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Scale interactions in turbulent plane Couette
flows in minimal domains
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Interscale energy transfer in wall turbulence has been intensively studied in recent years,
and both forward (i.e. from larger to smaller scales) and reversed transfers of turbulent
energy have been found, although their corresponding physical phenomena have not been
revealed. In the present study, we perform direct numerical simulations of turbulent plane
Couette flow with reduced-size computational domains, where either the streamwise or the
spanwise domain size is reduced to its minimal length, aiming to elucidate the role of scale
interactions in each direction. Our computational results with the streamwise-minimal
domain suggest that the interplays between streamwise-elongated streaks and vortices
smaller than the streamwise minimal length are the essential scale interactions for both
the inner and the outer structures. We further show that these streamwise-independent
and smaller-scale structures exchange energy through forward and reversed interscale
energy transfers, and the reversed energy transfer maintains the energy production at larger
scales. Based on the resemblance between the observed Reynolds-stress transport and the
scenario of the self-sustaining cycle, we conjecture that the forward and reversed energy
transfers mainly represent the streak instabilities and regeneration of streamwise vortices,
respectively. Furthermore, the computation with the spanwise-minimal domain indicates
that the interscale energy transfers observed by one-dimensional spanwise spectral analysis
are likely related to the individual dynamics of each inner and outer structure, rather than
representing their interactions.
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1. Introduction

With the significant advances in experimental techniques and high-performance
computation in recent years, there has been overwhelming evidence indicating the
existence of large-scale structures away from the wall in wall turbulence (see, for
example, Smits, McKeon & Marusic (2011), and the references therein), and it has been
observed that influences from the large-scale outer structure affect the magnitude of
small-scale events in the near-wall region (e.g. Hutchins & Marusic 2007; Dogan et al.
2019). Such a top-down effect from the outer to the inner structure is often referred
to as ‘amplitude modulation’, and the degree of the modulation has been reported
to be increasingly significant at higher Reynolds numbers (e.g. Mathis, Hutchins &
Marusic 2009). Recent experimental data from high-Reynolds-number facilities such as
the Princeton Superpipe (Hultmark et al. 2012) and the CICLoPE at the University of
Bologna (Willert et al. 2017; Samie et al. 2018) have clearly shown emergence of the outer
peak of the streamwise velocity fluctuation at very high Reynolds numbers, indicating that
the large-scale structures may play further important roles at higher Reynolds numbers,
including interfering with the near-wall structures. These observations have raised interest
in energy transfer caused by interactions between different scales in wall turbulence, and
recently there have been intensive efforts to investigate the interscale energy transfer (e.g.
Cimarelli, De Angelis & Casciola 2013; Hamba 2015; Lee & Moser 2015, 2019; Cimarelli
et al. 2016; Mizuno 2016; Cho, Hwang & Choi 2018; Hamba 2018; Kawata & Alfredsson
2018; Bauer, von Kameke & Wagner 2019; Motoori & Goto 2019). Interestingly, some
studies have reported not only energy transfer from larger to smaller scales but also
the reversed transfer from smaller to larger scales, although the corresponding physical
phenomena have still not been clearly identified.

Turbulent plane Couette flow is well known to involve a very-large-scale structure in
the channel-core region which fills the entire channel gap and has an extremely large
streamwise extent (e.g. Lee & Kim 1991; Bech et al. 1995; Tillmark 1995; Papavassiliou
& Hanratty 1997; Kitoh, Nakabayashi & Nishimura 2005; Tsukahara, Kawamura &
Shingai 2006; Tsukahara, Iwamoto & Kawamura 2007; Kitoh & Umeki 2008; Tsukahara,
Tillmark & Alfredsson 2010; Pirozzoli, Bernardini & Orlandi 2014; Avsarkisov et al. 2015;
Kawata & Alfredsson 2016; Lee & Moser 2018). The uniqueness of this flow is that the
very-large-scale structure appears at moderate Reynolds numbers due to the non-zero
turbulent energy production at the channel centre, and therefore clear scale separation
between this outer structure and the smaller-scale structure near the wall can be achieved at
relatively low Reynolds numbers compared to other wall turbulence configurations, such
as turbulent channels, pipes and boundary layers. For instance, in the turbulent channel
flow, the lower limit of the Kármán number (which is equivalent to the friction Reynolds
number Reτ used in the present study) for clear separation between the inner and the outer
structures has been reported to be about 1020 (e.g. Monty & Chong 2009), whereas in the
turbulent plane Couette flow both the near-wall and very-large-scale structures are already
clearly observed at Reτ ≈ 120, as will be shown by the results of the present study in
§ 3. Therefore, the turbulent plane Couette flow may serve as a good test case to study
nonlinear interactions between coherent structures at different scales in wall turbulence.

However, the existence of the very-large-scale structure raises an issue of computational
domain size for direct numerical simulation (DNS) of the turbulent plane Couette
flow, as pointed out by, for example, Komminaho, Lundbladh & Johansson (1996). As
the streamwise and spanwise extents of the structure have been reported respectively
as 20–30 times and 2–2.5 times the channel height (e.g. Tsukahara et al. 2006;
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Avsarkisov et al. 2015), one needs to use an extremely large computational domain to
exclude the domain size effect, which makes it difficult to perform DNS of this flow at
high Reynolds numbers.

Capturing all scales (or wavelengths) involved in the flow dynamics using a sufficiently
large computational domain in DNS is important, for instance, to achieve quantitative
agreement with experimental data. However, the use of such a large computational
domain may not be necessary when it comes to extracting and understanding the essential
physics of wall turbulence. In fact, the minimal domain, i.e. the smallest computational
domain size to maintain wall turbulence, has successfully been used to substantially
limit the degrees of freedom of the flow and thereby extract the essential structure
sustaining the wall turbulence (e.g. Jimenez & Moin 1991; Hamilton, Kim & Waleffe
1995; Waleffe 1997; Flores & Jiménez 2010; Hwang & Bengana 2016; Hwang, Willis &
Cossu 2016). In particular, Toh & Itano (2005) employed a ‘streamwise-minimal domain’,
whose spanwise extent is sufficiently large but whose streamwise extent is minimal, for
their numerical simulation of a turbulent channel flow. Their purpose in using such a
domain was to simplify the dynamics of the large-scale structure in the outer layer and
thereby investigate its interactions with the near-wall structure. Later, the usefulness of the
streamwise-minimal domain was further demonstrated by DNS of turbulent channel (Abe,
Antonia & Toh 2018) and pipe (Han et al. 2019) flows at relatively high Reynolds numbers
(Reτ ∼ 1000 or larger).

In the present study, we perform a series of DNS of turbulent plane Couette flow
where either the streamwise or the spanwise domain length is systematically reduced
to be as small as the minimal length, and we investigate how scale interactions in
this flow are affected by such domain-size reductions. In particular, in the case of
the streamwise-minimal domain we focus on why simulation with such a reduced-size
domain can still reproduce the flow features given by a sufficiently large domain. In the
spanwise-minimal case, on the other hand, the very-large-scale structure of the turbulent
plane Couette flow does not appear, because of the too-small spanwise domain width. Our
focus is therefore placed on how the turbulence transport by scale interactions is affected
by the disappearance of the very-large-scale structure; we aim to elucidate the role of the
interactions between the inner and outer structures in the turbulence interscale transport.

2. Numerical set-up

We consider a plane Couette flow where one of the walls is stationary and the other is
translating with a constant speed Uw, and the distance between the walls is h. The x-, y-
and z-axes denote the streamwise, wall-normal and spanwise directions, and the stationary
and translating walls are located at y = 0 and y = h, respectively. The governing equations
for the DNS are the continuity and Navier–Stokes equations for incompressible fluid that
are non-dimensionalised by Uw and h, with the Reynolds number defined as Rew = Uwh/ν

(where ν is the kinetic viscosity of the fluid). The periodic boundary condition was
applied to the x- and z-directions and the non-slip condition was used on the wall. Further
numerical details of the present DNS codes are found in Tsukahara et al. (2006).

We have estimated the minimal values for the streamwise and spanwise domain size to
be 400 and 100 wall units, respectively, based on earlier numerical investigations (Jimenez
& Moin 1991; Toh & Itano 2005). As a domain size that is sufficiently large to avoid
confinement effects, we use Lx = 96.0h and Lz = 12.8h, based on the earlier study by
Tsukahara (2007). In the present study we performed two series of DNS: cases A1–A3
and cases B1–B2. In the former, Lz is fixed at the large enough length Lz = 12.8h so
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Lx, Lz (L+
x , L+

z ) Nx × Ny × Nz Δx+, Δz+ Δy+ Reτ

Reference case 96h, 12.8h (24230, 3231) 2048 × 96 × 512 11.83, 6.31 0.18–5.66 126.2
Case A1 24.0h, 12.8h (6031, 3222) 512 × 96 × 512 11.80, 6.29 0.26–6.14 125.8
Case A2 6.4h, 12.8h (1622, 3245) 128 × 96 × 512 12.67 6.34 0.26– 6.19 126.7
Case A3 1.6h, 12.8h (406, 3246) 32 × 96 × 512 12.68 6.34 0.26–6.19 126.8
Case B1 96.0h, 0.8h (22843, 190) 2048 × 96 × 32 11.15, 5.95 0.24–5.81 119.0
Case B2 96.0h, 0.5h (20906, 109) 2048 × 96 × 32 10.20, 3.40 0.22–5.31 108.9
Case C 0.73h, 0.5h (164, 113) 16 × 96 × 32 10.26, 3.52 0.23–5.50 112.6

Table 1. Computational conditions: domain dimensions Lx and Lz, number of grid points Nx and Nz, and
spatial resolutions Δx and Δz. The Reynolds number Rew = Uwh/ν and time step are 8600 and Δt∗ = 0.004,
respectively, in all cases. The values of the friction Reynolds number Reτ = τ(h/2)/ν obtained in these cases
are also given.

that some pairs of the very-large-scale vortices in the core region are captured, while Lx is
systematically reduced to the minimal length Lx = 1.6h (L+

x ≈ 400). In the latter series, on
the other hand, Lx is extremely large (Lx = 96.0h), while Lz is on the order of the minimal
length, so that only the near-wall structure is captured. We also investigated an additional
case for comparison, case C, where both Lx and Lz are as small as their minimal lengths.
In all cases the Reynolds number is Rew = 8600, at which the very-large-scale structure
is clearly observed (Tsukahara et al. 2006). The results of these cases are compared with
the reference case, where (Lx, Lz) = (96.0h, 12.8h). Further details of the computational
conditions for each case, such as the number of grids and the spatial resolution, are
summarised in table 1.

3. Computational results

3.1. Flow structures and the basic statistics profiles
In the following, the velocity components in the x-, y- and z-directions are denoted
by U + u, v and w, respectively, where U is the mean streamwise velocity and the
lower-case letters represent the fluctuating part of each velocity component (note that
the mean values of the wall-normal and spanwise velocity components are zero). The
averaged quantities given later are obtained by averaging in the x- and z-directions and
in time. The instantaneous flow field obtained in the streamwise-minimal (A3) case is
presented in figure 1, in comparison with the reference-case results. As shown by the
streamwise-cross sectional view in figure 1(a), the streamwise-minimal case reproduces
the characteristic flow features observed in the reference case quite well, exhibiting both
the near-wall structures (vortical motions observed near the walls around y/h ≈ ±0.1) and
the very-large-scale structures (the high- and low-u regions filling up the entire channel
gap). In the xz-plane views at the channel centre (y/h = 0.5) given in figure 1(b), it is
shown that high- and low-u streaks corresponding to the very-large-scale structures are
present in the reference case, and similar streaks are found in case A3 as well. It is also
shown that the streamwise domain extent in case A3 is considerably smaller than in the
reference case. Because of this reduced domain length, the spanwise meandering motions
of these streaks with some splitting and/or merging, which can be clearly observed in the
reference-case results, are not captured in case A3.

