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Abstract

Propositions that express type equality are a frequent ingredient of modern functional

programming – they can encode generic functions, dynamic types, and GADTs. Via the

Curry–Howard correspondence, these propositions are ordinary types inhabited by proof

terms, computed using runtime type representations. In this paper we show that two examples

of type equality propositions actually do reflect type equality; they are only inhabited when

their arguments are equal and their proofs are unique (up to equivalence.) We show this

result in the context of a strongly normalizing language with higher-order polymorphism

and primitive recursion over runtime-type representations by proving Reynolds’s abstraction

theorem. We then use this theorem to derive “free” theorems about equality types.

1 Type equivalence, isomorphism, and equality

Type equivalence propositions assert that two types are isomorphic. For example, we

may define such a proposition (in Haskell) as follows:

type EQUIV a b = (a -> b, b -> a)

Under the Curry–Howard correspondence, which identifies types and propositions,

EQUIV asserts logical equivalence between two propositions: a implies b and b implies

a. A proof of this equivalence, a pair of functions f and g, is a type isomorphism when

the two functions compose to be the identity – in other words, when f . g = id

and g . f = id. In that case, if (f,g) is a proof of the proposition EQUIV a Int,

and x is an element of type a, then we can coerce x to be of type Int with f.

In the past 10 years, a number of authors have proposed the use of type

equivalence propositions in typed programming languages (mostly Haskell). Type

equivalence propositions have been used to implement heterogeneous data structures,

type representations and generic functions, dynamic types, logical frameworks,

metaprogramming, GADTs, and forms of lightweight dependent types (Yang 1998;

Baars & Swierstra 2002; Cheney & Hinze 2002; Chen et al. 2004; Kiselyov et al.

2004; Sheard & Pasalic 2004; Weirich 2004).
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Many of these authors point out that it is also possible to define a proposition that

asserts that two types are not just equivalent, but that they are in fact equal. Equality

is a stronger relation than equivalence as it must be substitutive as well as reflexive,

symmetric, and transitive (see Kleene 1967, p. 157). Type equality propositions are

also called equality types.

One definition of type equality is Leibniz equality – two types are equal iff one

may be replaced with the other in all contexts. In Haskell, we may define the Leibniz

equality proposition using higher-order polymorphism to quantify over all contexts.

type EQUAL a b = forall c. c a -> c b

Type equivalence and type equality propositions may be used for many of the

same applications, but there are subtle differences between them. Equivalence holds

for types that are not definitionally equal; for example, the types (Int, Bool) and

(Bool, Int) are not equal in the Haskell type system, but they are isomorphic. One

element of type EQUIV (Int, Bool) (Bool, Int) is two copies of a function that

swaps the components of a pair. However, not all inhabitants of isomorphic types

are type isomorphisms – for example, the term (const 0, const 1) inhabits the

type EQUIV Int Int. Finally, some equivalent types are not isomorphic at all. For

example, the proposition EQUIV Int Bool is provable, but not by any isomorphism

between the types.

In contrast, equality only holds for equal types and equal types are trivially

isomorphic. There are no (terminating) inhabitants of type EQUAL Int Bool or of

EQUAL (Int, Bool) (Bool, Int). We know this because of parametricity: for the

latter type an inhabitant would need to know how to swap the components of the pair

in an arbitrary context. Furthermore, the only inhabitants of type EQUAL Int Int

are identity functions. Again, the reason is parametricity – because the context is

abstract the function has no choice but to return its argument.

These observations about the difference between the properties of type equivalence

and of type equality are informal, and we would like to do better. In this paper,

we make the previous arguments about type equality rigorous by deriving free

theorems (Reynolds 1983; Wadler 1989) about equality types from Reynolds’s

abstraction theorem. Reynolds’s abstraction theorem (also referred to as the

“parametricity theorem” (Wadler 1989) or the “fundamental theorem” of logical

relations) asserts that every well-typed expression of the polymorphic λ-calculus

(System F) (Girard 1972) satisfies a property directly derivable from its type.

We derive these free theorems from the parametricity theorem for a language

called Rω (Crary et al. 2002), which extends Girard’s Fω with constructs that are

useful for programming with type equivalence propositions (see the next section).

Using these constructs in Rω we can define a type-safe cast operation which compares

types and produces an equality proof when they are the same. This extension comes

at little cost as the necessary modifications to the Fω parametricity theorem are

modest and localized. Like Fω , Rω is a (provably, using the results in this paper)

terminating language, which simplifies our development and allows us to focus on

the parametricity properties of higher-order polymorphism. Of course, our results

will not carry over to full languages like Haskell without extension.
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After proving a version of the abstraction theorem for Rω , we show how to apply

it to the type EQUAL to show that it is inhabited only when the source and target

types are the same, in which case that inhabitant must be the identity.

Our use of free theorems for higher-order polymorphism exhibits an intriguing

behavior. Whereas free theorems for second-order polymorphism quantify over

arbitrary relations, they are often instantiated with (the graphs of) functions

expressible in the polymorphic λ-calculus (Wadler 1989). By contrast, in our examples

we instantiate free theorems with (the graphs of) nonparametric functions.

1.1 Contributions

The primary contribution of this paper is the correctness of the equality type,

which implies correctness properties of a type-safe cast operation that can produce

it. In addition, we use our framework to prove correctness for another equality

proposition, which defines type equality as the smallest reflexive relation. We show

that this latter proposition also holds only for equal types, is inhabited by a single

member, and that the two equality types are isomorphic.

Along with these results, we consider our proof of parametricity for Rω to be a

significant contribution. This paper offers a fully explicit and accessible roadmap to

the proof of parametricity for higher-order polymorphism, using the technique of

syntactic logical relations,1 and insisting on rigorous definitions. Rigorous definitions

are not only challenging to get right but important in practice, since our examples

demonstrate that the “power” of the meta-logical functions involved in instantiating

the free theorems determines the expressiveness of these free theorems.

Because of our attention to formal details, our development is particularly well

suited for mechanical verification in proof assistants based on Type Theory (the

meta-logic of choice in this paper), such as Coq (http://coq.inria.fr). To this

end, we offer a Coq formalization of the definitions in the Appendix.

2 Constructing equivalence and equality types

In this section we give an informal introduction to Rω . Although we use Haskell

syntax throughout the section (and all of the code is valid Haskell) our examples

are intended to demonstrate Rω programming.

Type equivalence and equality propositions can be constructed through dynamic

type analysis. By comparing two types at runtime, we can produce a proof that they

are isomorphic. Despite the fact that Rω is a parametric language, dynamic type

analysis is possible through representation types (Crary et al. 2002). The key idea

is simple: Because the behavior of parametrically polymorphic functions cannot

be influenced by the types at which they are instantiated, type analyzing functions

dispatch on term arguments that represent types.

1 The term “syntactic” refers to logically interpreting types as relations between syntactic terms, as
opposed to semantic denotations of terms.
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Although native to Rω , representation types may be implemented in Haskell by

a Generalized Algebraic Datatype (gadt) called R a, which represents its type index

a (Sheard & Pasalic 2004; Jones et al. 2006).

data R a where

Rint :: R Int

Runit :: R ()

Rprod :: R a -> R b -> R (a,b)

Rsum :: R a -> R b -> R (Either a b)

Rarr :: R a -> R b -> R (a -> b)

The datatype R includes five data constructors: The constructor Rint provides

a representation for type Int, hence its type is R Int. Likewise, Runit represents

() and has type R (). The constructors Rprod and Rsum represent products and

sums (called Either types in Haskell). They take as inputs a representation for

a, a representation for b, and return representations for (a,b) and Either a b,

respectively. Finally, Rarr represents function types. The important property of

datatype R a is that the type index a changes with the data constructor. In contrast,

in an ordinary datatype, all data constructors must return the same type.

Representation types may be used to define type-safe cast that compares two

different type representations and, if they match, produces an equivalence or equality

proof. Type-safe cast tests, at runtime, whether a value of a given representable type

can safely be viewed as a value of a second representable type – even when the two

types cannot be shown equal at compile-time.

Weirich (2004) defined two different versions of type-safe cast, cast and gcast,

shown in Figure 1. Our implementations differ slightly from Weirich’s – namely

they use Haskell’s Maybe type to account for potential failure, instead of an error

primitive – but the essential structure is the same.

The first version, cast, works by comparing the two representations and

then producing a coercion function that takes its argument apart, coerces the

subcomponents individually, and then puts it back together. In the first clause,

both representations are Rint, so the type checker knows that a=b=Int, and so the

identity function may be returned. Similar reasoning holds for Runit. In the case for

products and sums, Haskell’s monadic syntax for Maybe ensures that cast returns

Nothing when one of the recursive calls returns Nothing; otherwise g and h are

bound to coercions of the subcomponents. To show how this works, the case for

products has been decorated with type annotations. Note that in the function case, a

reverse cast is needed to handle the contra-variance of the function type constructor.

If this cast succeeds, then it produces (half of) a type equivalence proof.

Alternatively, gcast produces a proof of Leibniz equality. The resulting coercion

function never needs to decompose (or even evaluate) its argument. The key

ingredient is the use of the higher-order type argument c that allows gcast to

return a coercion from c a to c b.

