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Abstract
We answer an open problem posed by Iarrobino, Hilbert scheme of points: Overview of last ten years. Proceedings
of Symposia in Pure Mathematics, 46 (American Mathematical Society, Providence, RI, 1987), 297–320: Is there
a component of the punctual Hilbert scheme [Grothendieck, Techniques de construction et théorèmes d’existence
en géométrie algébrique. IV. Les schémas de Hilbert’, in Séminaire Bourbaki, 6 (Societe Mathematique de France,
Paris, 1995), 221, 249–276] Hilb𝑑 (𝒪A𝑛 , 𝑝) with dimension less than (𝑛 − 1) (𝑑 − 1)? For each 𝑛 ≥ 4, we construct
an infinite class of elementary components in Hilb𝑑 (A𝑛) producing such examples. Our techniques also allow us
to construct an explicit example of a local Artinian ring [Iarrobino and Kanev, Power sums, Gorenstein algebras,
and determinantal loci (Springer-Verlag, Berlin, 1999), 221–226] of the form k[𝑥, 𝑦, 𝑧, 𝑤]/𝐼 with trivial negative
tangents, vanishing nonnegative obstruction space, and socle-dimension 2.
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1. Introduction

Hilbert schemes of points are moduli spaces of fundamental importance in algebraic geometry, com-
mutative algebra, and algebraic combinatorics. Since their construction by Grothendieck [14], they
have seen broad-ranging applications, from the McKay correspondence [6, 28] to Haiman’s proof of
the Macdonald positivity conjecture [17]. In 1968, Fogarty [11] proved the irreducibility of the Hilbert
scheme of points on a smooth surface. A few years later, Iarrobino [22, 23] and Iarrobino–Emsalem
[26] showed that, in contrast, for 𝑛 ≥ 3 and d sufficiently large, the Hilbert scheme of points Hilb𝑑 (A𝑛)
is reducible. Since then, it has remained a notoriously difficult problem to describe the structure of the
irreducible components of Hilb𝑑 (A𝑛).

Only a handful of explicit constructions of irreducible components exist in the literature, many of
these constructions involving clever new insights [4, 8, 10, 20, 21, 24, 27, 29, 30, 34]. Even less is known
about elementary components, namely, irreducible components parametrizing subschemes supported
at a point. The study of all irreducible components may be reduced to that of elementary ones due to
the fact that, generically, every component is étale-locally the product of elementary ones. Nearly all
elementary components constructed thus far have dimensions larger than that of the main component
of Hilb𝑑 (A𝑛), namely, 𝑛𝑑. The only elementary components in the literature with dimensions shown to
be less than 𝑛𝑑 are examples with Hilbert functions (1, 4, 3) and (1, 6, 6, 1) due to Iarrobino–Emsalem
[26], (1, 5, 3) and (1, 5, 4) due to Shafarevich [34], (1, 5, 3, 4), (1, 5, 3, 4, 5, 6), and (1, 5, 5, 7) due to
Huibregtse [20, 21], (1, 4, 10, 16, 17, 8) due to Jelisiejew [29], and finally, one infinite family also
constructed by Jelisiejew [29, Theorem 1.4].

In the case of the punctual Hilbert scheme Hilb𝑑 (𝒪A𝑛 , 𝑝) at a point p, there is a sharp lower bound
on the dimensions of its smoothable components. Specifically, the smoothable locus U of Hilb𝑑 (A𝑛)
determines a smoothable locus 𝑈𝑝 = 𝑈 ∩ Hilb𝑑 (𝒪A𝑛 , 𝑝) in the punctual Hilbert scheme. Here, 𝑈𝑝

can be reducible, unlike the case of Hilb𝑑 (A𝑛). Gaffney proved [12, Theorem 3.5] that all irreducible
components of 𝑈𝑝 have dimension at least (𝑛− 1) (𝑑 − 1). Moreover, Iarrobino identified an irreducible
component realizing this lower bound, consisting of the curvilinear points. It has remained an open
problem for over 30 years to determine whether Gaffney’s bound extends to all irreducible components
of Hilb𝑑 (𝒪A𝑛 , 𝑝):

Question 1.1 [25, p. 310], cf. [26, p. 186]. Let 𝑝 ∈ A𝑛 be a point. Does there exist an irreducible
component of Hilb𝑑 (𝒪A𝑛 , 𝑝) of dimension less than (𝑛 − 1) (𝑑 − 1)?

The goal of this paper is to answer Question 1.1. We produce an infinite family of elementary
components in Hilb𝑑 (A4) with dimension less than 3(𝑑 − 1), which turns out to generalize the original
example presented in [26], making key use of Jelisiejew’s criterion [29]. Moreover, the examples we
produce are flexible in the sense that our elementary components 𝑍 ⊂ Hilb𝑑 (A4) also frequently yield
new components 𝑍𝑖 ⊂ Hilb𝑑−𝑖 (A𝑛) for small i (see Theorem 1.5).

We work throughout over an algebraically closed field k of characteristic 0.

Theorem 1.2. Let

𝑑 =
1
2
𝑎𝑏(𝑎 + 𝑏)

with 𝑎, 𝑏 ∈ Z and 𝑎, 𝑏 ≥ 2. If (𝑎, 𝑏) ≠ (2, 2), then Hilb𝑑 (𝒪A4 , 𝑝) contains an irreducible component of
dimension less than 3(𝑑 − 1).

Specifically, we prove Theorem 1.2 by showing:

Theorem 1.3. Every ideal in 𝑆 := k[𝑥, 𝑦, 𝑧, 𝑤] of the form

𝐼 := 〈𝑥, 𝑦〉𝑛1 + 〈𝑧, 𝑤〉𝑛2 + 〈𝑥𝑧 − 𝑦𝑤〉,
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for 𝑛1, 𝑛2 ≥ 2, determines a smooth point [𝐼] of the Hilbert scheme of points Hilb𝑑 (A4), where

𝑑 = 𝑑 (𝑛1, 𝑛2) :=
𝑛1𝑛2 (𝑛1 + 𝑛2)

2
.

The unique component containing [𝐼] is elementary of dimension

𝐷 =
1
3
𝑚3 + 𝑚𝑀2 + 𝑚2 + 2𝑚𝑀 + 𝑀2 −

1
3
𝑚 − 1,

where 𝑚 = min(𝑛1, 𝑛2) and 𝑀 = max(𝑛1, 𝑛2). This dimension is less than 4𝑑 for all 𝑛1, 𝑛2 ≥ 2, and
less than 3(𝑑 − 1) for (𝑚, 𝑀) ∉ {(2, 2), (2, 3), (2, 4)}.

