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1. A proof of Dupin's theorem with some simple illustrations of
the method employed.

Before plunging into Dupin's theorem, I think it well to speak
of certain infinitesimal rotations which play a part in the proof.
By an infinitesimal angle of the first order is meant an angle
subtended at the centre of a circle of finite radius by an arc whose
length is an infinitesimal of the first order. If we neglect
infinitesimals of the second order, equal infinitesimal rotations of
the first order about axes which meet and are separated by a small
angle of the first order are identical. For instance, if AB and BC be
elements of a curve of continuous curvature, an infinitesimal rotation
about AB may, if we prefer it, be regarded as taking place about
BC ; and again, if OA, OB, OC be a set of rectangular axes, small
rotations about OA, OB, OC may be regarded as taking place in
any order. For if P be a point on a sphere of finite radius, and
PQ, PR be the displacements of P due to equal infinitesimal
rotations of the first order about two diameters separated by a
small angle of the first order, the angle QPR is the angle of
separation of the axes, and it follows that QR is an infinitesimal of
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the second order. Further, if the radius of the sphere is an
infinitesimal of the first order, QR is of the third order of small
quantities.

C IB

T
Pigr. 1.

Let OA, AG be elements of a curve on a surface; OB and AF
elements on the surface at right angles to OA and AG respectively,
and OC and AE the normals at O and A. Denote the components
along OA, OB, OC of the rotation* which will bring the axes
OA, OB, OC into positions parallel to the corresponding axes at A
by 0Au Â2> 0*3- Then neglecting small quantities of the second
order AE and OC will meet, provided 6M = 0. Hence OA is an
element of a line of curvature on the surface if 0M = O, and
conversely.

I t is well known that if the intersection of two orthogonal
surfaces be a line of curvature on one, it is also a line of curvature
on the other; but it is here so obvious that it deserves notice.
The normals OB and OC and an element OA of the line of
intersection form a set of axes at right angles, and the condition
$M = 0 that OA may be an element of a line of curvature on one
surface is also the condition that OA may be an element of a line of
curvature on the other.

The allied theorem, that if two surfaces cut at a constant angle
and if their intersection is a line of curvature on one it is also a
line of curvature on the other, can be proved with as little

* It is important that I should be quite olear as to the convention I
adopt with regard to positive and negative rotations. I do not care whether
the axes of coordinates be right or left handed: I only stipulate that a
positive rotation through a right angle about the axis of x shall bring the axi.
of y into the position formerly occupied by the axis of z, and so on with
cyolio interchanges of the letters in the order a—»y >;: >x. When I use
axes O(A, B, C) or 0(1, 2, 3) I suppose them drawn so that they can be made
to coincide with O(x, y, z).
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difficulty. Let OA be an element of the line of intersection, and
OB, OC the normals to the surfaces at O : draw Oy, 0(3 at right
angles to OB and OC in the plane BOC. Then since the angle
BOC is constant the lines O(ABC/Jy) at O, regarded as a rigid
system, can be brought into positions parallel to the corresponding
lines at A by a small rotation 6. Or, in other words, the rotation
for the axes O(ABy) is the same as that for the axes 0(A/3C), and
if the component along OA is zero in one case, it is zero in the
other also. Thus 0All = O is the condition that OA may be an
element of a line of curvature on either surface.

Pier. 2.
We are now in a position to attack Dupin's theorem, that if

three families of surfaces cut orthogonally the line of intersection
of any member of one family with any member of another is a line
of curvature on each. Let OA, OB, OC be elements of the normals
to the surfaces at O, or, what is the same thing, elements of the
lines of intersection of the three surfaces which pass through O
The other lines in the figure are elements of the lines of inter-
section at A, B, or C, as the case may be.

c _ E

Pig. 3.
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Now the distance of D from the plane BOC is #B2. OC, and is
also - 0cs . OB.

OB + OC '

and similarly ^ + ~
Ut UA

i.e. OA, OB, OC are elements of line of curvature of the surfaces
on which they lie.