In the implementation of gcast, the type constructor c allows the recursive calls

to gcast to create a coercion that changes the type of part of its argument. Again,

the case for products has been decorated with type annotations – the first recursive
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Fig. 1. Haskell implementation of cast and gcast.
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call changes the type of the first component of the product, the second recursive call

changes the type of the second component. In each recursive call, the instantiation of

c hides the parts of the type that remain unchanged. The newtypes CL and CR allow

unification to select the right instantiation of c. Note that the cases for products,

sums and arrow types are identical (except for the type annotations).

An important difference between the two versions has to do with correctness.

When the type comparison succeeds, type-safe cast should behave like an identity

function. Informal inspection suggests that both implementations do so. However,

in the case of cast, it is possible to mess up. In particular, it is type sound to replace

the clause for Rint with:

cast Rint Rint = Just (\x -> 21)

The type of gcast more strongly constrains its implementation. We could not replace

the first clause with

gcast Rint Rint = Just (\x -> 21)

because the type of the returned coercion must be c Int -> c Int, not Int -> Int.

Informally, we can argue that the only coercion function that could be returned

must be an identity function as c is abstract. The only way to produce a result of

type c Int (discounting divergence) is to use exactly the one that was supplied.

In the rest of this paper, we make this argument formal by deriving a free theorem

for EQUAL from the parametricity theorem for Rω .

Of course, we do not actually need Rω to show this result. Representation

types are directly encodable in Fω via a Church encoding (Weirich 2001) or by

using type isomorphisms (Cheney & Hinze 2003). However, the definitions of cast

and gcast are simpler using native representation types than either encoding as

the type system (Haskell or Rω) can implicitly use the type equalities introduced

through type analysis. Furthermore, in a strongly normalizing language, such as

Fω , the native version is slightly more expressive. It is not clear how to encode the

primitive recursive elimination form supported by native representation types; only

iteration can be supported (Sp�lawski & Urzyczyn 1999). Finally, extending an Fω

parametricity proof to Rω only requires local changes to support the representation

types, so the cost of this extension in minimal.

3 Parametricity for Rω

3.1 The Rω calculus

The Rω calculus is a Curry-style extension of Fω (Girard 1972). The syntax of

this language appears in Figure 2 and the static semantics appears in Figures 3

and 4. Kinds κ include the base kind, �, which classifies the types of expressions,

and constructor kinds, κ1 → κ2. The type syntax, σ, includes type variables,

type constants, type-level applications, and type functions. Although type-level λ-

abstractions complicate the formal development of the parametricity theorem, they

simplify programming – for example, in Figure 1 we had to introduce the constructors

CL and CR only because Haskell does not include type-level λ-abstractions.

Type constructor constants, K, include standard operators, plus representation

types R. In the following, we write →, ×, and + using infix notation and
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Fig. 2. Syntax of System Rω .

Fig. 3. Type well formedness and equivalence.
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Fig. 4. Typing relation for Rω .

associate applications of → to the right. We treat impredicative polymorphism

with an infinite family of universal type constructors ∀κ indexed by kinds. We write

∀(a1:κ1) . . . (an:κn).σ to abbreviate

∀κ1
(λa1:κ1. . . . ∀κn (λan:κn.σ) . . .).
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Fig. 5. Definition of gcast in Rω . Note that lines 11, 22 and 33 are identical.

Rω expressions e include abstractions, products, sums, integers, and unit. We leave

type abstractions and type applications implicit to reduce notation overhead (but

note that this choice has an impact on parametricity in the presence of impure

features – see Section 5.4). Rω includes type representations Rint, R(), R×, R+, and

R→which must be fully applied to their arguments. We do not include representations

for polymorphic types in Rω because they significantly change the semantics of the

language, as we discuss in Section 5.3. The Rω language is terminating, but includes

a term typerec that can perform primitive recursion on type representations, and

includes branches for each possible representation.

For completeness, we give the Rω implementations of gcast in Figure 5.

The dynamic semantics of Rω is a standard large-step nonstrict operational

semantics, presented in Figure 6. Essentially typerec performs a fold over its type
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Fig. 6. Operational semantics rules.

representation argument. We use u, v, w for Rω values, the syntax of which is also

given in Figure 6.

The static semantics of Rω contains judgments for kinding, definitional type

equality, and typing. Each of these judgments uses a unified environment, Γ,

containing bindings for type variables (a:κ) and term variables (x:τ). We use ·
for the empty environment. The notations Γ, x:τ and Γ, a:κ are defined only when

x and a are not already in the domain of Γ. The kinding judgment Γ � τ : κ (in

Figure 3) states that τ is a well formed type of kind κ and ensures that all the free

type variables of the type τ appear in the environment Γ with correct kinds.

We refer to arbitrary closed types of a particular kind with the following predicate:

Definition 3.1 (closed types)

We write τ ∈ ty(κ) iff · � τ : κ.
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The typing judgment has the form Γ � e : τ and appears in Figure 4.

The interesting typing rules are the introduction and elimination forms for type

representations. The rest of this typing relation is standard. Notably, our typing

relation includes the standard conversion rule, t-eq. The judgment Γ � τ1 ≡ τ2 : κ

defines type equality as a congruence relation that includes βη-conversion for types.

(In rule beta, we write τ{σ/a} for the capture avoiding substitution of σ for a

inside τ.) In addition, we implicitly identify α-equivalent types, and treat them as

syntactically equal in the rest of the paper. We give the definition of type equality

in Figure 3. The presence of the rule t-eq is important for Rω because it allows

expressions to be typed with any member of an equivalence class of types. This

behavior fits our intuition, but complicates the formalization of parametricity; a

significant part of this paper is devoted to complications introduced by type equality.

3.2 The abstraction theorem

Deriving free theorems requires first defining an appropriate interpretation of types

as binary relations2 (in the meta-logic that is used for reasoning) between terms

and showing that these relations are reflexive. This result is the core of Reynolds’s

abstraction theorem:

If · � e : τ then (e, e) ∈ C �· � τ : ��·

Free theorems result from unfolding the definition of the interpretation of types

(which appears in Figure 8, using Definition 3.5). However, before we can present

that definition, we must first explain a number of auxiliary concepts.

First, we define a (meta-logical) type, GRelκ, to describe the interpretation of types

of arbitrary kind. Only types of kind � are interpreted as term relations – types of

higher kind are interpreted as sets of morphisms. (To distinguish between Rω and

meta-logical functions, we use the term morphism for the latter.) For example, the

interpretation of a type of kind � → �, a type level function from types to types, is

the set of morphisms that take term relations to appropriate term relations.

Definition 3.2 ((typed-)generalized relations)

r, s ∈ GRel�
�
= P(term × term)

GRelκ1→κ2
�
= TyGRelκ1 ⊃ GRelκ2

ρ, π ∈ TyGRelκ
�
= ty(κ) × ty(κ) × GRelκ

The notation P(term × term) stands for the space of binary relations on terms

of Rω . We use ⊃ for the function space constructor of our meta-logic, to avoid

confusion with the → constructor of Rω .

2 We use binary relations so that we can relate our definition to contextual equivalence. Note, however,
that for the examples in this paper a unary interpretation is sufficient, but we chose to not sacrifice the
extra generality.
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Fig. 7. Well-formed generalized relations and equality.

Generalized relations are mutually defined with typed-generalized relations,

TyGRelκ, which are triples of generalized relations and types of the appropriate

kind. Elements of GRelκ1→κ2 accept one of these triples. These extra ty(κ) arguments

allow the morphisms to dispatch control depending on types as well as relational

arguments. This flexibility will turn out to be important for the free theorems about

Rω programs that we show in this paper.

At first glance, Definition 3.2 seems strange because it returns the term relation

space at kind �, while at higher kinds it returns a particular function space of

the meta-logic. These two do not necessarily “type check” with a common type.

However, in an expressive enough meta-logic, such as CIC (Paulin-Mohring 1993)

or ZF set theory, such a definition is indeed well formed, as there exists a type

containing both spaces (e.g. Type in CIC (see Appendix 7), or pure ZF sets in

ZF set theory). In contrast, in HOL it is not clear how to build a common type

“hosting” the interpretations at all kinds.

Unfortunately, not all objects of GRelκ are suitable for the interpretation of types.

In Figure 7, we define well-formed generalized relations, wfGRelκ, a predicate on

objects in TyGRelκ. We define this predicate mutually with extensional equality

on generalized relations (≡κ) and on typed-generalized relations (≡). Because our

wfGRelκ conditions depend on equality for type GRelκ, we cannot include those

conditions in the definition of GRelκ itself.

At kind �, (τ1, τ2, r) ∈ wfGRel� checks that r is not just any relation between

terms, but a relation between values of types τ1 and τ2. (We use =⇒ and ∧ for

meta-logical implication and conjunction, respectively.) At kind κ1 → κ2 we require

two conditions. First, if r is applied to a well-formed TyGRelκ1 , then the result must

also be well formed. (We project the three components of ρ with the notations ρ1,

ρ2 and ρ̂ respectively.) Second, for any pair of equivalent triples, ρ and π, the results

r ρ and r π must also be equal. This condition asserts that morphisms that satisfy

wfGRelκ respect the type equivalence classes of their type arguments.
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Equality on generalized relations is also indexed by kinds; for any two r, s ∈ GRelκ,

the proposition r ≡κ s asserts that the two generalized relations are extensionally

equal. Extensional equality between generalized relations asserts that at kind �

the two relation arguments denote the same set.3 At higher kinds, equality asserts

that the relation arguments return equal results when given the same argument ρ.