Using our ideals from Theorem 1.3, one easily bootstraps to Hilb𝑑 (A𝑛) for 𝑛 ≥ 4, thereby resolving
Question 1.1 for all such n:

Corollary 1.4. Let S, I, 𝑛1, 𝑛2, d, and D be as in Theorem 1.3. Let 𝑆 = 𝑆[𝑢1, 𝑢2 . . . , 𝑢𝑟 ] be the polynomial
ring in 𝑛 = 4 + 𝑟 variables, and let 𝐼̃ = 𝐼 + 〈𝑢1, 𝑢2, . . . , 𝑢𝑟 〉. Then [ 𝐼̃] ∈ Hilb𝑑 (A𝑛) is a smooth point.
The unique component containing [ 𝐼̃] is elementary of dimension 𝐷 + 𝑟𝑑.

Moreover, for 𝑛1 and 𝑛2 sufficiently large, this elementary component has dimension strictly less than
(𝑛 − 1) (𝑑 − 1) (see Remark 8.1 for specific bounds needed on 𝑛1 and 𝑛2, e.g., 𝑛1 = 2 and 𝑛2 > 𝑟

2 + 4
suffices).

Additionally, by enlarging I by socle elements from 𝑆/𝐼, we obtain secondary families of elemen-
tary components arising from our primary components constructed in Theorem 1.3. This behavior
of elementary components is not uncommon and yet was previously unobserved (see the last para-
graph of subsection 1.1 for further details). Specifically, for any I as in Theorem 1.3 and any nonzero
𝑠 ∈ Soc(𝑆/𝐼), we prove that 𝐼 + 〈𝑠〉 also defines a smooth point of Hilb𝑑−1 (A4) belonging to a unique
elementary component. We show that one may even iterate this construction to produce smooth points
𝐼 + 〈𝑠1, 𝑠2, . . . , 𝑠𝑟 〉 on unique elementary components provided that a particular constraint holds which
relates socles to bidegrees. Notice that the ideals in Theorem 1.3 are bigraded, where the bidegree of a
monomial 𝑥𝑢1 𝑦𝑢2 𝑧𝑢3𝑤𝑢4 ∈ 𝑆 is defined here to be (𝑢1 + 𝑢2, 𝑢3 + 𝑢4) ∈ N

2. Then we have:

Theorem 1.5. Let I be as in Theorem 1.3 with 𝑛1, 𝑛2 ≥ 3. Let 𝑠1, 𝑠2, . . . , 𝑠𝑟 ∈ 𝑆 define elements in
Soc(𝑆/𝐼), and let

𝐽 = 𝐼 + 〈𝑠1, . . . , 𝑠𝑟 〉

and 𝐵 = 𝑆/𝐽. If either

(i) 𝑟 = 1, or
(ii) Soc 𝐵 = 𝐵 (𝑛1−1,𝑛2−1) ,

then [𝐽] is a smooth point of Hilb𝑑−𝑟 (A4), belonging to a unique elementary component.

Remark 1.6. The proof of Theorem 1.5 shows that J has trivial negative tangents, namely, that
𝑇1 (𝐵/k, 𝐵)<0 = 0, as well as vanishing nonnegative obstruction space, that is, 𝑇2 (𝐵/k, 𝐵)≥0 = 0
(see subsection 2.2 for the definitions of the 𝑇 𝑖-modules).

Let us briefly discuss some further applications of our techniques. First, consider the following
folklore question, an affirmative answer to which would distinguish cactus and secant varieties [5,
Proposition 7.4] (see also [3], [13]).
Question 1.7. Does there exist a Gorenstein local Artinian algebra of the form k[𝑥, 𝑦, 𝑧, 𝑤]/𝐼 with
trivial negative tangents?

Theorem 1.5 and Remark 1.6 show that

𝐼 = 〈𝑥, 𝑦〉3 + 〈𝑧, 𝑤〉3 + 〈𝑥𝑧 − 𝑦𝑤, 𝑥2𝑧2, 𝑥2𝑤2, 𝑦2𝑧2〉 (1)
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has trivial negative tangents and vanishing nonnegative obstruction space; while 𝑆/𝐼 is not Gorenstein
(socle-dimension 1), it does have socle-dimension 2. It is possible that variants of the ideals considered
in Theorem 1.5 may yield an answer to Question 1.7 (see Example 8.6 for further details and Remark 8.7
for similar examples).

It is also interesting to note that our techniques yield examples of Hilbert schemes with at least two
elementary components.1 Theorem 1.3 shows, for instance, that the ideal 〈𝑥, 𝑦〉2 + 〈𝑧, 𝑤〉4 + 〈𝑥𝑧 − 𝑦𝑤〉
defines a smooth point of an elementary component of Hilb24 (A4), while Theorem 1.5 shows that the
ideal in (1) also defines a smooth point on an elementary component of Hilb24(A4); an explicit check
shows that the tangent space dimensions at these two points are different (see Examples 8.3 and 8.4).

1.1. Technique of proof and comparison with [29]

On the face of it, our infinite family of examples looks similar to the one given by Jelisiejew in [29].
However, our examples differ in several significant ways. The first notable difference is that, although we
both produce infinite families of smooth points on elementary components of Hilb𝑑 (A4), Jelisiejew’s
examples occur in much sparser degrees: the first few degrees in his examples are 𝑑 = 8, 35, 99, 224, . . . ,
whereas our first few examples occur in degrees 𝑑 = 8, 15, 24, 25, 26, 27, 35, 39, 40, 41, 42, 48, 56,
57, 58, 59, 60 . . . (note our algebra of degree 35 differs from the one in [29], see Example 8.2.).

Second, the algebras 𝐴 = 𝑆/𝐼 that we produce have vanishing nonnegative obstructions
𝑇2 (𝐴/k, 𝐴)≥0 = 0, whereas Jelisiejew’s examples do not, for example, when 𝑠 =

∑
𝑖 (𝑥𝑧)

𝑖 (𝑦𝑤)3−𝑖 ,
his algebra 𝑅(4) has nonvanishing 𝑇2 in degree 0. Showing the vanishing of 𝑇2

≥0 is the key step in our
proof that [𝐼] defines a smooth point of the Hilbert scheme.

