolutions. Since ι and ε preserve kernels and co-kernels and commute with the functor
(−)q, we have

Hq
n(ι(G)) = Hn−1((ιF•)q) ∼= Hn−1(ι(F•)q) ∼= ι Hn−1((F•)q) ∼= ι Hq

n(G)

and

Hq
n(ε(G)) = Hn−1((εF•)q) ∼= Hn−1(ε(F•)q) ∼= ε Hn−1((F•)q) ∼= ε Hq

n(G)

for all n � 1.
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(ii) Since κ ◦ (−)q = (−)q ◦ κ and for every crossed module T = (T, G, ∂), the simplicial
group κG•T is a free simplicial resolution of the group G [3, Remark 9], we have

κ Hq
n(T ) = κ Hn−1((G•T )q) ∼= Hn−1((κG•T )q) = Hq

n(G).

(iii) We have a short exact sequence of free groups

ζF(X) ���� �� κF(X) �� �� κF(X)/ζF(X) ,

where F(X) = (F (X), F (X) ∗ F (X), in) is the free crossed module over the set X. There-
fore, from the standard simplicial resolution of T = (T, G, ∂) we have a short exact
sequence of free simplicial groups:

ζG•T
���� �� κG•T

�� �� κG•T /ζG•T .

By [3, Remark 9], ζG•T , κG•T are free simplicial resolutions of T and G, respectively.
So,

πn(ζG•T ) = πn(κG•T ) = 0, n > 0,

π0(ζG•T ) = T, π0(κG•T ) = G

and so the homotopy exact sequence associated with the above extension of simplicial
groups reduces to

0 → π0(ζG•T ) → π0(κG•T ) → π0(κG•T /ζG•T ) → 0.

Therefore, the morphism π0(ζG•T ) → π0(κG•T ) coincides with ∂, because ∂ is injective,
and so π0(κG•T /ζG•T ) = G/∂(T ). Since πn(κG•T /ζG•T ) = 0 for n > 0 the simplicial
group κG•T /ζG•T is a free simplicial resolution of G/∂(T ).

Since F(X) has as abelianization modulo q,

F(X)q =
( ⊕

X

Z/qZ,

( ⊕
X

Z/qZ

)
⊕

( ⊕
X

Z/qZ

)
, i1

)
,

we have a short exact sequence of abelian groups,

ζ(F(X)q)
���� �� κ(F(X)q)

�� �� (κF(X)/ζF(X))q ,

and a short exact sequence of abelian groups chain complexes,

ζ((G•T )q)
���� �� κ((G•T )q)

�� �� (κG•T /ζG•T )q ,
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whose associated long exact homology sequence yields (iii), because

ζ Hq
n(T ) = Hn−1(ζ(G•T )q), ζ Hq

1(T ) =
T

G#qT
,

Hq
n(G) = Hn−1((κG•T )q), Hq

n(G/∂(T )) = Hn−1((κG•T /ζG•T )q).

�

Example 3.5. Let G be a group and let

R
���� i �� F

�� �� G

be a free presentation of G. By the theorem above, we get the following exact sequence
for the crossed module (R, F, i):

Hq
n+1(F ) �� Hq

n+1(G) �� ζ Hq
n(R, F, i) �� Hq

n(F ) .

Since F is free, Hq
n(F ) = 0, for n � 2. Then Hq

n+1(G) ∼= ζ Hq
n(R, F, i), for n � 2.

4. Five-term exact sequence and basic theorem

Lemma 4.1. Let

e : N
���� i �� T

p �� ��M

be an extension of crossed modules. If p admits a section, then the sequence

0 �� N

T#qN
�� Hq

1(T ) �� Hq
1(M) �� 0

is a split short exact sequence of abelian crossed modules.

Proof. If

e : 1 �� N
i �� T

p �� M �� 1

is an extension of N by M , since (N#qN) ⊆ (T#qN) ⊆ (T#qT ) and p clearly restricts
to a regular epimorphism p : T#qT → M#qM , we get the following exact sequence of
abelian crossed modules:

N

T#qN
ī �� Tq

p̄ �� Mq �� 0 .

If p admits a section, that is, if there exists a crossed module morphism s : M → T such
that ps = idM , then

0 �� N

T#qN
ī �� Tq

p̄ �� Mq
�� 0
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is a split short exact sequence of abelian crossed modules since we can prove that there
exists a crossed module morphism

r̄ = (r̄1, r̄2) : Tq → N

T#qN

that verifies r̄ī = id and it is given by

r̄1(t(G#qT )) = ts1p1(t)−1 ∈ N

[R, T ](G#qN)
, t ∈ T,

r̄2(g(G#qG)) = gs2p2(g)−1 ∈ R

G#qR
, g ∈ G,

where the overbar denotes the equivalence class in each case. In fact, r̄ is a morphism of
crossed modules.

(i) r̄1 is a group morphism:

r̄1(t̄)r̄1(t̄1) = ts1p1(t)−1t1s1p1(t1)−1

= tt1(s1p1(t)s1p1(t1))−1 ∂s1p1(t)(s1p1(t1)t−1
1 )(s1p1(t1)t−1

1 )−1

= tt1s1p1(tt1)−1 = r̄1(t̄t̄1).