Alternatively, equality at higher-kind could have been defined relationally (i.e. r and

s are equal if they take equal arguments to equal results) instead of pointwise. Our

version is slightly simpler, but no less expressive. We cannot simplify this definition

further by dropping the requirement that ρ be well formed, as we discuss in the

proof of Coherence, Theorem 3.11.

Equality for typed-generalized relations, ρ ≡ π, is defined in terms of its

components. This definition is reflexive, symmetric, and transitive, and hence is

an equivalence relation, by induction on the kind κ. Furthermore, the wfGRelκ

predicate respects this equality.

Lemma 3.3

For all ρ ≡ π, if ρ ∈ wfGRelκ then π ∈ wfGRelκ.

We turn now to the key to the abstraction theorem, the interpretation of Rω types

as relations between closed terms. This interpretation makes use of a substitution δ

from type variables to typed-generalized relations. We write dom(δ) for the domain

of the substitution, that is, the set of type variables on which δ is defined. We use

· for the undefined-everywhere substitution, and write δ, a �→ ρ for the extension of

δ that maps a to ρ and require that a /∈ dom(δ). If δ(a) = (τ1, τ2, r), we define the

notations δ1(a) = τ1, δ2(a) = τ2, and δ̂(a) = r. We also define δ1τ and δ2τ to be

the homomorphic application of substitutions δ1 and δ2 to τ. In our development,

we carefully apply substitutions on types whose free type variables belong in the

domain of the substitutions.

Definition 3.3 (substitution kind checks in environment)

We say that a substitution δ kind checks in an environment Γ, and write δ ∈ SubstΓ,

when dom(δ) = dom(Γ) and for every (a:κ) ∈ Γ, we have δ(a) ∈ TyGRelκ.

The interpretation of Rω types is shown in Figure 8 and is defined inductively over

kinding derivations for types. The interpretation function �·�· accepts a derivation

Γ � τ : κ, and a substitution δ ∈ SubstΓ and returns a generalized relation at kind

κ, hence, the meta-logical type, SubstΓ ⊃ GRelκ. We write the δ argument as a

subscript to �Γ � τ : κ�.

When τ is a type variable a we project the relation component out of δ(a). In

the case where τ is a constructor K, we call the auxiliary function �K�, shown in

Figure 9. For an application, τ1 τ2, we apply the interpretation of τ1 to appropriate

type arguments and the interpretation of τ2. Type-level λ-abstractions are interpreted

3 Observe that, in the case of kind �, we use extensional equality for relations instead of the
simpler intensional equality (r = s) to reduce the requirements on the meta-logic. Stating it in
the simpler form would require the logic to include propositional extensionality. Propositional
extensionality is consistent with but independent of the Calculus of Inductive Constructions (see
http://coq.inria.fr/V8.1/faq.html).
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Fig. 8. Relational interpretation of Rω .

Fig. 9. Operations of type constructors on relations.
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as abstractions in the meta-logic. We use λ and �→ for meta-logic abstractions.

Confirming that �Γ � τ : κ�δ ∈ GRelκ is straightforward using the fact that δ ∈
SubstΓ.

The interpretation �K� gives the relation that corresponds to constructor K. This

relation depends on the following definition, which extends a value relation to a

relation between arbitrary well-typed terms.

Definition 3.5 (computational lifting)

The computational lifting of a relation r ∈ VRel(τ1, τ2), written as C(r), is the set of

all (e1, e2) such that · � e1 : τ1, · � e2 : τ2 and e1 ⇓ v1, e2 ⇓ v2, and (v1, v2) ∈ r.

For integer and unit types, �int� and �()� give the identity value relations

respectively on int and (). The operation �→� lifts ρ and π to a new relation

between functions that send related arguments in ρ̂ to related results in π̂. The

operation �×� lifts ρ and π to a relation between products such that the first

components of the products belong in ρ̂, and the second in π̂. The operation �+� on

ρ and π consists of all the pairs of left injections between elements of ρ̂ and right

injections between elements of π̂. Because sums and products are call-by-name, their

subcomponents must come from the computational liftings of the value relations.

For the ∀κ constructor, since its kind is (κ → �) → � we define �∀κ� to be a morphism

that, given a TyGRelκ→� argument ρ, returns the intersection over all well-formed

π of the applications of ρ̂ to π. The requirement that π ∈ wfGRelκ is necessary to

show that the interpretation of the ∀κ constructor is itself well formed (Lemma 3.6).

For the case of representation types R, the definition relies on an auxiliary

morphism R, defined by induction on the size of the β-normal form of its

type arguments. The interesting property about this definition is that it imposes

requirements on the relational argument r in every case of the definition. For

example, in the first clause of the definition of R (τ, σ, r), the case for integer

representations, r is required to be equal to �int�. The R definition is carefully

crafted to validate the abstraction theorem – alternative definitions, such as one that

leaves the relational argument of R completely unconstrained, do not validate the

abstraction theorem (Vytiniotis & Weirich 2007).

Importantly, the interpretation of any constructor K, including R, is well formed.

Lemma 3.6

For all K, (K,K, �K�) ∈ wfGRelkind(K).

Proof

The only interesting case is the one for ∀κ, below. We need to show that

(∀κ, ∀κ, �∀κ�) ∈ wfGRel(κ→�)→�

Let us fix τ1, τ2 ∈ ty(κ → �), and a generalized relation gτ ∈ GRelκ→�, with

(τ1, τ2, gτ) ∈ wfGRelκ→�. Then we know that

�∀κ� (τ1, τ2, gτ) = {(v1, v2)|
· � v1 : ∀κ τ1 ∧ · � v2 : ∀κ τ2 ∧
for all ρ ∈ TyGRelκ, ρ ∈ wfGRelκ =⇒ (v1, v2) ∈ (gτ ρ)}
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which belongs in wfGRel� since it is a relation between values of the correct types.

Additionally, we need to show that ∀κ can only distinguish between equivalence

classes of its type arguments. For this fix σ1, σ2 ∈ ty(κ → �), and gσ ∈ GRelκ→�, with

(σ1, σ2, gσ) ∈ wfGRelκ→�. Assume that · � τ1 ≡ σ1 : κ → �, · � τ2 ≡ σ2 : κ → �, and

gτ ≡κ→� gσ . Then we know that

�∀κ� (σ1, σ2, gσ) = {(v1, v2)|
· � v1 : ∀κ σ1 ∧ � v2 : ∀κ σ2∧
for all ρ ∈ TyGRelκ, ρ ∈ wfGRelκ =⇒ (v1, v2) ∈ (gσ ρ)}

We need to show that

�∀κ� (τ1, τ2, gτ) ≡� �∀κ� (σ1, σ2, gσ)

To finish the case, using rule t-eq to take care of the typing requirements, it is

enough to show that, for any ρ ∈ TyGRelκ, with ρ ∈ wfGRelκ, we have gτ ρ ≡� gσ ρ.

This holds by reflexivity of ≡κ, and the fact that gτ and gσ are well formed. �

We next show that the interpretation of types is well formed. We must prove this

result simultaneously with the fact that the interpretation of types gives equivalent

results when given equal substitutions. We define equivalence for substitutions,

δ1 ≡ δ2, pointwise. This result only holds for substitutions that map type variables

to well-formed generalized relations.

Definition 3.7 (environment-respecting substitution)

We write δ � Γ iff δ ∈ SubstΓ and for every a ∈ dom(δ), it is the case that

δ(a) ∈ wfGRelκ.

With this definition we can now state the lemma.

Lemma 3.8 (type interpretation is well formed )

If Γ � τ : κ then

1. for all δ � Γ, (δ1τ, δ2τ, �Γ � τ : κ�δ) ∈ wfGRelκ.

2. for all δ � Γ, δ′ � Γ such that δ ≡ δ′, it is �Γ � τ : κ�δ ≡κ �Γ � τ : κ�δ′ .

Proof

Straightforward induction over the type well-formedness derivations, appealing to

Lemma 3.6. The only interesting case is the case for type abstractions, which follows

from Lemma 3.3. �

Furthermore, the interpretation of types is compositional, in the sense that the

interpretation of a type depends on the interpretation of its subterms. The proof of

this lemma depends on the fact that type interpretations are well formed.

Lemma 3.9 (compositionality)

Given an environment-respecting substitution, δ � Γ, a well-formed type with a free

variable, Γ, a:κa � τ : κ, a type to substitute, Γ � τa : κa, and its interpretation,

ra = �Γ � τa : κa�δ , it is the case that

�Γ, a:κa � τ : κ�δ,a�→(δ1τa,δ2τa,ra)
≡κ �Γ � τ{τa/a} : κ�δ
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Furthermore, our extensional definition of equality for generalized relations means

that it also preserves η-equivalence.

Lemma 3.10 (extensionality)

Given an environment-respecting δ � Γ, a well-formed type Γ � τ : κ1 → κ2, and a

fresh variable a /∈ fv (τ),Γ, it is the case that

�Γ � λa:κ1.τ a : κ1 → κ2�δ ≡κ1→κ2
�Γ � τ : κ1 → κ2�δ

Proof

Unfolding the definitions we get that the left-hand side is the morphism

λρ ∈ TyGRelκ1 �→ �Γ, a:κ1 � τ : κ2�δ,a�→ρ

Pick ρ ∈ wfGRelκ1 . To finish the case we have to show that

�Γ, a:κ1 � τ a : κ2�δ,a�→ρ ≡κ2
�Γ � τ : κ1 → κ2�δ ρ

The left-hand side becomes

�Γ, a:κ1 � τ : κ1 → κ2�δ,a�→ρ (ρ1, ρ2, �Γ, a:κ1 � a : κ1�δ,a�→ρ)

which is equal to

�Γ, a:κ1 � τ : κ1 → κ2�δ,a�→ρ ρ

By an easy weakening property, this is definitionally equal to �Γ � τ : κ1 → κ2�δ ρ.