Third, a highly important distinction between our work and [29] involves our techniques of proof. In
order to understand this distinction, let us briefly describe Jelisiejew’s proof. In showing trivial negative
tangents and smoothness, he reduces the number of explicit calculations by considering a Białynicki-
Birula decomposition of the flag Hilbert scheme, which is a moduli space parametrizing pairs of ideals
𝐼 ⊃ 𝑀 in S. To compare this decomposition of the flag Hilbert scheme with Hilb+𝑝𝑡𝑠 (A4), and to produce
useful dimension counts, his approach requires showing surjectivity of graded pieces of certain maps
𝜕, 𝜓 (see the commutative diagram [29, Diagram 2.1]). Specifically, Jelisiejew uses surjectivity of 𝜕≥0
in [29, Corollary 4.13] to prove smoothness and surjectivity of 𝜓<0 in the proof of [29, Theorem 1.4] to
show trivial negative tangents.

We emphasize that Jelisiejew’s flag Hilbert scheme techniques do not apply to our examples. Indeed,
we prove in Proposition 9.1 that for our examples, 𝜓<0 is never surjective; furthermore, if min(𝑛1, 𝑛2) ≥
4, then 𝜕≥0 is also never surjective. As a result, it is not possible to prove smoothness of [𝐼] using the
flag Hilbert scheme as in [29, Corollary 4.13], and not possible to show trivial negative tangents by a
dimension count as in [29, Proof of Theorem 1.4]. In fact, one can see immediately that the condition used
to ensure 𝜕≥0 is surjective described in [29, Remark 4.15] is not true for our examples, as 𝑞 = 𝑥𝑧−𝑦𝑤 is of
low degree. Hence, our proof relies on explicit computations with the cotangent complex in order to prove
trivial negative tangents (Proposition 3.1) and vanishing nonnegative obstructions (Proposition 4.1).

Lastly, although the examples constructed in Theorem 1.3 are the primary focus of our paper, one
of the novel features of our work is Theorem 1.5, which produces secondary families of elementary
components, derived from our main ones by adding generators from the socle. The idea of producing
new elementary components from old ones via socle elements appears to have gone unnoticed, and yet
it is far from an isolated phenomenon. In fact, one can check that this same behavior occurs in many of
Jelisiejew’s examples as well as variants of our main examples given in Remark 8.7. Furthermore, we
observe analogous socle behavior in a follow-up paper [36], where we construct a new infinite family
of elementary components; our new examples given in [36] are constructed by rather different means,
making use of the so-called Galois closure operation for ring extensions, introduced by the first author
and Bhargava [7].

1J. Jelisiejew (personal communication) has also found examples for large values of d by selecting tuples of random polynomials;
we are unaware of other such examples in the literature.
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1.2. How we found our examples

The family of elementary components in Theorem 1.3 generalizes the original example of Iarrobino–
Emsalem, which is recovered when 𝑛1 = 𝑛2 = 2. Our examples, however, were arrived at by different
methods, and can be best understood in terms of the T-graph of the Hilbert scheme Hilb𝑑 (A𝑛); this is
the graph whose vertices correspond to torus-fixed points of Hilb𝑑 (A𝑛), and whose edges correspond to
torus-invariant curves linking these fixed points. The T-graph was defined in [2] and studied further in
[19, 32, 35], mostly in dimension 𝑛 = 2. To produce our examples, we constructed edges of the T-graph
corresponding to curves in Hilb𝑑 (A4) whose general point is a smooth point with small tangent space
dimension. The examples in Theorem 1.3 correspond to the T-invariant curves 〈𝑥, 𝑦〉𝑛1 + 〈𝑧, 𝑤〉𝑛2 +

〈𝜆𝑥𝑧 + 𝜇𝑧𝑤〉 with (𝜆 : 𝜇) ∈ P1.
Our method to construct such curves is inspired by Haiman’s work [16, Section 2]. In rough terms,

we start with a T-fixed point corresponding to a monomial ideal and aim to perturb by a tangent vector
in the direction of another monomial ideal. In more detail, we devised the following procedure, which
we implemented in Macaulay2 [15]:

(i) Consider a monomial ideal 𝐾 ⊂ k[𝑥1, 𝑥2, . . . , 𝑥𝑛] of colength d;
(ii) compute an explicit basis of the tangent space 𝑇[𝐾 ] Hilb𝑑 (A𝑛); by default in Macaulay2, these are

vectors with monomial entries, hence, they perturb K in the direction of another monomial ideal;
(iii) each basis vector determines a first-order flat deformation of K, that is, an ideal 𝐾𝜀 of

k[𝜀] [𝑥1, 𝑥2, . . . , 𝑥𝑛]/〈𝜀
2〉;

(iv) fix generators 𝑔1 + 𝜀𝑔
′
1, . . . , 𝑔𝑚 + 𝜀𝑔

′
𝑚 for 𝐾𝜀 , and consider the ideal 𝐼𝑡 := 〈𝑔1 + 𝑡𝑔

′
1, . . . , 𝑔𝑚 + 𝑡𝑔

′
𝑚〉

of 𝑆𝑡 := k[𝑡] [𝑥1, 𝑥2, . . . , 𝑥𝑛]; if 𝑆𝑡/𝐼𝑡 has no t-torsion, then specialize t to any value in k to obtain
a new ideal 𝐾 ′ ⊂ 𝑆 which also lives in Hilb𝑑 (A𝑛);

(v) if dimk 𝑇[𝐾 ′ ] Hilb𝑑 (A𝑛) < 𝑛𝑑, then [𝐾 ′] does not lie on the smoothable component, meaning a
small-dimensional nonsmoothable irreducible component of Hilb𝑑 (A𝑛) has been detected;

(vi) check to see if 𝐾 ′ has trivial negative tangents.

For instance, setting 𝐾 = 〈𝑥, 𝑦〉𝑛1 + 〈𝑧, 𝑤〉𝑛2 + 〈𝑥𝑧〉, we can find the first-order deformation 𝐾𝜀 =
〈𝑥, 𝑦〉𝑛1 + 〈𝑧, 𝑤〉𝑛2 + 〈𝑥𝑧 + 𝜀𝑦𝑤〉, which yields the new ideal 𝐾 ′ = 〈𝑥, 𝑦〉𝑛1 + 〈𝑧, 𝑤〉𝑛2 + 〈𝑥𝑧 + 𝑦𝑤〉.