Snapshots of instantaneous flow fields obtained in the spanwise-minimal case, case B2,
are presented in figure 2. As shown by the middle plane slice (xz-plane at y/h = 0.5) given
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Figure 1. Snapshots of instantaneous velocity fields obtained in the A3 and reference cases on (a) streamwise
cross-sectional (zy-) planes at arbitrary streamwise positions and (b) the channel centre plane (xz-plane at
y/h = 0.5). The colours in all panels represent the fluctuating streamwise velocity u/Uw for the range shown
in panel (a), and the black arrows in panel (a) indicate the in-plane velocity vectors with the length scale where
1h length of the arrow corresponds to Uw.

in panels (a) and (c), high- and low-speed streaks are observed with spanwise meanderings.
However, as shown in panel (b), unlike in the streamwise-minimal and reference cases,
there is no very-large-scale structure that fills up the entire channel gap in this case, which
is clearly due to the narrow spanwise domain size. As the spanwise domain size is half the
channel gap h, the structures that fit within this spanwise domain cannot be tall enough to
penetrate the whole channel in the wall-normal direction.

Figure 3 compares the mean streamwise velocity profiles obtained in the various
computation runs in (a) the outer and (b) the inner scalings, and one can also find in table 1
the values of the friction Reynolds number Reτ = uτ (h/2)/ν, where uτ is the friction
velocity, defined as uτ = √

νdU/dy|wall. As one can see in figure 3, the mean velocity
profiles obtained in the series of case A are all in quite good agreement with the reference
case, while the results in the series of case B and case C indicate the influence of reducing
Lz. The mean velocity profile deviates increasingly from the reference-case results as Lz
decreases, clearly corresponding to the disappearance of the very-large-scale structures in
these cases as shown in figure 2. It is also seen in figure 3(b) that the logarithmic region
of the mean velocity profile is hardly visible in these cases. Consistently with these mean
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Figure 2. Snapshots of instantaneous velocity fields obtained in case B2: (a) a wide view of the xz-plane
at the channel centre; (b) a streamwise cross-sectional view at x = 0.5Lx (= 48.0h); (c) a magnified view of
the region in panel (a) marked by the red-dashed rectangle. The colours and the black vectors have the same
meanings as in figure 1.
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Figure 3. Mean streamwise velocity profiles obtained with different computational domain sizes presented in
(a) outer and (b) inner scalings. The colours of the lines represent the different series of computations: blue,
the series of case A; red, case B; yellow, case C; black, the reference case. The grey dashed lines in panel (b)
represent U+ = y+ and U+ = 1/κ log y+ + B with κ = 0.41 and B = 5.1. Note that the line for the reference
case (black solid line) is hardly visible, as that for case A1 (blue solid line) is almost on top of it.

velocity profiles, the Reτ values obtained in cases A1–A3 agree well with the reference
value (see table 1); even in the case of the minimal streamwise domain length (case A3)
the deviation from the reference value is only 0.5 %. On the other hand, the values of Reτ

obtained in cases B1 and B2 clearly decrease as the spanwise domain length Lz decreases.
Figure 4 presents the profiles of the Reynolds stresses 〈u2〉, 〈v2〉, 〈w2〉 and −〈uv〉 scaled

by the wall speed Uw. The Reynolds stresses are clearly affected by reducing Lx as well
as Lz, unlike the mean velocity profile. As shown in figure 4(a–c), reducing Lz to the
minimal size Lz/h = 0.5 clearly suppresses the fluctuations of all velocity components,
corresponding to the suppression of the very-large-scale structures in these cases. On
the other hand, reducing Lx increases the streamwise velocity fluctuation 〈u2〉 while
decreasing the wall-normal and spanwise components 〈v2〉 and 〈w2〉. In particular, the
wall-parallel components 〈u2〉 and 〈w2〉 are affected noticeably, while the influence on the
wall-normal component 〈v2〉 is moderate. It also should be mentioned here that the sum
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Figure 4. Profiles of the Reynolds stresses scaled by U2
w obtained with different computational domain sizes:

(a) 〈u2〉, (b) 〈v2〉, (c) 〈w2〉 and (d) −〈uv〉. The colours and styles of the lines represent the same computation
cases as in figure 3.

of these fluctuations, 〈u2〉 + 〈v2〉 + 〈w2〉, is less affected by the change in Lx (not shown),
indicating that the energy redistribution between them is suppressed by reducing Lx. Such
tendencies agree well with the DNS of turbulent channel flow with streamwise-minimal
domains by Abe et al. (2018). The profiles of the Reynolds shear stress −〈uv〉 are also
given in figure 4(d). As shown here the profile of −〈uv〉 is insensitive to Lx, while reducing
Lz remarkably suppresses −〈uv〉, which clearly corresponds, again, to the disappearance
of the very-large-scale structures.

Figure 5 gives the budget of the transport equation of the turbulent kinetic energy kt =
(〈u2〉 + 〈v2〉 + 〈w2〉)/2 and the Reynolds shear stress −〈uv〉 obtained in the streamwise-
and spanwise-minimal cases. Here, the transport equation of the Reynolds stress 〈uiuj〉 is
defined as (

∂

∂t
+ Uk

∂

∂xk

)
〈uiuj〉 = Pij − εij + Πij + Dν

ij + Dp
ij + Dt

ij, (3.1)

where the terms on the right-hand side are the production (Pij), viscous dissipation
(εij), pressure–strain correlation (Πij), viscous diffusion (Dν

ij), pressure transport (Dp
ij) and

turbulent transport (Dt
ij), which are defined, respectively, as

Pij = −〈uiuk〉∂Uj

∂xk
− 〈ujuk〉∂Ui

∂xk
, εij = 2ν

〈
∂ui

∂xk

∂uj

∂xk

〉
, (3.2a,b)

Πij = 1
ρ

〈
p
(

∂ui

∂xj
+ ∂uj

∂xi

)〉
, Dν

ij = ν
∂2〈uiuj〉

∂x2
k

, (3.3a,b)

Dp
ij = − 1

ρ

∂

∂xk
(〈pui〉δik + 〈puj〉δjk), Dt

ij = −∂〈uiujuk〉
∂xk

. (3.4a,b)

The profiles of these terms for the transport equation of kt scaled by the wall
units are presented in figure 5(a). Note that the pressure–strain correlation is not
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Figure 5. Transport budget of the turbulent kinetic energy kt = 〈uiui〉 + 〈v2〉 + 〈w2〉)/2 and the Reynolds
shear stress −〈uv〉 scaled by u4

τ /ν: black solid lines, the reference case; blue chained lines, case A3; red dashed
lines, case B2. The visc. terms and the press. terms respectively represent the sum of the viscous dissipation
and diffusion terms and the sum of the pressure transport and pressure–strain correlation terms. The pressure
transport term in (a) and viscous terms in (b) are presented with thinner lines for easier distinction. The upper
abscissa of each panel represents the wall-normal height in wall units, y+ = yuτ /ν, evaluated based on the
results of the reference case.

presented here as Πuu + Πvv + Πww = 0. As shown, no significant difference between
the streamwise-minimal and reference cases is observed for any term, whereas the
budget given by the spanwise-minimal case gives production and viscous terms that are
clearly larger in magnitude, particularly in the channel-central region. The budget of the
Reynolds-shear-stress transport is also presented in figure 5(b). In the streamwise-minimal
case, while the magnitude of the production P−uv and the pressure-related terms Π−uv +
Dp

−uv are somewhat underestimated as compared to the reference-case results, the other
terms are in quantitative agreement. In the budget given by the spanwise-minimal case, the
production and the pressure-related terms are overestimated, similarly to the production
and viscous terms in the turbulent kinetic energy budget, and it is also observed that the
spatial transport term Dt−uv shows a certain discrepancy from the reference case.

Figure 6 presents the profiles of the pressure–strain correlations Πuu, Πvv and Πww,
comparing the results of the reference and streamwise-minimal (A3) cases. As shown
here, the magnitudes of all components of the pressure–strain correlations are smaller in
case A3 than in the reference case. This indicates that the inter-component energy transfer
from 〈u2〉 to the other components is suppressed in case A3, which is attributable to the
observation in figure 4 that 〈u2〉 in this case is larger and the other components are smaller
than in the reference case. The same tendency was also reported in earlier simulations of
turbulent channel flow (Abe & Antonia 2016; Abe et al. 2018). Such suppression of the
pressure–strain correlation in the streamwise-minimal case is addressed in detail based on
the spectral analysis in § 3.2.

The streamwise-minimal (A3) case also successfully reproduces the reference-case
results in terms of the spectral energy distributions. Figure 7 presents the distributions
of the premultiplied spanwise one-dimensional spectra of the streamwise turbulent energy
kzEz

uu( y, kx), comparing the results obtained in the reference and the streamwise-minimal
cases. Here kz is the spanwise wavenumber kz = 2π/λz, where λz is the spanwise
wavelength. As shown in the figure, the spectrum distributions obtained in these two
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Figure 7. Space–wavelength (y–λz) diagrams of the spanwise one-dimensional spectra of the streamwise
turbulent energy Ez

uu in (a) the reference case and (b) case A3 (the streamwise-minimal case). The values
are scaled by u2

τ .

cases are in fairly good agreement, in that both indicate two energy peaks: one located
in the near-wall region at relatively small wavelengths λ+z = λzuτ /ν ≈ 100, and the other
located at the channel centre at large wavelengths λz/h ≈ 2. In particular, the energy peak
at the larger wavelengths spreads broadly in the y-direction and reaches the near-wall
region where the near-wall energy peak is located at smaller wavelengths. These spectral
energy peaks clearly corresponds to the near-wall and the very-large-scale structures
observed in figure 1(a). As described here, in turbulent plane Couette flow the energy
peaks representing the inner and outer structures are observed clearly separated even at
the relatively low Reynolds number Reτ ≈ 126 investigated in the present study, which is
due to the non-zero mean velocity gradient at the channel centre.

As described so far, the streamwise-minimal case reproduces the reference-case results
fairly well despite the substantially limited degree of freedom in the streamwise direction,
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while the effect of reducing Lz is shown to be, as expected, remarkable mainly because
the very-large-scale structure disappears with insufficient spanwise domain width. In the
following section, the results provided by the streamwise- and spanwise-minimal domains
are further examined based on the spectral analysis of the Reynolds stress transport. The
focus is put, in the streamwise-minimal case, on why the streamwise-minimal domain still
successfully reproduces the reference case results, while in the spanwise-minimal case
the role of the interaction between the near-wall and very-large-scale structures in the
Reynolds-stress transport is addressed.