Reflexivity of ≡κ2
finishes the case. �

Finally, we show that the interpretation of types respects the equivalence classes

of types.

Theorem 3.11 (coherence)

If Γ � τ1 : κ, δ � Γ, and Γ � τ1 ≡ τ2 : κ, then �Γ � τ1 : κ�δ ≡κ �Γ � τ2 : κ�δ .

Proof

The proof can proceed by induction on derivations of Γ � τ1 ≡ τ2 : κ. The case for

rule beta follows by appealing to Lemma 3.9, the case for rule eta follows from

Lemma 3.10, and the cases for rules app and abs we give below. The rest of the

cases are straightforward.

• Case app. In this case we have that Γ � τ1 τ2 ≡ τ3 τ4 : κ2 given that

Γ � τ1 ≡ τ3 : κ1 → κ2 and Γ � τ2 ≡ τ4 : κ1. It is easy to show as well that

Γ � τ1,3 : κ1 → κ2 and Γ � τ2,4 : κ1. We need to show that

�Γ � τ1 τ3 : κ2�δ ≡κ2
�Γ � τ2 τ4 : κ2�δ

Let

r1 = �Γ � τ1 : κ1 → κ2�δ
r2 = �Γ � τ2 : κ1�δ
r3 = �Γ � τ3 : κ1 → κ2�δ
r4 = �Γ � τ4 : κ1�δ

https://doi.org/10.1017/S0956796810000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000079


192 D. Vytiniotis and S. Weirich

We know by induction hypothesis that r1 ≡κ1→κ2
r3 and r2 ≡κ1

r4. By

Lemma 3.8, we have that

(δ1τ1, δ
2τ1, r1) ∈ wfGRelκ1→κ2

(δ1τ2, δ
2τ2, r2) ∈ wfGRelκ1

(δ1τ3, δ
2τ3, r3) ∈ wfGRelκ1→κ2

(δ1τ4, δ
2τ4, r4) ∈ wfGRelκ1

Finally, it is not hard to show that · � δ1τ2 ≡ δ1τ4 : κ1 and · � δ2τ2 ≡ δ2τ4 :

κ1. Hence, by the properties of well-formed relations, and our definition of

equivalence, we can show that

r1 (δ1τ2, δ
2τ2, r2) ≡κ2

r3 (δ1τ4, δ
2τ4, r4)

which finishes the case.

• Case abs. Here we have that

Γ � λa:κ1.τ1 ≡ λa:κ1.τ2 : κ1 → κ2

given that Γ, a:κ1 � τ1 ≡ τ2 : κ2. To show the required result let us pick ρ ∈
TyGRelκ1 with ρ ∈ wfGRelκ1 . Then for δa = δ, a �→ ρ, we have δa � Γ, (a:κ1),

and hence by induction hypothesis we get:

�Γ, a:κ1 � τ1 : κ2�δa ≡κ2
�Γ, a:κ1 � τ2 : κ2�δa

and the case is finished. As a side note, the important condition that ρ ∈
wfGRelκ1 (Figure 7) allows us to show that δa � Γ, (a:κ1) and therefore enables

the use of the induction hypothesis. If ≡κ1→κ2
tested against any possible

ρ ∈ TyGRelκ1 that would no longer be true, and hence the case could not be

proved. �

We may now state the abstraction theorem.

Theorem 3.12 (abstraction theorem for Rω)

Assume · � e : τ. Then (e, e) ∈ C �· � τ : ��·.

To account for open terms, the theorem must be generalized in the standard manner:

If Γ is well formed, and γ � Γ and Γ � e : τ then (γ1e, γ2e) ∈ C �Γ � τ : ��γ .

Above, we extend the definition of substitutions to include also mappings of term

variables to pairs of closed expressions.

γ, δ := ·|δ, (a �→ (τ1, τ2, r))|δ, (x �→ (e1, e2))

The definition of SubstΓ remains the same, but we add one more clause to γ � Γ:

for all x such that γ(x) = (e1, e2), it is the case that (e1, e2) ∈ C �Γ � τ : ��γ where

(x:τ) ∈ Γ. We write γ1(x), γ2(x) for the left and write projections of γ(x), and

extend this notation to arbitrary terms. For example, if γ(x) = (e1, e2) then the term

γ1((λz.λy.z) x x) is (λz.λy.z) e1 e1 and γ2((λz.λy.z) x x) is (λz.λy.z) e2 e2. A

well-formed environment is one where for all (x:τ) ∈ Γ it is Γ � τ : �; so the above

definition makes sense for well-formed environments.

We give a detailed sketch below of the proof of the abstraction theorem.

https://doi.org/10.1017/S0956796810000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000079


Parametricity, type equality, and higher-order polymorphism 193

Proof
The proof proceeds by induction on the typing derivation, Γ � e : τ with an inner

induction for the case of typerec expressions. It crucially relies on Coherence

(Theorem 3.11) for the case of rule t-eq.

• Case int. Straightforward.
• Case var. The result follows immediately from the fact that the environment

is well formed and the definition of γ � Γ.
• Case abs. In this case we have that Γ � λx.e : τ1 → τ2 given that Γ, (x:τ1) �

e : τ2, and where we assume w.l.o.g that x /∈ Γ, fv(γ). It suffices to show

that (λx.γ1e, λx.γ2e) ∈ �Γ � τ1 → τ2 : ��γ . To show this, let us pick (e1, e2) ∈
�Γ � τ1 : ��γ , it is then enough to show that

((λx.γ1e) e1, (λx.γ
2e) e2) ∈ C �Γ � τ2 : ��γ (1)

But we can take γ0 = γ, (x �→ (e1, e2)), which certainly satisfies γ0 � Γ, (x:τ1)

and by induction hypothesis: (γ1
0e, γ

2
0e) ∈ C �Γ, (x:τ1) � τ2 : ��γ0

. By an easy

weakening lemma for term variables in the type interpretation we have that

(γ1
0e, γ

2
0e) ∈ C �Γ � τ2 : ��γ and by unfolding the definitions, Equation (1)

follows.
• Case app. In this case we have that Γ � e1 e2 : τ given that Γ � e1 : σ → τ and

Γ � e2 : σ. By induction hypothesis,

(γ1e1, γ
2e1) ∈ C �Γ � σ → τ : ��γ (2)

(γ1e2, γ
2e2) ∈ C �Γ � σ : ��γ (3)

From (2) we get γ1e1 ⇓ w1 and γ2e1 ⇓ w2 such that (w1 (γ1e2), w2 (γ2e2)) ∈
C �Γ � τ : ��γ , where we made use of Equation (3) and unfolded definitions.

Hence, by the operational semantics for applications, we also have that

((γ1e1) (γ1e2), (γ2e1) (γ2e2)) ∈ C �Γ � τ : ��γ , as required.
• Case t-eq. The case follows directly from appealing to the Coherence

theorem 3.11.
• Case inst. In this case we have that Γ � e : σ τ, given that Γ � e :

∀κσ and Γ � τ : κ. By induction hypothesis we get that (γ1e, γ2e) ∈
C(�∀κ� (γ1σ, γ2σ, �Γ � σ : κ → ��γ)); hence by the definition of �∀κ� and by

making use of the fact that (γ1τ, γ2τ, �Γ � τ : κ�γ) ∈ wfGRelκ (by Lemma 3.8),

we get that γ1e ⇓ v1 and γ2e ⇓ v2 such that

(v1, v2) ∈ �Γ � σ : κ → ��γ (γ1τ, γ2τ, �Γ � τ : κ�γ)

hence, (v1, v2) ∈ �Γ � σ τ : ��γ as required.
• Case gen. We have that Γ � e : ∀κσ, given that Γ, (a:κ) � e : σ a where a#Γ,

and we assume w.l.o.g. that a /∈ ftv(γ) as well. We need to show that (γ1e, γ2e) ∈
C(�∀κ� (γ1σ, γ2σ, �σ�γ). Hence we can fix ρ ∈ TyGRelκ such that ρ ∈ wfGRelκ.

We can form the substitution γ0 = γ, (a �→ ρ), for which it is easy to show that

γ0 � Γ, (a:κ). Then, by induction hypothesis (γ1
0e, γ

2
0e) ∈ C �Γ, (a:κ) � σ a : ��γ0

which means (γ1
0e, γ

2
0e) ∈ C �Γ, (a:κ) � σ : κ → ��γ0

ρ. By an easy weakening

lemma this implies (γ1
0e, γ

2
0e) ∈ C �Γ � σ : κ → ��γ ρ and moreover since terms

do not contain types γi0e = γie and the case is finished.
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• Case rint. We have that Γ � Rint : R int, hence (Rint, Rint) ∈
R (int, int, �int�) by unfolding definitions.

• Case runit. Similar to the case for rint.

