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1. Introduction

In this paper we continue to study the distribution properties in residue classes of the
sequence consisting of products of two positive integers bounded by a certain parameter.

For a prime number p, define the set

A = {xy (mod p) : 1 � x, y � N}.

The main problem is to find a value of N , as small as possible, for which any non-zero
residue class modulo p would belong to A. The main conjecture is that one can take N

to be as small as p1/2+o(1).
Vâjâitu and Zaharescu [6] observed that it would completely solve the pair correlation

problem for sequences of fractional parts of the form {αn2} (see [5] for the details) if one
could deal with the case N = [p2/3−ε] for some small ε > 0. However, it is only known
that N can be taken to be of the size O(p3/4) (see [2] and also [1,4]). The exponent 3

4 is
the best known at the time of writing this paper.

It is shown in [1] that for almost all primes p and N = [p1/2(log p)1.087] the set A
contains (1+ o(1))p residue classes modulo p. It is also conjectured that A possesses this
property for any prime p and N = [p1/2+ε]. We remark that one of our results from [3]
says that for N = p5/8+ε the set A contains (1 + o(1))p residue classes modulo p.
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In this paper we will prove a general statement that in a particular case confirms
the validity of the mentioned conjecture from [1] and improves the corresponding result
of [3]. The arguments used in [1] and [3] are based on estimates of multiplicative character
sums. The approach we use here is based on trigonometric sums.

Throughout the text, the letters p and q are used to denote prime numbers, m denotes
a positive integer parameter, S and L are some integers with 0 < L � m. For a given set
Q we use |Q| to denote its cardinality.

Theorem 1.1. Let ∆ = ∆(m) → ∞ as m → ∞. Then the set

{qy (mod m) : 1 � q � m1/2, S + 1 � y � S + ∆m1/2
√

m/φ(m) log m}

contains (1 + O(∆−1))m residue classes modulo m.

In particular we have the following corollary.

Corollary 1.2. Let ∆ = ∆(p) → ∞ as p → ∞. Then the set

{qy (mod p) : q � p1/2, 1 � y � ∆p1/2 log p}

contains (1 + O(∆−1))p residue classes modulo p.

Since there are O(p1/2(log p)−1) primes not exceeding p1/2, we see that the set

{qy : q � p1/2, S + 1 � y � S + ∆p1/2 log p}

contains only O(p∆) integers. This shows that the ranges of variables in Theorem 1.1
and Corollary 1.2 are sharp.

To prove Theorem 1.1, we study the congruence

v1(x1 + y1) ≡ v2(x2 + y2) (mod m),

where v1, v2 belong to the set of all primes not exceeding m1/2 and not dividing m, and
xi, yi run through integers of special intervals. Now we denote by V any subset of prime
numbers not exceeding m1/2 and not dividing m. Let J be the number of solutions of
the congruence

v1y1 ≡ v2y2 (mod m), v1, v2 ∈ V, S + 1 � y1, y2 � S + L.

Theorem 1.3. The following asymptotic formula holds:

J =
|V|(|V| − 1)

m
L2 + |V|L + O

(
m2 log2 m

φ(m)

)
,

where φ(m) is the Euler function.

As we have mentioned, our argument is based on trigonometric sums. In particular,
we establish a result on a special trigonometric sum that can be useful in applications to
other additive congruences.
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Theorem 1.4. Let P be any subset of prime numbers not exceeding p1/2. Then, for
any complex coefficients αx, βy, the formula

p−1∑
a=1

∣∣∣∣ ∑
q∈P

p∑
x=1

p∑
y=1

αxβye2πiaq(x+y)/p

∣∣∣∣
2

= |P|
p−1∑
a=1

∣∣∣∣
p∑

x=1

p∑
y=1

αxβye2πia(x+y)/p

∣∣∣∣
2

+ θp2I1I2

holds, where |θ| � 1 and

I1 =
p∑

x=1

|αx|2, I2 =
p∑

y=1

|βy|2.

From Theorem 1.4 one derives the following statement.

Corollary 1.5. Let X ⊂ Zp, Y ⊂ Zp, and let P be any subset of prime numbers not
exceeding p1/2. If J ′ denotes the number of solutions of the congruence

q1(x1 + y1) ≡ q2(x2 + y2) (mod p), q1, q2 ∈ P, x1, x2 ∈ X , y1, y2 ∈ Y,

then

J ′ =
|P|(|P| − 1)

p
|X |2|Y|2 + |P|I + θp|X | |Y|,

where |θ| � 1 and I denotes the number of solutions of the congruence

x1 + y1 ≡ x2 + y2 (mod p), x1, x2 ∈ X , y1, y2 ∈ Y.

