Nilpotency of Some Lie Algebras Associated with p-Groups

Pavel Shumyatsky

Abstract

Let $L=L_{0}+L_{1}$ be a \mathbb{Z}_{2}-graded Lie algebra over a commutative ring with unity in which 2 is invertible. Suppose that L_{0} is abelian and L is generated by finitely many homogeneous elements a_{1}, \ldots, a_{k} such that every commutator in a_{1}, \ldots, a_{k} is ad-nilpotent. We prove that L is nilpotent. This implies that any periodic residually finite 2^{\prime}-group G admitting an involutory automorphism ϕ with $C_{G}(\phi)$ abelian is locally finite.

0 Introduction

Let p be a prime and G a finitely generated residually finite p-group. Examples of groups constructed in [1], [3], [4], [5], [17] show that in general G can be infinite.

Using the Lazard central series of G one associates to G a Lie algebra $L=L_{p}(G)$ in such a way that G is finite if and only if L is nilpotent. Some detail of this construction is given in the last section of the paper. Lazard proved that L is generated by a finite set M such that each commutator of elements in M is ad-nilpotent [9]. This enables us to reduce problems on finiteness of certain p-groups to problems on nilpotency of some Lie algebras. For example, the celebrated Zelmanov's solution of the Restricted Burnside Problem is based on his deep results concerning Lie algebras.

In the present paper we prove the following theorem.
Theorem Let $L=L_{0}+L_{1}$ be a \mathbb{Z}_{2}-graded Lie algebra over a commutative ring with unity in which 2 is invertible. Suppose that L_{0} is abelian and L is generated by finitely many homogeneous elements a_{1}, \ldots, a_{k} such that every commutator in a_{1}, \ldots, a_{k} is ad-nilpotent. Then L is nilpotent.

This theorem is proved in Section 4 of the paper. It enabled us to derive that any periodic residually finite 2^{\prime}-group G admitting an involutory automorphism ϕ with $C_{G}(\phi)$ abelian is locally finite (Theorem 5.8).

It should be said that Theorem 5.8 is not a first result stating local finiteness of a periodic group in terms of the centralizer of an automorphism ϕ of G. B. H. Neumann showed that any periodic group admitting a fixed point free involutory automorphism is abelian [10]. Sunkov proved that if G is a periodic group having an involutory automorphism ϕ such that $C_{G}(\phi)$ is finite then G is locally finite (and contains a solvable subgroup of finite index) [16].

According to Deryabina and Ol'shanski for any positive integer n which has at least one odd divisor there exists an infinite group G having an element of order n with finite centralizer such that all proper subgroups of G are finite [2]. Therefore the result of S̆unkov

[^0]cannot be extended to periodic groups having finite centralizer of an element whose order is not a 2-power. N. Rocco and the author proved recently that if G is a periodic residually finite group having a 2 -automorphism with finite centralizer then G is locally finite [11]. In [12], [13], [15] we prove local finiteness of some periodic groups admitting a fixed point free four-group of automorphisms.

It seems however that Theorem 5.8 of this paper is the first result of the kind in which the condition imposed on $C_{G}(\phi)$ does not refer to the order of $C_{G}(\phi)$.

Most of our notation and terminology is standard. We use $\left[x_{1}, \ldots, x_{k}\right]$ to denote $\left.\left[\ldots\left[x_{1}, x_{2}\right], x_{3}\right], \ldots, x_{k}\right]$. An element g of a Lie algebra L is called ad-nilpotent if there exists an integer m such that

$$
[x, \underbrace{g, \ldots, g}_{m \text { times }}]=0
$$

for any $x \in L$. Let $M \subseteq L$ be a subset of a Lie algebra L. By a commutator in elements of M we mean any element that can be obtained by taking products of elements of M with arbitrary system of brackets. A subalgebra of L generated by a set M is denoted by $\langle M\rangle$.

A Lie algebra L is \mathbb{Z}_{2}-graded if it contains subspaces L_{0} and L_{1} such that $L=L_{0}+L_{1}$ and $\left[L_{i}, L_{j}\right] \leq L_{i+j} ; i, j \in \mathbb{Z}_{2}$. Clearly, L_{0} here is a subalgebra. If $L=L_{0}+L_{1}$ is a \mathbb{Z}_{2}-graded Lie algebra then any element $x \in L_{0} \cup L_{1}$ is called homogeneous. Homogeneous elements $x \in L_{0}$ are called even while those $x \in L_{1}$ odd.

Suppose that X is either a quotient algebra or a subalgebra generated by a set of homogeneous elements of a \mathbb{Z}_{2}-graded Lie algebra L. Then X is naturally equiped with the \mathbb{Z}_{2}-grading induced by that of L. So X can be viewed a \mathbb{Z}_{2}-graded Lie algebra.

Through out the paper we use freely the following fact. Let $x, g, h_{1}, \ldots, h_{k} \in L$ be any elements of a Lie algebra L. Assume that g commutes with all h_{1}, \ldots, h_{k}. Then

$$
\left[x, h_{1}, \ldots, h_{k}, g\right]=\left[x, g, h_{1}, \ldots, h_{k}\right] .
$$

1 Existence of a Nilpotent Ideal

Our goal in this section is to prove the following:
Proposition 1.1 Let L be a Lie algebra, L_{1}, L_{2}, L_{3} abelian subalgebras of L such that

$$
L=L_{1}+L_{2}+L_{3}
$$

and

$$
\left[L_{1}, L_{2}\right] \leq L_{3},\left[L_{1}, L_{3}\right] \leq L_{2},\left[L_{2}, L_{3}\right] \leq L_{1}
$$

Assume that a is an ad-nilpotent element in L_{1} and let N be the ideal of L generated by a. Then N is nilpotent.

This proposition can be deduced from some results scattered in [14], [15] and proved in a somewhat different setting. For the reader's convenience we give a complete and detailed proof here.
Lemma 1.2 Assume hypothesis of 1.1. Suppose that $b \in L_{2}$ and $[a, b]=0$. Let T be the ideal of L generated by $\left[b, L_{1}\right]$. Then $[T, a]=0$.

Proof It is sufficient to show that for any set of elements $c_{1}, c_{2}, \ldots, c_{t}$ such that $c_{1} \in L_{1}$ and $c_{i} \in L_{k_{i}}$, where each $k_{i} \in\{1,2,3\}$, we have

$$
\begin{equation*}
\left[b, c_{1}, \ldots, c_{t}, a\right]=0 \tag{1.3}
\end{equation*}
$$

To prove this we shall use induction on t.
If $t=1$ (1.3) can be proved easily:
Since $a, c_{1} \in L_{1}$ and L_{1} is abelian, $c_{1} \in C_{L}(a)$. By hypothesis b also lies in $C_{L}(a)$, and so (1.3) follows.