• Case rprod. We have that Γ � R× e1 e2 : R (σ1 × σ2), given that Γ � e1 : R σ1

and Γ � e2 : R σ2. It suffices to show that (R× γ1e1 γ1e2, R× γ2e1 γ2e2) ∈
R (γ1(σ1 × σ2), γ2(σ1 × σ2), �Γ � σ1 × σ2 : ��γ). The result follows by taking as

ρa = (γ1σ1, γ
2σ1, �Γ � σ1 : ��γ), ρb = (γ1σ2, γ

2σ2, �Γ � σ2 : ��γ). By Lemma 3.8,

regularity and inversion on the kinding relation one can show that ρa and

ρb are well formed and hence to finish the case we only need to show that

(γ1e1, γ
2e1) ∈ C(R ρa) and (γ1e2, γ

2e2) ∈ C(R ρb), which follow by induction

hypotheses for the typing of e1 and e2.

• Case rsum. Similar to the case for rprod.

• Case rarr. Similar to the case for rprod.

• Case trec. This is really the only interesting case. After we decompose the

premises and get the induction hypotheses, we proceed with an inner induction

on the type of the scrutiny. In this case we have that

Γ � typerec e of {eint; e(); e×; e+; e→} : σ τ

Let us introduce some abbreviations:

u[e] = typerec e of {eint; e(); e×; e+; e→}
σ× = ∀(a:�)(b:�).R a → σ a → R b → σ b → σ (a × b)

σ+ = ∀(a:�)(b:�).R a → σ a → R b → σ b → σ (a + b)

σ→ = ∀(a:�)(b:�).R a → σ a → R b → σ b → σ (a → b)

By the premises of the rule we have

Γ � σ : � → � (4)

Γ � e : R τ (5)

Γ � eint : σ int (6)

Γ � e() : σ () (7)

Γ � e× : σ× (8)

Γ � e+ : σ+ (9)

Γ � e→ : σ→ (10)

We also know the corresponding induction hypotheses for (6), (7), (8), (9), and

(10). We now show that:

∀e1 e2 ρ ∈ TyGRel�, ρ ∈ wfGRel� ∧ (e1, e2) ∈ C(R ρ)

=⇒ (γ1u[e1], γ2u[e2]) ∈ C(�Γ � σ : � → ��γ ρ)

by introducing our assumptions, and performing inner induction on the

size of the normal form of τ1. Let us call this property for fixed e1, e2, ρ,

INNER(e1, e2, ρ). We have that (e1, e2) ∈ C(R ρ) and hence we know that
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e1 ⇓ w1 and e2 ⇓ w2, such that

(w1, w2) ∈ R ρ

We then have the following cases to consider by the definition of R:

— w1 = w2 = Rint and ρ ≡ (int, int, �int�). In this case, γ1u ⇓ w1 such

that γ1eint ⇓ w1 and similarly γ2u ⇓ w2 such that γ2eint ⇓ w2, and

hence it is enough to show that (γ1eint, γ
2eint) ∈ C(�Γ � σ : � → ��γ ρ).

From the outer induction hypothesis for (6) we get that (γ1eint, γ
2eint) ∈

C �Γ � σ int : ��γ and we have that

�Γ � σ int : ��γ =

�Γ � σ : � → ��γ (int, int, �int�) ≡� �Γ � σ : � → ��γ ρ

where we have made use of the properties of well-formed generalized

relations to substitute equivalent types and relations in the second step.

— w1 = w2 = () and �Γ � τ : ��γ ≡� �()�. Similarly to the previous case,

— w1 = R× e1
a e2

a and w2 = R× e1
b e2

b, such that there exist ρa and ρb, well

formed, such that

ρ ≡� ((ρ1
a × ρ1

b), (ρ
2
a × ρ2

b), �×� ρa ρb) (11)

(e1
a, e

2
a) ∈ C(R ρa) (12)

(e1
b, e

2
b) ∈ C(R ρb) (13)

In this case we know that γ1u[e1] ⇓ w1 and γ2u[e2] ⇓ w2 where

(γ1e×) e1
a (γ1u[e1

a]) e
1
b (γ1u[e1

b]) ⇓ w1

(γ2e×) e2
a (γ2u[e2

a]) e
2
b (γ2u[e2

b]) ⇓ w2

By the outer induction hypothesis for Equation (8) we will be done, as

before, if we instantiate with relations ra and rb for the quantified variables a

and b, respectively. But we need to show that, for γ0 = γ, (a �→ ρa), (b �→ ρb),

Γ0 = Γ, (a:�), (b:�), we have

(γ1u[e1
a], γ

2u[e2
a]) ∈ C �Γ0 � σ a : ��γ0

(14)

(γ1u[e1
b], γ

2u[e2
b]) ∈ C �Γ0 � σ b : ��γ0

(15)

But notice that the size of the normal form of τ1
a must be less than the

size of the normal form of τ1, and similarly for τ1
b and τb, and hence we

can apply the (inner) induction hypothesis for Equations (12) and (13).

From these, compositionality, and an easy weakening lemma, we have

that Equations (14) and (15) follow. By the outer induction hypothesis for

Equation (8) we then finally have that

(w1, w2) ∈ �Γ, (a:�), (b:�) � σ (a × b) : ��γ0

which gives us the desired (w1, w2) ∈ �Γ � σ : � → ��γ ρ by appealing to

the properties of well-formed generalized relations.

— The case for the + and → constructors are similar to the case for ×.
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We now have by the induction hypothesis for (5), that (γ1e, γ2e) ∈
C(R (γ1τ, γ2τ, �Γ � τ : ��γ)), and hence we can get

INNER(γ1e, γ2e, (γ1τ, γ2τ, �Γ � τ : ��γ)),

which gives us that

(γ1u[e], γ2u[e]) ∈ C(�Γ � σ : � → ��γ (γ1τ, γ2τ, �Γ � τ : ��γ)),

or (γ1u[e], γ2u[e]) ∈ C(�Γ � σ τ : ��γ), as required. �

Incidentally, this statement of the abstraction theorem shows that all well-typed

expressions of Rω terminate. All such expressions belong in computation relations,

which include only terms that reduce to values. Moreover, since these values are

well typed, the abstraction theorem also proves type soundness.

3.3 Behavioral equivalence

As a corollary to the abstraction theorem, we can establish that the interpretation of

types at kind � is contained in a suitable behavioral equivalence relation for closed

terms. Intuitively, two terms are behaviorally equivalent if all uses of them produce

the same result.4

To capture the idea of uses of terms, we define elimination contexts with the

following syntax:

E ::= • | typerec E of {eint; e(); e×; e+; e→} | E v

| fst E|snd E | case E of {x.el; x.er}

In Rω , we cannot use termination behavior in our observations, so we only observe

uses that produce integers. Therefore, a simple definition of behavioral equivalence

for Rω is the following. (As syntactic sugar, we will write E[•] : τ → int for the

derivation · � λx.E[x] : τ → int.)

Definition 3.13 (behavioral equivalence)

We write e1 ≈ e2 : τ iff · � e1 : τ and · � e2 : τ and for all derivations � E[•] : τ →
int, it is E[e1] ⇓ i iff E[e2] ⇓ i.

Theorem 3.14

If (e1, e2) ∈ C �· � τ : ��· then e1 ≈ e2 : τ.

Proof

By Theorem 3.12, for any suitable context E[•] it is (λx.E[x], λx.E[x]) ∈
C �· � τ → int : ��·, and the result follows by unfolding definitions. �

Thus, showing that two expressions belong in the interpretation of their type

provides a way to establish their behavioral equivalence.

4 We conjecture that if this definition is extended to open terms via closing substitutions, then it may be
shown equivalent to a suitable definition of contextual equivalence for Rω following the techniques of
Pitts (Pitts 2005).
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4 Free theorems for type equality

4.1 Leibniz equality

We are now ready to use the abstraction theorem to reason about the equality type

EQUAL. The parametricity theorem instantiated at type ∀c : � → �.c τa → c τb reads

as follows:

Corollary 4.1 (free theorem for Leibniz equality)

Suppose · � e : ∀c : � → �.c τa → c τb. Then given any ρc ∈ wfGRel�→� and any

(e1, e2) ∈ C(ρ̂c �· � τa : ��·) we have that (e e1, e e2) ∈ C(ρ̂c �· � τb : ��·)

The first result that we show using this corollary is that if we have a proof

of EQUAL τa τb for two closed types, then those two types must actually be

equal.

Theorem 4.2 (Leibniz equality implies definitional equality)

If · � e : ∀c : � → �.c τa → c τb then · � τa ≡ τb : �.

Proof

Assume by contradiction that · �� τa ≡ τb : �. Then we instantiate the abstraction

theorem with ρc = (λa: � .(), λa: � .(), fc) where

fc (τ, σ, r) = if (· � τ ≡ τa : � ∧ · � σ ≡ τa : �)

then �· � () : ��· else ∅

One can confirm that ρc ∈ wfGRel�→�. Then by the free theorem above we know

that, since ((), ()) ∈ C(fc �· � τa : ��·), we have (e (), e ()) ∈ C(fc �· � τb : ��·) if

· �� τa ≡ τb then C(fc �· � τb : ��·) = ∅, a contradiction. �

We next use this free theorem again to show that the only inhabitant of the

Leibniz equality proposition is an identity function.

Theorem 4.3 (Leibniz proof is identity)

If · � e : ∀c : � → �.c τa → c τb then e ≈ λx.x : ∀c : � → �.c τa → c τb.

Proof

First, by Lemma 4.2 we get that · � τa ≡ τb : �. As our logical relation implies

equivalence, we show our result by showing that

(e, λx.x) ∈ �· � ∀c.c τa → c τa : ��·

Unfolding definitions, we need to show that for any ρ ∈ wfGRel∗→∗ and any

(e1, e2) ∈ �c τa�c�→ρ we must have (e e1, (λx.x) e2) ∈ C �c τa�c �→ρ

Suppose e1 ⇓ w and e2 ⇓ v. Because (λx.x) v ⇓ v and these sets are closed under

evaluation, the result holds if we can show that e w ⇓ w.