Or we may argue thus:—Suppose 0Al to be positive : then F is
on the positive side of the plane AOB, and therefore 6Bi is negative.
Hence D is on the negative side of BOO and &C3 is positive; and it
follows that E is on the positive side of COA, and 6A1 is negative.
Thus 0A1 must be zero.

We can give another simple illustration of the use of the
condition for an element of a line of curvature. I t is required to
show that the lines of curvature on a surface cut at right angles.
Let OAFB be an infinitesimal mesh formed by two systems of

* M. Fouche has anticipated the idea which is the basis of my proof in
a paper entitled " Demonstration g^ometrique du theoreme de Dupin,"
Nouvelles Annales tie Mathematiques, ser. 4, t. 7 (1907). M. Fouche denotes

the geodesic torsions ——, etc., by T, TJ, T2, and having obtained an
OA

expression for T, observes that the geodesic torsion vanishes only along the
lines of curvature. He then proves (i) that if two curves cut at right angles
on a surface their geodesic torsions at their point of intersection are equal
and opposite, (ii) that if two surfaces cut at right angles the geodesic torsion
of their line of intersection is the same with respect to either surface.
Dupin's theorem then follows in a few lines from the equations T + TJ=0,
TJ + T ^ O , T2 + T = 0. I was inclined to withdraw my proof after finding
M. Fouche's memoir, but I think its retention is justified by my use of the
framework of elements, which makes obvious the torsion theorems proved at
some length, though charmingly, by M. Fouehe. In fact, all proofs of
Dupin's theorem, with the exception of Herr Sommerfeld's, the substance of
which I am giving in a later note, entail the establishing of equations of the
type T + T1 = 0, whether the geodesic torsions be actually designated as such,
or occur analytically like the [qr. p], etc., of Cayley's proof, or as co-
efficients like the 6, h', b" of Lord Kelvin's.
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orthogonal curves on a surface, and OC the normal at O. Then

0A, 6

—^ + — ^ = 0 : hence if 0A1 = 0, then dm =•- 0 also, i.e. if OA be an

element of a line of curvature, OB is also an element of a line of

curvature.

As a further example of this method, let I, m, n be the direction

cosines of a curve at x, y, z: these direction cosines are functions

of x, y, z, and the curves form a doubly infinite system. If they

can be cut orthogonally by a family of surfaces <f>(x, y, z) = constant,

we have — = RZ, — = Rrra, — = R«, and the elimination of R and

dx ay dz

<j> leads immediately to the relation
/dn dm\ / dl dn\ /dm dl\

\dy dz) \dz dx / \dx dyj

but the converse presents difficulties owing to the impossibility of

tracing back the steps of the elimination, and I do not remember

seeing a simple proof.*

* I have read recently a paper by Herr Sommerfeld entitled " Geo-
metrischer Beweis des Dupin'schen Theorems und seiner Umkehrung"
(Jahreabericht der deutschen Matematiker Vereinigung Band VI., Heft 1,
1897). Taking u, v, w to be the direction cosines of a Curvencongruenz,

Herr Sommerfeld proves the relation 2u( )=0 by applying Stokes'
\dy dz )

theorem. The converse he establishes in a most simple and beautiful
manner by the same means, and with the help of this Hulfssatz obtains
Dupin's theorem. The proof of Dupin's theorem is so out of the common
and can be put so briefly that I think I may give an account of it here. Let
«, v, w be the components of the normal displacement which will transfer
points on any surfaoe (say AOB, Fig. 3) of one of the families to the con-
secutive surface. Then since OA, OB, OC remain at right angles after strain
they must be the principal axes of strain at O. The strain can be analysed
into three parts, a translation, a displacement normal to the strain quadric,

and rotations U \ , etc., about the axes of co-ordinates. The first
\dy dz )

two parts do not alter the directions of the principal axes, and since v, v, w
are proportional to the direction cosines of a curve congruence orthogonal

to a family of surfaces, S«( — ~ — ) = 0 ; so that the component rotation
\dy dz j

about OC is zero. Hence OC is an element of a line of curvature of each
surfaoe on whioh it lies.
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Suppose then that we are given ~S,l( —— — ) = 0. This relation
\dz ay /

is independent of choice of axes: let OA be an element of one of
the curves and OB, 0 0 any infinitesimal lengths of the same order
as OA forming a rectangular system with OA. Let BF, CE be

