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1.  Introduction
This article, like our previous one [1], combines known and new

characterisations of parallelograms. Both can be thought of as additions to
Martin Josefsson's series on ‘characterisations of’ and ‘properties of’ various
types of quadrilaterals – a series that does not include parallelograms.
Josefsson's publications can be found listed in [2], [3] and [4]. For the
importance of characterisations in geometry, see [5].

Sections 3 and 4 contain several characterisations of parallelograms based on
two problems of Victor Thébault that are referred to as Thébault's first and second
problems in [6] and [7] and that we shall refer to by these names throughout the
paper. Since complex numbers are used extensively in that treatment, their basic
properties are presented in Section 2. For using complex numbers in geometry we
refer the readers to the excellent books [8], [9] and [10]. Section 5 treats a
Pompeiu-like property of parallelograms that seemed to us at first to be a
characterisation of these figures. Section 6 provides three more characterisations
of parallelograms that are based on material scattered in the literature.

2.  Some geometric properties expressed in terms of complex numbers
In this section we identify the Euclidean plane with the plane of

complex numbers, and we let  as usual. For brevity, we refer to a
positively oriented figure as simply positive.

i = −1

Figure 1 shows a positive angle   having equal sides  and
. Using the fact that Z is obtained from  by rotating  about  by a

positive (i.e. a counter-clockwise) angle of magnitude , we obtain
, and therefore

θ = ∠ZXY XY
XZ Y Y X

θ
Z − X = (Y − X) eiθ

Z = X + (Y − X) eiθ. (1)
Letting  be the primitive third root of 1 given byω

ω = e2iπ/3,
and using (1) and the simple facts that ,  and

, we obtain
eiπ/2 = i eiπ/3 = −ω2

1 + ω + ω2 = 0

Z =
⎧

⎩
⎨
⎪
⎪

⎫

⎭
⎬
⎪
⎪

. (2)
(1 − i) X + iY if θ = 1

2π,
−ωX − ω2Y if θ = 1

3π.

Thus if  is a positive regular (i.e. equilateral) triangle, and if
is a positive square, as shown in Figures 2 and 3, then it follows from (2) that

UVW ABCD

W = −ωU − ω2V ,
D = (1 − i) A + iB,
C = (1 − i) D + iA = (1 − i) ((1 − i) A + iB) + iA

= −2iA + (1 − i) iB + iA = −iA + (1 + i) B.
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FIGURE 1 FIGURE 2 FIGURE 3
Z = X + (Y − X)eiθ W = −ωU − ω2V D = (1 − i)A + iB

G = 1
3 ((1 − ω)U + (1 − ω2))V C = −iA + (1 + i)B

H = 1
2 ((1 − i)A + (1 + i)B)

Also, if the centres of  and  are  and , respectively, thenUVW ABCD G H

G =
U + V + W

3
=

(1 − ω) U + (1 − ω2) V
3

H =
A + B + C + D

4
=

A + B + (−i)A + (1 + i)B + (1 − i)A + iB
4

=
(1 − i) A + (1 + i) B

2
.

These will be very useful and efficient in proving the characterisations to be
given in the next sections.

3.  Characterisations based on Thébault's first problem
Thébault's first problem states that if squares are built outwardly on the

sides of a parallelogram , then their centres , ,  and  form a
square; see Figure 4. A variant of this that appears in [6] refers to the same
configuration and states that if the neighbouring free vertices of the squares
are joined, then the midpoints , ,  and  of the resulting line segments
form a square; see Figure 5.

ABCD α β γ δ
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FIGURE 4: Illustrating FIGURE 5: Illustrating
Thébault's first problem Viglione's variant

Figure 6 repeats Figures 4 and 5, except that  is now any convex
quadrilateral, not necessarily a parallelogram. For this general setting, a
theorem of van Aubel that first appeared in [11] states that the line segments

 and  are perpendicular to each other and have the same length; see
[12, Theorem 1]. We can add to this a new variant stating that the line

ABCD

αγ βδ
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segments  and  are also perpendicular to each other and have the
same length; see Figure 7.
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FIGURE 6: Illustrating FIGURE 7: Illustrating
van Aubel's theorem a new variant

Since a parallelogram whose diagonals are perpendicular to each other
and equal in length is a square, it follows that

αβγδ (likewise  UVWX) is a parallelogram ⇔ it is a square. (3)
Also, a quadrilateral  is a parallelogram if, and only if, the midpoints

 and  of its diagonals coincide. Thus
PQRS

(P + R) / 2 (Q + S) / 2

PQRS is a parallelogram ⇔ P + R = Q + S.
We shall now give in Theorem 1 short proofs of van Aubel's theorem and

the new variant. The proof of van Aubel's theorem does not differ essentially
from the one given in [12], which in turn is reproduced in [10, p. 16].

Theorem 1: As shown in Figure 6, let squares with centres , ,  and  be
drawn outwardly on the sides of a convex quadrilateral , and let the
midpoints of the line segments joining the neighbouring free vertices of
these squares be . Let ,  and  be as shown. Then the line
segments  and  are perpendicular and equal in length. Similarly for the
line segments  and .