Interestingly, by iteratively applying our above algorithm, we also obtain some of Jelisiejew’s
examples. For instance, a smooth point on Jelisiejew’s family Z (3) ⊂ Hilb35(A4) is given by
𝐼 = 〈𝑥, 𝑦〉3 + 〈𝑧, 𝑤〉3 + 〈𝑥2𝑧2 + 𝑥𝑦𝑧𝑤 + 𝑦2𝑤2〉. Setting 𝐾 = 〈𝑥, 𝑦〉3 + 〈𝑧, 𝑤〉3 + 〈𝑥2𝑧2〉, one ob-
tains a first-order deformation 𝐾𝜀 = 〈𝑥, 𝑦〉3 + 〈𝑧, 𝑤〉3 + 〈𝑥2𝑧2 + 𝜀𝑥𝑦𝑧𝑤〉 of K. This yields the ideal
𝐾 ′ = 〈𝑥, 𝑦〉3 + 〈𝑧, 𝑤〉3 + 〈𝑥2𝑧2 + 𝑥𝑦𝑧𝑤〉 ⊂ 𝑆 which has a small tangent space but fails to have trivial neg-
ative tangents. However, if we repeat the procedure starting from 𝐾 ′, we find the first-order deformation
𝐾 ′𝜀 = 〈𝑥, 𝑦〉3 + 〈𝑧, 𝑤〉3 + 〈𝑥2𝑧2 + 𝑥𝑦𝑧𝑤 + 𝜀𝑦2𝑤2〉, from which our algorithm outputs Jelisiejew’s ideal I.

Lastly, it is worth mentioning that one may also view our examples from the perspective of singularity
theory; namely, one starts with a simple singularity, such as 𝑥𝑧−𝑦𝑤 and takes a suitable fat point centered
at the singular point. Although this is not the point of view that led us to our infinite class of examples,
we imagine this perspective is a useful one. Indeed, variations of this construction were given by Erman
in [9] to prove Murphy’s law for certain strata of the Hilbert scheme.

2. Preliminaries

We set some notation and highlight a useful tool for studying Hilbert schemes of points.

2.1. Basic set-up

Let 𝑆 := k[𝑥, 𝑦, 𝑧, 𝑤] be the coordinate ring of affine spaceA4, wherek is an algebraically closed field of
characteristic 0. For a vectoru = (𝑢1, 𝑢2, 𝑢3, 𝑢4) ∈ N

4, letxu := 𝑥𝑢1 𝑦𝑢2 𝑧𝑢3𝑤𝑢4 , denote the corresponding
monomial in S and denote its degree in the standard grading by |xu | = |u| := 𝑢1 + 𝑢2 + 𝑢3 + 𝑢4; more
generally, we use | 𝑓 | to denote the degree of any homogeneous element f in the standard grading. This
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grading can be refined to a bigrading on S, defined on monomials by bideg(xu) := (𝑢1+𝑢2, 𝑢3+𝑢4) ∈ N
2.

All of the ideals I and J mentioned in Theorems 1.3 and 1.5 are bigraded, and thus, standard graded. If
R is a Z-graded ring, M is a graded R-module, and 𝑗 ∈ Z, then the jth twist of M is the graded R-module
𝑀 ( 𝑗) satisfying 𝑀 ( 𝑗)𝑖 := 𝑀 𝑗+𝑖 , for all 𝑖 ∈ Z.

2.2. The truncated cotangent complex

Our approach to proving Theorems 1.3 and 1.5 requires computing certain 𝑇 𝑖-modules, so we review
the construction of the truncated cotangent complex. We follow [18, Section 3] closely, which itself
follows [31].

To obtain a model of the truncated cotangent complex of a ring homomorphism 𝐴→ 𝐵, we choose
surjections 𝑅𝐵/𝐴 � 𝐵, with kernel denoted I, and 𝐹𝐵/𝐴 � 𝐼, where 𝑅𝐵/𝐴 is a polynomial ring over A
and 𝐹𝐵/𝐴 is a free 𝑅𝐵/𝐴-module. We then set 𝑄𝐵/𝐴 to be the kernel of 𝐹𝐵/𝐴 � 𝐼 and Kos𝐵/𝐴 to be
its submodule of Koszul relations [18, Section 3]. We drop the subscripts when no confusion should
arise. The truncated cotangent complex of B over A is the complex 𝐿𝐵/𝐴,• concentrated in homological
degrees 0, 1, 2, with terms

𝐿𝐵/𝐴,• : Ω𝑅/𝐴 ⊗𝑅 𝐵
𝑑
𝐵/𝐴
1
←− 𝐹 ⊗𝑅 𝐵

𝑑
𝐵/𝐴
2
←− 𝑄/Kos,

where 𝑑𝐵/𝐴2 is induced by the inclusion 𝑄 ⊆ 𝐹 and 𝑑𝐵/𝐴1 is obtained by composing the map 𝐿1 =
𝐹 ⊗𝑅 𝐵 � 𝐼/𝐼2 with the map induced by the derivation 𝑅 → Ω𝑅/𝐴. We sometimes use 𝑑𝐿𝑖 to denote
the differentials. One derives from this the 𝑇 𝑖-modules

𝑇 𝑖 (𝐵/𝐴, 𝑀) := 𝐻𝑖 (Hom𝐵 (𝐿𝐵/𝐴,•, 𝑀)),

for any B-module M and 0 ≤ 𝑖 ≤ 2 (we also call these tangent cohomology modules when convenient).
The notation 𝑇 𝑖

𝐵/𝐴
is often used when 𝑀 = 𝐵, or simply 𝑇 𝑖𝐵, if 𝐴 = k is the base field. When viewed as

an element of the derived category, the complex 𝐿𝐵/𝐴,• is independent of the choices of 𝑅𝐵/𝐴 and 𝐹𝐵/𝐴
(see, e.g. [18, Remark 3.3.1]). Hence, the tangent cohomology modules depend only on the map 𝐴→ 𝐵.

Remark 2.1. When A and B are both graded by an abelian group G and the map 𝐴 → 𝐵 is a graded
homomorphism, all choices in the construction of the truncated cotangent complex can be made to
respect the grading. If the cotangent modules 𝐿𝐵/𝐴,𝑖 are all finite over B and M is a graded B-module,
then 𝑇 𝑖 (𝐵/𝐴, 𝑀) is also graded. Importantly, the nine-term long exact sequences described in [18,
Theorems 3.4–3.5] also respect the grading. This holds for our examples, where we only need 𝐺 = Z or
Z

2 and the gradings mentioned in subsection 2.1.