Since I � |X |3/2|Y|3/2, we see that if

|P|2|X | |Y| = p2∆, ∆ = ∆(p) → ∞ as p → ∞,

then

J ′ =
|P|2|X |2|Y|2

p
(1 + O(∆−1/2)).

In particular, the set

{q(x + y) (mod p), q ∈ P, x ∈ X , y ∈ Y}

contains (1 + O(∆−1/2))p residue classes modulo p.
Corollary 1.5 also follows from the following statement.

Theorem 1.6. Let X ⊂ Zp, Y ⊂ Zp, and let Z be any subset of positive integers not
exceeding p1/2. If J ′′ denotes the number of solutions of the congruence

z1(x1 + y1) ≡ z2(x2 + y2) (mod p), z1, z2 ∈ Z, x1, x2 ∈ X , y1, y2 ∈ Y,
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subject to the additional condition (z1, z2) = 1, then

J ′′ =
|X |2|Y|2TZ

p
+ θp|X | |Y|,

where |θ| � 1 and TZ is the number of pairs z1, z2 ∈ Z with (z1, z2) = 1.

We will also prove the following result on the ratio of intervals modulo a prime, which
improves one of the results of [1].

Theorem 1.7. Let ∆ = ∆(p) → ∞ as p → ∞. Then the set

{xy−1 (mod p) : N + 1 � x � N + ∆p1/2, S + 1 � y � S + ∆p1/2}

contains (1 + O(∆−2))p residue classes modulo p.

Note, however, that when N = S = 0 and ∆ < 1
2p1/2 the set described in Theorem 1.7

misses more than cp1/2∆−1 residue classes modulo p for some positive constant c (see [1]).
The rest of the paper is organized as follows. In § 2 we prove Theorem 1.3. In § 3 we

combine the method of § 2 with that described in [2] and establish Theorem 1.1. The
rest of the results are proved in §§ 4–6.

In what follows, we use the abbreviation

ek(z) = e2πiz/k.

2. Proof of Theorem 1.3

Recall that J denotes the number of solutions to the congruence

v1y1 ≡ v2y2 (mod m), v1, v2 ∈ V, S + 1 � y1, y2 � S + L.

We express J in terms of trigonometric sums. Since

v1v
−1
2 y1 ≡ y2 (mod m),

we have

J =
1
m

m−1∑
a=0

∑
v1∈V

∑
v2∈V

∑
y1∈I

∑
y2∈I

em(a(v1v
−1
2 y1 − y2)),

where I denotes the interval [S + 1, S + L]. Picking up the term corresponding to a = 0,
we obtain

J =
|V|2L2

m
+

1
m

m−1∑
a=1

∑
v1∈V

∑
v2∈V

∑
y1∈I

∑
y2∈I

em(a(v1v
−1
2 y1 − y2)).
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Furthermore,

1
m

m−1∑
a=1

∑
v1∈V

∑
v2∈V

∑
y1∈I

∑
y2∈I

em(a(v1v
−1
2 y1 − y2))

=
1
m

m−1∑
a=1

∑
v∈V

∑
y1∈I

∑
y2∈I

em(a(y1 − y2))

+
1
m

m−1∑
a=1

∑
v1∈V

∑
v2∈V
v2 �=v1

∑
y1∈I

∑
y2∈I

em(a(v1v
−1
2 y1 − y2))

= |V|L − |V|L2

m
+

1
m

m−1∑
a=1

∑
v1∈V

∑
v2∈V
v2 �=v1

∑
y1∈I

∑
y2∈I

em(a(v1v
−1
2 y1 − y2)).

Therefore,

J =
|V|2L2

m
+ |V|L − |V|L2

m
+

θ1

m

m−1∑
a=1

∑
v1∈V

∑
v2∈V
v2 �=v1

∣∣∣∣ ∑
y1∈I

∑
y2∈I

em(a(v1v
−1
2 y1 − y2))

∣∣∣∣.
Here and everywhere below, θj denotes a function with |θj | � 1.

For a given n, let r(n) := rV(n) be the number of solutions of the congruence

v1v
−1
2 ≡ n (mod m), v1, v2 ∈ V, v1 �= v2.