Let now $t \geq 2$ and suppose that for smaller values of t (1.3) holds. If $c_{2} \in L_{1}$ we denote $\left[b, c_{1}\right]$ by d and observe that $d \in L_{3}$ and $[d, a]=0$. Then

$$
\left[b, c_{1}, \ldots, c_{t}, a\right]=\left[d, c_{2}, \ldots, c_{t}, a\right]
$$

The form of the latter commutator differs from that of the commutator in (1.3) only by the fact that $b \in L_{2} \cap C_{L}(a)$ while $d \in L_{3} \cap C_{L}(a)$. This difference is not very serious of course and we are in a position to apply the induction hypothesis. It yields

$$
\left[d, c_{2}, c_{4}, \ldots, c_{t}, a\right]=0
$$

and so (1.3) holds.
If $c_{2} \in L_{3}$ then $\left[b, c_{1}, c_{2}\right]=0$ because $\left[b, c_{1}\right]$ and c_{2} both lie in L_{3}.
Thus we can assume that $c_{2} \in L_{2}$. If $t=2$ we see that $\left[b, c_{1}, c_{2}, a\right]=0$ because both a and $\left[b, c_{1}, c_{2}\right]$ lie in L_{1}. So $t \geq 3$. Consider the three possible cases:

1) $c_{3} \in L_{1}$;
2) $c_{3} \in L_{2}$;
3) $c_{3} \in L_{3}$.
4) Since both c_{3} and $\left[b, c_{1}, c_{2}\right]$ lie in L_{1} and L_{1} is abelian, $\left[b, c_{1}, c_{2}, c_{3}\right]=0$ and obviously (1.3) holds.

In the calculations below all the underlined commutators $\left[x_{1}, x_{2}, \ldots, x_{s}\right]$ equal zero as there always exist some positive integer k and some $i \in\{1,2,3\}$ such that $\left[x_{1}, x_{2}, \ldots, x_{k}\right] \in$ L_{i} and $x_{k+1} \in L_{i}$ which, since L_{i} is abelian, guarantees that $\left[x_{1}, \ldots, x_{k}, x_{k+1}\right]=0$. So, we will just discard such commutators.
2) We have

$$
\left[b, c_{1}, c_{2}, c_{3}\right]=\left[b,\left[c_{1}, c_{2}\right], c_{3}\right]+\underline{\left[b, c_{2}, c_{1}, c_{3}\right]}=\left[b,\left[c_{1}, c_{2}, c_{3}\right]\right]+\underline{\left[b, c_{3},\left[c_{1}, c_{2}\right]\right]}
$$

Put $a_{1}=\left[c_{1}, c_{2}, c_{3}\right] \in L_{1}$. Then the commutator in (1.3) can be rewritten in the form

$$
\left[b, a_{1}, c_{4}, \ldots, c_{t}, a\right]
$$

which by the induction hypothesis equals zero.
3) In this case we have

$$
\left[b, c_{1}, c_{2}, c_{3}\right]=\underline{\left[\left[b, c_{1}\right], c_{3}, c_{2}\right]}+\left[b, c_{1},\left[c_{2}, c_{3}\right]\right] .
$$

If we put $a_{2}=\left[c_{2}, c_{3}\right] \in L_{1}$ and $b_{1}=\left[b, c_{1}\right] \in L_{3} \cap C_{L}(a)$ then the commutator in (1.3) can be rewritten as

$$
\left[b_{1}, a_{2}, c_{4}, \ldots, c_{t}, a\right]
$$

The form of the latter commutator differs from that of the commutator in (1.3) only by the fact that $b \in L_{2} \cap C_{L}(a)$ while $b_{1} \in L_{3} \cap C_{L}(a)$. We have already remarked that this difference is not very serious and we can apply the induction hypothesis. Therefore

$$
\left[b_{1}, a_{2}, c_{4}, \ldots, c_{t}, a\right]=0
$$

The proof is now complete.

Lemma 1.4 Assume hypothesis of 1.1. Then $[L, L] \leq\left\langle L_{1}, L_{2}\right\rangle$.

Proof Denote $\left\langle L_{1}, L_{2}\right\rangle$ by N. The inclusions $\left[L_{1}, L_{3}\right] \leq L_{2}$ and $\left[L_{2}, L_{3}\right] \leq L_{1}$ show that L_{3} normalizes N. Since $L=L_{1}+L_{2}+L_{3}$, it follows that N is an ideal in L. The quotient L / N must be abelian because so is L_{3}. This completes the proof.

Proof of 1.1 Let n be the minimal number such that

$$
[L, \underbrace{a, \ldots, a}_{n \text { times }}]=0 .
$$

We certainly can assume that $n \geq 1$ and prove nilpotency of N using induction on n. Set

$$
M=[L_{2}, \underbrace{a, \ldots, a}_{n-1 \text { times }}] .
$$

Then $M \leq C_{L}(a) \cap L_{2}$ if n is odd and $M \leq C_{L}(a) \cap L_{3}$ if n is even. Assume that $M \leq L_{2}$ (the case $M \leq L_{3}$ is absolutely symmetric).

Let $\bar{L}=L / C_{L}(N)$, and let \bar{X} denote the image of any subset $X \subseteq L$ in \bar{L}. The minimal ideal T of L containing $\left[M, L_{1}\right]$ is spanned by commutators of the form $\left[b, c_{1}, \ldots, c_{t}\right]$, where $c_{1} \in L_{1}$ and $c_{i} \in L_{1} \cup L_{2} \cup L_{3} ; i \geq 2$. Therefore, by Lemma 1.2, a centralizes T. This implies $T \leq C_{L}(N)$ and we obtain $\left[\bar{M}, \overline{L_{1}}\right]=0$. Since $\bar{M} \leq \overline{L_{2}}$ and $\overline{L_{2}}$ is abelian, we conclude that

$$
\bar{M} \leq C_{\bar{L}}\left(\left\langle\overline{L_{1}}, \overline{L_{2}}\right\rangle\right)
$$

By Lemma $1.4[\bar{L}, \bar{L}] \leq\left\langle\overline{L_{1}}, \overline{L_{2}}\right\rangle$. Hence \bar{M} centralizes the subalgebra \bar{R} of \bar{L} generated by $[\bar{L}, \bar{L}]$ and \bar{a}. Obviously $\bar{N} \leq \bar{R}$ and therefore $\bar{M} \leq Z(\bar{N})$. Bearing in mind that $\bar{L}=$ $L / C_{L}(N)$ we conclude that $M \leq Z_{2}(N)$, the second term of the upper central series of N. The same argument with L_{2} replaced by L_{i} shows that

$$
[L_{i}, \underbrace{a, \ldots, a}_{n-1 \text { times }}] \leq Z_{2}(N)
$$

for any $i=1,2,3$. Since $L=\sum_{1 \leq i \leq 3} L_{i}$, we obtain

$$
[L, \underbrace{a, \ldots, a}_{n-1 \text { times }}] \leq Z_{2}(N) .
$$

Let us consider now the quotient algebra $\overline{\bar{L}}=L / Z_{2}(N)$. Let $\overline{\bar{X}}$ denote the image of any subset $X \subseteq L$ in $\overline{\bar{L}}$. Then

$$
[\overline{\bar{L}}, \underbrace{\overline{\bar{a}}, \ldots, \overline{\bar{a}}}_{n-1 \text { times }}]=0
$$

and so by induction $\overline{\bar{N}}$ is nilpotent. Since $\overline{\bar{N}}=N / Z_{2}(N)$, we derive that N is nilpotent as well. Remark that the proof actually shows that N is of nilpotency class at most $2 n-1$. The proof is complete.