3.2. Spectral analysis on the effect of reducing Lx

In this section, we analyse the streamwise spectra of the Reynolds stresses and their
transport in the streamwise-minimal case. Figure 8(a) compares the space–wavelength
(y–λx) diagrams of the premultiplied streamwise one-dimensional spectra of the
streamwise turbulent energy kxEx

uu( y, kx). As shown here, the Ex
uu distribution obtained in

the reference case shows both energy peaks corresponding to the near-wall structure (the
one located at small wavelength λ+x ≈ 600) and the very-large-scale structure (the broad
band of energy at large wavelength λx/h ≈ 48), similarly to the spanwise energy spectrum
Ez

uu( y, kz) in figure 7. It should be noted here that not only the broad band of energy at
large λx but also the near-wall peak is located in the wavelength range λ+x > 400, and
therefore in the streamwise-minimal case (A3) both of them are located outside the y–λx
diagram of kxEx

uu presented here. Instead, in the streamwise-minimal case, both the inner
and outer peaks of the turbulent energy spectrum are accounted for by the x-independent
mode, i.e. the Fourier mode at kx = 0 (or at λx = ∞). This is depicted in figure 8(b), where
Ex

uu( y, 0)Δkx (here Δkx = 2π/Lx), i.e. the amount of the streamwise turbulent energy on
the Fourier mode at kx = 0, in the streamwise-minimal case is compared to the energy
integrated over the range λx/h > 1.6,∫ ∞

log 1.6h
kxEx

uu d(log λx)

(
=
∫ 2π/1.6h

0
Ex

uu dkx

)
, (3.5)

in the reference case. As shown, the x-independent Fourier mode in the streamwise-minimal
case accounts for the equivalent fraction of the total 〈u2〉, up to 80 % of 〈u2〉max, to the
λx/h > 1.6 range in the reference case. This means that the high- and low-u streaks in
both the near-wall and channel-core regions are x-independent in the streamwise-minimal
case.

The streamwise one-dimensional spectra of the cross-streamwise velocity fluctuations
Ex

vv and Ex
ww obtained in the reference and streamwise-minimal cases are also presented

in figure 9. Note that the colour scale for the kxEx
vv and kxEx

ww distributions shown here is
the same as in figure 8(a), showing that the magnitudes of Ex

vv and Ex
ww are relatively

small compared to the streamwise turbulent energy Ex
uu. The results obtained in the

reference case, given in figure 9(a), show that the spectral energies of 〈v2〉 and 〈w2〉
are mainly distributed in the relatively-small-wavelength range λx/h < 1.6, and therefore,
unlike the distribution of Ex

uu, their distributions are not significantly affected in the
streamwise-minimal case, as shown in figure 9(b).

The transport equation of the Reynolds stress spectra can be derived by decomposing
the Reynolds-stress transport equation (3.1) into the spectral contribution from each
wavenumber, as done by, for example, Mizuno (2016), Lee & Moser (2015, 2019)
and Kawata & Alfredsson (2018, 2019). The transport equation of the streamwise
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Figure 8. (a) Space–wavelength (y–λx) diagrams of premultiplied streamwise one-dimensional spectra of the
streamwise turbulent energy kxEx

uu obtained in (left) the reference case and (right) the streamwise-minimal (A3)
case. The horizontal black dashed lines represent the streamwise domain size in the streamwise-minimal case,
λx/h = 1.6. (b) Profiles of streamwise turbulent energy spectra integrated for the wavelength range λx/h > 1.6
(i.e. 0 < kxh < 2π/1.6) in (blue) the reference case and (red) the streamwise-minimal (A3) case. Note that,
in case A3,

∫ 2π/1.6h
0 Ex

uu( y, kx) dkx = Ex
uu( y, 0)Δkx, where Δkx = 2π/Lx, since the x-independent mode is the

only Fourier mode in the integrated kx range due to the limited domain size Lx. 〈u2〉max is the maximum value
of the 〈u2〉 profile presented in figure 4(a).
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wall-normal turbulent energy kxEx

vv and the spanwise turbulent energy kzEx
ww obtained in (a) the reference

case and (b) the streamwise-minimal (A3) case. The values are scaled by u2
τ , and the colour scale is the same

as in figure 8(a).

one-dimensional spectra of the Reynolds stress Ex
ij is written as(

∂

∂t
+ Uk

∂

∂xk

)
Ex

ij = prx
ij − εx

ij + πx
ij + dp,x

ij + dν,x
ij + dt,x

ij + trx
ij, (3.6)

where the first six terms on the right-hand side represent the spectral contribution from
each streamwise wavenumber to the corresponding terms in the overall transport equation
(3.1), whereas the last term trx

ij is an additional term that represents the interscale transfer
of the Reynolds stress between different streamwise wavenumbers. Here the spectral
Reynolds-stress transport equation (3.6) is derived by the same procedure as that of Kawata
& Alfredsson (2019), which is briefly described in appendix A.
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Figure 10. Distributions of the streamwise one-dimensional spectra of the streamwise turbulent energy
production prx

uu obtained in the reference case and the streamwise-minimal (A3) case, presented in the
same manner as in figure 8: (a) y–λx diagrams of kxprx

uu; (b) profiles of prx
uu integrated for λx/h > 1.6

(0 < kxh < 2π/1.6). Note that, in case A3,
∫ 2π/1.6h

0 prx
uu( y, kx) dkx = prx

uu( y, 0)Δkx. Puu,max represents the
maximum value of the turbulent energy production Puu.

Figure 10(a) presents the y–λx diagrams of the premultiplied spectral energy production
kxprx

uu, comparing the results in the reference and the streamwise-minimal cases. Similarly
to the distribution of the streamwise energy spectrum Ex

uu, most of the spectral energy
production prx

uu is distributed in the relatively-large-wavelength range λ+x > 400 in the
reference case. In the streamwise-minimal case, on the other hand, the corresponding
energy productions occur on the x-independent mode as shown by figure 10(b), where
prx

uu( y, 0)Δkx in the streamwise-minimal case is shown to be comparable to the
integrated production

∫ 2π/1.6h
0 prx

uu dkx in the reference case. This indicates that the
overall production Puu mainly represents the generation of x-independent streaks in
the streamwise-minimal case.

Figure 11 presents the interscale transfer of the streamwise turbulent energy trx
uu.

As shown by the space–wavelength diagrams in panel (a), in the reference case the
turbulent energy, which is produced by prx

uu at large wavelengths as presented in
figure 10(a), is transferred towards smaller wavelengths throughout the channel, and the
streamwise-minimal-case result reproduces quite well the trx

uu distribution of the reference
case in the range λx/h < 1.6. It is particularly interesting to note here that the boundary
between the energy-donating and -receiving λx ranges in the reference case appears to
be rather independent of y and to coincide with the streamwise-minimal domain size
Lx = 1.6h, as indicated by the black dashed line. In the streamwise-minimal case, the
energy gained in the λx/h < 1.6 range is supplied entirely from the x-independent mode,
since this is the only mode in the range λx/h > 1.6. Figure 11(b) compares the total amount
of energy removed from the wavelength range λx/h > 1.6, i.e.

∫ 2π/1.6h
0 trx

uu dkx, in the
reference case to the energy transfer from the x-independent mode trx

uu( y, 0)Δkx in the
streamwise-minimal case. As shown here, trx

uu( y, 0)Δkx in the streamwise-minimal case
accounts for the equivalent energy transfer to

∫ 2π/1.6h
0 trx

uu dkx in the reference case.
The good agreement between the trx

uu distributions obtained in the reference and
streamwise-minimal cases, as shown in figure 11, may give us an insight into the
mechanism of the interscale energy transfer. From the view point of the Fourier mode
analysis, the interscale energy transfer is generally caused by triad interactions between
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Figure 11. Distributions of the interscale transport of the streamwise turbulent energy in the streamwise
wavenumber direction trx

uu obtained in the reference case and the streamwise-minimal (A3) case, presented
in the same manner as in figure 8. Note that, in case A3,

∫ 2π/1.6h
0 trx

uu( y, kx) dkx = trx
uu( y, 0)Δkx.

three wavenumbers. In the streamwise-minimal case, the x-independent mode is the only
mode in the range λx/h > 1.6, and therefore the energy transfer from the x-independent
mode to smaller scales across λx/h = 1.6 is caused by interaction between kx = 0 and
non-zero wavenumbers kx = ±2πm/1.6h (where m is a positive integer). The agreement
between the trx

uu distributions given in figure 11(b) indicates that the energy transfer from
larger to smaller scales across λx/h = 1.6 in the reference case is also mainly caused
by similar direct interactions between widely-separated wavenumbers, i.e. by the triad
interactions between very small kx (≈ 0) and large (kx = ±2πm/Lx) wavenumbers; if
other triad combinations of moderate wavenumbers played important roles, the agreement
shown in figure 11(b) between the streamwise-minimal case and the reference case would
not have been achieved, because such triad interactions cannot be simulated in the
streamwise-minimal case.

Figure 12 presents the distribution of the pressure–strain cospectrum πx
uu comparing

the results obtained in the reference and the streamwise-minimal cases. One can see here
that the pressure–strain cospectrum is mostly significant in the relatively-small-wavelength
range λx/h < 1.6 throughout the channel, and the πx

uu distribution obtained in the
streamwise-minimal case reproduces the results of the reference case fairly well. This
tendency of πx

uu is consistent with the distributions of Ex
vv and Ex

ww shown in figure 9.
It also should be noted here that the πx

uu distribution of the reference case shows a
certain contribution from the range λx/h > 1.6, which cannot be taken into account in the
streamwise-minimal case because πx

uu = 0 at kx = 0, as ∂u/∂x = 0 for any x-independent
structure. The contributions from the relatively-small-λx range λx/h < 1.6 are evaluated
as
∫∞

2π/1.6h πx
uu dkx for both the reference and streamwise-minimal cases and are compared

in figure 12(b). Note here that for the streamwise-minimal case
∫∞

2π/1.6h πx
uu dkx =∫∞

0 πx
uu dkx = Πuu, since the contribution from the range λx/h > 1.6 (0 < kxh < 1/1.6)

is zero as explained above. As shown, the profile of
∫∞

2π/1.6h πx
uu dkx given by the reference

case is, of course, somewhat smaller in magnitude than the overall pressure–strain
correlation Πuu of the reference case, and the Πuu obtained in the streamwise-minimal
case has equivalent magnitude to

∫∞
2π/1.6h πx

uu dkx in the reference case. This indicates
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Figure 12. Distributions of the streamwise one-dimensional cospectra of the pressure–strain correlation π x
uu

obtained in the reference case and the streamwise-minimal (A3) case, presented in a similar manner to figure 8.
Note that, in case A3,

∫∞
2π/1.6h πx

uu( y, kx) dkx = Πuu( y). The overall pressure–strain correlation Πuu in the
reference case (black) is also compared in panel (b).

that the suppression of Πuu in the streamwise-minimal case, observed in figure 6, occurs
mainly because the energy-containing streaks are forced to be x-independent because of
the limited streamwise domain size, and therefore do not induce the energy redistribution
from 〈u2〉 to the other components on their own.

The spectral analysis on the turbulent energy transport described above has shown
that, in the reference case, the streamwise turbulent energy 〈u2〉 is produced mainly
at relatively large streamwise wavelengths λ+x > 400, and is then transferred by the
interscale transport trx

uu towards the smaller-wavelength range, where the energy is
redistributed to the cross-streamwise components by the pressure–strain correlation. In
the streamwise-minimal case, the energy production mainly occurs at kx = 0 in both the
near-wall and core regions of the channel, indicating that both streaks of the near-wall and
very-large-scale structures are forced to be x-independent, and the energy is transferred
from the x-independent mode to all other modes in the range λ+x < 400. Importantly,
in spite of this effect of the limited degree of freedom, the streamwise-minimal domain
still reproduces the flow field obtained in the reference case fairly well, as shown in
§ 3.1. This indicates that the interactions between the x-independent streaks and relatively
small structures in the range λ+x < 400 are the essential dynamics for both the inner
and outer structures, and the spanwise meanderings of the streaks observed in the
reference case (such as those presented in figure 1b) are, therefore, rather unimportant
features of wall turbulence, as previously suggested by Abe et al. (2018). Furthermore, as
discussed above, the good agreement between the trx

uu distributions shown in figure 11(b)
indicates that trx

uu mainly represents direct energy transfers between widely-separated
scales, i.e. between very large (λx 	 h) and relatively small (λ+x < 400) wavelengths,
via instabilities, for instance, rather than successive energy transfers from one scale to
a neighbouring slightly-smaller scale via a turbulent energy cascade.