In particular, r(1) = 0, and if (n, m) > 1, then r(n) = 0. Therefore, the above formula
takes the form

J =
|V|2L2

m
+ |V|L − |V|L2

m
+

θ1

m

m−1∑
a=1

∑
1�n�m
(n,m)=1

r(n)
∣∣∣∣ ∑

y1∈I

∑
y2∈I

em(a(ny1 − y2))
∣∣∣∣.

It is important to note that v2 � m for any v ∈ V. For this reason, we have r(n) � 1 for
any n, 1 � n � m. Indeed, if

v1v
−1
2 ≡ v3v

−1
4 (mod m)

for some v1, v2, v3, v4 ∈ V and if v1 �= v2, then

v1v4 ≡ v3v2 (mod m).

Since v2 � m for any v ∈ V, we derive that v1v4 = v3v2. The elements of V are prime
numbers and v1 �= v2. Hence, v1 = v3, v2 = v4.

Thus,

J =
|V|2L2

m
+ |V|L − |V|L2

m
+

θ2

m

m−1∑
a=1

∑
1�n�m
(n,m)=1

∣∣∣∣ ∑
y1∈I

∑
y2∈I

em(a(ny1 − y2))
∣∣∣∣. (2.1)
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It is now useful to recall the bound∣∣∣∣ ∑
y∈I

em(by)
∣∣∣∣ � 1

|sin(πb/m)| ,

which, applied to (2.1), yields

J =
|V|2L2

m
+ |V|L − |V|L2

m
+

θ3

m

m−1∑
a=1

∑
1�n�m
(n,m)=1

1
|sin(πan/m)|

1
|sin(πa/m)| . (2.2)

For each divisor s | m we collect together the values of a with (a, m) = s. Then

m−1∑
a=1

∑
1�n�m
(n,m)=1

1
|sin(πan/m)|

1
|sin(πa/m)|

=
∑
s|m
s<m

∑
1�a�m−1
(a,m)=s

∑
1�n�m
(n,m)=1

1
|sin(πan/m)|

1
|sin(πa/m)|

�
∑
s|m
s<m

s
∑

1�b�m/s−1
(b,m/s)=1

∑
1�n�m/s
(n,m/s)=1

1
|sin(πbn/(m/s))|

1
|sin(πb/(m/s))|

�
∑
s|m
s<m

s

( ∑
1�b�m/s
(b,m/s)=1

1
|sin(πb/(m/s))|

)2

�
∑
s|m
s<m

s

( ∑
1�b�m/2s

m

bs

)2

� m3 log2 m

φ(m)
,

where we have used the inequality

∑
s|m

1
s

�
∏
p|m

1
1 − p−1 =

m

φ(m)
.

Inserting this bound into (2.2), we obtain the required estimate.

3. Proof of Theorem 1.1

Without loss of generality, we may assume that

∆m1/2
√

m/φ(m) log m < m,

as otherwise the statement of Theorem 1.1 is trivial.
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We take V to be the set of all prime numbers coprime to m and not exceeding m1/2.
Let J1 denote the number of solutions to the congruence

v1(y1 + z1) ≡ v2(y2 + z2) (mod m)

subject to the conditions

v1, v2 ∈ V, y1, y2, z1, z2 ∈ I,

where I denotes the set of integers x, [S/2] + 1 � x � [S/2] + L, and

L =
[
∆m1/2

√
m/φ(m) log m

2

]
.

It is obvious that

S + 1 � yi + zi � S + ∆m1/2
√

m/φ(m) log m, i = 1, 2.

Following the lines of the proof of Theorem 1.3, we express J1 in terms of trigonometric
sums. Since

v1v
−1
2 (y1 + z1) ≡ y2 + z2 (mod m),

we have

J1 =
1
m

m−1∑
a=0

∑
v1∈V

∑
v2∈V

∑
y1,z1∈I

∑
y2,z2∈I

em(a(v1v
−1
2 (y1 + z1) − y2 − z2)).

Picking up the term corresponding to a = 0, we obtain

J1 =
|V|2L4

m
+

1
m

m−1∑
a=1

∑
v1∈V

∑
v2∈V

∑
y1,z1∈I

∑
y2,z2∈I

em(a(v1v
−1
2 (y1 + z1) − y2 − z2)).