B

elements corresponding to OA of the curves through B and C, and
BD, CD' straight lines whose direction cosines are the same
functions of the co-ordinates of B and C as the direction cosines
of OC and OB are of the co-ordinates of A. Take OA, OB, OC as
axes of x, y, z: then 1=1, w = 0, n = 0, and the given relation
becomes

dn dm
dy dz'

N o w t h e d i rec t ion cosines of B F a re 1 + — O B , 0 + — O B ,
dy dy

0 + —OB, so that — OB is the cosine of the angle between BF
dy dy

and OC. Thus |^OB = - 0B2, and similarly ^?OC = 0C3.
oy oz

• 0 B + 0 C '

and this is the condition that BD and CD' may meet, if we neglect
infinitesimals of the third order.*

* It has been shown that if BD and CD' do meet the condition is
satisfied, and it is quite easy to show that the converse holds to the degree of
accuracy stated.
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Now if we proceed from B at right angles to BD and BF we
can construct a mesh resembling OBDC, and by proceeding in a
similar manner from C, D, etc., we can construct a net such that
the I, m, n curve at any point is perpendicular to two elements of
the net. When the lengths OB, OC, etc., are indefinitely diminished
the net becomes a surface which cuts the system of curves
orthogonally.

2. Two methods of obtaining Cayley's condition that a family of
surf aces may form one of an orthogonal triad.

Dupin's theorem certainly imposes a restriction on the manner
in which three families of orthogonal surfaces intersect one
another, but it is natural to suppose that any family of surfaces
can be cut at right angles by two other orthogonal families,
provided they follow its lines of curvature. Chasles* fell into this
error in his paper, "Sur l'attraction d'une couche ellipsoi'dale " in
the year 1837, and was corrected by Bouquetf in 1846 in a "Note
sur les surfaces orthogonales" in Liouville's Journal—"Peut-Stre
M. Chasles n'a-t-il point accorde une attention suffisante a ce
theoreme, qui, dans son travail, n'etait qu'un accessoire ; car la
conclusion a laquelle il a ete conduit par un premier apergu ne me
paratt point rigoureuse." Bouquet was thus the first to point
out that a family of surfaces may be incapable of being cut at
right angles by two other orthogonal families. The subject was
pursued by various writers, to whose memoirs references may be
found in the Royal Society Index under the heading " Orthogonal
Surfaces." Cayley, charmed by an attractive paper by Levy,J
investigated the general condition that a family of surfaces may be
one of an orthogonal triad, and communicated his results in 1872
to the Acade'mie des Sciences in a series of three memoirs, the last
of which is concerned with the reduction of the equation by the
removal of an irrelevant factor. § The analysis occupies seventeen
or eighteen quarto pages of the Comptes Rendus. Salmon simplified
the analysis in his Geometry of Three Dimensions (chap. VIII.), and

* Journal de VEcole PolyCechnique, t. xv.
t Liouville, t. xi.
{ Journal de FScole PolyUchnique, t. xxvi.
§ Comptet Rendus, t. Ixxv.
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expressed the equation in a determinantal form, to which he was
led by the condition that three quadric cones with a common
vertex may be cut by a plane in three pairs of straight lines in
involution. In 1887 Mr A. R. Johnson determined the rate at
which the principal tangents rotate when the point at which
they are drawn travels along an orthogonal trajectory of the
family, and deduced Cayley's equation by taking this rate as zero.*
My object is to obtain these results by other methods, partly with
a view to introducing a degree of simplicity into somewhat
laborious analysis, and partly in order to discuss the case in which
a family of surfaces can be cut orthogonally by two others which
intersect each other at any constant angle.

The following seems to me the most direct rather than the
simplest method of attack : it is, however, necessary to my dis-
cussion of the more general case, and has at least the merit of
obtaining Cayley's final form as easily as the first.