2 A Sufficient Condition for [L, L] to be Nilpotent

From now on the term "Lie algebra" means Lie algebra over some commutative ring \mathbb{K} with unity in which 2 is invertible.

We will prove here
Proposition 2.1 Let $L=L_{0}+L_{1}$ be a \mathbb{Z}_{2}-graded Lie algebra and assume that there exists an odd element $a \in L_{1}$ such that $L=\left\langle L_{0}, a\right\rangle$. Suppose that L_{0} is abelian and a is ad-nilpotent. Then the subalgebra $\left\langle L_{1}\right\rangle$ of L generated by all odd elements is nilpotent.

We remark that under hypotheses of the above proposition $\left\langle L_{1}\right\rangle$ is actually an ideal of L containing the derived algebra $[L, L]$. It follows that the derived algebra $[L, L]$ is nilpotent.
Lemma 2.2 Let i, j be non-negative integers either both odd or both even. Let $L=L_{0}+L_{1}$ be a \mathbb{Z}_{2}-graded Lie algebra with L_{0} abelian. Let h_{1}, \ldots, h_{i} and g_{1}, \ldots, g_{j} be arbitrary elements in L_{0} and $a \in L_{1}$ an arbitrary odd element. Then $\left[a, h_{1}, \ldots, h_{i}\right]$ and $\left[a, g_{1}, \ldots, g_{j}\right]$ commute.

Proof We use induction on $\min \{i, j\}$. Suppose first that $j=0$ and set $b=\left[a, h_{1}, \ldots, h_{i}\right]$. We have to prove that $[b, a]=0$. By the Jacobi identity we have.

$$
\left[a, h_{1}, \ldots, h_{i}, a\right]=\left[a, h_{1}, \ldots, h_{i-1}, a, h_{i}\right]-\left[a, h_{1}, \ldots, h_{i-1},\left[a, h_{i}\right]\right]
$$

Note that $\left[a, h_{1}, \ldots, h_{i-1}, a, h_{i}\right]=0$ because $\left[a, h_{1}, \ldots, h_{i-1}, a,\right] \in L_{0}$ and L_{0} is abelian. Therefore

$$
\left[a, h_{1}, \ldots, h_{i}, a\right]=-\left[a, h_{1}, \ldots, h_{i-1},\left[a, h_{i}\right]\right]
$$

Write

$$
\left[a, h_{1}, \ldots, h_{i-1},\left[a, h_{i}\right]\right]=\left[a, h_{1}, \ldots, h_{i-2},\left[a, h_{i}\right], h_{i-1}\right]-\left[a, h_{1}, \ldots, h_{i-2},\left[a, h_{i}, h_{i-1}\right]\right]
$$

Again we note that $\left[a, h_{1}, \ldots, h_{i-1},\left[a, h_{i}\right], h_{i-1}\right]=0$ because $\left[a, h_{1}, \ldots, h_{i-1},\left[a, h_{i}\right]\right] \in$ L_{0} and L_{0} is abelian. Therefore

$$
\left[a, h_{1}, \ldots, h_{i}, a\right]=\left[a, h_{1}, \ldots, h_{i-2},\left[a, h_{i}, h_{i-1}\right]\right] .
$$

It becomes clear that for any non-negative $k \leq i$ we have

$$
\left[a, h_{1}, \ldots, h_{i}, a\right]=(-1)^{k}\left[a, h_{1}, \ldots, h_{i-k},\left[a, h_{i}, h_{i-1}, \ldots, h_{i-k+1}\right]\right]
$$

Since i is even, when $k=i$ we obtain

$$
\begin{equation*}
\left[a, h_{1}, \ldots, h_{i}, a\right]=\left[a,\left[a, h_{i}, \ldots, h_{1}\right]\right] \tag{2.3}
\end{equation*}
$$

By hypothesis all h_{1}, \ldots, h_{i} commute and so

$$
\left[a, h_{i}, h_{i-1}, \ldots, h_{1}\right]=\left[a, h_{1}, \ldots, h_{i-1}, h_{i}\right]=b
$$

Combining this with (2.3) we obtain $[b, a]=[a, b]$. Since 2 is invertible in \mathbb{K}, it follows that $[b, a]=0$.

Assume now that $i \geq j \geq 1$. Set $c=\left[a, g_{1}, \ldots, g_{j-1}\right]$ and let us show that

$$
\left[c, g_{j}, b\right]=0
$$

We have $\left[c, g_{j}, b\right]=\left[c, b, g_{j}\right]-\left[c,\left[b, g_{j}\right]\right]$. As $[c, b] \in L_{0}$ and L_{0} is abelian, we conclude that $\left[c, b, g_{j}\right]=0$ while $\left[c,\left[b, g_{j}\right]\right]=0$ by the induction hypothesis. The proof is now complete.

Lemma 2.4 Let $L=L_{0}+L_{1}$ be a \mathbb{Z}_{2}-graded Lie algebra and assume that there exists an odd element $a \in L_{1}$ such that $L=\left\langle L_{0}, a\right\rangle$. Then L_{1} is spanned by all commutators of the form $\left[a, h_{1}, \ldots, h_{k}\right]$, where $h_{1}, \ldots, h_{k} \in L_{0}$.

Proof Since $L=\left\langle L_{0}, a\right\rangle$, it follows that L is spanned by all commutators of the form

$$
\begin{equation*}
\left[x_{1}, \ldots, x_{s}\right] \tag{2.5}
\end{equation*}
$$

where each x_{i} is either even or equals a. It is immediate that L_{1} is spanned by all commutators (2.5) in which the number of occurrences of a is odd. Assume that $\left[x_{1}, \ldots, x_{s}\right]$ is such a typical generator of L_{1} and let j be the maximal number such that $x_{j}=a$. Then the number of occurrences of a in $\left[x_{1}, \ldots, x_{j-1}\right]$ is even and therefore $\left[x_{1}, \ldots, x_{j-1}\right] \in L_{0}$. Set $h_{1}=\left[x_{1}, \ldots, x_{j-1}\right]$. Since j is the maximal number with $x_{j}=a$, we conclude that $x_{j+1}, \ldots, x_{s} \in L_{0}$. We obtain

$$
\left[x_{1}, \ldots, x_{s}\right]=-\left[a, h_{1}, x_{j+1}, \ldots, x_{s}\right]
$$

and the lemma follows.