Since the number of solutions of the congruence

y1 + z1 ≡ y2 + z2 (mod m), y1, z1, y2, z2 ∈ I,

is O(L3), we obtain

1
m

∣∣∣∣
m−1∑
a=1

∑
v∈V

∑
y1,z1∈I

∑
y2,z2∈I

em(a(y1 + z1 − y2 − z2))
∣∣∣∣ � |V|

m

m−1∑
a=0

∣∣∣∣ ∑
y∈I

em(ay1)
∣∣∣∣
4

� |V|L3.

Therefore,

1
m

m−1∑
a=1

∑
v1∈V

∑
v2∈V

∑
y1,z1∈I

∑
y2,z2∈I

em(a(v1v
−1
2 (y1 + z1) − y2 − z2))

= O(|V|L3) +
1
m

m−1∑
a=1

∑
v1∈V

∑
v2∈V
v2 �=v1

∑
y1∈I

∑
y2∈I

em(a(v1v
−1
2 (y1 + z1) − y2 − z2)).
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Using exactly the same argument that we used in the proof of Theorem 1.3, we derive
the formula

J1 =
|V|2L4

m
+ O(|V|L3) + O(R),

where

R =
1
m

m−1∑
a=1

∑
1�n�m
(n,m)=1

∣∣∣∣ ∑
y1,z1∈I

∑
y2,z2∈I

em(a(n(y1 + z1) − y2 − z2))
∣∣∣∣.

Next, introducing s = (a, m), we obtain

R =
1
m

∑
s|m
s<m

∑
b�m/s−1
(b,m/s)=1

∑
1�n�m
(n,m)=1

∣∣∣∣ ∑
y1,z1∈I

∑
y2,z2∈I

em/s(b(n(y1 + z1) − y2 − z2))
∣∣∣∣

� 1
m

∑
s|m
s<m

s
∑

b�m/s−1
(b,m/s)=1

∑
1�n�m/s
(n,m/s)=1

∣∣∣∣ ∑
y1,z1∈I

∑
y2,z2∈I

em/s(bn(y1 + z1) − b(y2 + z2))
∣∣∣∣

� 1
m

∑
s|m
s<m

s

( ∑
1�n�m/s
(n,m/s)=1

∣∣∣∣ ∑
y1,z1∈I

em/s(n(y1 + z1))
∣∣∣∣
)2

=
1
m

∑
s|m
s<m

s

( ∑
1�n�m/s
(n,m/s)=1

∣∣∣∣ ∑
y∈I

em/s(ny)
∣∣∣∣
2 )2

.

Therefore,

J1 =
|V|2L4

m
+ O(|V|L3) + O(R1) + O(R2), (3.1)

where

R1 =
1
m

∑
s|m

s<m/L

s

( ∑
1�n�m/s
(n,m/s)=1

∣∣∣∣ ∑
y∈I

em/s(ny)
∣∣∣∣
2 )2

, (3.2)

R2 =
1
m

∑
s|m

m/L�s<m

s

( ∑
1�n�m/s
(n,m/s)=1

∣∣∣∣ ∑
y∈I

em/s(ny)
∣∣∣∣
2 )2

. (3.3)

If s < m/L, then m/s > L and, therefore, the congruence

y1 ≡ y2 (mod m/s), y1, y2 ∈ I,

has L solutions. Hence,

∑
1�n�m/s

∣∣∣∣ ∑
y∈I

em/s(ny)
∣∣∣∣
2

=
mL

s
,
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whence, using (3.2),

R1 � 1
m

∑
s|m

s<m/L

s

( ∑
1�n�m/s

∣∣∣∣ ∑
y∈I

em/s(ny)
∣∣∣∣
2 )2

= mL2
∑
s|m

s<m/L

s−1

� mL2
∑
s|m

s−1

� m2L2

φ(m)
.

Inserting this bound into (3.1), we deduce that

J =
|V|2L4

m
+ O(|V|L3) + O(m2L2/φ(m)) + O(R2). (3.4)

We now proceed to estimate R2. Note that in (3.3) we have (n, m/s) = 1. Therefore,
for any integer K,

K+m/s∑
y=K+1

em/s(ny) = 0,

whence we deduce that there exist integers A and B with 0 < B � m/s such that∑
y∈I

em/s(ny) =
∑

A<y�A+B

em/s(ny).