α β γ δ
ABCD

U , V , W , X L E F
αγ βδ

UW VX

Proof: It is easy to see that the permutation

(A → B → C → D → A)
induces the permutations

(U → V → W → X → U ) and (α → β → γ → δ → α) .
Also, using Figure 3, we can find , ,  and  in terms of , , , , and
we can then find . Thus we have

E F α L A B C D
U = 1

2 (L + F)
E = −iA + (1 + i) D,  F = (1 − i) A + iD,  L = (1 + i) A − iB

α =
(1 − i) A + (1 + i) D

2
,  U =

2A − iB + iD
2

. (4)
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It follows from these that

α − γ =
(1 − i) A + (1 + i) D

2
−

(1 − i) C + (1 + i) B
2

=
(1 + i) D − (1 − i) C − (1 + i) B + (1 − i) A

2

β − δ =
(1 + i) A − (1 − i) D − (1 + i) C + (1 − i) B

2
= i (α − γ) .

Thus if we rotate the line segment  by , we obtain a line segment
perpendicular and equal in length to . This proves that the line segments

 and  are perpendicular and equal in length.

γα 90°
δβ

γα δβ
The proof that the line segments  and  are also perpendicular and

equal in length follows in a similar manner from the calculations
UW VX

U − W =
−iB + 2A + iD

2
−

−iD + 2C + iB
2

= iD − C − iB + A
V − X = iA − D − iC + B = i (U − W) .

The next theorem gives two characterisations of parallelograms based
on Figure 6.

Theorem 2: Referring to Figures 6 and 7, let  be a positive convex
quadrilateral, and let four positive squares be built outwardly on its sides.
Let , ,  and  be their centres. Let , ,  and  be the midpoints of the
four segments that join neighbouring free vertices of the squares. Then

ABCD

α β γ δ U V W X

ABCD is a parallelogram ⇔ αβγδ is a square,

⇔ UVWX is a square.

Proof: These follow from the formulas (4) and their permutations and the
following routine calculations.

αβγδ is a square ⇔ αβγδ is a parallelogram, by (3)

⇔ α + γ = β + δ

⇔
(1 − i) A + (1 + i) D

2
+

(1 − i) C + (1 + i) B
2

=
(1 − i) B + (1 + i) A

2
+

(1 − i) D + (1 + i) C
2

⇔ −iA + iD − iC + iB = 0

⇔ A + C = B + D
⇔ ABCD is a parallelogram.

UVWX is a square ⇔ UVWX is a parallelogram, by (3)

⇔ U + W = V + X

⇔
−iB + 2A + iD

2
+

−iD + 2C + iB
2
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=
−iC + 2B + iA

2
+

−iA + 2D + iC
2

⇔ D + B = C + A
⇔ ABCD is a parallelogram.

4.  A characterisation based on Thébault's second problem
The second problem of Thébault, as it is called in [7], states that if

 is a positive parallelogram, and if  and  are equilateral
triangles built outwardly on sides  and , then  is an equilateral
triangle; see [13, Problem 18, p. 314] and [7]. The converse is not difficult
to see. In fact, let  be a positive convex quadrilateral and let  and

 be equilateral triangles built outwardly on sides  and , as shown
in Figure 8. Supposing that triangle  is equilateral, we complete  to
a parallelogram , and observe that triangle  is also equilateral
(by the aforementioned Thébault theorem). Since one cannot build two
different equilateral triangles  and  on the same side of a line
segment , it follows that , and hence  is a parallelogram.

ABCD ADE BAF
AD BA CEF

ABCD ADE
BAF AD BA

CEF DAB
ABC′D C′EF

UVW TVW
VW C′ = C ABCD

We state this characterisation of parallelograms in the following
theorem, and we give a proof using complex numbers. We shall use the fact
that if  is a positive triangle placed in the complex plane, thenXYZ

XYZ is equilateral if, and only if,  X + ωY + ω2Z = 0. (5)
This appears as Proposition 2 (p. 71) of [9] and [8, Example, p. 60], and a
simple proof follows from the formula for  in Figure 2.W

Theorem 3: Let  be a positive convex quadrilateral, as shown in
Figure 8. Then  is a parallelogram if, and only if, the positive
equilateral triangles  and  that are drawn outwardly on  and
have the property that the triangle  is equilateral.
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Proof: Since  and  are positive and equilateral, it follows from (5)
that

EAD FBA

E = −ωA − ω2D,  F = −ωB − ω2A.
Using (5) again, we obtain

triangle CEF is equilateral ⇔ C + ωE + ω2F = 0

⇔ C + ω(−ωA − ω2D) + ω2(−ωB − ω2A) = 0

⇔ A + C = B + D

⇔ ABCD is a parallelogram .
This proves the theorem.