(ii) r̄2 is a group morphism:

r̄2(ḡ)r̄2(ḡ1) = gs2p2(g)−1g1s2p2(g1)−1

= gg1s2p2(g1)−1s2p2(g)−1[s2p2(g), s2p2(g1)g−1
1 ]

= gg1s2p2(gg1)−1 = r̄2(ḡḡ1).

(iii) It is enough to prove that r̄1(ḡ t̄) = r̄1(t̄), since N/T#qN is abelian. It is easy to
see that

x = gts1p1(gt)−1(ts1p1(t)−1)−1 ∈ [R, T ](G#qN)

because

x = gs2p2(g)−1
(s2p2(g)t)(s2p2(g)t)−1s2p2(g)(ts1p1(t)−1)(ts1p1(t)−1)−1

with
gs2p2(g)−1

(s2p2(g)t)(s2p2(g)t)−1 ∈ [R, T ]

and
s2p2(g)(ts1p1(t)−1)(ts1p1(t)−1)−1 ∈ G#qN.

�
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Theorem 4.2. Let

e : N
���� i �� T

p �� ��M

be an extension of crossed modules. There exists a natural exact sequence of abelian
crossed modules:

Hq
2(T ) Hq

2(M)
N

T#qN

Hq
1(T ) Hq

1(M) 0 .

�� θ�(e) ��

�� p� �� ��

The proof of this theorem is analogous to the one in [3, Theorem 12] using the previous
lemma.

Example 4.3. When q = 0, we get the five-term exact sequences which appear in the
papers [3,8].

Example 4.4. If we consider crossed modules of the form either ι(G) = (1, G, i) or
ε(G) = (G, G, idG), we get the generalization of the five-term exact sequence

Hq
2(G) Hq

2(M)
N

G#qN
Hq

1(G) Hq
1(M) 0 ,�� �� �� �� ��

which appears in [17].

Theorem 4.2 will help us to give a Hopf-type formula for the second internal q-homology
crossed module, Hq

2(M), in terms of an arbitrary projective presentation of the crossed
module M .

Corollary 4.5. If

N
���� �� T

π �� ��M

is a projective presentation of M , then there exists a natural isomorphism of abelian
crossed modules:

Hq
2(M) ∼=

N ∩ (T#qT )
T#qN

=
(

N ∩ (G#qT )
[R, T ](G#qN)

,
R ∩ (G#qG)

G#qR
, ∂̄

)
.

Proof. It follows from the five-term exact sequence applied to the projective presen-
tation of M , and since Hq

2(T ) = 0, that

Ker
(

N

(T#qN)
→ Tq

)
=

N ∩ (T#qT )
T#qN

∼= Hq
2(M).

�

Example 4.6. If q = 0, then we get the Hopf formula for crossed modules, which
appears in [3,8].
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Example 4.7. When the crossed modules are either ι(G) = (1, G, i) or ε(G) =
(G, G, idG), we get the Hopf formula generalization [17].

By Corollary 4.5 the formula for Hq
2(T ) coincides with the invariant introduced in [9],

which is identified with the kernel of the universal q-central extension of a q-perfect
crossed module.

Example 4.8. If A is a G-module, then Hq
2(A, G, 0) = (q − H1(G, A), Hq

2(G), 0) [9].

Definition 4.9. Let T be a crossed module. The lower (q) central series {T q
n} of T

is

T q
1 = T ,

T q
i+1 = T#qT

q
i , i = 1, 2, . . . .

The crossed module T is called (q) nilpotent if there exists n � 1 such that T q
n = 1.

We define T q
ω =

⋂∞
i=1 T q

i .
The following theorem is a generalization of the basic theorem in [16,17] and is given

in [8] with restricted hypothesis.

Theorem 4.10. Let f : T → X be a morphism of crossed modules. If f induces an
isomorphism fq : Tq → Xq and an epimorphism Hq

2(T ) �� �� Hq
2(X) , then f induces

isomorphisms

f q
i :

T

T q
i

∼=
X

Xq
i

for any i � 0, and a monomorphism

f q
ω :

T

T q
ω

→ X

Xq
ω

.

If T and X are both (q) nilpotent, then f is an isomorphism.

The proof is parallel to the one in [8, Basic Theorem, p. 422].

Example 4.11. If we apply this theorem either to the crossed module ι(G) = (1, G, i)
or to ε(G) = (G, G, idG), we get the corresponding version q of the ‘basic’ theorem for
groups in [17].

Example 4.12. When q = 0, we get the crossed modules basic theorem which appears
in [3,8].