Hence ∑
1�n�m/s
(n,m/s)=1

∣∣∣∣ ∑
y∈I

em/s(ny)
∣∣∣∣
2

=
∑

1�n�m/s
(n,m/s)=1

∣∣∣∣ ∑
A<y�A+B

em/s(ny)
∣∣∣∣
2

�
m/s∑
n=1

∣∣∣∣ ∑
A<y�A+B

em/s(ny)
∣∣∣∣
2

= mB/s � m2/s2.

Taking this into account, from (3.3) we deduce that

R2 � 1
m

∑
s�m/L

s(m4/s4) � mL2.

Therefore, in view of (3.4), we obtain the asymptotic formula

J1 =
|V|2L4

m
+ O(|V|L3) + O(m2L2/φ(m))

=
|V|2L4

m

(
1 + O

(
m

|V|L +
m3

φ(m)|V|2L2

))
.
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Recalling that |V| � m1/2/ log m and

L =
[
∆m1/2

√
m/φ(m) log m

2

]
,

we arrive at the formula

J1 =
|V|2L4

m
(1 + O(∆−1)).

Next, define

H = {q(y + z) (mod m), q ∈ V, [S/2] + 1 � y, z � [S/2] + L}.

Obviously, S + 1 � y + z � S + ∆m1/2
√

m/φ(m) log m. For a given h ∈ H, by I(h) we
denote the number of solutions of the congruence

q(y + z) ≡ h (mod m), q ∈ V, [S/2] + 1 � y, z � [S/2] + L.

Then

J1 =
∑
h∈H

I2(h) � 1
|H|

( ∑
h∈H

I(h)
)2

=
1

|H| |V|2L4.

Therefore,

|H| � |V|2L4

J1
=

m

1 + O(∆−1)
= (1 + O(∆−1))m.

The result now follows in view of |H| � m.

4. Proof of Theorem 1.4

Set

S =
p−1∑
a=1

∣∣∣∣ ∑
q∈P

p∑
x=1

p∑
y=1

αxβyep(aq(x + y))
∣∣∣∣
2

.

In the identity
p−1∑
a=1

ep(au) =

{
−1, if u �≡ 0 (mod p),

p − 1, if u ≡ 0 (mod p),

we successively take u = q1(x1 + y1) − q2(x2 + y2) and then

u = q1q
−1
2 (x1 + y1) − (x2 + y2),

where q−1
2 is defined from q2q

−1
2 ≡ 1 (mod p), and obtain

p−1∑
a=1

ep(a(q1(x1 + y1) − q2(x2 + y2))) =
p−1∑
a=1

ep(a(q1q
−1
2 (x1 + y1) − (x2 + y2))).

Multiplying both sides by αx1 ᾱx2βy1 β̄y2 , performing the summation over

q1, q2 ∈ P, 1 � x1, x2, y1, y2 � p,
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and then changing the order of summation, we obtain

S =
p−1∑
a=1

∑
q1∈P
q2∈P

∑
x1∈Zp

x2∈Zp

∑
y1∈Zp

y2∈Zp

αx1 ᾱx2βy1 β̄y2ep(aq1q
−1
2 (x1 + y1) − a(x2 + y2)),

where Zp = {1, 2 . . . , p}. The contribution to S which comes from the case q1 = q2 is
equal to

|P|
p−1∑
a=1

∑
x1∈Zp

x2∈Zp

∑
y1∈Zp

y2∈Zp

αx1 ᾱx2βy1 β̄y2ep(a(x1 + y1 − x2 − y2))

= |P|
p−1∑
a=1

∣∣∣∣
p∑

x=1

p∑
y=1

αxβyep(a(x + y))
∣∣∣∣
2

.

Therefore,

S = |P|
p−1∑
a=1

∣∣∣∣
p∑

x=1

p∑
y=1

αxβyep(a(x + y))
∣∣∣∣
2

+ S1,

where

S1 =
p−1∑
a=1

∑
q1∈P
q2∈P
q1 �=q2

∑
x1∈Zp

x2∈Zp

∑
y1∈Zp

y2∈Zp

αx1 ᾱx2βy1 β̄y2ep(aq1q
−1
2 (x1 + y1) − a(x2 + y2)).