Proof of 2.1 Set

$$
\begin{gathered}
M_{1}=\left\langle\left[a, h_{1}, \ldots, h_{k}\right] ; h_{1}, \ldots, h_{k} \in L_{0} ; k \text { is even }\right\rangle, \\
M_{2}=\left\langle\left[a, h_{1}, \ldots, h_{k}\right] ; h_{1}, \ldots, h_{k} \in L_{0} ; k \text { is odd }\right\rangle
\end{gathered}
$$

and $M_{3}=L_{0}$. Then by $2.4 L_{1}=M_{1}+M_{2}$. Therefore $L=M_{1}+M_{2}+M_{3}$. Lemma 2.2 tells us that M_{1} and M_{2} are abelian while M_{3} is so by hypotheses. Also we have $\left[M_{1}, M_{2}\right.$] $\leq M_{3}$, $\left[M_{1}, M_{3}\right] \leq M_{2}$ and $\left[M_{2}, M_{3}\right] \leq M_{1}$. Note that $a \in M_{1}$. Thus, we are in a position to use Proposition 1.1 according to which the ideal N of L generated by a is nilpotent. Lemma 2.4 shows that $L_{1} \leq N$. This completes the proof.

3 Existence of Commuting Ideals

We start this section with a generalization of Lemma 2.4.
Lemma 3.1 Let $L=L_{0}+L_{1}$ be a \mathbb{Z}_{2}-graded Lie algebra and assume that $L=\langle X, Y\rangle$, where $X \subseteq L_{0}$ and $Y \subseteq L_{1}$. Then L_{1} is spanned by commutators of the form $\left[y, h_{1}, \ldots, h_{k}\right]$ for suitable $y \in Y$ and $h_{1}, \ldots, h_{k} \in L_{0}$.

Proof Since $L=\langle X, Y\rangle$, it follows that L is spanned by all commutators of the form

$$
\left[z_{1}, \ldots, z_{s}\right]
$$

where each $z_{i} \in X \cup Y$. It is immediate that L_{1} is spanned by all such commutators in which the number of occurrences of elements of Y is odd. Assume that $\left[z_{1}, \ldots, z_{s}\right]$ is such a typical generator of L_{1} and let j be the maximal number such that $z_{j} \in Y$. Then the number of occurrences of elements of Y in $\left[z_{1}, \ldots, z_{j-1}\right]$ is even and therefore $\left[z_{1}, \ldots, z_{j-1}\right] \in L_{0}$. Set $h_{1}=\left[z_{1}, \ldots, z_{j-1}\right]$. Since j is the maximal number with $z_{j}=a$, we conclude that $z_{j+1}, \ldots, z_{s} \in X$. We obtain

$$
\left[z_{1}, \ldots, z_{s}\right]=-\left[z_{j}, h_{1}, z_{j+1}, \ldots, z_{s}\right]
$$

and the lemma follows.

Lemma 3.2 Let $L=L_{0}+L_{1}$ be a \mathbb{Z}_{2}-graded Lie algebra with L_{0} abelian. Let $B \leq L_{1}$ be any set of odd elements and $g \in L_{0}$ such an even element that $[B, g, B]=0$. Let D be the set of all commutators of the form $\left[b, h_{1}, \ldots, h_{k}\right], b \in B$ and $h_{1}, \ldots, h_{k} \in L_{0}$. Assume that $a \in L_{1} \cap C_{L}(g)$. Then for any non-negative integer m we have

$$
[a, \underbrace{D, \ldots, D}_{m \text { times }}, g]=0 .
$$

Proof Induction on m. If $c \in L_{1}$ is any odd element we observe that $[a, c, g]=0$ because [$a, c] \in L_{0}$ and L_{0} is abelian. Since $D \subseteq L_{1}$, for $m=1$ the assertion follows. Suppose now that $m=2$. We will prove first that

$$
\begin{equation*}
\text { if } c_{1}, c_{2} \in B \quad \text { then } \quad\left[a, c_{1}, c_{2}, g\right]=0 \tag{3.3}
\end{equation*}
$$

Write

$$
\left[a, c_{1}, c_{2}, g\right]=\left[a, c_{1}, g, c_{2}\right]+\left[a, c_{1},\left[c_{2}, g\right]\right]
$$

Note that $\left[a, c_{1}, g, c_{2}\right]=0$ because $\left[a, c_{1}, g\right]=0$. Therefore

$$
\left[a, c_{1}, c_{2}, g\right]=\left[a, c_{1},\left[c_{2}, g\right]\right] .
$$

Since $c_{1}, c_{2} \in B$ and $[B, g, B]=0$, we obtain

$$
\left[a, c_{1},\left[c_{2}, g\right]\right]=\left[a,\left[c_{2}, g\right], c_{1}\right]=\left[\left[a, c_{2}, g\right]+\left[c_{2},[a, g]\right], c_{1}\right] .
$$

Both commutators $\left[a, c_{2}, g\right]$ and $\left[c_{2},[a, g]\right]$ equal zero. The first one is zero because [a, c_{2}] $\in L_{0}$ and L_{0} is abelian while the second one is zero because $[a, g]=0$ by hypothesis. Thus, (3.3) holds.

Now write

$$
c_{1}=\left[b_{1}, f_{1}, \ldots, f_{k_{1}}\right], c_{2}=\left[b_{2}, h_{1}, \ldots, h_{k_{2}}\right]
$$

where $b_{1}, b_{2} \in B$ and $f_{1}, \ldots, f_{k_{1}}, h_{1}, \ldots, h_{k_{2}} \in L_{0}$. Suppose that $k_{1}>0$ and write

$$
\left[a, c_{1}\right]=\left[a,\left[b_{1}, f_{1}, \ldots, f_{k_{1}}\right]\right]
$$

Using the same argument as in the proof of Lemma 2.2 we obtain

$$
\left[a, c_{1}\right]=(-1)^{k_{1}}\left[a, f_{1}, \ldots, f_{k_{1}}, b_{1}\right] .
$$

Set $a_{1}=\left[a, f_{1}, \ldots, f_{k_{1}}\right]$ and observe that $a_{1} \in L_{1} \cap C_{L}(g)$. It now suffices to prove that [$\left.a_{1}, b_{1}, c_{2}, g\right]=0$. This argument shows that without any loss of generality we can assume that $k_{1}=0$.

Taking this into account and using the fact that $\left[a, b_{1}\right] \in L_{0}$ and hence $\left[a, b_{1}\right]$ commutes with all $h_{1}, \ldots, h_{k_{2}}$ we compute

$$
\begin{aligned}
{\left[a, c_{1}, c_{2}, g\right] } & =\left[a, b_{1},\left[b_{2}, h_{1}, \ldots, h_{k_{2}}\right], g\right]=-\left[b_{2}, h_{1}, \ldots, h_{k_{2}},\left[a, b_{1}\right], g\right] \\
& =-\left[b_{2},\left[a, b_{1}\right], h_{1}, \ldots, h_{k_{2}}, g\right]=\left[a, b_{1}, b_{2}, h_{1}, \ldots, h_{k_{2}}, g\right]
\end{aligned}
$$

We already know that $\left[a, b_{1}, b_{2}, g\right]=0$. Since g commutes with $h_{1}, \ldots, h_{k_{2}}$, it follows that $\left[a, c_{1}, c_{2}, g\right]=0$.