3.3. Spectral analysis on the effect of reducing Lz

Next, we investigate the Reynolds stress transports in the spanwise-minimal (B2) case,
emphasising the difference between the interscale transfer effects in the reference and
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spanwise-minimal cases, in order to elucidate the role of the interaction between the inner
and outer structures. In this investigation we focus on the spanwise spectra of the Reynolds
stresses Ez

ij( y, kz). Their transport equation is written as(
∂

∂t
+ Uk

∂

∂xk

)
Ez

ij = prz
ij − εz

ij + π z
ij + dp,z

ij + dν,z
ij + dt,z

ij + trz
ij, (3.7)

similarly to (3.6). The first six terms on the right-hand side now represent the spectral
contribution from each spanwise wavenumber to the corresponding term in (3.1), and the
last term trz

ij indicates the interscale transfer in the spanwise wavenumber direction.
Figure 13(a) presents the y–λz diagrams of the interscale transport of the streamwise

turbulent energy trz
uu. As one can see here, the trz

uu distribution obtained in the reference
case indicates that 〈u2〉 is transferred mainly from larger (λz/h ≈ 2) to smaller λz, while
in the near-wall region transport from smaller to larger λz is also found. This is in
contrast to the interscale transfer in the streamwise wavenumber direction trx

uu, which
shows only transport from larger to smaller wavelengths λx throughout the channel, as
presented in figure 11(a). This point is further addressed in § 4.4. In the spanwise-minimal
case (case B2), the trz

uu distribution reproduces the reference-case results fairly well for
the wavelength range λz/h < 0.5. The energy is mainly removed from λz/h = 0.5 and
partly transferred to smaller λz in the near-wall region; the rest is transferred to the
z-independent mode, as indicated by the large positive values of trz

uu( y, 0)Δkz in the
spanwise-minimal case, presented in figure 13(b). The trz

uu( y, 0)Δkz profile is compared
with the amount of energy transferred from the range λz/h < 0.5 to λz/h > 0.5 in the
reference case, and one can see that the reversed energy transfer to the z-independent mode
in the spanwise-minimal case captures qualitatively the tendency of the corresponding
interscale energy transfer in the reference case, particularly the inverse interscale transfer
in the near-wall region. Such agreement between the reference and spanwise-minimal
cases is somewhat surprising, given that the instantaneous flow field obtained in the
spanwise-minimal case is qualitatively different from that of the reference case, in that
the very-large-scale structure does not exist in the channel-core region, as observed in
§ 3.1.

Kawata & Alfredsson (2018) experimentally investigated the spectral transport of
the Reynolds stresses in a turbulent plane Couette flow based on spanwise Fourier
mode analysis and showed that the Reynolds shear stress −〈uv〉 is transferred from
smaller to larger λz throughout the channel. This inverse interscale transport of the
Reynold shear stress is also observed in the present study. As shown in figure 14(a),
the distribution of the interscale Reynolds-shear-stress transport trz

−uv obtained in the
reference case shows transfer from smaller to larger λz throughout the channel, consistently
with the experimental observations of Kawata & Alfredsson (2018). The results in
the spanwise-minimal case also reproduce the same tendency, with the Reynold shear
stress mainly transferred from λz/h ≈ 0.25 to larger wavelengths. As indicated by
the comparison between

∫ 2π/0.5h
0 trz

−uv dkz in the reference case and trz
−uv( y, 0)Δkz in

the spanwise-minimal case, the interscale transfer between the λz/h < 0.5 range and the
z-independent mode in the spanwise-minimal case is a good qualitative representation of
the inverse interscale transfers of the Reynolds shear stress in the reference case.

As described above, the spanwise-minimal case gives the same tendencies of the
interscale transport trz

ij as observed in the reference case, including the inverse interscale
transport of the Reynolds shear stress, despite the fact that the very-large-scale structures
do not exist in this case. This suggests that the interscale transfers observed through

911 A55-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1063


T. Kawata and T. Tsukahara

–40

0

10–1

102

103

100

101

10–1

100

101

103

102

0.2 0.4 0

0 50 101 0 50 101

0.2 0.4

y/h

kztr
z
uu/(uτ

3/h)

λ
z/

h

λ
z/

h

λ
z+

λ
z+

y+ y+

y/h
y/h

0–20 20 40

0 0.2 0.4

∫ 02
π

/0
.5

h  
tr

z uu
d
k z/

(
/h

)
u3 τ

Ref.
B2

(b)(a)

0

5

10

15

–5

Figure 13. (a) Space–wavelength (y–λz) diagrams of the premultiplied interscale transport of the streamwise
turbulent energy in the spanwise wavenumber direction kztrz

uu obtained in (left) the reference case and (right)
the spanwise-minimal (B2) case. The horizontal black dashed lines represent the spanwise domain size in the
spanwise-minimal case λz/h = 0.5. (b) Profiles of the interscale transport trz

uu integrated for the wavelength
range λz/h > 0.5 (i.e. 0 < kzh < 2π/0.5), in (blue) the reference case and (red) the spanwise-minimal (B2)
case. Note that, in case B2,
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Figure 14. Distributions of the interscale transport of the Reynolds shear stress in the spanwise wavenumber
direction trz

−uv obtained in the reference case and the spanwise-minimal (B2) case, presented in the same
manner as in figure 13.

spanwise Fourier mode analysis may not represent the effect of the interaction between
the near-wall and very-large-scale structures. This is further discussed in § 4.4.

4. Discussions

4.1. On the relation between the spectral Reynolds-stress transport and the
self-sustaining process of coherent structures

In § 3.2, we have shown that the streamwise length scales split mainly into two wavelength
ranges: the larger-λx range λ+x > 400, in which the energy is produced by prx

uu and taken
by the interscale energy transfer trx

uu, and the smaller-λx range λ+x < 400, where the energy
is supplied from larger λx by trx

uu and redistributed by the pressure–strain correlation πx
uu.

The boundary between these two λx ranges has been found to be nearly constant throughout
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the channel and to coincide with the streamwise-minimal domain length L+
x ≈ 400. In

the streamwise-minimal case, the streamwise wavelengths in the energy-producing (and
-donating) λx range are accounted for only by the streamwise-independent (i.e. kx = 0)
mode, due to the limited degree of freedom, but otherwise the spectral energy transports
observed in the reference case are basically retained, and thus the streamwise-minimal
case reproduces the reference-case results fairly well. Given that both the inner and outer
structures are retained in the streamwise-minimal case, as shown in figures 1 and 7, these
observations indicate that the energy production at very large streamwise wavelengths
(kx ≈ 0), the interscale energy transfer, and the energy redistribution at small wavelengths
(λ+x < 400) are the essential energy transport processes for both the inner and outer
structures.

In addition to the spectral energy transports described above, it should be further noted
that the turbulent energy redistributed from 〈u2〉 to 〈v2〉 results in the production of
the Reynolds shear stress P−uv = 〈v2〉 dU/dy, which further leads to the reproduction
of the streamwise turbulent energy 〈u2〉 as Puu = −2〈uv〉 dU/dy. This closed-loop
transport of the Reynolds stresses, consisting of production, interscale transfer and
inter-component redistribution, resembles the scenario of the self-sustaining cycle of wall
turbulence (Hamilton et al. 1995; Waleffe 1997): the significant 〈u2〉 production on the
nearly-x-independent modes is very compatible with the generation of the x-independent
u-streaks; the interscale energy transfer by trx

uu is compatible with the streak instabilities;
and the energy redistribution from 〈u2〉 to 〈v2〉 and 〈w2〉 at relatively small λx is compatible
with the generation of vortical structures from the streaks through their breakdown. While
the self-sustaining process was originally proposed as the generating mechanism of the
near-wall structures, recent studies (e.g. Hwang & Cossu 2010, 2011; Rawat et al. 2015;
Hwang & Bengana 2016; Cossu & Hwang 2017; de Giovanetti, Sung & Hwang 2017)
have provided overwhelming evidence indicating that the large-scale structures in the
logarithmic and outer layers are also essentially maintained by similar self-sustaining
cycles, rather than by the influence of the smaller-scale structures near the wall. We now
conjecture that the spectral energy transports observed in § 3.2 are closely related to each
subprocess of the self-sustaining cycles of the inner and outer structures, and we examine
this conjecture in detail in the following.

An insight supporting the correspondence between the streak instabilities and the
interscale energy transport trx

uu is obtained by decomposing trx
uu. The interscale transport

trx
ij in (3.6) is obtained as

trx
ij( y, kx) = −

∂Trx
ij( y, kx)

∂kx
, (4.1)

where Trx
ij, which represents the flux of the Reynolds stress in the streamwise wavenumber

direction across kx from the larger- to the smaller-scale side, is defined as

Trx
ij = −

〈
uS

i uS
k

∂uL
j

∂xk

〉
−
〈

uS
j uS

k
∂uL

i
∂xk

〉
+
〈

uL
i uL

k

∂uS
j

∂xk

〉
+
〈

uL
j uL

k
∂uS

i
∂xk

〉
. (4.2)

Here, uL
i and uS

i are respectively the large- and small-scale parts of the fluctuating velocity
ui, obtained by applying low- and high-pass spatial filterings based on the streamwise
Fourier mode with the cutoff wavenumber kx (see appendix A for details). Then the
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interscale flux of the streamwise turbulent energy Trx
uu is expressed as

Trx
uu = −2

〈
uSuS ∂uL

∂x

〉
︸ ︷︷ ︸

Trx,1
uu

− 2
〈
uSvS ∂uL

∂y

〉
︸ ︷︷ ︸

Trx,2
uu

−2
〈
uSwS ∂uL

∂z

〉
︸ ︷︷ ︸

Trx,3
uu

+2
〈
uLuL ∂uS

∂x

〉
︸ ︷︷ ︸

Trx,4
uu

+ 2
〈
uLvL ∂uS

∂y

〉
︸ ︷︷ ︸

Trx,5
uu

+ 2
〈
uLwL ∂uS

∂z

〉
︸ ︷︷ ︸

Trx,6
uu

, (4.3)

and therefore the interscale transport trx
uu is also decomposed as

trx
uu = trx,1

uu + trx,2
uu + trx,3

uu + trx,4
uu + trx,5

uu + trx,6
uu , (4.4)

in accordance with Trx
uu.