5. The Pompeiu property for parallelograms
A theorem of Pompeiu states that if  is an equilateral triangle, and if

 is any point in its plane that is not a vertex, then the distances ,  and
 can serve as the side-lengths of a triangle. Proofs of this and of possible

generalisations to higher dimensions have attracted many authors, as seen in
[14] and [15]. It is easy to see that if  is not equilateral, say ,
then points  very close to  would have the property that ,
because , , . Thus the distances ,  and
cannot serve as the side-lengths of a triangle. This observation appears in
[16], and shows that the Pompeiu property described above is a
characterisation of equilateral triangles, and ought to be added to the list of
characterisations of equilateral triangles compiled in [17].

ABC
P PA PB
PC

ABC AB > AC
P A PA + PC < PB

PA ≈ 0 PC ≈ AC PB ≈ AB PA PB PC

Related to the previous paragraph, Problem 6 on p. 52 (with a solution
on p. 229) of [18] states that squares also have the Pompeiu property. It
states that if  is a point in the plane of a square that is not a vertex, then its
distances from the vertices of the square can serve as the side lengths of a
quadrilateral. A negative answer to the possible conjecture that this property
characterises squares is given in Theorem 1.2.3 on p. 12 of [19], which tells
us that the same property holds also for parallelograms. This raises the
question whether it characterises parallelograms. The answer turns out to be
negative, and lavishly so, as Theorem 4 below shows. However, a full
characterisation of those convex quadrilaterals which have the Pompeiu
property is still being investigated, and so far we know that Theorem 4 is
very far from being such.

P

Before stating our next theorem, we remind the reader that if  is a
convex quadrilateral having

ABCD

AB = a, BC = b, CD = c, DA = d, (6)
then , ,  and  satisfy the triangle inequalities. Conversely, it is known
that if , ,  and  are positive numbers, then the following are equivalent.

a b c d
a b c d
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There exists a quadrilateral  satisfying (6).ABCD
There exists a convex quadrilateral  satisfying (6).⇔ ABCD
There exists a cyclic quadrilateral  satisfying (6).⇔ ABCD
The sum of every three of these numbers is greater than the fourth.⇔

For a reference, see, for example, [20, p. 8, ll. 19-24] and [19, Theorem
1.2.1,  p. 10].

Theorem 4: Let  be a convex quadrilateral in which a pair of
opposite sides are equal, as shown in Figure 9. Let  be a point in its plane
different from the vertices of . Then the distances , ,  and  can
serve as the side lengths of a quadrilateral.

Q = ABCD
P

Q PA PB PC PD

Proof: Without loss of generality we assume . Then it follows
from the triangle inequality that

AB = CD

PA < PB + AB = PB + DC ≤ PB + PC + PD,
where the last inequality is an equality if, and only if,  is on the side . ThusP CD

PA < PB + PC + PD.
Similarly for the remaining three inequalities

PB < PA + PC + PD,   PC < PA + PB + PD,   PD < PA + PB + PC,
and the proof is complete.

B C

D
A

P

FIGURE 9

6.  A few more characterisations
We end this article with few sparse characterisations of parallelograms

that did not find a place in the previous sections.
The first such characterisation appears in Exercise 8.20 (p. 207) of [21]

and states that parallelograms are the only quadrilaterals that are affinely
equivalent to a square. To affinely transform a given parallelogram

 lying in the Cartesian plane into a square, one first assumes that
 is the origin (0, 0) (which is obtained by applying a shift), then applies the

linear transformation that takes  and  to (1, 0) and (0, 1), respectively.
Since ,  goes to (1, 1), showing that  is affinely
transformed into the square with vertices

Q = ABCD
A

B D
C = A + B C ABCD

(0,  0) ,  (1,  0) ,  (1,  1) ,  (0,  1) .
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Conversely, it is easy to see that every affine transformation takes a square
into a parallelogram.

The second characteristic property of a parallelogram is given in Problem
9.1.11 (p. 175) of [22], and it states that parallelograms are the only polygons,
not only quadrilaterals, which cannot be enclosed in a triangle whose sides lie
along three sides of the given polygon. Interestingly, the proof uses
mathematical induction, a tool rather alien to the field of geometry.

The third characterisation appears as Problem 7.1.20 (p. 187) of [19]. It
says that if  is a convex quadrilateral, and ifABCD

[ABC] ≤ [CDA] ≤ [BCD] ≤ [DAB] , (7)
then  is a parallelogram, where [.] denotes the area. To see this, let
be the point of intersection of the diagonals of , as shown in
Figure 10, let

ABCD M
ABCD

x = AM, y = BM, z = CM, w = DM, t = sin ∠AMD.
Then (7) translates into

y (x + z) t
2

≤
w (x + z) t

2
≤

z (y + w) t
2

≤
x (y + w) t

2
,

which in turn simplifies to

y ≤ w,  wx ≤ zy,  z ≤ x.
This implies that , and hence equality in each case. Thus

 and , and hence the diagonals bisect each other, and  is a
parallelogram, as desired. Of course, the converse it trivial, since (7) holds
(in fact with equalities) for parallelograms.

yz ≤ wx ≤ zy
y = w z = x ABCD

A

B

C D

M

z

x

w

y

FIGURE 10
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