Thus, it remains to handle the case $m \geq 3$. Let $c_{1}, c_{2}, \ldots, c_{m}$ be arbitrary elements in D. We have to show that

$$
\left[a, c_{1}, \ldots, c_{m}, g\right]=0
$$

Set $a_{2}=\left[a, c_{1}, c_{2}\right]$ and observe that $a_{2} \in L_{1}$ and by the preceding paragraph $a_{2} \in C_{L}(g)$. The induction hypothesis yields

$$
\left[a_{2}, c_{3}, \ldots, c_{m}, g\right]=0
$$

This completes the proof.
Lemma 3.4 Let $L=L_{0}+L_{1}$ be a \mathbb{Z}_{2}-graded Lie algebra with L_{0} abelian. Let $A, B \subseteq L_{1}$ be sets of odd elements such that $L=\left\langle L_{0}, A, B\right\rangle$ and $\left[A, L_{0}\right] \subseteq A$. Suppose that $g \in L_{0}$ and $a \in L_{1}$ are such even and odd elements respectively that $[A, a]=0$ and $[B, g, B]=0$. Let N and G be the ideals of L generated by a and g respectively. If $[a, g]=0$ then $[N, G]=0$.

Proof Assume that $[a, b]=0$. Let D be the set of all commutators of the form $\left[b, h_{1}, \ldots, h_{i}\right]$ where $b \in B$ and $h_{1}, \ldots, h_{i} \in L_{0}$. Then by $3.1 L_{1}$ is spanned by A and D. Then N is spanned by commutators of the form $\left[a, d_{1}, \ldots, d_{s}\right]$, where $d_{1}, \ldots, d_{s} \in L_{0} \cup A \cup D$. Therefore it suffices to prove that we always have

$$
\begin{equation*}
\left[a, d_{1}, \ldots, d_{s}, g\right]=0 \tag{3.5}
\end{equation*}
$$

This will be proved by induction on s and some other parameters introduced when necessary. We observe that the set $L_{0} \cup A \cup D$ is closed with respect to the multiplication in L.

Obviously (3.5) holds if $d_{1} \in A$ because $[A, a]=0$, so we may assume that $d_{1} \notin A$. Suppose that at least one of d_{2}, \ldots, d_{s} belongs to A. Let j be the smallest number such that $d_{j} \in A$ and let us use induction on j. Write

$$
\begin{aligned}
{\left[a, d_{1}, \ldots, d_{j-1}, d_{j}, d_{j+1}, \ldots, d_{s}, g\right]=} & {\left[a, d_{1}, \ldots,\left[d_{j-1}, d_{j}\right], d_{j+1}, \ldots, d_{s}, g\right] } \\
& +\left[a, d_{1}, \ldots, d_{j}, d_{j-1}, d_{j+1}, \ldots, d_{s}, g\right]
\end{aligned}
$$

The first of the above commutators is zero by the induction on s because $\left[d_{j-1}, d_{j}\right] \in$ $L_{0} \cup A \cup D$ while the second one is zero by the induction on j. The conclusion is that there is no loss of generality in assuming that none of d_{1}, \ldots, d_{s} lies in A. Suppose now that some of them lie in L_{0} and let k denote the smallest number such that $d_{k} \in L_{0}$. We will use now induction on k. If $k=1$ we write $a_{1}=\left[a, d_{1}\right]$. Since L_{0} normalizes A, it follows that $\left[A, a_{1}\right]=0$. Also we note that $\left[a_{1}, g\right]=0$ because L_{0} is abelian. Substituting now in (3.5) $\left[a, d_{1}\right]$ by a_{1} and using induction on s we deduce (3.5). This enables us to assume that $k \geq 2$. Since $d_{k-1} \notin A$, it follows that $d_{k-1} \in D$ and so $\left[d_{k-1}, d_{k}\right] \in D$. We have

$$
\begin{aligned}
{\left[a, d_{1}, \ldots, d_{k-1}, d_{k}, d_{k+1}, \ldots, d_{s}, g\right]=} & {[a,} \\
& \left.d_{1}, \ldots,\left[d_{k-1}, d_{k}\right], d_{k+1}, \ldots, d_{s}, g\right] \\
& +\left[a, d_{1}, \ldots, d_{k}, d_{k-1}, d_{k+1}, \ldots, d_{s}, g\right]
\end{aligned}
$$

The first of the above commutators is zero by the induction on s because $\left[d_{k-1}, d_{k}\right] \in D$ while the second one is zero by the induction on k.

The conclusion is that without any loss of generality we may assume that all d_{1}, \ldots, d_{s} lie in D. In this case (3.5) is immediate from Lemma 3.2. The proof is complete.

4 Main Theorem

Given any Lie algebra L, let $R(L)$ denote the sum of all locally nilpotent ideals of L. Thus, $R(L)$ is the maximal locally nilpotent ideal of L.

Lemma 4.1 Let L be a Lie algebra generated by finitely many elements a_{1}, \ldots, a_{k} such that each commutator in a_{1}, \ldots, a_{k} is ad-nilpotent. If L is not nilpotent then there exists a proper ideal N in L such that $R(L / N)=0$.

Proof Let us consider an ascending chain of ideals R_{α} of L defined as follows. Set $R_{0}=0$. If α is not a limit ordinal and $R_{\alpha-1}$ is already defined then $R_{\alpha} / R_{\alpha-1}=R\left(L / R_{\alpha-1}\right)$. If α is a limit ordinal then $R_{\alpha}=\bigcup_{\beta<\alpha} R_{\beta}$. Let N be the union of all ideals R_{α}. Then obviously $R(L / N)=0$. We wish to show that $L \neq N$.

Suppose that $L=N$. Since L is finitely generated, it cannot be a union of proper ideals. Therefore $L=R_{\alpha}$, where the ordinal α is not limit. Then $L / R_{\alpha-2}$ is not nilpotent and so without any loss of generality we can assume that $\alpha=2$. Since L / R_{1} is locally nilpotent and finitely generated, we conclude that L / R_{1} is nilpotent. Let c be a commutator in a_{1}, \ldots, a_{k} of maximal possible weight such that $c \notin R_{1}$. Then $c+R_{1}$ is central in L / R_{1} and therefore $\left\langle c, R_{1}\right\rangle$ is an ideal in L. By [7, 1.3.1] $\left\langle c, R_{1}\right\rangle$ is locally nilpotent. The definition of R_{1} now
implies that $\left\langle c, R_{1}\right\rangle=R_{1}$ and $c \in R_{1}$. This contradicts our choice of c and completes the proof.

Lemma 4.2 Let L be a Lie algebra with $R(L)=0$. Let N be an ideal of L and $C=C_{L}(N)$. Let $\bar{L}=L / C$ and \bar{N} be the image of N in \bar{L}. Then $R(\bar{L})=0$ and $C_{\bar{L}}(\bar{N})=0$.