Figure 15(a) compares the contributions of two major terms on the right-hand
side of (4.4) to the energy transfer on the x-independent mode trx

uu( y, 0) in the
streamwise-minimal case. Note that only trx,2

uu ( y, 0) and trx,3
uu ( y, 0) are presented here

because the other terms are all zero, as explained in detail in appendix B. As shown
here, the energy is transferred from the x-independent mode mostly due to trx,3

uu , which
represents the effect of the spanwise velocity gradient by the larger structure ∂uL/∂z,
as one can see from (4.3). This corresponds to the spanwise variation of u induced
by the x-independent structures. In the reference case, on the other hand, the energy
is taken from finite wavelengths, unlike in the streamwise-minimal case, and therefore
all the terms in the right-hand side of (4.4) can contribute to the interscale energy
transfer from the large-λx range. The contributions of all terms in the reference case are
presented in figures 15(b) and 15(c) for a near-wall location y+ = 16 and the channel
centre, respectively. As shown in figure 15(b), the contribution by the third term trx,3

uu is
dominant at the near-wall location in the reference case at relatively large wavelengths
(λ+x > 400). In particular, the energy transfer from very large wavelengths λ+x > 1000 is
entirely due to trx,3

uu , which is consistent with the observations in the streamwise-minimal
case in figure 15(a). The other terms have roughly the same magnitude, and all become
comparable to trx,3

uu at relatively small wavelengths λ+x ≈ 100. The energy transferred by
trx,3

uu from large- to moderate-λx ranges is further transferred towards the smaller-λx range
by the other terms, which may represent the turbulent energy cascade. The third term
trx,3

uu also plays a primary role in the interscale energy transport at the channel centre, as
shown in figure 15(c). While the second term trx,2

uu also shows a significant contribution,
the contribution by trx,3

uu is dominant at very large wavelengths λx/h > 10. The dominant
contributions by trx,3

uu at large λx are consistent with the observations in earlier studies
that the main mechanism of the streak instabilities is inflectional instability due to the
spanwise variation of u induced by the streaks (e.g. Swearingen & Blackbelder 1987;
Hamilton et al. 1995; Jiménez & Pinelli 1999); thus, this supports our claim that trx

uu in the
relatively-large-λx range is closely related to the streak instabilities in the self-sustaining
process in both the near-wall and the central regions of the channel.

In order to more directly examine the correspondence between the Reynolds stress
budgets and the self-sustaining process, we investigate the instantaneous flow fields
obtained in case C, where both Lx and Lz are as small as their minimal sizes; this is similar
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Figure 15. Comparison of various terms on the right-hand side of (4.3): (a) in the streamwise-minimal (A3)
case, on the x-independent mode across the channel; (b,c) in the reference case, (b) at the near-wall location
y+ = 16 (y/h = 0.063) and (c) at the channel centre y/h = 0.5 across the whole λx range investigated.

to the flow configuration employed by Hamilton et al. (1995) to observe the self-sustaining
cycle. The instantaneous velocity field is decomposed into the x-independent mode u′

i =
〈ui〉x and the x-dependent mode u′′

i = ui − u′
i (here 〈〉x represents spatial averaging in the

x-direction). Now we define the integrated turbulent energy on the x-independent mode as

E ′
uu =

∫ 0.195h

0
〈u′2〉xz dy, (4.5)

and similarly we define the streamwise and lateral energies on the x-dependent modes as

E ′′
uu =

∫ 0.195h

0
〈u′′2〉xz dy, E ′′

vw =
∫ 0.195h

0
(〈v′′2〉xz + 〈w′′2〉xz) dy; (4.6a,b)

their time series are presented in figure 16(a). Here 〈〉xz indicates spatial averaging in
the x- and z-directions. The integration range 0 ≤ y/h ≤ 0.195 (or 0 ≤ y+ ≤ 40 in the
viscous unit) is chosen based on the 〈u2〉 profile obtained in case C, so that most of the
turbulent energy related to the coherent structures near the bottom wall is included (see
figure 4). The time series of the integrated turbulent energies given in figure 16(a) present
a typical periodic behaviour. It appears that they are well correlated with each other, and
the fluctuations of the x-dependent energies E ′′

uu and E ′′
vw follow that of the x-independent

streamwise energy E ′
uu with a slight delay. The time delays are quantified in figure 16(b),

which presents the cross-correlation functions between E ′
uu and E ′′

uu, and between E ′
uu and

E ′′
vw, defined as

CE ′′
uu

E ′
uu

(τ ) = 〈E ′
uu(t)E ′′

uu(t + τ)〉√
〈E ′

uu
2〉
√

〈E ′′
uu

2〉
, CE ′′

vw
E ′

uu
(τ ) = 〈E ′

uu(t)E ′′
vw(t + τ)〉√

〈E ′
uu

2〉
√

〈E ′′
vw

2〉
. (4.7a,b)

As can be seen here, the correlation peaks of both cross-correlation functions are located

at negative τ , around τ+ ≈ −50, and CE ′′
vw

E ′
uu

gives larger delay than CE ′′
uu

E ′
uu

. This indicates that
the fluctuation of the x-independent streamwise turbulent energy E ′

uu is followed by that
of the x-dependent energy E ′′

uu, which is further followed by that of the lateral turbulent
energy E ′′

vw. This observed sequence of E ′
uu, E ′′

uu and E ′′
vw indicates that they mainly
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Figure 16. Time series and cross-correlation functions of integrated turbulent energies and Reynolds stress
budgets obtained in case C: (a) time series of E ′

uu (blue), E ′′
uu (red) and E ′′

vw (yellow) scaled by uτ ν;

(b) cross-correlation functions CE ′′
uu

E ′
uu

(blue) and CE ′′
vw

E ′
uu

(red); (c) time series of P ′
uu (blue), Tuu (red) and Ruu

(yellow) scaled by u3
τ ; (d) cross-correlation functions CP ′

uu
E ′

uu
(blue), CTuu

E ′′
uu

(red) and CRuu
E ′′

vw
(yellow). The vertical

black dashed lines in panels (a) and (c) indicate the time range of the flow visualisation presented in figure 17.

represent the energies of x-independent streaks, wavy streaks and vortical structures of
the self-sustaining process, respectively.

Similarly, the integrated turbulent energy production on the x-independent mode P ′
uu,

the integrated interscale energy flux from the x-independent towards the x-dependent
modes Tuu, and the integrated pressure–strain energy redistribution Ruu are defined as

P ′
uu =

∫ 0.195h

0
〈p̃rx

uu|kx=0Δkx〉xz dy =
∫ 0.195h

0
−2〈u′v′〉xz

dU
dy

dy, (4.8a)

Tuu =
∫ 0.195h

0
〈T̃rx,3

uu |kx=0〉xz dy =
∫ 0.195h

0
−2

〈
u′′w′′ ∂u′

∂z

〉
xz

dy, (4.8b)

Ruu =
∫ 0.195h

0
〈Π̃uu〉xz( y) dy =

∫ 0.195h

0
2
〈
p′′ ∂u′′

∂x

〉
xz

dy, (4.8c)

where the tilde˜ indicates the instantaneous values of the spectral budget term that are
not averaged in the x- or z-direction or in time. The times series of these integrated
budget terms are presented in figure 16(c). These time series also indicate certain periodic
behaviours and are significantly correlated with each other, similarly to those of the
integrated turbulent energies in panel (a). Figure 16(d) presents cross-correlation functions

CE ′
uu

P ′
uu

, CE ′′
uu

Tuu
and CE ′′

vw
Ruu

, defined in the same manner as those in (4.7a,b). As shown here,
all three cross-correlation functions have the maximum magnitude of correlation located
at negative τ of the order of τ+ ≈ 10. This indicates that E ′

uu, E ′′
uu and E ′′

vw respond
immediately to the increase or decrease of the energy production P ′

uu, the interscale
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energy transfer Tuu and the pressure–strain energy redistribution Ruu, respectively. In
particular, the peak magnitudes of these cross-correlation functions are all significantly
high (more than 0.5), which also indicates the close causal relationship between these
turbulent energies and the Reynolds stress budget terms.

Figure 17 presents flow visualisations of the instantaneous flow field at six different
instants during the period indicated by black dashed lines in figure 16(a,c). In each
panel, the region near the bottom wall, 0 ≤ y+ ≤ 60, is visualised, and the coloured
surfaces represent iso-surfaces of u+ = −5 (blue), Q+ = −0.04 (red), Π̃+

uu = −0.75

(yellow) and T̃rx,3
uu

+
|kx=0 = 1.45 (purple), where Q is the second invariant of the

velocity-gradient tensor. The instantaneous flow fields shown here are low-pass-filtered
with a cutoff wavelength kx,ch/2π = 1.88 (λ+x,c = 118) to allow clear visualisation of
coherent structures, but most of the turbulent energies (more than 90 % of 〈u2〉 and
68 % of 〈v2〉 + 〈w2〉) are still retained in the flow field visualised here. In panels (a–c)
(from t+ = 1293 to t+ = 1370), the evolution of a low-speed streak is observed, and
streamwise-elongated vortices are also found aligned with the streak. In particular, in
panel (c) the streak has grown enough to penetrate the computational domain in the
x-direction. This instant (t+ = 1370) actually corresponds to the peak of the x-independent
streamwise turbulent energy E ′

uu in figure 16(a), and the x-dependent streamwise turbulent
energy E ′′

uu is also increasing at this instant. Therefore the streak visualised in figure 17(c)
is somewhat wavy. It can also be observed that the regions of significant interscale
energy transfer from x-independent to x-dependent modes (purple) and inter-component
energy transfer by pressure–strain correlation (yellow) start to appear around the streak.
Panel (d) (at t+ = 1386) corresponds to the peak of the interscale energy transfer Tuu in
figure 16(c), and at this instant the x-dependent energy E ′′

uu in figure 16(a) is also saturated.
Hence, the low-speed streak visualised in figure17(d) is strongly wavy and surrounded by
regions of significant interscale energy transfer. It is also observed that the pressure–strain
energy redistribution is significant, and streamwise-elongated vortices visualised by Q
are evolving around the wavy streak. In panel (e) (at t+ = 1400), the streak is shown
to have already broken down. However, the regions of significant pressure–strain energy
redistribution are still found, and vortical structures also remain. As time proceeds such
vortical structures further evolve; as shown in panel ( f ), they remain after the low-speed
streaks have become hardly visible, eventually giving rise to next streaks.

The above observations in case C of the growth/breakdown of a streak and vortices
in relation to the turbulent energy budget terms agree fairly well with the scenario of
the self-sustaining cycle, and thus support our conjecture about their close relationship.
Details of the balance between the spectral budget terms in case C are presented in
figure 18(a) for a near-wall location y+ = 16. As shown here, the peak of the energy
production, accounting for nearly 70 % of the overall energy production, is located at
kx = 0. The interscale energy transport trx,3

uu is shown to dominate the energy transport
at small wavenumbers near kx = 0, transferring nearly half the energy produced at
kx = 0 mainly to the smallest non-zero wavenumber kx = 2π/1.6h, where the most
significant energy redistribution by πx

uu( y, kx) is found. The viscous dissipation −εx
uu is

also presented; it is shown to dissipate the energy broadly throughout the investigated
wavenumber range. As the flow fields visualised in figure 17 account for most values
of kx at which prx

uu, trx
uu, and πx

uu are significant in their profiles given in figure 18(a),
it is reasonable to infer that the spectral budget balance presented in figure 18(a) mainly
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Figure 17. Visualisations of instantaneous flow fields in the region near the bottom wall (0 ≤ y+ ≤ 60)
observed in case C at (a) t+ = 1253, (b) t+ = 1293, (c) t+ = 1370, (d) t+ = 1386, (e) t+ = 1400 and ( f ) t+ =
1489. The full range of the computational domain is shown in the x- and z-directions. The three-dimensional
surfaces of different colours in each panel represent iso-surfaces of u+ = −5 (blue), Q+ = −0.04 (red),

Π̃+
uu = −0.75 (yellow) and T̃rx,3

uu
+
|kx=0 = 1.45 (purple). The flow fields shown are low-pass-filtered at the

cutoff wavenumber kx,ch/2π = 1.88 (λ+x,c = 118) for clear visualisation of coherent structures.

represents the energy transport related to the dynamics of the streaks and vortices observed
in figure 17, which resembles the self-sustaining cycle.