2.3. A comparison theorem

We briefly describe a theorem of Jelisiejew. Let I be any ideal in 𝑆 := k[𝑥, 𝑦, 𝑧, 𝑤] defining a local
Artinian quotient supported at 0 ∈ A4. Motivated by the Białynicki-Birula decomposition, Jelisiejew
defines a scheme Hilb+𝑝𝑡𝑠 (A4) and constructs a map

𝜃 : Hilb+𝑝𝑡𝑠 (A4) × A4 → Hilb𝑝𝑡𝑠 (A4)

with the following properties. First, 𝜃 |Hilb+𝑝𝑡𝑠 (A4)×{0} is a monomorphism and maps k-points bijectively
to subschemes of A4 supported at 0. Second, on the level of k-points, if [𝐽] is supported at 0, then
𝜃 ([𝐽], 𝑣) is the point supported at v obtained by translating [𝐽].

Theorem 2.2 [29, Theorem 4.5]. If I is supported at the origin and has trivial negative tangents, then
𝜃 defines an open immersion of a local neighborhood of ([𝐼], 0) into Hilb𝑝𝑡𝑠 (A4). In particular, if
𝑆/𝐼 � k, then all components of Hilb𝑝𝑡𝑠 (A4) containing [𝐼] are elementary.

https://doi.org/10.1017/fms.2023.42 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.42


Forum of Mathematics, Sigma 7

Proposition 2.3. Suppose I is supported at the origin with trivial negative tangents, 𝐴 = 𝑆/𝐼, and
𝑇2 (𝐴/k, 𝐴)≥0 = 0. Then I defines a smooth point on Hilb𝑝𝑡𝑠 (A4).

Proof. By Theorem 2.2, it suffices to show that [𝐼] defines a smooth point of Hilb+𝑝𝑡𝑠 (A4). By [29,
Theorem 4.2], the obstruction space for (Hilb+𝑝𝑡𝑠 (A4), [𝐼]) is given by 𝑇2 (𝐴/k, 𝐴)≥0, which vanishes
by assumption. Therefore, obstructions to all higher-order deformations vanish, showing smoothness of
[𝐼] in Hilb+𝑝𝑡𝑠 (A4). �

3. Trivial negative tangents, I

Our goal in this section is to understand the tangent space of the point [𝐼] ∈ Hilb𝑝𝑡𝑠 (A4) corresponding
to an ideal of the form

𝐼 := 〈𝑥, 𝑦〉𝑛1 + 〈𝑧, 𝑤〉𝑛2 + 〈𝑥𝑧 − 𝑦𝑤〉 ⊂ 𝑆 := k[𝑥, 𝑦, 𝑧, 𝑤],

for some 𝑛1, 𝑛2 ≥ 2. The ideal I is 𝔪-primary, where 𝔪 := 〈𝑥, 𝑦, 𝑧, 𝑤〉 ⊂ 𝑆 is the ideal of the origin
0 ∈ A4. We will prove:

Proposition 3.1. The ideal I has trivial negative tangents, hence, every irreducible component of
Hilb𝑝𝑡𝑠 (A4) containing [𝐼] must be elementary by [29, Theorem 1.2].

The ensuing proof explicitly calculates the form of tangent vectors. One may wonder whether the
approach of [29, Proof of Theorem 1.4] can be taken to reduce the number of explicit calculations.
In Proposition 9.1, we show that key hypotheses for this alternate approach fail for our examples (see
subsection 1.1 for further details).

Let 𝜑 ∈ Hom𝑆 (𝐼, 𝑆/𝐼) � 𝑇[𝐼 ] Hilb𝑝𝑡𝑠 (A4), so that 𝜑 is determined by its values on the generators

𝑥𝑛1 , 𝑥𝑛1−1𝑦, . . . , 𝑦𝑛1 , 𝑧𝑛2 , 𝑧𝑛2−1𝑤, . . . , 𝑤𝑛2 , 𝑥𝑧 − 𝑦𝑤

of I. These values lie in the k-vector space 𝐴 := 𝑆/𝐼 spanned by the cosets 𝑥𝑢1 𝑦𝑢2 𝑧𝑢3𝑤𝑢4 + 𝐼, where
𝑢1 + 𝑢2 < 𝑛1 and 𝑢3 + 𝑢4 < 𝑛2; a basis of 𝑆/𝐼 is obtained by ignoring any such monomial divisible by
𝑦𝑤, that is, setting

B := {𝑥𝑢1 𝑦𝑢2 𝑧𝑢3𝑤𝑢4 + 𝐼 | 𝑢1 + 𝑢2 < 𝑛1, 𝑢3 + 𝑢4 < 𝑛2, 𝑢2𝑢4 = 0},

yields a monomial basis for 𝑆/𝐼. In order for 𝜑 to be S-linear, it must vanish on the syzygies of I, that
is, the following relations must hold:

𝑦𝜑(𝑥𝑛1−𝑘 𝑦𝑘 ) = 𝑥𝜑(𝑥𝑛1−𝑘−1𝑦𝑘+1), for all 0 ≤ 𝑘 < 𝑛1, (2)
𝑤𝜑(𝑧𝑛2−ℓ𝑤ℓ ) = 𝑧𝜑(𝑧𝑛2−ℓ−1𝑤ℓ+1), for all 0 ≤ ℓ < 𝑛2, (3)
𝑥𝑛1−1−𝑘 𝑦𝑘𝜑(𝑥𝑧 − 𝑦𝑤) = 𝑧𝜑(𝑥𝑛1−𝑘 𝑦𝑘 ) − 𝑤𝜑(𝑥𝑛1−1−𝑘 𝑦𝑘+1), for all 0 ≤ 𝑘 < 𝑛1, (4)
𝑧𝑛2−1−ℓ𝑤ℓ𝜑(𝑥𝑧 − 𝑦𝑤) = 𝑥𝜑(𝑧𝑛2−ℓ𝑤ℓ) − 𝑦𝜑(𝑧𝑛2−1−ℓ𝑤ℓ+1), for all 0 ≤ ℓ < 𝑛2. (5)

Our proof of Proposition 3.1 will proceed as follows. To prove that the tangent space Hom𝑆 (𝐼, 𝑆/𝐼)
vanishes in degrees at most −2, we will (essentially) only need to use relations (2) and (3). Then, to see
that Hom𝑆 (𝐼, 𝑆/𝐼)−1 is exactly the k-span of the trivial tangent vectors, we will rely on relations (4)
and (5).