Proof Since $N \cap C$ is an abelian ideal of L, it follows that $N \cap C=0$. Suppose that $\bar{R}=R / C$ is a locally nilpotent ideal of \bar{L}. Then $\bar{N} \cap \bar{R}$ is a locally nilpotent ideal of \bar{L} contained in \bar{N}. Since $N \cap C=0$, we conclude that $N \cap R$ is locally nilpotent. Therefore $N \cap R=0$ and $R \leq C$. This means that $\bar{R}=0$.

Next, let $\bar{D}=D / C=C_{\bar{L}}(\bar{N})$. By the preceding paragraph $\bar{N} \cap \bar{D}=0$. Therefore $N \cap D \leq C$. Now $N \cap C=0$ implies $N \cap D=0$. It follows that $D \leq C$ and $\bar{D}=0$, as required.

Lemma 4.3 Let $L=L_{0}+L_{1}$ be a non-abelian nilpotent \mathbb{Z}_{2}-graded Lie algebra generated by a set $Y \subseteq L_{1}$. Then there exists a non-zero commutator h in elements of Y such that $h \in L_{0} \cap Z_{2}(L)$, where $Z_{2}(L)$ denotes the second term of the upper central series of L.

Proof Let L be of nilpotency class $c \geq 2$ and let d be the even of the numbers $c-1, c$. Then there exist elements $y_{1}, \ldots, y_{d} \in Y$ such that $h=\left[y_{1}, \ldots, y_{d}\right] \neq 0$ (otherwise, the nilpotency class of L would be less than c). We observe that $h \in L_{0} \cap Z_{2}(L)$, as required.

Theorem 4.4 Let $L=L_{0}+L_{1}$ be a \mathbb{Z}_{2}-graded Lie algebra over a commutative ring with unity in which 2 is invertible. Suppose that L_{0} is abelian and L is generated by finitely many homogeneous elements a_{1}, \ldots, a_{k} such that every commutator in a_{1}, \ldots, a_{k} is ad-nilpotent. Then L is nilpotent.

Proof Let L be a counterexample to the theorem. By 4.1 we can assume that $R(L)=0$.
Our reasoning in the case $k=2$ is slightly different from that in the case $k \geq 3$ so we will consider these cases separately. Suppose first that $k=2$. It is convenient to denote a_{1} by a and a_{2} by b, so that $L=\langle a, b\rangle$. If any of a, b belongs to L_{0} then L is generated by L_{0} and a single ad-nilpotent odd element. Then by Proposition 2.1 the derived algebra $[L, L]$ is nilpotent. This contradicts the assumption $R(L)=0$. Therefore $a, b \in L_{1}$.

Let A and B be the subspaces of L_{1} spanned by all commutators of the form $\left[a, h_{1}, \ldots, h_{i}\right]$ and $\left[b, h_{1}, \ldots, h_{i}\right]$ respectively, where $h_{1}, \ldots, h_{i} \in L_{0}$. Then by Lemma 3.1 $L_{1}=A+B$. Proposition 2.1 tells us that the subalgebras $\langle A\rangle$ and $\langle B\rangle$ generated by A and B respectively are nilpotent. Let $\langle B\rangle$ be nilpotent of class c and suppose first that $c \geq 2$. Then by 4.3 there exists a non-zero element $g \in Z_{2}(\langle B\rangle) \cap L_{0}$. Let G be the ideal of L generated by g. By Lemma 4.2 we can assume that $C_{L}(G)=0$. Choose

$$
0 \neq d \in L_{1} \cap C_{L}(A) \cap C_{L}(g)
$$

If N is the ideal of L generated by d then Lemma 3.4 says that $[N, G]=0$. Hence $N=0$, a contradiction.

We conclude that

$$
L_{1} \cap C_{L}(A) \cap C_{L}(g)=0 .
$$

Recall that $g \in L_{0}$ and so g normalizes $L_{1} \cap C_{L}(A)$. If d is any element in $L_{1} \cap C_{L}(A)$ then for each positive integer m the commutator

$$
[d, \underbrace{g, \ldots, g}_{m \text { times }}]
$$

also lies in $L_{1} \cap C_{L}(A)$. Since g is ad-nilpotent, we can choose m such that

$$
[d, \underbrace{g, \ldots, g}_{m \text { times }}] \in C_{L}(g) .
$$

The conclusion is that

$$
L_{1} \cap C_{L}(A)=0 .
$$

Recall that $\langle A\rangle$ is a non-zero nilpotent subalgebra generated by certain homogeneous elements. Therefore $Z(\langle A\rangle)$ contains some non-zero homogeneous element h_{0}. Our assumptions imply that $h_{0} \in L_{0}$. Now observe that

$$
\left[b, h_{0}\right] \in L_{1} \cap C_{L}(A)
$$

Indeed, the inclusion $\left[b, h_{0}\right] \in L_{1}$ is obvious. Let $a_{1}=\left[a, h_{1}, \ldots, h_{i}\right]$ be a generator of $\langle A\rangle$ with $h_{1}, \ldots, h_{i} \in L_{0}$. We have

$$
\left[a_{1},\left[b, h_{0}\right]\right]=\left[a_{1}, b, h_{0}\right]+\left[b,\left[a_{1}, h_{0}\right]\right] .
$$

The first of the commutators on the right hand side above is zero because $\left[a_{1}, b\right] \in L_{0}$ and L_{0} is abelian while the second one is zero because $h_{0} \in Z(\langle A\rangle)$ and therefore $\left[a_{1}, h_{0}\right]=0$. The assumption that $L_{1} \cap C_{L}(A)=0$ implies now that $\left[b, h_{0}\right]=0$. We have just noted that $h_{0} \in Z(\langle A\rangle)$ and therefore $\left[a, h_{0}\right]=0$. So, we conclude that $h_{0} \in Z(L)$. This contradicts the assumption that $R(L)=0$.

Thus, we obtain a contradiction in all cases when $\langle B\rangle$ is not abelian. Consider now what happens if $\langle B\rangle$ is abelian. By a symmetric argument we can assume also that $\langle A\rangle$ is abelian. So, $\langle A\rangle=A$ and $\langle B\rangle=B$. Set now $g_{0}=[a, b] \in L_{0}$. Let G_{0} be the ideal of L generated by g. By Lemma 4.2 we can assume that $C_{L}\left(G_{0}\right)=0$. Since g_{0} is ad-nilpotent and normalizes $A \leq L_{1}$, it follows that $A \cap C_{L}\left(g_{0}\right)$ contains a non-zero element a_{2}. Since A and B are abelian, we observe that

$$
\left[A, a_{2}\right]=\left[B, g_{0}, B\right]=0
$$

We are again in a position to use Lemma 3.4. Let N be the ideal of L generated by a_{2}. By Lemma 3.4 $[N, G]=0$, whence $N=0$. This contradicts the choice of a_{2} and completes the proof in the case $k=2$.