The spectral energy budgets obtained in the streamwise-minimal (A3) case also have
similar tendencies as observed in case C. Figures 18(b) and 18(c) present the profiles of
the spectral budget terms at a near-wall location y+ = 16 and at the channel centre in the
streamwise-minimal case, respectively. Both budget balances indicate maximum energy
production at k = 0, energy transfer from kx = 0 to kx = 2π/1.6h mostly by trx,3

uu , and
the most significant energy redistribution by πx

uu at kx = 2π/1.6h, similarly to the budget
balance in figure 18(a). From this observation one can infer that these spectral budget
terms in the near-wall and central regions of the channel in the streamwise-minimal case
represent the energy transports related to the self-sustaining cycle of the near-wall and
very-large-scale structures, respectively.

Such a connection between the self-sustaining cycle and the Reynolds stress transports
observed through spectral analysis has already been pointed out by Cho et al. (2018).
Their discussion was based on the spanwise spectra of the turbulent energy production
and the energy redistribution by the pressure–strain correlation. They showed that the
peak location in the distributions of these spectra follows the scaling λz ∼ 5y, which is
consistent with the attached eddy hypothesis, and thereby conjectured that the energy
production and the pressure–strain correlation respectively correspond to the streak
generation and the regeneration of the streamwise vortices in the self-sustaining process of
each wall-attached eddy. In the present study, we have investigated the spectral transport
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Figure 18. Spectral budget of streamwise turbulent energy transport: (a) at y+ = 16 in case C; (b) at y+ = 16
in case A3; (c) at channel centre in case A3. In each panel different line colours represent production prx

uu (blue,
solid), interscale transport trx,3

uu (red, solid), the contribution from terms of the interscale transport other than
trx,3

uu (red, dashed), pressure–strain energy redistribution π x
uu (yellow) and viscous dissipation −εx

uu (purple).
The values are scaled by u3

τ . The vertical black dotted lines indicate kxh/2π = 1/1.6, which corresponds to the
streamwise domain size in cases A3 and C.

of the Reynolds stress based on streamwise Fourier mode analysis with reduced-size
computational domains, and have deduced a similar interpretation of the major terms of
the spectral transport equation of the turbulent energy.

4.2. Inverse interscale energy transport in the regeneration of the streamwise vortices
in the self-sustaining process

The closed-loop transport of the Reynolds stresses is schematically summarised in
figure 19 with their streamwise length scales, and the subprocesses of the self-sustaining
cycle that likely correspond are also included. From figure 19 one can make an interesting
observation regarding the reproduction of the streamwise turbulent energy 〈u2〉. As
explained in the previous section, the turbulent energy production prx

uu = 2Ex−uv dU/dy
results from the wall-normal turbulent energy Ex

vv through the production of the Reynolds
shear stress prx−uv = Ex

vv dU/dy. What should be noted here is that both productions prx−uv

and prx
uu are linear processes that do not involve any scale interactions, which means that

there has to exist a certain amount of the wall-normal turbulent energy Ex
vv at large λx in

order for the production of 〈u2〉 to take place. However, the energy source for 〈v2〉 is the
energy redistribution from 〈u2〉, which, as observed in § 3.2, mainly occurs at relatively
small λx (λ+x < 400) and is quite small (in the streamwise-minimal case, zero) in the
energy-producing λx range, as ∂u/∂x is small at such large λx. Of course there is no direct
energy production from the mean flow for 〈v2〉, unlike for 〈u2〉 at large scales. Hence, any
typical energy supply to 〈v2〉 is not found at large scales, despite the fact that 〈v2〉 at large
scales is indispensable for turbulent energy production. This indicates a certain energy
transfer to 〈v2〉 at large scales from smaller scales where the energy redistribution from
〈u2〉 to 〈v2〉 and 〈w2〉 is significant.

It is, in fact, the inverse interscale energy transfer of 〈w2〉 and the energy redistribution
from 〈w2〉 to 〈v2〉 that provides energy to the 〈v2〉 component at large λx. As shown in
figure 20(a), the interscale transport trx

ww in the reference case clearly indicates energy
transfer from smaller to larger λx, particularly in the near-wall region, as well as the
forward transfer (from larger to smaller λx), and this tendency is also reproduced in the
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(ii) Streak instability

Wavy streaks

Interscale
transfer

〈u2〉 〈v2〉,〈w2〉

〈v2〉,〈w2〉

〈u2〉 production:

–〈uv〉 production:

Interscale transfer tr xww

Pressure–strain

correlation πxuu

Small-scale
vortical structures

(iii) Regeneration of streamwise
vortices by nonlinear mechanism
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tr xuu
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Figure 19. Schematics of the closed-loop spectral transport of the Reynolds stresses with streamwise length
scales. The subprocesses of the self-sustaining cycle that likely correspond are also shown together. The solid
black arrows represent the flow of energy transfer, and the dashed black arrow connecting 〈v2〉 and 〈uv〉 in Puu

means that 〈v2〉 triggers Puu through P−uv .

streamwise-minimal case as the transfer from the λ+x < 400 range to the x-independent
mode. The interscale transfer of the wall-normal turbulent energy trx

vv basically indicates
forward interscale transfers, but is one order smaller in magnitude than the reversed energy
transfer by trx

ww (not shown). Such reversed energy cascades in the near-wall region have
been repeatedly reported in earlier studies of turbulent channel flow (e.g. Saikrishnan et al.
2012; Cimarelli et al. 2013, 2016; Cho et al. 2018; Hamba 2019; Lee & Moser 2019),
although their roles in maintaining flow structures are still unclear. Figure 20(b) presents
the 〈w2〉 budget of the x-independent mode in the streamwise-minimal case. As shown
here, the main energy source for 〈w2〉 on this mode is the inverse energy transfer from
kx > 0 throughout the channel, and the turbulent spatial transport dt

ww carries the energy
from the near-wall to the channel-central region. The pressure–strain correlation πx

ww( y, 0)

represents the energy exchange between 〈v2〉 and 〈w2〉, as πx
uu = 0 and πx

vv = −πx
ww at

kx = 0, and the profile of πx
ww( y, 0) indicates that energy is transferred from 〈w2〉 to

〈v2〉 in the central region of the channel, while it is transferred in the opposite direction
in the near-wall region. Integrating trx

ww( y, 0) and πx
ww( y, 0) gives

∫ 0.5h
0 πx

ww( y, 0) dy ≈
−0.35

∫ 0.5h
0 trx

ww( y, 0) dy, indicating that the net energy transfer from 〈w2〉 to 〈v2〉 by πx
ww

at kx = 0 is about 35 % of the total energy gain from smaller scales by trx
ww.

Because of this energy supply to the wall-normal and spanwise turbulent energies at
kx = 0, the energy spectra Ex

vv( y, 0) and Ex
ww( y, 0) show non-zero energy distributions

as presented in figure 21(a). Their magnitudes are small compared to the streamwise
component Ex

uu( y, 0) as shown here, since the amount of energy supplied to Ex
vv( y, 0)

and Ex
ww( y, 0) from smaller scales via trx

ww is only about 5 % of the total amount of energy
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Figure 21. (a) Profiles of the Reynolds stress spectra Ex
ij and (b) the spectral budget balance of −〈uv〉

transport at kx = 0 in the streamwise-minimal (A3) case. In panel (b), the lines of different colours represent
the production prx−uv( y, 0) (black), the interscale transport trx−uv( y, 0) (blue), the pressure-related terms
πx−uv( y, 0) + dp,x

−uv( y, 0) (red), the turbulent spatial transport dt,x
−uv( y, 0) (yellow) and the viscous terms

dν,x
−uv( y, 0) + εx−uv( y, 0) (purple), and the values are scaled by u3

τ /h.

produced from the mean flow at kx = 0 by prx
uu. The Reynolds shear stress cospectrum

Ex−uv( y, 0) is also presented in the figure and is shown to be of the same magnitude as
Ex

vv( y, 0) and Ex
ww( y, 0). The budget balance of −〈uv〉 transport at kx = 0, presented in

figure 21(b), shows that the production term prx−uv( y, 0) = Ex
vv( y, 0) dU/dy is the main

energy source throughout the channel. This indicates that the small amount of wall-normal
energy Ex

vv( y, 0) indeed maintains the Reynolds shear stress at kx = 0, which subsequently
results in the reproduction of 〈u2〉 on the x-independent mode via the turbulent energy
production prx

uu( y, 0) = 2Ex−uv( y, 0) dU/dy. In the reference case the turbulent energy
production at large scales is also maintained by similar energy transports, including the
inverse interscale energy transfer, as described above (not shown).

Thus, it has been shown that the turbulent energy production at large streamwise length
scales is maintained by the inverse interscale transfer of spanwise turbulent energy from
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smaller scales. This also means that, supposing that these Reynolds-stress budget terms are
closely related to the self-sustaining process as we describe in figure 19, the regeneration
of the streamwise vortices through breakdowns of wavy streaks should include an
inverse interscale energy transfer as well as the inter-component energy transfer by the
pressure–strain correlation. In figure 19, we highlight this point in part (iii), ‘Regeneration
of streamwise vortices by nonlinear mechanism’ (see blue dashed box) by referring to
the structures generated from ‘wavy streaks’ through their breakdowns as ‘small-scale
vortical structures’, distinguishing them from ‘streamwise vortices’, which directly lead
to the generation of ‘streaks’. Small-scale vortical structures are generated at small scales
(λ+x < 400) through streak breakdowns by the pressure–strain energy redistribution, and
streamwise vortices are regenerated at large scales by the inverse interscale energy transfer,
which eventually results in the regeneration of streaks by triggering turbulent energy
production. Hamba (2019) focused on the inverse interscale transport of 〈w2〉 similarly
to the present study and attempted to extract the related vortical structure by means
of conditional averaging. He found a longitudinal streamwise vortex accompanied by
a shorter vortex located upstream, which indicates that the interactions between these
vortices are responsible for the inverse energy cascade. Although the connection between
the structures found in his work and the regeneration process of the streamwise vortices in
the self-sustaining cycle is still unclear, the inverse energy transfer of 〈w2〉 towards large
λx observed in the present study may also be caused by similar interactions between the
long (at large λx) and short (λ+x < 400) vortices.

4.3. On the DNS with streamwise-minimal domain at higher Reynolds numbers
As shown in § 3.2, the reason underlying the good agreement between the reference and
streamwise-minimal cases is that the upper boundary of the λx range where the turbulent
energy is supplied from larger λx via the interscale transport trx

uu and redistributed by
the pressure–strain correlation πx

uu is rather independent of y and is smaller than the
streamwise minimal length Lx = 1.6h throughout the channel. As our investigations
are limited to a low-Reynolds-number range, Reτ ≈ 126, it should be further examined
whether or not this is still the case even at higher Reynolds numbers. Regarding this point
one may refer to the works of Abe et al. (2018) and Lee & Moser (2019); Abe et al. (2018)
performed DNS of turbulent channel flows at Reτ = 1020, comparing the results obtained
with very-large and streamwise-minimal domains, and Lee & Moser (2019) also carried
out DNS of a turbulent channel flow at Reτ = 1000, providing detailed data on the spectral
transport of the Reynolds stresses.