Let OA, OB be elements of lines of curvature on the surface
<f>(x, y, z) = r, and let the normals at 0, A, B meet the consecutive
surface, <t>(x, y, z) = r + dr, at C, E, D. Then if CE, CD are
elements of lines of curvature on the surface r + dr, for all points
O on the surface r, we can proceed from the surface r + dr, along
its normals, to the next surface of the family, and so construct a
framework which constitutes ultimately three families of ortho-

Pig.

gonal surfaces. Hence the sufficient condition that the family r
may be one of an orthogonal triad is that the elements CD, CE on
the consecutive surface may be elements of lines of curvature.
That this condition is necessary as well is immediately obvious
from Dupin's theorem. So far I have followed Cayley and Salmon.

* Quarterly Journal, vol. 22.
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Let the differential coefficients of <j> of the first order be denoted
by L, M, N, and those of the second order by a, b, c,f, g, h. Let
x, y, z be the co-ordinates of O, and x + d^x, y + djj, z + d-p and
x + d.p;, y + d.2y, z + d.a, those of A and B.

Then since OB is at right angles to AE

or d&d^L + dg/d^M. + d^ad-^i = 0,

where R2 = L2 + M2 + N2, and d1 = d,x 1- d,y 1- d,z—.
dx dy 62

Hence, remembering that — = a etc., we get

d-p) = 0.

This conjugate* relation with 2Lrf1a; = 0, 2Ld2x = 0, and the
orthogonal condition

djuLp, + d^yd^y + dxzd& = 0,

is sufficient to determine the directions of the lines of curvature
atO.

Now the co-ordinates of C may be taken to be x + Lp, y + Mp,
z + Np, and since C lies on the surface r + dr

y + Mp,

Hence R2p is constant as we proceed along the surface r, and
consequently

We regard p as an infinitesimal of the same order as dxx, etc.,
so that d-j), drf> are of the second order.

* It may also be written
.. + ...=0, or
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Let x' denote x + Jjp, and let x' + d1x') etc., be the co-ordinates
of E.

Then d^x' = d,x + pd{L + ~Ldtp,
with five similar equations, and the elements d^', d&' are at right
angles if

(d1x + pd1L + Ld,p)(d& + pdiL + 'Ldtf) + + =0,
or (djxdtL + d^yd^S. + d ^ N ) + (d^xd^L + rf^rfjM + d&djN) = 0,
a condition which is satisfied by virtue of the conjugate relation.

Thus the sufficient and only condition that CE, CD may be
elements of lines of curvature is that the conjugate relation may
hold when we put d^x + p^L + Id^p for d\x and so on, and
substitute for a, etc., the values that these quantities assume at
the point C.

Now at 0 the value of a is a + pSa, where

dy
and the condition required is therefore

diP(Ld.2-L + Md,M + Nt^N)
+ d^(Lrf,L + M^M + Nd,N) = 0,

where

dlP = ~ R2 -P= ~ ^ { L

x +/d,y + cd^z)}

and similarly for d?p.
After substituting for d^p and dtf, and dividing through by p,

we get

+ 2(d1Ld2L + rfj

^ 0.

r\ 7\ 3

* Cayley's use of S for L hM— + N — is a little misleading, as the
dx dy dz

symbol is usually associated with an increment rather than a rate of change
along the normal. Salmon, however, retained the notation, and an alteration
would create confusion.
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We can eifect a reduction by observing that

(L! + M2 +

for the right hand side is the same as

and the alleged identity is true if

(M2 + N V ^ L + (L2 + N ^ M c i M + (L2

i.e. if
(Md,N - Nd,M)(Md2N - Kd,M)

+ (Ld,M - MdjLXLdjM - Md2L) = 0.

Now djxrf2L + rfji/djM + d1zdj3 = 0,
and djxL + dji/M + rfiisN = 0.

II L, M, N III II ' = dX d« d«
and similarly |( ^ ^ ^ ^ N || , = d& d#, dtz.

But we know that SdiXdje = 0, and it follows that the equality
we are discussing is true.

The condition that <£,«', d2s' may be elements of lines of
curvature may now be written
Sadyxd-jc + Sbd^yd^y + &edztdzt + SJld^yd.^ + d^yd^z) + Sg(dlz

^ 0,

and it remains to eliminate djxd^x, etc., between this equation and
the equations for the lines of curvature.