We prove this last fact using the free theorem about the type of e. By the free

theorem, we know that for all well-formed ρc, we have

(e, e) ∈ �c τa → c τa�c�→ρc

https://doi.org/10.1017/S0956796810000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000079


198 D. Vytiniotis and S. Weirich

Therefore, we choose c to be instantiated with ρc = (λ .ρ1(τa), λ .ρ1(τa), fc) where

fc = {(w,w)}. It is easy to see that this generalized relation is well formed. Then,

unfolding definitions, because (w,w) ∈ ρc(τa, τa, �τa�·), we know that (e w, e w) ∈
C(ρc(τa, τa, �τa�·)). However, because (w,w) is the only value in this last set, we must

have e w ⇓ w. �

Remark 4.4

To derive Theorem 4.2 we had to instantiate a generalized relation to be a morphism

that is not the interpretation of any Fω type function. In particular, this morphism

is nonparametric since it dispatches on its type arguments. Hence, despite the fact

that we are showing a theorem about an Fω type, we need morphisms at higher

kinds to accept both types and morphisms as arguments and dispatch on their type

argument – a novel use of type-dispatching interpretations compared to recent work

on free theorems for higher-order polymorphic functions (Voigtländer 2009). On the

other hand, as soon as type equality was established, the proof of Theorem 4.3 did

not use a nonparametric relation.

Remark 4.5

A weaker theorem than Theorem 4.3, namely that e ≈ λx.x : ∀a : �.a → a can be

shown without any use of higher-order instantiations. We may implicitly generalize

over a and instantiate c with a function that returns a to show that e has also type

∀a: � .a → a. We may then apply first-order parametricity, which still holds in our

language to show the theorem. However, we are interested in the equivalence at a

different type and it is unclear under which conditions the equivalence at a more

specialized type (such as ∀a: � .a → a) implies equivalence at a more general type

(such as ∀c.c τa → c τb).

Remark 4.6

Observe that the condition that the function fc has to operate uniformly for

equivalence classes of type α and β, imposed in the definition of wfGRel, is not

to be taken lightly. If this condition is violated, the coherence theorem breaks. The

abstraction theorem then can no longer be true. If the abstraction theorem remained

true when this condition was violated then we could derive a false statement.

Consider an expression e of type

∀(c:� → �).c () → c ((λd: � .d) ())

Let τc = λc: � .c. We instantiate c in the free theorem for the Leibniz equality type

with ρc = (τc, τc, f) where

f ((), (), ) = {(v, v)|· � v : τc ()}
f ( , , ) = ∅

The important detail is that f can return different results for equivalent but

syntactically different type arguments. In particular, the type (λd: � .d) () is not

syntactically equal to (), so f((λd: � .d) (), (λd: � .d) (), r) returns the empty set for

any r. Then, by the free theorem for the equality type, it must be that (e (), e ()) ∈ ∅,

a contradiction to the abstraction theorem! Hence the abstraction theorem breaks
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when generalized morphisms at higher kinds do not respect type equivalence classes

of their type arguments.

We can use these two theorems to directly prove two correctness properties about

any function with same type as gcast. The first property that we show is that if gcast

returns a function then the two types that instantiated gcast must be equal. (Note

that even if the type representations are equivalent, we cannot conclude that gcast

will succeed – it may well return (). An implementation of gcast may always fail

for any pair of arguments and still be well typed.) We can also show the second part

of the correctness property of gcast, that if gcast succeeds and returns a conversion

function, then that function must be equivalent to an identity function.

Corollary 4.7 (correctness of gcast I )

If · � era : R τa, · � erb : R τb, and gcast era erb ⇓ inr e then it follows that

· � τa ≡ τb : �.

Corollary 4.8 (correctness of gcast II )

If · � era : R τa, · � erb : R τb, gcast era erb ⇓ inr e, then e ≈ λx.x : ∀c.c τa → c τb.

Remark 4.9

Similar theorems would be true for any term e such that

· � e : ∀(a:�)(b:�).() + (∀(c:� → �).c a → c b)

if such a term could be constructed that would return a right injection. However, all

terms of this type may only return inl (). What is important in Rω is that the extra

R a and R b arguments and typerec make the programming of gcast possible!

4.2 Another definition of type equality

We have seen applications of the free theorem for the type ∀c.c τ1 → c τ2, but

this type is not the only way to define type equality. In this section we discuss

the properties of another proposition that defines type equality as the smallest

reflexive relation. This definition also uses higher-order polymorphism to quantify

over all binary relations c that can be shown to be reflexive (through the argument

(∀(d:�).c d d). Equality is the intersection of all such relations.

REQUAL a b = ∀(c:� → � → �).(∀(d:�).c d d) → c a b

This definition of equality is interesting because it is a Church encoding of

a commonly used definition for propositional equality in Haskell (and other

dependently typed languages such as Coq and Agda). The code shown in Figure 10

includes a definition of the REqual gadt (of which REQUAL is the encoding). This

datatype has a single constructor Refl, which produces a proof that some type is

equal to itself. Pattern matching on an object of type REqual a b instructs the type

checker to unify the types a and b. For example, in the product branch, pattern

matching on the result of pcast ra0 ra0’ unifies the types a0 and a0’. Likewise

for the types b0 and b0’ in the second recursive call. Therefore, the branch may

return Refl as a proof of equality for (a0, b0) and (a0’, b0’) as these types
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Fig. 10. pcast.

are identical to the Haskell type checker. Because of the integration between this

equality predicate and the Haskell type checker, a proof of type REqual t1 t2 is

often easier to use than one of type EQUAL t1 t2.

As before, we show that if REQUAL τ1 τ2 is inhabited, then the two types are indeed

definitionally equal and that the proof is an identity function.

Theorem 4.10 (reflexive proposition implies definitional equality)

If · � e : REQUAL τ1 τ2 then · � τa ≡ τb : �.

Proof sketch

Similar to the proof of Lemma 4.2. �

Theorem 4.11 (reflexive proof is identity)

If · � e : REQUAL τ1 τ2 then e ≈ λx.x : REQUAL τ1 τ2.

Proof sketch

Similar to the proof of Theorem 4.3. �

Furthermore, we can also show that these two definitions of equality are logically

equivalent. In particular, we can define Fω terms i and j that witness the implications

in both directions as follows. (For clarity, we write these terms in a Church-style
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variant, where all type abstractions and applications are explicit.)

i : ∀a: � .∀b: � .REQUAL a b → EQUAL a b

i = Λa: � .Λb: � .λx:REQUAL a b.Λc:� → �.

x [λb.c a → c b] (λy:c a.y)

j : ∀a: � .∀b: � .EQUAL a b → REQUAL a b

j = Λa: � .Λb: � .λx:EQUAL a b.Λc:� → � → �.

λw:(∀d: � .c d d).

x[λc.g c a → g c b] (w[a])

Furthermore, by Theorems 4.3 and 4.11, we know that i and j form an isomorphism

between the two equality types.

5 Discussion

5.1 Injectivity

Although the higher-order types EQUAL and REQUAL encode type equality, not all

properties of type equalities seem to be expressible as Rω or Fω terms. For instance

the term inj below could witness the injectivity of products:

inj : ∀ab.(∀c.c (a × int) → c (b × int)) → (∀c.c a → c b)

However, it does not seem possible to construct such a term in Fω or Rω . Given the

ability to write an intensional type constructor (Harper & Morrisett 1995), such as

the following, which maps product types to their first component but leaves other

types alone,

D : � → �

D (a × b) = a

D a = a

one could write such a injectivity term (in an explicitly typed calculus) as:

inj = Λab.λx:EQUAL a b.Λc.λy:c a.x[D]

But without such capability, such an injection does not seem possible. On the other

hand, we do not know how to show that the type of inj is uninhabited – we

cannot assume the existence of a term inj and derive that (inj, inj) ∈ ∅ by using the

fundamental theorem as we can for other empty types.

In fact, we conjecture that such an injection is consistent with Rω and Fω , but

we have not extended our parametricity proof to a language with type level type

analysis.5

The lack of injectivity hinders practical use of the EQUAL type. Some authors

propose that the EQUIV type, which can define injectivity, be used instead.

Fortunately, because the typing rules for gadts in Haskell are more expressive

5 However, see Washburn and Weirich (Washburn & Weirich 2005) for a related language that does
show parametricity in the presence of such a construct.
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than that of the Church encoding, the REqual type in Figure 10 does support

injectivity. In particular, the following code typechecks in GHC.

inj1 :: REqual (a, c) (b, d) -> REqual a b

inj1 Refl = Refl

5.2 Relational interpretation and contextual equivalence

How does the relational interpretation of types given here relate to contextual

equivalence? Theorem 3.14 shows that it is sound with respect to our notion

of behavioral equivalence. We conjecture that for closed values our behavioral

equivalence coincides with contextual equivalence. On the other hand, it is an open

problem to determine whether the interpretation of types that we give is complete

with respect to contextual equivalence (i.e. contains contextual equivalence). In

fact the same problem is open even for System F even without any datatypes

or representations. A potential solution to this problem would involve modifying

the clauses of the definition that correspond to sums (such as the �+� and R
operations) by ��-closing them as Pitts suggests (Pitts 2000; 2005). The ��-closure

of a value relation can be defined by taking the set of pairs of program contexts

under which related elements are indistinguishable, and taking again the set of pairs

of values that are indistinguishable under related program contexts. In the presence

of polymorphism, ��-closure is additionally required in the interpretation of type

variables of kind �, or as an extra condition on the definition of wfGRel at kind

� (this should be the only part of wfGRel that needs to be modified). Although

we conjecture that this approach achieves completeness with respect to contextual

equivalence, adding ��-closures is typically a heavy technical undertaking (but

probably not hiding surprises, if one follows Pitts’s roadmap) and we have not yet

carried out the experiment.