In figure 22(a), we reproduce from Lee & Moser (2019) the λx–y distributions of the
premultiplied interscale transport of the streamwise turbulent energy in the streamwise
wavenumber direction, denoted by ET‖

uu,x in their notation, and of the pressure–strain
cospectrum πx

uu in a turbulent channel flow at Reτ = 1000. In these distributions, blue
and red represent the energy loss and gain, respectively. In the ET‖

uu,x distribution (on the
left of panel (a)), one can see that there exists a certain y region, up to about y+ = 100,
where the boundary between the energy-donating (blue) and -receiving (red) λx ranges is
hardly dependent on y and coincides with λ+x ≈ 400 (see the vertical black dashed line),
similarly to our observation in the turbulent plane Couette flow. Farther away from the
wall, however, the peak locations of the ET‖

uu,x distribution clearly vary depending on the
distance from the wall, which appears to be proportional to y. Similarly to this, it is shown
in the right of panel (a) that the πx

uu distribution also follows the scaling with y away
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Figure 22. (a) λx–y diagrams of (left) the interscale energy transport and (right) the pressure–strain
cospectrum for 〈u2〉, scaled by u4

τ /ν, obtained in a turbulent channel flow at Reτ = 1000, reproduced with
permission from figures 26(a) and 13(b) in Lee & Moser (2019) (the vertical dashed lines at λ+x = 400 have
been added in the present study). (b) Profiles of streamwise turbulent intensity 〈u2〉/u2

τ obtained in a turbulent
channel flow at Reτ = 1020 with various streamwise domain lengths Lx, reproduced with permission from
figure 7(a) in Abe et al. (2018).

from the wall at about y+ > 100. This means that the aforementioned observation in the
present study, that the distributions of trx

uu and πx
uu are rather independent of y, is merely

a low-Reynolds-number effect.
As shown in the πx

uu distribution in figure 22(a), a significant amount of the
pressure–strain cospectrum is distributed in the range λ+x > 400 for y+ > 100 at the
Reynolds number Reτ = 1000, which cannot be taken into account in the simulation with
the streamwise-minimal domain. This would result in a significant underestimation of the
energy redistribution from 〈u2〉 to the other components, and consequently 〈u2〉 would
be considerably overestimated. This is indeed observed in figure 22(b), which presents
the profiles of 〈u2〉 in turbulent channel flows at a similar Reynolds number Reτ = 1020
computed with different streamwise domain length Lx, reproduced from Abe et al. (2018).
As shown here, as Lx decreases the peak magnitude of 〈u2〉+ increases, consistently
with the observation in the present study, and in the case of Lx = 0.4h, i.e. L+

x ≈ 400,
the overestimation of the magnitude of 〈u2〉 is significant throughout the channel. This
tendency is particularly noticeable in the logarithmic region around y+ ≈ 100; a plateau of
〈u2〉 in this y+ range, which would correspond to the outer peak of 〈u2〉 at higher Reynolds
numbers, is already observed, whereas in larger-Lx cases it does not emerge. This is likely
because in the streamwise-minimal (Lx = 0.4h) case the significant contribution by πx

uu
for L+

x > 400 is excluded. Hence, it is expected that 〈u2〉 would be similarly overestimated
(and correspondingly 〈v2〉 and 〈w2〉 underestimated), particularly in the relatively far-wall
region y+ > 100, in the DNS of turbulent plane Couette flow at higher Reynolds numbers
with the streamwise-minimal domain.

4.4. On the inverse interscale transfer of the Reynolds stresses observed through
one-dimensional spanwise Fourier mode analysis

As observed in § 3.3, the distribution of the interscale transport of the Reynolds shear
stress trz

−uv obtained in the spanwise-minimal (B2) case indicates transfer from smaller
to larger λz throughout the channel, similarly to the reference-case results, despite the
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fact that the very-large-scale structure in the channel-core region does not exist in
case B2 due to the small Lz. This suggests that the interscale Reynolds-stress transfers
observed through one-dimensional spanwise Fourier mode analysis may not represent the
interaction between the inner- and outer-layer structures, contrary to the suggestion of
Kawata & Alfredsson (2018). Furthermore, even in case C (both Lx and Lz minimal),
the same tendencies of trz

ij are retained (not shown). This indicates that the spanwise
interscale transport trz

ij may rather be related to the individual dynamics of each near-wall
and very-large-scale structure, such as their self-sustaining processes.

A Fourier-mode interaction that might possibly be related to the inverse interscale
transfer of the Reynolds shear stress can be found in the work of Hamilton et al. (1995).
In their investigation of the temporal variations of the energies of different Fourier
modes during the self-sustaining cycle (in their figure 3), it is shown that when the
energy of the x-independent streak, M(0, β) in their notation (β is the primary spanwise
wavenumber, β = 2π/Lz), decreases through the onset of streak instabilities, the energy
of the spanwise-independent mode M(α, 0) (α is the primary streamwise wavenumber
α = 2π/Lx) increases, as well as the energy of the wavy streak M(α, β), indicating not
only M(0, β)-to-M(α, β) energy transfer but also M(0, β)-to-M(α, 0) transfer via the
streak instabilities. If such energy transfers were investigated through one-dimensional
spanwise Fourier mode analysis, they would appear as an inverse interscale energy transfer
from λz = Lz to λz = ∞, since only the M(0, β)-to-M(α, 0) transfer is observed. On
the other hand, in terms of the streamwise Fourier mode, both the M(0, β)-to-M(α, β)

and M(0, β)-to-M(α, 0) energy transfers are observed as a forward energy transfer from
λx = ∞ to λx = Lx. This means that the interscale energy transfer associated with the
streak instabilities of the self-sustaining cycle may be observed as an inverse interscale
energy transfer when observed through one-dimensional spanwise Fourier mode analysis.
Lee & Moser (2019) performed two-dimensional spectral analysis on the turbulent energy
transport in channel flows at high Reynolds numbers, and observed that there exist
significant energy transfers between different Fourier modes with approximately the same
wavenumber magnitudes but different orientations. Such ‘scale transfer in orientation’
is observed as interscale energy transfer in different directions (i.e. either a forward
or a reversed cascade) when observed through one-dimensional Fourier mode analysis,
depending on whether the analysis is based on the streamwise or spanwise Fourier mode.
These observations in earlier studies indicate that the inverse interscale energy transfer
observed based on one-dimensional Fourier mode analysis does not always mean that
energy is really transported from smaller to larger scales.

Similar tendencies to the interscale energy transfer related to the streak instabilities
described above are actually found in the distributions of trx

uu and trz
uu presented in

figures 11(a) and 13(a), respectively. One can see that the spanwise interscale energy
transfer trz

uu provided by the reference case in figure 13(a) indicates an inverse energy
transfer from smaller to larger λz, particularly in the near-wall region, while the streamwise
interscale transport trx

uu given in figure 11(a) shows only forward transfer throughout
the channel. These tendencies are retained also in the minimal domains: the trx

uu
obtained in the streamwise-minimal case indicates a forward energy transfer from the
x-independent mode to the λ+x < 400 range (see figure 11a), while the trz

uu obtained
in the spanwise-minimal case presents a reversed energy transfer from λz = Lz to the
z-independent mode (figure 13a). These behaviours of the interscale energy transfers
trx

uu and trz
uu are similar to the above-described energy exchange between the x- and

z-independent Fourier modes in the streak instabilities of the self-sustaining cycle.
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Figure 23. Distributions of the interscale transport of the Reynolds shear stress in the streamwise wavenumber
direction kxtrx−uv obtained in the reference case and the streamwise-minimal (A3) case, presented in the same
manner as in figure 8(a): y–λx diagrams in premultiplied form kxtrx−uv ; (b) profiles of trx−uv integrated for
λx/h � 1.6 (0 < kx/h < 2π/1.6). Note that, in case A3,

∫ 2π/1.6h
0 prx−uv(kx) dkx = trx−uv(0)Δkx.

Similar tendencies are also found for the interscale transport of the Reynolds shear
stress. As can be seen in figure 23(a), the distribution of the interscale transport
of the Reynolds shear stress in the streamwise wavenumber direction trx−uv obtained
in the reference case clearly presents forward transfers from larger- to smaller-λx
ranges throughout the channel, although the spanwise transport trz

−uv presents inverse
interscale transfers (see figure 14a). The y–λx distribution of trx−uv provided by the
streamwise-minimal case also reproduces fairly well the reference-case results for the
relatively-small-wavelength range λ+x < 400, and the Reynolds shear stress transferred
from the x-independent mode, i.e. trx−uv( y, 0), in the streamwise-minimal case is
equivalent to the amount of the Reynolds shear stress removed from the corresponding λx
range in the reference case, λx/h > 1.6, as presented in figure 23(b). These behaviours of
the interscale transports of the Reynolds shear stress trx−uv and trz

−uv are also qualitatively
similar to the above-described energy exchange between the x- and z-independent modes
observed in the self-sustaining cycle by Hamilton et al. (1995).

It should be emphasised here that the inverse interscale transfer of the spanwise
turbulence intensity 〈w2〉, which we suggested in § 4.2 to represent the energy transfers
related to the regeneration process of streamwise vortices of the self-sustaining cycle,
shows qualitatively different tendencies from the energy transfer by the streak instabilities
described above. Figure 24 represents the distributions of the interscale transport
of 〈w2〉 in the spanwise wavenumber direction trz

ww obtained in the reference and
streamwise-minimal cases, and one can see here that both results clearly indicate an
energy transfer from smaller to larger wavelengths in the near-wall region, similarly to
the transfer in the streamwise wavenumber direction trx

ww presented in figure 20(a). Thus,
the spanwise turbulent energy 〈w2〉 is transferred from smaller to larger scales in both
the streamwise and spanwise wavenumber directions, unlike the above-described energy
exchange between the x- and z-independent modes in the streak instabilities. It is also
worth pointing out that in the trx−uv distribution (see figure 23a) one can find a weak
reversed interscale transport from smaller to larger λx in the small-wavelength range
λ+x < 100 throughout the channel, as well as the significant forward interscale transfers
in the larger-λx range. Hence, the Reynolds shear stress is also transferred from smaller
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Figure 24. Space–wavelength (y–λz) diagrams of the premultiplied interscale transport of the spanwise
turbulent energy in the spanwise wavenumber direction kztrz

ww obtained in (a) the reference case and (b) the
streamwise-minimal (A3) case. The values are scaled by u3

τ /h.

to larger scales in both the streamwise and spanwise wavenumber directions throughout
the channel at relatively small scales. While we conjecture that the inverse 〈w2〉 transfer is
closely related to the generation process of streamwise vortices in the self-sustaining cycle
as discussed in the previous section, it is not clear what the inverse −〈uv〉 transfer at small
scales represents. This will be focused on in our feature studies.

5. Conclusion

In the present study, we have investigated the spectral transport of the Reynolds stresses
in turbulent plane Couette flow at a relatively low Reynolds number Reτ ≈ 126 with
streamwise- and spanwise-minimal domains, in order to illuminate the role of scale
interactions in the streamwise and spanwise directions by limiting the degree of freedom
in each direction. The streamwise-minimal domain has been found, as reported in earlier
studies (Abe et al. 2018), to reproduce the flow structure of the plane Couette turbulence,
successfully capturing statistical features of both the smaller-scale structure near the wall
and the very-large-scale structure in the channel-core region, despite the substantially
limited degree of freedom in the streamwise direction. In this domain, the flow field is
basically separated into the x-independent structures and the rest: the former consist of
x-independent streaks that account for most of the streamwise turbulent energy 〈u2〉, while
the latter consist of the structures smaller than the streamwise minimal length (λ+x < 400)
which account for most of the lateral turbulent energy 〈v2〉 and 〈w2〉. The spectral
energy transport in the streamwise-minimal domain mainly consists of turbulent energy
production at kx = 0, interscale energy transfer from kx = 0 (λx = ∞) to kx > 0 (λ+x <

400) and energy redistribution from the streamwise to lateral turbulent energies in λ+x <

400. The good agreement between the streamwise-minimal and reference cases indicates
that such interplays between streamwise-elongated streaks and small-scale structures are
the essential interactions of the streamwise length scales for both the near-wall and
very-large-scale structures. It has been further revealed that the energy production at
larger scales is maintained by inverse interscale transport of spanwise turbulent energy.
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Based on the resemblance between the closed-loop transport of the Reynolds stresses and
the scenario of the self-sustaining cycle of coherent structures, we conjecture that these
spectral budgets of the Reynolds stress transport mainly represent the subprocesses of
the self-sustaining process of each inner and outer structure. Detailed investigations of
the instantaneous flow structures support this conjecture. This indicates that the forward
and reversed interscale energy transfers observed by the present spectral analysis may
correspond, respectively, to the streak instabilities and the regeneration of streamwise
vortices in the self-sustaining cycle of the coherent structures.