3.1. Preliminary lemmas

We collect several helpful lemmas that will be used throughout this paper. Given 𝑝 ∈ 𝑆/𝐼, we may
expand it in the basisB. We refer to the support of p as the set of basis elements with nonzero coefficients
showing up in the expansion of p—the support of 0 is ∅. Note that Ann𝑥,𝑦 := Ann(𝑥) = Ann(𝑦) and
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Ann𝑧,𝑤 := Ann(𝑧) = Ann(𝑤) are spanned by basis vectors, so it makes sense to say whether the support
of p intersects Ann𝑥,𝑦 or Ann𝑧,𝑤 . Note also that if 𝑝, 𝑞 ∈ 𝑆/𝐼 have disjoint support, then 𝑝 = 𝑞 forces
𝑝 = 𝑞 = 0.
Lemma 3.2. If 𝑝 ∈ 𝑆/𝐼, then it may be decomposed as

𝑝 =
∑

0<𝑖<𝑛1

𝑦𝑖 𝑝𝑖,0 +
∑

0< 𝑗<𝑛2

𝑤 𝑗 𝑝0, 𝑗 + 𝑝0,0,

where
(i) each 𝑝𝑖, 𝑗 is a polynomial in 𝑥, 𝑧,

(ii) for 𝑖 ≥ 0, 𝑝𝑖,0 has x-degree less than 𝑛1 − 𝑖 and z-degree less than 𝑛2,
(iii) for 𝑗 ≥ 0, 𝑝0, 𝑗 has x-degree less than 𝑛1 and z-degree less than 𝑛2 − 𝑗 , and
(iv) all of the terms in the sum have disjoint support.
Furthermore, we have

dimk (𝑆/𝐼) = 𝑑 (𝑛1, 𝑛2) =
𝑛1𝑛2

2
(𝑛1 + 𝑛2).

Proof. Expressing p as a linear combination of elements of B and grouping basis vectors by their y-
and w-exponents, we obtain our desired decomposition of p with properties (i)–(iv).

Because 𝑝𝑖,0 has (𝑛1 − 𝑖)𝑛2 monomials in x and z, and 𝑝0, 𝑗 has 𝑛1(𝑛2 − 𝑗) monomials in x and z, we
see 𝑆/𝐼 has dimension(

(𝑛1 − 1)𝑛2 + (𝑛1 − 2)𝑛2 + · · · + 𝑛2
)
+ (𝑛1𝑛2) +

(
(𝑛2 − 1)𝑛1 + (𝑛2 − 2)𝑛1 + · · · + 𝑛1

)
=
(𝑛1 − 1)𝑛1

2
𝑛2 + 𝑛1𝑛2 + 𝑛1

(𝑛2 − 1)𝑛2
2

=
𝑛1𝑛2

2
(𝑛1 + 𝑛2). �

Lemma 3.3. If 𝑝, 𝑞 ∈ 𝑆/𝐼 satisfy
𝑦𝑝 = 𝑥𝑞,

then we may write
𝑝 = 𝑝′ + 𝑥𝑟𝑦 + 𝑤𝑟𝑤 , 𝑞 = 𝑞′ + 𝑦𝑟𝑦 + 𝑧𝑟𝑤 ,

such that
(i) 𝑟𝑦 is a polynomial in 𝑥, 𝑦, 𝑧 and 𝑟𝑤 is a polynomial in 𝑥, 𝑧, 𝑤,

(ii) 𝑝′, 𝑞′ ∈ Ann𝑥,𝑦 , while 𝑝 − 𝑝′ and 𝑞 − 𝑞′ are supported away from Ann𝑥,𝑦 ,
(iii) 𝑝′, 𝑥𝑟𝑦 , and 𝑤𝑟𝑤 , have mutually disjoint support, and
(iv) 𝑞′, 𝑦𝑟𝑦 , and 𝑧𝑟𝑤 have mutually disjoint support.
Furthermore, 𝑝′ and 𝑞′ are unique, the image of 𝑟𝑦 in 𝑆/Ann𝑥,𝑦 is unique, and the image of 𝑟𝑤 in
𝑆/Ann𝑧,𝑤 is unique.
Proof. Expanding p in the basis B, let 𝑝′ be the sum of all monomial terms of p which are annihilated
by x (equivalently, y). This gives a decomposition analogous to Lemma 3.2, where we write

𝑝 = 𝑝′ +
∑

0<𝑖<𝑛1−1
𝑦𝑖 𝑝𝑖,0 +

∑
0< 𝑗<𝑛2

𝑤 𝑗 𝑝0, 𝑗 + 𝑝0,0

and

𝑞 = 𝑞′ +
∑

0<𝑖<𝑛1−1
𝑦𝑖𝑞𝑖,0 +

∑
0< 𝑗<𝑛2

𝑤 𝑗𝑞0, 𝑗 + 𝑞0,0,
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and where no monomial terms of any of the terms 𝑦𝑖 𝑝𝑖,0,𝑤 𝑗 𝑝0, 𝑗 , 𝑝0,0, 𝑦𝑖𝑞𝑖,0,𝑤 𝑗𝑞0, 𝑗 , 𝑞0,0 are annihilated
by y (equivalently, x). Then

𝑦𝑝 =
∑

0<𝑖<𝑛1−1
𝑦𝑖+1𝑝𝑖,0 +

∑
0< 𝑗<𝑛2

𝑤 𝑗−1𝑥𝑧𝑝0, 𝑗 + 𝑦𝑝0,0

and

𝑥𝑞 =
∑

0<𝑖<𝑛1−1
𝑦𝑖𝑥𝑞𝑖,0 +

∑
0< 𝑗<𝑛2

𝑤 𝑗𝑥𝑞0, 𝑗 + 𝑥𝑞0,0.

Since none of the terms in the sum are zero (by hypothesis), equating terms with the same 𝑦𝑖𝑤 𝑗 -powers,
we see ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑝𝑖,0 = 𝑥𝑞𝑖+1,0 0 ≤ 𝑖 ≤ 𝑛1 − 3,
𝑝𝑛1−2,0 = 0,

𝑧𝑝0, 𝑗+1 = 𝑞0, 𝑗 0 ≤ 𝑗 ≤ 𝑛2 − 2,
𝑞0,𝑛2−1 = 0.