Hence, if we prove that |S1| � p2I1I2, then we are done. To this end, we observe that

|S1| �
p−1∑
a=1

p−1∑
n=1

r(n)
∣∣∣∣ ∑

x1∈Zp

x2∈Zp

∑
y1∈Zp

y2∈Zp

αx1 ᾱx2βy1 β̄y2ep(an(x1 + y1) − a(x2 + y2))
∣∣∣∣,

where r(n) := rP(n) denotes the number of solutions of the representation

q1q
−1
2 ≡ n (mod p), q1, q2 ∈ P, q1 �= q2.

From the definition of the set P we derive that r(n) � 1. Hence,

|S1| �
p−1∑
a=1

p−1∑
n=1

∣∣∣∣ ∑
x1∈Zp

x2∈Zp

∑
y1∈Zp

y2∈Zp

αx1 ᾱx2βy1 β̄y2ep(an(x1 + y1) − a(x2 + y2))
∣∣∣∣.

When n runs through the reduced residue system modulo p, an runs through the same
system for any fixed a �≡ 0 (mod p). Therefore,

|S1| �
( p−1∑

a=1

∣∣∣∣
p∑

x=1

p∑
y=1

αxβyep(a(x + y))
∣∣∣∣
)2

=
( p−1∑

a=1

∣∣∣∣
p∑

x=1

αxep(ax)
∣∣∣∣
∣∣∣∣

p∑
y=1

βyep(ay)
∣∣∣∣
)2

.
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Applying the Cauchy inequality, we obtain

|S1| �
( p−1∑

a=0

∣∣∣∣
p∑

x=1

αxep(ax)
∣∣∣∣
2 )( p−1∑

a=0

∣∣∣∣
p∑

y=1

βyep(ay)
∣∣∣∣
2 )

= p2I1I2,

which concludes our proof of Theorem 1.4.

5. Proof of Theorem 1.6

The proof proceeds along exactly the same lines as that of Theorem 1.4: by remarking
that, for any given residue class n, the congruence

z1z
−1
2 ≡ n (mod p), z1, z2 ∈ Z, (z1, z2) = 1,

has at most one solution.

6. Proof of Theorem 1.7

Without loss of generality we may suppose that

0 < N < N + ∆p1/2 < p, 0 < M < M + ∆p1/2 < p.

Define X = [∆p1/2/2], N1 = [N/2], S1 = [S/2], and let H∗ be the set of all residue
classes of the form (x + t)(y + z)−1 (mod p), where

N1 + 1 � x, t � N1 + X, S1 + 1 � y, z � S1 + X.

Obviously,

N + 1 � x + t � N + ∆p1/2, S + 1 � y + z � S + ∆p1/2.

Next, let
H∗

1 = {h (mod p) : h �∈ H∗, h �≡ 0 (mod p)}.

Then the congruence
x + t − (y + z)h ≡ 0 (mod p)

has no solutions in variables h, x, t, y, z subject to the conditions

h ∈ H∗
1, N1 + 1 � x, t � N1 + X, S1 + 1 � y, z � S1 + X.

Therefore,
p−1∑
a=0

∑
h∈H∗

1

∑
x,t∈I1

∑
y,z∈I2

ep(a(x + t − h(y + z))) = 0,

where I1 and I2 denote the intervals [N1 + 1, N1 + X] and [S1 + 1, S1 + X], respectively.
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Separating the term corresponding to a = 0 we deduce that

|H∗
1|X4 �

p−1∑
a=1

∣∣∣∣ ∑
x,t∈I1

ep(a(x + t))
∣∣∣∣
∣∣∣∣ ∑

y,z∈I2

∑
h∈H∗

1

ep(ah(y + z))
∣∣∣∣.

On the other hand, for (a, p) = 1, we have∣∣∣∣ ∑
y,z∈I2

∑
h∈H∗

1

ep(ah(y + z))
∣∣∣∣ �

∑
h∈H∗

1

∣∣∣∣ ∑
y,z∈I2

ep(ah(y + z))
∣∣∣∣

�
p−1∑
h=1

∣∣∣∣ ∑
y,z∈I2

ep(ah(y + z))
∣∣∣∣

�
p−1∑
h=0

∣∣∣∣ ∑
y,z∈I2

ep(h(y + z))
∣∣∣∣

= pX,

and, similarly,
p−1∑
a=1

∣∣∣∣ ∑
x,t∈I1

ep(a(x + t))
∣∣∣∣ � pX.

Hence,
|H∗

1|X4 � p2X2,

whence

|H∗
1| � p2

X2 � p∆−2.

Since |H| = p − 1 − |H∗
1|, the result follows.
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