In the spanwise-minimal domain, the interscale Reynolds-stress transports in the
spanwise wavenumber direction trz

ij indicate basically the same tendencies as observed in
a very large domain, including the inverse interscale transport of the Reynolds shear stress
observed by Kawata & Alfredsson (2018), in spite of the fact that the very-large-scale
structure in the channel-core region does not exist in this case due to the insufficient
spanwise domain width. This suggests that the interscale transport of the Reynolds
stress trz

ij does not represent the interactions between the very-large-scale and near-wall
structures. Hamilton et al. (1995) indicated that the streak instabilities in the self-sustaining
cycle involve energy transfers from the x- to the z-independent mode, which would, if
observed through one-dimensional spanwise Fourier mode analysis, result in behaviours
of trz

ij similar to those observed in the present study.
Thus, the present study has shown that the Reynolds-stress interscale transports in both

the streamwise and spanwise wavenumber directions are likely related to the individual
dynamics of each inner and outer structure, rather than representing their interactions.
However, there has been accumulated evidence of inner–outer interactions, such as
amplitude modulations (see the summary by Dogan et al. (2019), and references therein),
and it is still unclear how such interactions are reflected in the Reynolds stress transport. In
order to further address this point, more detailed investigations of the interscale transfers
would be needed, for example, through two-dimensional spectral analysis, as done by
Lee & Moser (2019), or through decomposing the interscale transfers into each triad
interaction between Fourier modes, as done by Cho et al. (2018). Given that the inner
and outer structures are located at different wall-normal positions, these investigations
should focus on the spatial energy transport caused by nonlinear scale interaction, i.e. the
turbulent spatial transport dt,x

ij and dt,z
ij in the spectral transport equations (3.6) and (3.7),

as well as on interscale energy transport effects. In addition, since the budget equations
represent only the local gain or loss of energy, it would also be important to investigate
the flux of energy both in scale and in space, as done by Cimarelli et al. (2013), for better
understanding of dynamics in wall turbulence.
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Appendix A. Derivation of the transport equations of the Reynolds stress
spectra (3.6) and (3.7)

For the spectral analysis of the Reynolds-stress transport budget, we use the same
formulation as derived by Kawata & Alfredsson (2018, 2019). First we consider the
following decomposition of the fluctuating velocities:

ui = uL
i + uS

i , (A1a)

〈uL
i uS

j 〉 = 〈uS
i uL

j 〉 = 0, (A1b)

where uL
i and uS

i are respectively the large- and small-scale parts of the fluctuating
velocities, and the equation (A1b) means that the cross-correlation between the large-
and small-scale parts is zero for any combination of velocity components. Such
a decomposition is possible with a spatial filtering based on an orthogonal mode
decomposition, such as the Fourier-mode decomposition or the proper orthogonal
decomposition. With such a decomposition the Reynolds stresses 〈uiuj〉 are simply
decomposed into their large- and small-scale parts as

〈uiuj〉 = 〈uL
i uL

j 〉 + 〈uS
i uS

j 〉, (A2)

due to (A1b).
In this study, we employ the transport equations of both the streamwise and spanwise

one-dimensional Reynolds stress spectra, (3.6) and (3.7), for data analysis. To derive
these transport equations, the above decompositions of the fluctuating velocities and the
Reynolds stresses are done by a spatial filtering based on the streamwise and the spanwise
Fourier mode, respectively. Taking the derivation of (3.6), the transport equation of Ex

ij,
as an example, the decompositions (A1) and (A2) are done by a spatial filtering based on
the streamwise Fourier mode with the cutoff wavenumber kx, and the transport equations
of 〈uLuL〉 and 〈uSuS〉 ((A3a) and (A3b)) are derived by a procedure that is similar to the
derivation of the transport equation of the ‘full’ Reynolds stress (3.1) as

D〈uL
i uL

j 〉
Dt

= PL,x
ij − ε

L,x
ij + Π

L,x
ij + Dp,L,x

ij + Dν,L,x
ij + Dt,L,x

ij − Trx
ij, (A3a)

D〈uS
i uS

j 〉
Dt

= PS,x
ij − ε

S,x
ij + Π

S,x
ij + Dp,S,x

ij + Dν,S,x
ij + Dt,S,x

ij + Trx
ij. (A3b)

The details of the derivation of (A3a) and (A3b) are found in Kawata & Alfredsson (2019).
The terms on the right-hand side of (A3a) are the large-scale part of the corresponding
terms of (3.1), which are respectively defined as

PL,x
ij = −〈uL

i uL
k 〉∂Uj

∂xk
− 〈uL

j uL
k 〉∂Ui

∂xk
, ε

L,x
ij = 2ν

〈
∂uL

i
∂xk

∂uL
j

∂xk

〉
, (A4a,b)

Π
L,x
ij = − 1

ρ

(〈
pL ∂uL

i
∂xj

〉
+
〈

pL
∂uL

j

∂xi

〉)
, Dν,L,x

ij = ν
∂2〈uL

i uL
j 〉

∂x2
k

, (A5a,b)

Dp,L,x
ij = − ∂

∂xk
(〈uL

i pL〉δik + 〈uL
j pL〉δjk). (A6)

Here δij is the Kronecker delta. The small-scale counterparts of the terms on the right-hand
side of (A3b) are those with the superscript L replaced by S. The terms related to nonlinear
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interaction between the large- and small-scale parts of the velocity field are the turbulent
spatial transport terms

Dt,L,x
ij = − ∂

∂xk
(〈uL

i uL
j uL

k 〉 + 〈uL
i uL

j uS
k〉 + 〈uS

i uL
j uS

k〉 + 〈uL
i uS

j uS
k〉), (A7a)

Dt,S,x
ij = − ∂

∂xk
(〈uS

i uS
j uS

k〉 + 〈uS
i uS

j uL
k 〉 + 〈uL

i uS
j uL

k 〉 + 〈uS
i uL

j uL
k 〉), (A7b)

and the turbulent interscale transport term

Trx
ij = −

〈
uS

i uS
k

∂uL
j

∂xk

〉
−
〈

uS
j uS

k
∂uL

i
∂xk

〉
+
〈

uL
i uL

k

∂uS
j

∂xk

〉
+
〈

uL
j uL

k
∂uS

i
∂xk

〉
. (A8)

It can be easily seen that the sum of the transport equations (A3a) and (A3b) yields the
classical Reynolds-stress transport (3.1), and the additional term Trx

ij clearly represents
the Reynolds stress flux from the 〈uL

i uL
j 〉 to the 〈uS

i uS
j 〉 side across kx. The streamwise

one-dimensional spectra of the Reynolds stress Ex
ij are related to the decomposed Reynolds

stresses by

Ex
ij =

∂〈uL
i uL

j 〉
∂kx

= −
∂〈uS

i uS
j 〉

∂kx
(A9)

in the wavenumber range kx > 0. Hence, the Ex
ij transport (3.6),(

∂

∂t
+ Uk

∂

∂xk

)
Ex

ij = prx
ij − εx

ij + πx
ij + dp,x

ij + dν,x
ij + dt,x

ij + trx
ij, (A10)

for the wavenumber range kx > 0, is derived by differentiating (A3a) with respect to kx,
and the terms on the right-hand side are the kx-derivatives of the corresponding terms of
(A3a). As for evaluating these quantities based on the discrete DNS data, the Reynolds
stress spectra at wavenumbers kx,m = 2πm/Lx (for m = 1, 2, 3, . . .) are evaluated as

Ex
ij( y, kx,m) =

〈uL
i uL

j 〉( y, kx,m) − 〈uL
i uL

j 〉( y, kx,m−1)

Δkx
, (A11)

where Δkx = 2π/Lx, and the terms on the right-hand side of the spectrum transport (3.6)
are also obtained by the same finite differentiation. It should be noted here that Ex

ij defined
in such a way is a one-sided spectrum and is defined only for kx > 0. The spectrum density
at kx = 0 is separately defined as Ex

ij( y, 0) = 〈uL
i uL

j 〉( y, 0)/Δkx, so that it satisfies

〈uiuj〉( y) =
∞∑

m=0

Ex
ij( y, kx,m)Δkx. (A12)

Corresponding to this, the transport equation of Ex
ij( y, 0) is obtained by dividing

(A3a) at kx = 0 by Δkx = 2π/Lx. Accordingly, the terms on the right-hand side
of the Ex

ij( y, 0) equation are defined as prx
ij( y, 0) = PL,x

ij ( y, 0)/Δkx, εx
ij( y, 0) =

ε
L,x
ij ( y, 0)/Δkx, πx

ij( y, 0) = Π
L,x
ij ( y, 0)/Δkx, . . ., and trx

ij( y, 0) = −Trx
ij( y, 0)/Δkx. The

transport equations of the spanwise one-dimensional spectra Ez
ij, namely (3.7), are derived

in the same manner, with the spatial filtering based on the spanwise Fourier mode.

911 A55-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1063


T. Kawata and T. Tsukahara

Appendix B. Interscale transport on the x-independent mode

As explained in the previous section, the interscale transport term in the transport equation
of the Reynolds stress spectrum at kx = 0 is defined as

trx
ij( y, 0) = −

Trx
ij( y, 0)

Δkx
, (B1)

with the interscale Reynolds-stress flux Trx
ij defined in (A8). At kx = 0, the large-scale

component uL
i in Trx

ij( y, 0) is the fluctuating velocity spatially low-pass-filtered with the
cutoff wavenumber kx = 0, i.e. uL

i = 〈ui〉x, where 〈〉x denotes spatial averaging in the
x-direction. Hence, one can easily see that 〈uS

i 〉x = 0. With such uL
i and uS

i , the third and
fourth terms in the right-hand side of (A8) are zero. For instance,〈

uL
i uL

k

∂uS
j

∂xk

〉
=
〈

uL
i uL

k

∂uS
j

∂xk

〉
x,z,t

=
〈

uL
i uL

k

〈
∂uS

j

∂xk

〉
x

〉
z,t

= 0. (B2)

Furthermore, ∂uL
i /∂x = 0 since uL

i is independent of x. Hence, all terms related to ∂uL
i /∂x

are also zero. Therefore, trx
ij( y, 0) is simplified to

trx
ij( y, 0) =

(〈
uS

i v
S
∂uL

j

∂y

〉
+
〈

uS
j v

S ∂uL
i

∂y

〉
+
〈

uS
i wS

∂uL
j

∂z

〉
+
〈

uS
j wS ∂uL

i
∂z

〉)
1

Δkx
. (B3)

In particular, trx
uu( y, 0), which is extensively discussed in § 4.1, is given by

trx
uu( y, 0) = 2

(〈
uSvS ∂uL

∂y

〉
+
〈
uSwS ∂wL

∂z

〉)
1

Δkx
. (B4)
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