Therefore, letting

𝑟𝑦 =
∑

0≤𝑖≤𝑛1−3
𝑦𝑖𝑞𝑖+1,0 and 𝑟𝑤 =

∑
0≤ 𝑗≤𝑛2−2

𝑤 𝑗 𝑝0, 𝑗+1,

we have the desired decompositions 𝑝 = 𝑝′ + 𝑥𝑟𝑦 + 𝑤𝑟𝑤 and 𝑞 = 𝑞′ + 𝑦𝑟𝑦 + 𝑧𝑟𝑤 .
It remains to prove the uniqueness properties. First, since 𝑥𝑟𝑦 and 𝑤𝑟𝑤 have supports disjoint from

Ann𝑥,𝑦 , we see 𝑝′ is uniquely determined. Now suppose we have different choices 𝑟 ′𝑦 and 𝑟 ′𝑤 with
properties (i)–(iv). Since 𝑝′ is uniquely determined, we have

𝑥𝑟𝑦 + 𝑤𝑟𝑤 = 𝑥𝑟 ′𝑦 + 𝑤𝑟
′
𝑤 .

Let 𝑟𝑦 = 𝑟𝑦,0 + 𝑦𝑠𝑦 and 𝑟 ′𝑦 = 𝑟 ′𝑦,0 + 𝑦𝑠
′
𝑦 , where 𝑟𝑦,0 and 𝑟 ′𝑦,0 have no y-terms. Expanding, we have

𝑥𝑟𝑦,0 + 𝑥𝑦𝑠𝑦 + 𝑤𝑟𝑤 = 𝑥𝑟 ′𝑦,0 + 𝑥𝑦𝑠
′
𝑦 + 𝑤𝑟

′
𝑤 .

Then collecting terms with 𝑦0𝑤0-powers, we see 𝑥𝑟𝑦,0 = 𝑥𝑟 ′𝑦,0, so the image of 𝑟𝑦,0 in 𝑆/Ann𝑥,𝑦 is
uniquely determined. Similarly, collecting terms with 𝑦𝑖𝑤0-powers for 𝑖 > 0, we have 𝑥𝑦𝑠𝑦 = 𝑥𝑦𝑠′𝑦 , so
the image of 𝑦𝑠𝑦 in 𝑆/Ann𝑥,𝑦 is also uniquely determined. Therefore, the image of 𝑟𝑦 in 𝑆/Ann𝑥,𝑦 is
uniquely determined. Finally, collecting terms with 𝑦0𝑤 𝑗 -powers for 𝑗 > 0, we see 𝑤𝑟𝑤 = 𝑤𝑟 ′𝑤 , so the
image of 𝑟𝑤 in 𝑆/Ann𝑧,𝑤 is uniquely determined. �

More generally, we have the following result.
Corollary 3.4. Let 𝑝0, 𝑝1, . . . , 𝑝𝑛 ∈ 𝑆/𝐼 satisfy the property

𝑦𝑝𝑘 = 𝑥𝑝𝑘+1,

for all 0 ≤ 𝑘 < 𝑛, where 𝑛 ≤ 𝑛1. Then there exist 𝑡0, 𝑡1, . . . , 𝑡𝑛 ∈ 𝑆/𝐼, such that we may write

𝑝𝑘 = 𝑝′𝑘 +
𝑘∑
𝑖=0

𝑥𝑛−𝑘 𝑦𝑘−𝑖𝑧𝑖𝑡𝑖 +
𝑛∑

𝑖=𝑘+1
𝑥𝑛−𝑖𝑧𝑘𝑤𝑖−𝑘 𝑡𝑖 ,

for all 0 ≤ 𝑘 ≤ 𝑛, where
(i) 𝑝′𝑘 ∈ Ann𝑥,𝑦 and 𝑝𝑘 − 𝑝′𝑘 is supported away from Ann𝑥,𝑦 ,

(ii) 𝑡0 is a polynomial in 𝑥, 𝑦, 𝑧 and 𝑡𝑛 is a polynomial in 𝑥, 𝑧, 𝑤,
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(iii) 𝑡𝑖 is a polynomial in 𝑥, 𝑧 for 0 < 𝑖 < 𝑛,
(iv) if ( 𝑗1, 𝑗2) denotes the bidegree of any element in the support of 𝑡𝑖 , then the bounds 0 ≤ 𝑗1 < 𝑛1−1−𝑛+𝑖

and 0 ≤ 𝑗2 < 𝑛2 − 𝑖 both hold, and
(v) for every k, all terms 𝑝′𝑘 , {𝑥𝑛−𝑘 𝑦𝑘−𝑖𝑧𝑖𝑡𝑖}0≤𝑖≤𝑘 , and {𝑥𝑛−𝑖𝑧𝑘𝑤𝑖−𝑘 𝑡𝑖}𝑘<𝑖≤𝑛 have mutually disjoint

support.

Proof. Lemma 3.3 handles the case when 𝑛 = 1. When 𝑛 = 2 = 𝑛1, applying Lemma 3.3 to the pairs
𝑝0, 𝑝1 and 𝑝1, 𝑝2 yields

𝑝0 = 𝑝′0 + 𝑤𝑟𝑤 , 𝑝1 = 𝑝′1 + 𝑧𝑟𝑤 = 𝑝′1 + 𝑤𝜌𝑤 , 𝑝2 = 𝑝′2 + 𝑧𝜌𝑤 ;

here, 𝑟𝑦 = 𝜌𝑦 = 0 follows from Lemma 3.3(ii) and 𝑟𝑤 , 𝜌𝑤 are polynomials in 𝑧, 𝑤. Write 𝑟𝑤 =
𝑟𝑤,0 + 𝑤𝑟𝑤,+, where 𝑟𝑤,0 is a polynomial in z and 𝑟𝑤,+ is a polynomial in 𝑧, 𝑤. Comparing w-terms in
𝑝1, we find

𝑧𝑟𝑤,0 = 0 and 𝑤𝑧𝑟𝑤,+ = 𝑤𝜌𝑤 .