We have, of course, the conjugate relation
ad^d^ + bd^yd^y + cdxzdjt +f(d1yd& + d^yd^z) + g(d1zd^c + d^dxx)

+ h(d1xd^/ + d&dxy) = 0,
and the orthogonal condition

0.

* The notation is sufficiently obvious: the symbol ' = is to be read
are proportional to."
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Further, from 2L ,̂a5 = 0 and 'SLd^e = 0 we get

N M
+ —(d^zd^c + d^x) + -^-{d-^xd^y + d^cd^y) = 0,

(dd + dd) + = 0,

—(d1yd2z + d^yd^) + —(d^zd^x + d.^x) = 0,

and the elimination of d^xd^c, etc., from the six equations gives

r\T xt" i\" \ xl"

o , 6 , c , 2 /
1 , 1 , 1 , 0
L , 0 , 0 , 0
0 , M , 0 N
0 , 0 , N M

This is Salmon's determinantal form of Cayley's unreduced
equation : if Jl*, etc., are the co-factors of the terms of the first row
of the determinant, it may be written

R2

0
N
0
L

1

t

y

R2

0
M
L
0

After the expansion of the determinant the equation has to be
cleared of fractions by multiplying by R2. Cayley found that the
equation in this form contained the factor L2 + M2 + N2, and the
last of his communications on the subject to the Acaddmie de

* It is easily found by actual expansion that

JF= {1? + M2 + N2) {(6 - c)L+jrN - hU } + (a - 6)LM2

(c - a)LN2+gN(U* + Ms - N2) - AM(La - M2+NJ).

The equivalent forms £&=(L» + M2+ N2)(Mjr - NA) + L(N«M - MSN)

JF= (L8 + M2 + N2) {(6 - e)L - AM+j?N)}
+ M(M«L - LJM) + N(L«N - N JL)

are given by Cayley and quoted by Salmon.
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Sciences was concerned with its removal. The ultimate form is
easily obained by this method, for the first of our six equations
could have been written

8ad1xd1y + ... + ...+Sf(d1yct& + d#d1z) +... + ...
- 2(^14,1, + d,M^M + <£,Nd,N) = 0,

o r 8ad1xdtf+ ... + ... + 8 J { d d d d )
- 2 {

= 0.
The other equations are the same as before, and the elimination

gives us for the first row of the determinant

Sa -2(a? + A2 + g-), 8b - 2(A2 + 62 +/2), 8c - 2 ( / + / 2 + c2),

By adding 2(/2 + $r2 + h') - 2(bc + ca + ab) times the third row
and 2(a + b + c) times the second row to the first row, we get the
final form

- 2A) + §(S6 - 2B) + <&{8c - 2C) + 2|F(S/- 2F) + 2<&(8g - 2G)

where A, etc., are the co-factors of a, etc., in the determinant
whose rows are a, h, g ; h, b,f; g,f, c.

The second method of • obtaining Cayley's equation I present on
account of its simplicity. I t resembles Mr Johnson's in that it
determines the rate at which the principal tangents at a point on
any member of the family <f>(x, y, z) = r rotate about the normal
when the point describes an orthogonal trajectory of the family.

Let klt filt v1 and A,, /t2, v2 be the direction cosines of OA and
OB, the principal tangents at O.

Then since
s M, N, II

the conjugate relation may be written

= 0,

L M N

and, of course, A,, fo, v, may be replaced by A.2) /*„,
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Thus the direction cosines of either principal tangent satisfy
equations of the type

g\ +fp + cv = Kv + xN,
in which the same suffixes must be attached to K and x as to
A, fi, v.

On multiplying by A, /*, v and adding, we have

K = (a,b,c,/,g,h)(\,h v)\*
and on multiplying by L, M, N and adding

The elimination of A., p., v, x from the K, x equation and the
equation 2AL = 0 gives for k the quadratic

a-K, h, g, L
h, b-K, f, M
g, J, c - K, N
L, M, N, O

=0.