5.3 Representations of polymorphic types and nontermination

Rω does not include representations of all types for a good reason. While representing

function types poses no problem, adding representations of polymorphic types has

subtle consequences for the semantics of the language.

To demonstrate the problem with polymorphic representations, consider what

would happen if we added the representation Rid of type R Rid to Rω (where

Rid abbreviates the type ∀(a:�).R a → a → a, and extended typerec and gcast

accordingly. Then we could encode an infinite loop in Rω , based on an example by

Harper and Mitchell (1999) which in turn is inspired by Girard’s J operator. This

example begins by using gcast to enable a self-application term with a concise type.

delta :: ∀a: � .R a → a → a

delta ra = case (gcast Rid ra) of { inr y.y (λx.x Rid x);

inl z.(λx.x) }

Above, if the cast succeeds, then y has type ∀c:� → �.c Rid → c a, and we can

instantiate y to (Rid → Rid) → (a → a). We can now add another self-application
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to get an infinite loop:

delta Rid delta ≈ (λx.x Rid x) delta ≈ delta Rid delta

This example demonstrates that we cannot extend the relational interpretation to

Rid and the proof of the abstraction theorem in a straightforward manner as our

proof implies termination. That does not mean that we cannot give any relational

interpretation to Rid, only that our proof would have to change significantly. Recent

work (Neis et al. 2009) gives a way to reconcile Girard’s J operator and parametricity,

using step-indexed logical relations to account for nontermination.

Our current proof breaks in the definition of the morphism R in Figure 9. The

application R (τ, σ, r) depends on whether r can be constructed as an application

of morphisms �int�, �()�, �×�, and �+�. If we are to add a new representation

constructor Rid, we must restrict r in a similar way. To do so, it is tempting to add:

R = . . . as before . . .

∪ {(Rid, Rid)|· � τ ≡ Rid : � ∧ · � σ ≡ Rid : � ∧ r ≡� �· � Rid : ��·}

However, this definition is not well formed. In particular, R recursively calls the

main interpretation function on the type Rid which includes the type R.

A different question is what class of polymorphic types can we represent with

our current methodology (i.e. without breaking strong normalization)? The answer

is that we can represent polymorphic types as long as those types contain only

representations of closed types. For example, the problematic behavior above

was caused because the type ∀a.R a → a → a includes R a, the representation

of the quantified type a. Such behavior cannot happen when we only include

representations of types such as R (R int), ∀a.a → a, ∀a.a → R int → a, or even

∀a.a. We can still give a definition of R that calls recursively the main interpretation

function, but the definition must be shown well formed using a more elaborate metric

on types.

5.4 Implicit versus explicit generalization and instantiation

Parametricity in the presence of impure features, such as nontermination or

exceptions, is known to be affected by whether type application and generalization

is kept explicit or implicit. For example, a term of type ∀a.a is only inhabited

by a diverging term if type generalization is implicit, whereas it may be also be

inhabited by a converging term Λa.e where e{τ/a} has to be diverging for every

τ, in an explicit setting. Hence, it is to be expected that the derived free theorems

in this paper will only be “morally” true (Danielsson et al. 2006) in a setting with

nontermination.

5.5 Arbitrary gadts

Equality types, along with existential types and standard recursive datatypes, are the

foundation of arbitrary gadts (Johann & Ghani 2008). In fact, the earliest examples

of gadts were defined in this way (Cheney & Hinze 2003; Xi et al. 2003). Therefore,

https://doi.org/10.1017/S0956796810000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000079


204 D. Vytiniotis and S. Weirich

although the language Rω only contains the specific example of the representation

type, the parametricity results in this paper could be extended to languages that

include arbitrary gadts.

The easiest gadts to incorporate in this way are those that, like representation

types, have inductive structure. Such types do not introduce nontermination, so the

necessary extensions to the definitions in this paper are localized. Alternatively, we

believe that such types may also be defined in Rω using a Church encoding.

Recursive datatypes require more change to the proofs as they introduce

nontermination. Crary and Harper (Crary & Harper 2007) and Ahmed (Ahmed

2006) describe necessary extensions to to support their inclusion.

6 Related work

Although the interpretation of higher-kinded types as morphisms in the meta-logic

between syntactic term relations seems to be folklore in the programming languages

theory (Meijer & Hutton 1995), our presentation is technically more precise in dealing

with equality and well formedness, and employs a dependently typed meta-logic for

the interpretation of the morphisms.

Kǔcan (1997) interprets the higher-order polymorphic λ-calculus within a second-

order logic in a way similar to ours. However, the type arguments (which are

important for our examples) are missing from the higher-order interpretations,

and it is not clear that the particular second-order logic that Kučan employs is

expressive enough to host the large type of generalized relations. On the other hand,

Kučan’s motivation is different: he shows the correspondence between free theorems

obtained directly from algebraic datatype signatures and those derived from Church

encodings.

In recent work (Voigtländer 2009), Voigtländer shows interesting free theorems

about higher-order polymorphic functions where the higher-order types satisfy extra

axioms (e.g. they are monads), but he never has to interpret them as nonparametric

morphisms as we do – and he elides the formal setup of parametricity altogether.

Gallier gives a detailed formalization (Gallier 1990) closer to ours, although his

motivation is a strong normalization proof for Fω , based on Girard’s reducibility

candidates method, and not free-theorem reasoning about Fω programs. Our work

was developed in CIC instead of untyped set theory, but there are similarities.

In particular, our inductive definition of GRelκ, corresponds to his definition

of (generalized) candidate sets. The important requirement that the generalized

morphisms respect equivalence classes of types (wfGRelκ) is also present in his

formalization (Definition 16.2, Condition (4)). However, because Gallier is working

in set theory, he includes no explicit account of what equality is, and hence elides

the extra complication of it be defined simultaneously with wfGRelκ.

A logic for reasoning about parametricity, that extends the Abadi–Plotkin

logic (Plotkin & Abadi 1993) to the λ-cube has been proposed in a manuscript

by Takeuti (Takeuti 2001). Crole presents in his book (Crole 1994) a categorical

interpretation of higher-order polymorphic types, which could presumably be

instantiated to the concrete syntactic relations used here.

https://doi.org/10.1017/S0956796810000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000079


Parametricity, type equality, and higher-order polymorphism 205

Concerning the interpretation of representation types, this paper extends the ideas

developed in previous work by the authors (Vytiniotis & Weirich 2007) to a calculus

with higher-order polymorphism.

A similar (but more general) approach of performing recursion over the type

structure of the arguments for generic programming has been employed in Generic

Haskell. Free theorems about generic functions written in Generic Haskell have been

explored by Hinze (2002). Hinze derives equations about generic functions by gener-

alizing the usual equations for base kinds using an appropriate logical relation at the

type level, assuming a cpo model, assuming the main property for the logical relation,

and assuming a polytypic fixpoint induction scheme. Our approach relies on no extra

assumptions, and our goal is slightly different: While Hinze aims to generalize behav-

ior of Generic Haskell functions from base kind to higher kinds, we are more inter-

ested in investigating the abstraction properties that higher-order types carry. Rep-

resentation types simply make programming interesting generic functions possible.

Washburn and Weirich give a relational interpretation for a language with

nontrivial type equivalence (Washburn & Weirich 2005), but without quantification

over higher-kinded types. To deal with the complications of type equivalence that

we explain in this paper, Washburn and Weirich use canonical forms of types (β-

normal η-long forms of types Harper & Pfenning 2005) as canonical representatives

of equivalence classes. Though perhaps more complicated, our analysis (especially

outlining the necessary wfGRel conditions) provides better insight on the role of

type equivalence in the interpretation of higher-order polymorphism.

Neis et al. (2009) show that it is possible to reconcile parametricity and ordinary

case analysis on types (and not on type representations) using generative types.

Going one step further, Neis et al. introduce polarized logical relations in order to

produce more interesting free theorems. For example, the fact that in the presence of

type analysis the type ∀a.a → a is inhabited by terms other than the identity does

not preclude the context that uses a value of that type to be parametric. Polarized

logical relations make the distinction between contexts and expressions explicit, and

would be an orthogonal but interesting extension in our setting as well.

7 Future work and conclusions

In order for the technique in this paper to evolve to a reasoning technique for

Haskell, several limitations need to be addressed. If we wished to use these results

to reason about Haskell implementations of gcast, we must extend our model

to include more – in particular, general recursion and recursive types (Appel &

McAllester 2001; Johann & Voigtländer 2004; Melliès & Vouillon 2005; Ahmed

2006; Crary & Harper 2007). We believe that the techniques developed here are

independent of those for advanced language features.