Suppose now that $k \geq 3$. Without any loss of generality we assume that a_{k-1} and a_{k} do not commute. Set $a=a_{1}, b_{1}=a_{2}, \ldots, b_{k-1}=a_{k}$. Arguing by induction on k we assume that the subalgebra $\left\langle b_{1}, \ldots, b_{k-1}\right\rangle$ is nilpotent. Let $B=\left\langle b_{1}, \ldots, b_{k-1}\right\rangle \cap L_{1}$. If $\left\langle b_{1}, \ldots, b_{k-1}\right\rangle \leq L_{0}$ then $L=\left\langle L_{0}, a\right\rangle$. In this case Proposition 2.1 tells us that [L, L] is
nilpotent which yields a contradiction. It follows that $B \neq 0$. Let us show that there exists a non-zero $g_{1} \in L_{0}$ such that

$$
\left[B, g_{1}, B\right]=0
$$

If the subalgebra $\langle B\rangle$ is not abelian, then existence of g_{1} with required properties follows from Lemma 4.3. If $\langle B\rangle$ is abelian then, since $\left\langle b_{1}, \ldots, b_{k-1}\right\rangle$ is not abelian (recall that b_{k-2} and b_{k-1} do not commute), it follows that either b_{k-2} or b_{k-1} lies in L_{0}. For clarity's sake assume that $b_{k-1} \in L_{0}$. Note that $\left[B, b_{k-1}, B\right]=0$ because b_{k-1} normalizes B and B generates an abelian subalgebra. Also it is clear that b_{k-1} satisfies the other conditions so we can take $g_{1}=b_{k-1}$.

Thus, we proved that there exists an element $g_{1} \in L_{0}$ such that $\left[B, g_{1}, B\right]=0$. The remaining part of the proof practically does not differ from the settled above case $k=2$.

Denote by A the subspace of L_{1} spanned by all commutators of the form [a, h_{1}, \ldots, h_{i}] for suitable $h_{1}, \ldots, h_{i} \in L_{0}$. By Proposition $2.1\langle A\rangle$ is nilpotent. Again we can show that existence of a non-zero element $d \in L_{1} \cap C_{L}(A)$ leads to a contradiction. So, we assume

$$
L_{1} \cap C_{L}(A)=0
$$

Arguing exactly as in the case $k=2$ above, we choose $0 \neq h_{0} \in Z(\langle A\rangle)$ and observe that

$$
\left[L, h_{0}\right] \subseteq L_{1} \cap C_{L}(A)=0
$$

Since $Z(L)=0$, it follows that $h_{0}=0$. This contradicts the choice of h_{0} and completes the proof.

5 On residually finite groups

Let G be any group and p a prime. For $i \geq 1$ set

$$
D_{i}(G)=\prod_{j p^{k} \geq i} \gamma_{j}(G)^{p^{k}}
$$

where $\gamma_{j}(G)$ stands for the j-th term of the lower central series of G and for any subgroup $H \leq G$ the symbol $H p^{p^{k}}$ denotes the subgroup of H generated by the set $\left\{h^{p^{k}} ; h \in H\right\}$. It follows that $\gamma_{i}(G) \leq D_{i}(G)$ for all $i \geq 1$ and that $\left(D_{i}(G)\right)_{i \geq 1}$ is a descending series of characteristic subgroups of G. This series is called the Lazard p-series of G.
Lemma 5.1 ([6, p. 250]) For any group G and all $i, j \geq 1$ we have

$$
\left[D_{i}(G), D_{j}(G)\right] \leq D_{i+j}(G)
$$

The above lemma shows that the Lazard p-series $\left(D_{i}(G)\right)_{i \geq 1}$ is a strongly central series of G in the sense of [6]. This fact enables us to associate a Lie algebra $L_{p}(G)$ to G. This is done as follows.

To simplify notation we write D_{i} in place of $D_{i}(G)$. For all $i \geq 1$ the quotient group D_{i} / D_{i+1} can be viewed as a vector space over the field with p elements \mathbb{F}_{p}. Let $L(G)$ denote their direct sum,

$$
L(G)=\bigoplus_{i=1}^{\infty} D_{i} / D_{i+1}
$$

For arbitrary cosets $a D_{i+1} \in D_{i} / D_{i+1}$ and $b D_{j+1} \in D_{j} / D_{j+1}$ we define a bracket product

$$
\begin{equation*}
\left[a D_{i+1} ; b D_{j+1}\right]=[a, b] D_{i+j+1} \tag{5.2}
\end{equation*}
$$

where $[a, b]$ denotes the group commutator $a^{-1} b^{-1} a b$. Lemma 5.1 implies that the product above is well defined in the sense that the right hand side of (5.2) does not depend on the coset representatives a, b. Extending now the product (5.2) linearly to the whole $L(G)$ we give $L(G)$ a structure of Lie algebra over the field \mathbb{F}_{p}. The subalgebra of $L(G)$ generated by D_{1} / D_{2} will be denoted by $L_{p}(G)$.

The following lemma is due to M. Lazard [9, p. 128].
Lemma 5.3 Let $a \in D_{i}-D_{i+1}$ and suppose that a is of order p^{k}. Let $\tilde{a}=a D_{i+1}$ be the corresponding element in $L_{p}(G)$. Then

$$
[L_{p}(G), \underbrace{\tilde{a}, \ldots, \tilde{a}}_{p^{k} \text { times }}]=0 .
$$

Next, we remark that if ϕ is an automorphism of G then ϕ naturally acts on each quotient D_{i} / D_{i+1}. This action induces an automorphism of $L_{p}(G)$. Slightly abusing terminology we will say that ϕ acts on $L_{p}(G)$.

Let G be a periodic group. For any element $x \in G$ of odd order let us use $x^{\frac{1}{2}}$ to denote the element $y \in\langle x\rangle$ such that $y^{2}=x$. If G is a periodic 2^{\prime}-group and ϕ is an involutory automorphism of G then $x\left(x^{-\phi} x\right)^{-\frac{1}{2}} \in C_{G}(\phi)$. Indeed, let $h=x\left(x^{-\phi} x\right)^{-\frac{1}{2}}$. Using that $\left(x^{-\phi} x\right)^{\frac{1}{2}}=x^{-\phi} x\left(x^{-\phi} x\right)^{-\frac{1}{2}}$ we compute

$$
h^{\phi}=x^{\phi}\left(x^{-1} x^{\phi}\right)^{-\frac{1}{2}}=x^{\phi}\left(x^{-\phi} x\right)^{\frac{1}{2}}=x^{\phi} x^{-\phi} x\left(x^{-\phi} x\right)^{-\frac{1}{2}}=x\left(x^{-\phi} x\right)^{-\frac{1}{2}}=h
$$

Lemma 5.4 Let G be a periodic 2^{\prime}-group admitting an involutory automorphism ϕ. Let I be the set of all elements $x \in G$ such that $x^{\phi}=x^{-1}$. Then $G=C_{G}(\phi) I$.