Fig. 6.

Let the normal at 0 meet the consecutive surface of the family
at C, and let OC = pR, so that the co-ordinates of C are, as before,

K, K2
* It is hardly necessary to prove that — , -jT are the curvatures of the

principal normal sections considered positive when the corresponding centres
of curvature are on the side of the tangent plane remote from the region into

L M N
whioh the normal -TT> "5"' ~|r is drawn : R is, of course, always positive.
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x + pL, y + pM, z + pN. The direction cosines of CE, the principal
tangent at G corresponding to OA, are

A, + (pL-—I- pM-—|- pN— )A,, etc., or A, + p8A,, etc.
V ox ay dzj

Let 0(3 be the component along OC of the rotation which will
bring the system 0(A, B, C) into a position parallel to that of the
corresponding system at C : then

a

= p( AjSA,

a/3
we write —,

ov
and if for

3 V = 7 R
Now the K, x equations give

8a k, + ShfjL, + 8gVl + aSX, + AS/x, +gSVl = K.SA., +

ShX, + 86^ + 8/v, + ASA, +

S//*, + Scv.

Multiplying by A^ /%, v2 and adding

+ Xi^L + L8Xl,

+ Xl8M + M8Xl,

+ XlSN + NSXl.

and similarly
V.8V,

= Ka(A18A, + /̂ S/xj + v,8^) + x^^SL + /x,8M + v,8N).
On adding, and remembering that by virtue of the conjugate

relation
8aA1AJ+ ... + ... +8X/*Iv, + /^v1)+ ... + ... +oS(A1As) + ... + ...

we get

8«A1A3+ ...

+ ^-2(A,8L + /^SM + ^SNXAjSL + ^SM + v28N).

The values of AjAg etc., can be obtained without difficulty from
the K, X equations : we have

K,A! = aAj + A/*, + gvt - XlL,
K2 A, = a A, + A/t.2 + g v2 - XjL.
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! - K , ) A ^ = h(X^.1 - Aj/i.,) + 5-(A2v, - A,v2) - (A,Xl - AlX2)L

M y - N A
= ^

Now ^

B3
X 2 = A28L + /ijSM + v2SN.

=^-(MSN - NSM).

. . R'fK, - K,)A1AS = (M^ - NA)R2 + L(NSM - MSN)

Again

and similarly

R2( - AM + 6L + ̂ N - cL)
+ M(M8L - LSM) + N(LSN - NSL)

Hence the value of —- is given by

or

&{8a - 2A} + ... + ... +2jF{<5/- 2F} + ... + . . .= m^ - K2f£,

and Cayley's equation may be deduced by putting — equal to zero.
ov

* Mr Johnson's original form is
/ I 1\230 .,/ dl dl\(ddl /dl\-\
\pt p21 dv \ dz dy) \dv dx \dvj J

dm dn\ dm dn\ f d(dm dn\ dm dnK
where I, m, n are the actual direction cosines of the normal. His reduction to
Cayley's form I do not understand, but it is easy by ordinary means.
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3. An extension of Dupin's theorem to the case in which a family
of surfaces is cut orthogonally by two other families which intersect
at a constant angle, with the condition that a family may be capable
of being cut in this manner.

Cayley has shown that if OA, OB (Fig. 5) be elements of lines
of curvature on a surface, and if the normals at O, A, B meet a
consecutive surface at C, E, D, then the elements CE and CD are
at right angles : and conversely if OA and OB are at right angles,
and CE and CD are at right angles, then OA, OB must be elements
of lines of curvature.

I propose here to enquire into the relation which OA and OB
bear to the lines of curvature when they are inclined to one
another at an angle y, and CE and CD are inclined to one another
at the same angle.

We have as before d^' = a\x + pa\L + ~Ld\p, etc.,
but the orthogonal condition is replaced by

Now (d/)3 = {d-fif + 2p(d1x

so that dtf' = dxs + -—1„

where i!

= (.«> *• c, / g, fy^x, o\y, d^f.