5. Relation between the internal q-homology and the homology of the
classifying space

Another description of the category of crossed modules is given by its equivalence with
the category of simplicial groups whose Moore complex has length 1 [13]. To any given
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crossed module T = (T, G, ∂) we can associate the simplicial group N−1
∗ (T, G, ∂) as

follows: N−1
n (T, G, ∂) = Tn

� G, n � 0, where G operates component-wise on Tn,

∂i(t1, . . . , tn, g) = (t1, . . . , t̂i, . . . , tn, g), 1 � i � n,

∂0(t1, . . . , tn, g) = (t2t−1
1 , . . . , tnt−1

1 , ∂t1g), si(t1, . . . , tn, g) = (t1, . . . , ti, 1, . . . , tn, g).

Given any crossed module T = (T, G, ∂) its classifying space BT = B(T, G, ∂) is defined
as the classifying space of the simplicial group N−1

∗ (T, G, ∂), and therefore πiB(T ) =
πi−1N

−1
∗ (T ). As a consequence, we have π1B(T, G, ∂) ∼= G/∂(T ), π2B(T, G, ∂) ∼= Ker ∂

and πnB(T, G, ∂) = 0, n > 2. Clearly, BG = B(1, G, i) for any group G.
In [2, 6] the homology of a crossed module T with coefficients in a π1B(T )-module

A is defined as the homology of the classifying space BT of the crossed module with
coefficients in A, Hn(T , A) := Hn(B(T ), A). The aim of this section is to prove that
the internal q-homology of a crossed module T defined in § 3 is related by a long exact
sequence to the homology of the classifying space B(T ) of the crossed module with
coefficients in Z/qZ.

The inclusion
(1, idG) : (1, G, i) → (T, G, ∂)

yields an injective map of simplicial sets

i(T,G,∂) : B(G) → B(T, G, ∂)

whose co-fibre is denoted by β(T, G, ∂).

Proposition 5.1. If T = (T, G, ∂) is a projective object in the category CM, then
Hn(β(T ), Z/qZ) = 0 for any n > 2 and H2(β(T ), Z/qZ) ∼= T/(G#qT ).

Proof. If T = (T, G, ∂) is a projective crossed module, then it is a retract of a free
crossed module, and so ∂ is injective and T , G and G/∂(T ) are free groups. Therefore,
B(T, G, ∂) has the same homotopy type as K(G/∂(T ), 1) and applying the homology
exact sequence of the co-fibration to

BG → B(T, G, ∂) → β(T, G, ∂)

we have that Hn(β(T, G, ∂), Z/qZ) = 0 for any n > 2 and

H2(β(T, G, ∂), Z/qZ) ∼= Ker(H1(BG, Z/qZ) → H1(B(T, G, ∂), Z/qZ))
∼= Ker(H1(G, Z/qZ) → H1(G/∂(T ), Z/qZ)).

On the other hand, the five-term homology exact sequence associated with the extension
of groups

T
���� �� G

�� �� G/∂(T )

reduces to

0 = H2(G/∂(T ), Z/qZ) → H0(G/∂(T ), H1(T, Z/qZ)) → H1(G, Z/qZ)

→ H1(G/∂(T ), Z/qZ) → 0.
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Since Z/qZ ⊗G/∂(T ) T/[T, T ] ∼= T/G#qT and H1(C, Z/qZ) ∼= C/C#qC for any group C

[17], we obtain that H2(β(T ), Z/qZ) ∼= T/(G#qT ). �

Theorem 5.2. For any crossed module T , there exists a natural isomorphism

Hn+1(β(T ), Z/qZ) ∼= ζ Hq
n(T ), n � 1.

Proof. Let (T, G, ∂)∗ = (T∗, G∗, ∂∗) be a projective simplicial resolution of (T, G, ∂)
in CM. Then by [10, Proposition 2] β(T∗, G∗, ∂∗) → β(T, G, ∂) is a weak equivalence of
bisimplicial sets, where β(T, G, ∂) is considered as a bisimplicial set, which is constant in
vertical directions. Therefore, we have a spectral sequence of the form

E1
pr = Hr(β(Tp, Gp, ∂p), Z/qZ) =⇒ Hp+r(β(T, G, ∂), Z/qZ).

Since (Tp, Gp, ∂p) is a projective object in CM, we can apply the above proposition to
get

E1
pr = 0, if r �= 0, 2, E1

p0
∼= Z/qZ, E1

p2
∼= Tp/Gp#qTp.

Thus, E1
p0 is a constant simplicial abelian group, and hence E2

p0 = 0 for p > 0. Therefore,
the spectral sequence degenerates and gives the expected isomorphism:

Hn+2(β(T, G, ∂), Z/qZ) ∼= πn(T∗/G∗#qT∗), n � 0.

�

Corollary 5.3. For any crossed module T = (T, G, ∂),

(i) H2(β(T ), Z/qZ) ∼= T/(G#qT );

(ii) there exists a natural exact sequence

· · · Hn+1(B(T ), Z/qZ) ζ Hq
n(T ) Hq

n(G)

Hn(B(T ), Z/qZ) · · · .

�� ��

�� ��

��

Proof. Part (i) follows from Proposition 3.1 and part (ii) from the homology exact
sequence of the co-fibration

B(G) → B(T, G, ∂) → β(T, G, ∂).

�

When q = 0 we get the results of [10].
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