Proof Let x be an arbitrary element of G, and let $h=x\left(x^{-\phi} x\right)^{-\frac{1}{2}}$. We know that $h \in$ $C_{G}(\phi)$. Clearly, $g=\left(x^{-\phi} x\right)^{\frac{1}{2}} \in I$. Since $x=h g$, the lemma follows.

Lemma 5.5 Let G be a periodic 2'-group having an involutory automorphism ϕ. Suppose that N is normal ϕ-invariant subgroup of G. Then

$$
C_{G}(\phi) N / N=C_{G / N}(\phi)
$$

Proof Let $x \in G$ and $x N \in C_{G / N}(A)$. Then $x^{-\phi} x \in N$. Since

$$
x=x\left(x^{-\phi} x\right)^{-\frac{1}{2}}\left(x^{-\phi} x\right)^{\frac{1}{2}} \quad \text { and } \quad x\left(x^{-\phi} x\right)^{-\frac{1}{2}} \in C_{G}(\phi)
$$

we obtain that $x N \in C_{G}(A) N / N$.
Thus, we showed that $C_{G / N}(\phi) \leq C_{G}(\phi) N / N$. The reverse inclusion is obvious.
Lemma 5.6 Let G be a periodic 2'-group having an involutory automorphism ϕ such that $C_{G}(\phi)$ is abelian. Assume that p is a prime. Then also the centralizer of ϕ in $L_{p}(G)$ is abelian.

Proof This is immediate from 5.5 and the definition of $L_{p}(G)$.

Proposition 5.7 Let G be a finitely generated residually finite p-group admitting an involutory automorphism ϕ such that $C_{G}(\phi)$ is abelian. Then $L_{p}(G)$ is nilpotent.

Proof Let $L=L_{p}(G)$. The previous lemma allows us to view ϕ as an automorphism of L such that $C_{L}(\phi)$ is abelian. Set $L_{0}=C_{L}(\phi)$ and $L_{1}=\left\{x \in L ; x^{\phi}=-x\right\}$. Then $L=L_{0}+L_{1}$ and this provides a \mathbb{Z}_{2}-grading of L with L_{0} abelian. By $5.4 G$ is generated by finitely many elements a_{1}, \ldots, a_{s} such that either $a_{i}^{\phi}=a_{i}$ or $a_{i}^{\phi}=a_{i}{ }^{-1}$. Let $\tilde{a}_{1}, \ldots, \tilde{a}_{s}$ be the generators of L corresponding to a_{1}, \ldots, a_{s}. Since the subgroups $\left\langle a_{i}\right\rangle$ are ϕ-invariant, we conclude that $\tilde{a}_{1}, \ldots, \tilde{a}_{s}$ are homogeneous in L. By the Lazard Lemma all commutators in the generators $\tilde{a}_{1}, \ldots, \tilde{a}_{s}$ are ad-nilpotent. So by Theorem $4.4 L$ is nilpotent. The proof is complete.

Theorem 5.8 Let G be a periodic residually finite 2'-group having an involutory automorphism ϕ such that $C_{G}(\phi)$ is abelian. Then G is locally finite.

Proof Suppose first that G is residually nilpotent. In this case G decomposes into direct product of maximal p-subgroups. It suffices to prove that any p-subgroup of G is locally finite. Therefore without any loss of generality we may assume that G is a p-group for a prime p. Next, let X be any finite subset of G. Obviously X is contained in some finitely generated ϕ-invariant subgroup S of G. Proposition 5.7 tells us that $L_{p}(S)$ is nilpotent. Therefore, by the argument of Zelmanov [18, p. 573], S is finite. We derive that any finite subset X of G is contained in a finite subgroup. Therefore G is locally finite.

Now we consider the general case. By 5.5 if Q is an arbitrary ϕ-invariant finite quotient of G then Q admits an involutory automorphism whose centralizer in Q is abelian. A result of Kovács and Wall [8] now yields that the derived group Q^{\prime} is nilpotent. Together with residual finiteness of G this leads us to the conclusion that the derived group of G is residually nilpotent. By the preceding paragraph we obtain that G^{\prime} is locally finite. This implies local finiteness of G. The proof is complete.

References

[1] S. V. Aleshin, Finite automata and the Burnside problem for periodic groups. Math. Notes 11(1972), 199-203.
[2] G. S. Deryabina and A. Yu. Ol'shanskii, Subgroups of quasifinite groups (in Russian). Uspekhi Math. Nauk 41(1986), 169-170.
[3] E. S. Golod, On nil-algebras and residually finite groups. Izv. Akad. Nauk SSSR, Ser. Mat. 28(1964), 273-276.
[4] R. I. Grigorchuk, On the Burnside problem for periodic groups. Funct. Anal. Appl. 14(1980), 53-54.
[5] N. Gupta and S. Sidki, On the Burnside problem for periodic groups. Math. Z. 182(1983), 385-386.
[6] B. Huppert and N. Blackburn, Finite groups II. Springer, Berlin, 1982.
[7] A. I. Kostrikin, Around Burnside (transl. J. Wiegold). Springer, Berlin, 1990.
[8] L. G. Kovács and G. E. Wall, Involutory automorphisms of groups of odd order and their fixed point groups. Nagoya Math. J. 27(1966), 113-120.
[9] M. Lazard, Sur les groupes nilpotents et les anneaux de Lie. Ann. Sci. École Norm. Sup. 71(1954), 101-190.
[10] B. H. Neumann, On the commutativity of addition. J. London Math. Soc. 15(1940), 203-208.
[11] N. R. Rocco and P. Shumyatsky, On periodic groups having almost regular 2-elements. Proc. Edinburgh Math. Soc. 41(1998), 385-391.
[12] P. V. Shumyatsky, Periodic groups with a regular four-group of automorphisms. Soviet Math (Iz. VUZ) (11) 31(1987), 102-107.
[13] Local finiteness of some groups with a regular four-group of automorphisms (in Russian). In: Algebraic systems and their varieties, Sverdlovsk, 1988, 171-180.
[14] , Groups and Lie algebras with a fixed-point-free four-group of automorphisms. Comm. Algebra (12) 24(1996), 3771-3785.
[15] On groups having a four-subgroup with finite centralizer. Quart. J. Math, to appear.
[16] V. P. S̆unkov, On periodic groups with an almost regular involution. Algebra and Logic 11(1972), 260-272.
[17] V. I. Sushchansky, Periodic p-elements of permutations and the general Burnside problem. Dokl. Akad. Nauk SSSR 247(1979), 447-461.
[18] E. Zelmanov, Lie ring methods in the theory of nilpotent groups. In: Groups '93, Galway-St Andrews, London Math. Soc. Lecture Note Ser. 212(1995), 567-586.

Department of Mathematics
University of Brasilia
70.919 Brasilia - DF

Brazil
email: pavel@mat.unb.br

[^0]: Received by the editors April 21, 1997; revised May 19, 1997.
 Research supported by FAPDF and CNPq-Brazil.
 AMS subject classification: 17B70, 20 F50.
 (C)Canadian Mathematical Society 1999.