Hence the condition that CE and CD may contain an angle y is

~Yd^ + ~~- jcos

where I12 = djxfad^c + hd2y + gdp) + dly(hd^x + bdjy +fd&)

This condition may be written

where Ji = (o, b, c,f, g, h)(llt m^, nrf, etc., lx, mlt Wj being the
direction cosines of OA, and L, m,, n2 those of OB.

Let OCj, OC2 be the projections of OA on the lines of
curvature at O, and let their direction cosines be Xlt filt v1 and
Xa /ij, v2: also let the angle AOCX be 0, and put />, = cos0, gi = sin0.
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Then by projecting OA on the axis of x, we obtain
lt =ftAj + ftAj,

and similarly m^ =p1f*i + qi^
n1=p1v1 + q1vt>

with, of course, like equations for la m.a n2 in terms of pv qv

Hence if K, = (a, 6, c,f, g, A)(A.j, ft, Vl)
2, etc.,

we have Js = ft2!^ + 2p1qlKu

since KI2 = 0 by the conjugate relation for lines of curvature:
and J13 =

Hence the condition that CE and CD may contain an angle y is

2(PlPiK1 + fcftK^ = {(/»,* + ̂ 2)K, + (?1
2 + ?2

3)Ks}cosy.

This equation, in conjunction with p%pt + qfa = cosy, is sufficient to
determine ft, pv qu qv

On multiplying the latter by 2K2 and subtracting from the
former, we get

Sf t^K, - K,) = {(ft2 +ft»)K, - (2 - q? -

so that, unless K, =

Thus the inclinations of OA, OB to the lines of curvature are
independent of the position of O on the surface: further, on
putting ft = cos#, ft = cos(0 + y), we get

2cos0cos(0 + y) = cosy {cos'0 + cosa(0 + y)}
- cosycos(0 + y)} = cos^{cosycos^ - cos(0 + y) j

cos(0 + y)sinysin(d + y) = cos0sinysin0

2y = w-20 or 3;r - 20

8 = — or —
4 2 4 2

. . T y 3JT y
and e + y = _ + X o r T + X .
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Hence OA and OB make complementary angles with
the lines of curvature at O, or, what is the same thing, equal

angles — with one or other of the bisectors of the angles between

the principal tangents.
We have thus the theorem :—If a family of surfaces A can be

cut orthogonally by two other families B and C which intersect at a
constant angle, the families B and C determine on any member of A
two systems of curves which intersect the lines of curvature at constant
angles and are equally inclined at any point to one or other of the
bisectors of the angles between the principal tangents.

The system for which 6 = — ~ and 2pq = cosy (the suffixes

may be dropped since Pi = q» and Pi = qi) I shall refer to as the r\

lines. The other system, for which 6 — — ~- and 2pq = - cosy,

I will call the e lines. I t will be seen later that if the family A can
be cut orthogonally by two families following the JJ lines, a certain
differential equation of the third order must be satisfied, and that
in this case the family A cannot be cut orthogonally by two
families following the t lines. In fact, the differential equations
are different in the two cases, though, of course, each reduces to

Cayley's equation when y = —.

I now proceed to find these equations.

We have as before

etc.,

and

or l{ = I, + p{ak + hm, + gn,) + Uk^ + «h£ + % j£) -

and similarly

+ n
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Now I1=p\1

and we will put

so that A.j', fit', Vj' and A-,', /*/, v2' are the direction cosines of lines at
C related to CE, CD in the same way as the principal tangents at
O are related to OA, OB. But these lines at C are not necessarily
principal tangents, and in fact the equation we are seeking is
obtained by expressing the condition that V, /*/> vi a n d K'> /%'> vt
may satisfy the conjugate relation on the surface DCE. I t is
already sufficiently obvious that they are at right angles.