Conclusions

We have given a rigorous roadmap through the proof of the abstraction theorem for

a language with higher-order polymorphism and representation types, by interpreting
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types of higher kind directly into the meta-logic. Furthermore and we have shown

important applications of parametricity, in particular to reason about the properties

of equality types.
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Harper, R. & Mitchell, J. C. (1999) Parametricity and variants of Girard’s J operator, Inf.

Process. Lett., 70 (1): 1–5.

Harper, R. & Morrisett, G. (1995) Compiling polymorphism using intensional type analysis.

In Twenty-Second ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages. ACM, pp. 130–141.

Harper, R. & Pfenning, F. (2005) On equivalence and canonical forms in the LF type theory,

ACM Trans. Comput. Logic, 6 (1): 61–101.

https://doi.org/10.1017/S0956796810000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000079


Parametricity, type equality, and higher-order polymorphism 207

Hinze, R. (2002) Polytypic values possess polykinded types, Sci. Comput. Program., 43 (2–3):

129–159. MPC Special Issue.

Johann, P. & Ghani, N. (2008) Foundations for structured programming with gadts. In POPL,

Necula, G. C. & Wadler, P. (eds), ACM, pp. 297–308.

Johann, P. & Voigtländer, J. (2004) Free theorems in the presence of seq. In POPL ’04:

Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages. ACM, pp. 99–110.

Jones, S. P., Vytiniotis, D., Weirich, S. & Washburn, G. (2006) Simple unification-based

type inference for GADTs. In ICFP ’06: Proceedings of the Eleventh ACM SIGPLAN

International Conference on Functional Programming. ACM, pp. 50–61.
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Kučan, J. (1997) Metatheorems about Convertibility in Typed Lambda Calculi: Applications to

CPS Transform and Free Theorems. PhD thesis, Massachusetts Institute of Technology.

Meijer, E. & Hutton, G. (1995) Bananas in space: Extending fold and unfold to

exponential types. In FPCA95: Conference on Functional Programming Languages and

Computer Architecture. ACM, pp. 324–333.

Melliès, P.-A. & Vouillon, J. (2005) Recursive polymorphic types and parametricity in an

operational framework. In LICS ’05: Proceedings of the 20th Annual IEEE Symposium on

Logic in Computer Science (LICS’ 05). IEEE Computer Society, pp. 82–91.

Neis, G., Dreyer, D. & Rossberg, A. (2009) Non-parametric parametricity. In ICFP

’09: Proceedings of the 14th ACM SIGPLAN International Conference on Functional

Programming. ACM, pp. 135–148.

Paulin-Mohring, C. (1993) Inductive definitions in the system Coq: Rules and properties.

In International Conference on Typed Lambda Calculi and Applications, TLCA ’93, Lecture

Notes in Computer Science, vol. 664. Springer, pp. 328–345.

Pitts, A. M. (2000) Parametric polymorphism and operational equivalence, Math. Struct.

Comput. Sci., 10: 321–359.

Pitts, A. M. (2005) Typed operational reasoning. , In Chap. 7 of: Advanced Topics in Types

and Programming Languages, Pierce, B. C. (ed), MIT Press, pp. 245–289.

Plotkin, G. & Abadi, M. (1993) A logic for parametric polymorphism. In International

Conference on Typed Lambda Calculi and Applications. Springer-Verlag, pp. 361–375.

Reynolds, J. C. (1983) Types, abstraction and parametric polymorphism. In Information

Processing ’83. Proceedings of the IFIP 9th World Computer Congress. North-Holland,

pp. 513–523.

Sheard, T. & Pasalic, E. (2004) Meta-programming with built-in type equality. In Proc

4th International Workshop on Logical Frameworks and Meta-languages (LFM’04), Cork.

pp. 106–124.

Sp�lawski, Z. & Urzyczyn, P. (1999) Type fixpoints: Iteration versus recursion. Fourth ACM

SIGPLAN International Conference on Functional Programming. ACM, pp. 102–113.

Takeuti, I. (2001) The Theory of Parametricity in Lambda Cube (Towards new interaction

between category theory and proof theory). Technical Report. Kyoto University Research

Information Repository.

Voigtländer, J. (2009) Free theorems involving type constructor classes: functional pearl. In

ICFP ’09: Proceedings of the 14th ACM SIGPLAN International Conference on Functional

Programming. ACM, pp. 173–184.

Vytiniotis, D. & Weirich, S. (2007) Free theorems and runtime type representations, Electron.

Notes Theor. Comput. Sci., 173: 357–373.

https://doi.org/10.1017/S0956796810000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000079


208 D. Vytiniotis and S. Weirich

Wadler, P. (1989) Theorems for free! In FPCA89: Conference on Functional Programming

Languages and Computer Architecture. ACM, pp. 347–359.

Washburn, G. & Weirich, S. (2005) Generalizing parametricity using information flow. In The

Twentieth Annual IEEE Symposium on Logic in Computer Science (LICS 2005). Chicago,

IL: IEEE Computer Society Press, pp. 62–71.

Weirich, S. (2001) Encoding intensional type analysis. In 10th European Symposium on

Programming, Sands, D. (ed), pp. 92–106.

Weirich, S. (2004) Type-safe cast, J. Funct. Program. 14 (6): 681–695.

Xi, H., Chen, C. & Chen, G. (2003) Guarded recursive datatype constructors. In POPL. ACM,

pp. 224–235.

Yang, Z. (1998) Encoding types in ML-like languages. In 1998 ACM SIGPLAN International

Conference on Functional Programming. ACM SIGPLAN Notices 34, pp. 289–300.

Appendix A Generalized relations, in Coq

A Coq definition of GRel, wfGRel, and eqGRel (≡κ), follows.6 First, we assume

datatypes that encode Rω syntax, such as kind, term, type, and env. Moreover

we assume constants such as ty app (for type applications) and empty (for empty

environments).

(* R-omega kinds *)

Inductive kind : Set :=

| KStar : kind

| KFun : kind -> kind -> kind.

(* R-omega types and a constant for type applications *)

Parameter type : Set.

Parameter term : Set.

(* R-omega environments and constant for empty envs *)

Parameter env : Set.

Parameter empty : env.

(* R-omega judgments *)

Parameter kinding : env -> type -> kind -> Prop.

Parameter typing : env -> term -> type -> Prop.

Parameter teq : env -> type -> type -> kind -> Prop.

Parameter value : term -> Prop.

(* Definition and operations on closed types *)

Definition ty (k: kind) : Set := { t : type & kinding empty t k }.

Parameter ty_app : forall k1 k2, ty (KFun k1 k2) -> ty k1 -> ty k2.

Parameter ty_eq : forall k, ty k -> ty k -> Prop.

6 These definitions are valid in Coq 8.1 with implicit arguments set.
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(* closed terms *)

Parameter tm : (ty KStar) -> term -> Prop.

Parameter typing_eq : forall (t1 t2 : ty KStar) e,

ty_eq t1 t2 -> tm t1 e -> tm t2 e.

Term relations are represented with the datatype rel. The rel datatype contains

functions that return objects of type Prop. Prop is Coq’s universe for propositions,

therefore rel itself lives in Coq’s Type universe. Then the definitions of wfGRel and

eqGRel follow the paper definitions. Since rel lives in Type, the whole definition of

GRel is a well-typed inhabitant of Type.

(* Relations over terms *)

Definition rel : Type := term -> term -> Prop.

Definition eq_rel (r1 : rel) (r2 : rel) :=

forall e1 e2, r1 e1 e2 <-> r2 e1 e2.

(* Value relations as a predicate on relations *)

Definition vrel : (ty KStar * ty KStar * rel) -> Prop :=

fun x =>

match x with

| ((t1, t2), r) =>

forall e1 e2,

r e1 e2 -> value e1 /\ value e2 /\ tm t1 e1 /\ tm t2 e2

end.

(* (Typed-)Generalized relations: Definition 3.2 *)

Fixpoint GRel (k : kind) : Type :=

match k with

| KStar => rel

| KFun k1 k2 => (ty k1 * ty k1 * GRel k1) -> GRel k2

end.

Notation "’TyGRel’ k" := (ty k * ty k * GRel k)%type (at level 67).

Notation "x ^1" := (fst (fst x)) (at level 2).

Notation "x ^2" := (snd (fst x)) (at level 2).

Notation "x ^3 " := (snd x) (at level 2).

(** Well-formed generalized relations and equality (Fig. 7) *)

Fixpoint wfGRel (k:kind) : TyGRel k -> Prop :=

match k as k’ return TyGRel k’ -> Prop with

| KStar => vrel

| KFun k1 k2 => fun (c : TyGRel (KFun k1 k2)) =>

(forall (a : TyGRel k1), wfGRel a ->

(wfGRel (ty_app c^1 a^1, ty_app c^2 a^2, c^3 a)) /\

(forall b, wfGRel b ->
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ty_eq a^1 b^1 -> ty_eq a^2 b^2 ->

eqGRel k1 a^3 b^3 -> eqGRel k2 (c^3 a) (c^3 b)))

end

with eqGRel (k:kind) : GRel k -> GRel k -> Prop :=

match k as k’ return GRel k’ -> GRel k’ -> Prop with

| KStar => eq_rel

| KFun k1 k2 =>

fun r1 r2 => (forall a, wfGRel a -> eqGRel k2 (r1 a) (r2 a))

end.

(* Equivalence between typed generalized relations *)

Definition eqTyGRel k (rho : TyGRel k) (pi : TyGRel k) :=

ty_eq rho^1 pi^1 /\ ty_eq rho^2 pi^2 /\ eqGRel k rho^3 pi^3
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