On multiplying the equations for lx' and L' by p and q
respectively, subtracting and dividing by pl — q2, and remembering
that

we get

. . . dL _ dpor V^1+P— + L ^ - - / y
d . d d d

where - j — = A., -— + /x,-— + i^—.
rfo-j dx dy dz

„. ., , . , . dli _ do
Similarly V = A, + p-j— + L ~

The terms in J u J2 can be expressed in terms of K], Kj, for it
has been proved that

in short we obtain

= p?(K1-K2)A1-AsK2.
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/JT. An

Thus

acr2

It remains to express the condition that the conjugate relation
A^aXj + h/x2 + gv2) + ̂ (h\2 + bfi* +>„) + v , ^ +//^ + cv2) = 0

may be satisfied when A.,' is put for Xlt and a + pSa for a, with
similar substitutions for the other letters involved. The work is
identical with that already carried out in the case of Cayley's
equation, except for the part played by the terms involving K, and
K2. These terms give

ppqCK, - K2)K, - ppqiK, - K2)K2

or ppqiK.-K.y.

The condition required is therefore
{8a - 2A}A1A.2+ . .+.. + {8/- 2
and since

_
H 2JF — • - - - 2E»(K1-K,)>

we obtain finally for the condition that the family A may be cut
orthogonally by two families B and C which intersect at a constant
angle y
&{8a - 2A} + g{86 - 2B} +<K{8c - 20} +2f{Sf- 2F} +2&{8g - 2G}

+ 21K8A - 2H} + 2R3(K, - ~K3)
3pq = 0,

where 2pq must be put equal to cosy if B and G follow the r) lines
on A, and equal to - cosy if they follow the « lines.

These results can be obtained geometrically.

C

5 Vol. 29
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Let OCjAC, be a mesh bounded by lines of curvature on a
member of the family A. Then the rotation which will bring the
axes (^(CiCjC) into a position parallel to the corresponding axes at
A has components

^ . O C 2 about OC,
L)C/2

and ?ST •0C> about 0 C »

i.e. --J-KsOA?, about OQ*
XV

and —KjOAp, about OC2,
rl

where cosAOC, = pv sinAOC, = q,.

Now if OA is an element of a curve of continuous curvature
on the surface and we choose as axes OA, the line at right angles
to OA in the tangent plane at O, and the normal OC, the com-
ponents in the tangent plane of the rotation which will bring the
axes at O into a position parallel to those at A are the same as the
components that we have just obtained. The components about
0 0 are, however, different in the two cases, unless the curve
intersects the lines of curvature at a constant angle.

The component of the rotation about OA is

—(K, - K2)Pl?1OA.f

Let OA, OB be elements of the lines of intersection of a
member of the family A by members of the families B and C, and
CE, CD the corresponding elements on the consecutive surface, so

* For 0c,2 = cosine of the angle between OCj and the normal at Cj

and similarly 0Cji = - —<M-

t M. Fouohe's expression for the geodesic torsion is J ( — - — ) s i n 2 0 -
\h to)
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that each of the angles AOB and ECD is y ; and let 6C be the
component about OC of the rotation which will bring the axes
O(A, B, 0) into a position parallel to those at C.

Fig. 8.

Then the condition that CE may meet the normal at A is

6>c. OA + -^(K, - K.JpifcOA . OC = 0,rv
and the condition that CD may meet the normal at B is

6C . OB +

Hence
Jtv

Pill =

. OC = 0.

or

0 - "• y 3JT y

Thus 6 is independent of the position of the point O on the
surface, so that the lines of intersection of the families B and C
with any member of the family A cut the lines of curvature at
constant angles, and further make equal angles at any point with
one or other of the bisectors of the angles between the principal
tangents. There are two possible sets of lines of intersection, one
of which we have called the rf lines, and the other the « lines. For

the former 0 — — ^- and 2pq = cosy, while for the latter

0 = —.— -jp and 2»o= -cosy.
4 1

Also since the angle AOC, is constant, p-^- is the rate at which

the principal tangents rotate about the normal as O describes an
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orthogonal trajectory of the family A, and is therefore the same

as —, which Mr Johnson has evaluated, and for which we have
ov

found an equivalent expression. On substituting its value, we
have as the condition that a family of surfaces A may be cut
orthogonally by two families B and C which intersect at a constant
angle y

- 2A} + §{86 -2B} + ® {6c- 20} + 2JF{S/-2F}

where 2pq = cosy when the families B and 0 follow the rj lines, and
2pq = - cosy when they follow the e lines.
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