As 𝑧𝑟𝑤,0 = 0 if and only if 𝑤𝑟𝑤,0 = 0, we may assume 𝑟𝑤,0 = 0. Let 𝑢0 = 𝑢1 = 0 and 𝑢2 = 𝑟𝑤,+. This
implies

𝑝0 = 𝑝′0 + 𝑤
2𝑢2, 𝑝1 = 𝑝′1 + 𝑧𝑤𝑢2, 𝑝2 = 𝑝′2 + 𝑧

2𝑢2,

giving the desired expressions; properties (i)–(v) can easily be verified in this case (if, in addition,
𝑛2 = 2, then we take 𝑢2 = 0). A similar proof works whenever 𝑛 = 2, where 𝑟𝑦 , 𝜌𝑦 ≠ 0 are allowed if
𝑛1 > 2. In these cases, starting with

𝑝0 = 𝑝′0 + 𝑥𝑟𝑦 + 𝑤𝑟𝑤 , 𝑝1 = 𝑝′1 + 𝑦𝑟𝑦 + 𝑧𝑟𝑤 = 𝑝′1 + 𝑥𝜌𝑦 + 𝑤𝜌𝑤 , 𝑝2 = 𝑝′2 + 𝑦𝜌𝑦 + 𝑧𝜌𝑤

and additionally writing 𝜌𝑦 = 𝜌𝑦,0 + 𝑦𝜌𝑦,+, we find the desired expressions

𝑝0 = 𝑝′0 + 𝑥
2𝑢0 + 𝑥𝑤𝑢1 + 𝑤

2𝑢2,

𝑝1 = 𝑝′1 + 𝑥𝑦𝑢0 + 𝑥𝑧𝑢1 + 𝑧𝑤𝑢2,

𝑝2 = 𝑝′2 + 𝑦
2𝑢0 + 𝑦𝑧𝑢1 + 𝑧

2𝑢2.

Here we take 𝑢𝑖 = 0 if the resulting term would be 0 or land in Ann𝑥,𝑦 .
Now assume 𝑛 > 2. Considering the tuples (𝑝0, . . . , 𝑝𝑛−1) and (𝑝1, . . . , 𝑝𝑛), by induction, we have

𝑡𝑖 and 𝜏𝑖 satisfying properties (i)–(v) (with n replaced by 𝑛 − 1) and such that

𝑝𝑘 = 𝑝′𝑘 +
𝑘∑
𝑖=0

𝑥𝑛−1−𝑘 𝑦𝑘−𝑖𝑧𝑖𝑡𝑖 +
𝑛−1∑
𝑖=𝑘+1

𝑥𝑛−1−𝑖𝑧𝑘𝑤𝑖−𝑘 𝑡𝑖

for 𝑘 < 𝑛, and

𝑝𝑘 = 𝑝′𝑘 +
𝑘−1∑
𝑖=0

𝑥𝑛−𝑘 𝑦𝑘−𝑖−1𝑧𝑖𝜏𝑖 +
𝑛−1∑
𝑖=𝑘

𝑥𝑛−1−𝑖𝑧𝑘−1𝑤𝑖−𝑘+1𝜏𝑖

for 𝑘 > 0. Since the basis vectors appearing in 𝑝𝑘 that are in the support of Ann𝑥,𝑦 are uniquely
determined, the 𝑝′𝑘 terms are the same in the two expressions for 𝑝𝑘 .

For each 1 < 𝑖 < 𝑛 − 1, comparing the two expressions for the 𝑦𝑘−𝑖- or 𝑤𝑖−𝑘 -terms, we have

𝑥𝑛−1−𝑘 𝑦𝑘−𝑖𝑧𝑖𝑡𝑖 = 𝑥𝑛−𝑘 𝑦𝑘−𝑖𝑧𝑖−1𝜏𝑖−1, if 𝑖 ≤ 𝑘, (6)

𝑥𝑛−1−𝑖𝑧𝑘𝑤𝑖−𝑘 𝑡𝑖 = 𝑥𝑛−𝑖𝑧𝑘−1𝑤𝑖−𝑘𝜏𝑖−1, if 𝑖 > 𝑘, (7)
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for all 0 < 𝑘 < 𝑛. By our inductive assumption on the bidegrees of 𝑡𝑖 and 𝜏𝑖−1, if 𝑖 < 𝑛2, then none of
the terms appearing in (6) or (7) is zero, and hence, there exists a polynomial 𝑢𝑖 in 𝑥, 𝑧, such that

𝑡𝑖 = 𝑥𝑢𝑖 and 𝜏𝑖−1 = 𝑧𝑢𝑖;

observe that any monomial in the support of 𝑢𝑖 has bidegree ( 𝑗1, 𝑗2) with 0 ≤ 𝑗1 < 𝑛1 − 1 − 𝑛 + 𝑖 and
0 ≤ 𝑗2 < 𝑛2 − 𝑖. If, on the other hand, 𝑖 > 𝑛2, then both 𝑡𝑖 and 𝜏𝑖−1 vanish, so we may take 𝑢𝑖 = 0.
Finally, if 𝑖 = 𝑛2, then 𝑡𝑖 = 0; by our assumption on the bidegree of 𝜏𝑖−1, the only way (6) or (7) can
hold is if 𝜏𝑖−1 = 0 as well, so we may take 𝑢𝑖 = 0.

Let

𝜏0 = 𝜏0,0 + 𝑦𝜏0,+,

where 𝜏0,0 is a polynomial in 𝑥, 𝑧 and 𝜏0,+ is a polynomial in 𝑥, 𝑦, 𝑧. Similarly, let

𝑡𝑛−1 = 𝑡𝑛−1,0 + 𝑤𝑡𝑛−1,+,

where 𝑡𝑛−1,0 is a polynomial in 𝑥, 𝑧 and 𝑡𝑛−1,+ is a polynomial in 𝑥, 𝑧, 𝑤.
Next, by comparing the 𝑦0𝑤0-terms in the expression for 𝑝1, we see 𝑥𝑛−2𝑧𝑡1 = 𝑥𝑛−1𝜏0,0. If 𝑛 = 𝑛1,

then we take 𝑢1 = 0. Otherwise, by our assumptions on the bidegrees of 𝑡1 and 𝜏0, no terms in the two
sides of the equation are zero, so there exists a polynomial 𝑢1 in 𝑥, 𝑧, such that

𝑡1 = 𝑥𝑢1 and 𝜏0,0 = 𝑧𝑢1.

We then see that any monomial in the support of 𝑢1 has bidegree ( 𝑗1, 𝑗2) with 0 ≤ 𝑗1 < 𝑛1 − 𝑛 and
0 ≤ 𝑗2 < 𝑛2 − 1. Comparing the terms in 𝑝1 with a power of y, we see

𝑥𝑛−2𝑦𝑡0 = 𝑥𝑛−1𝑦𝜏0,+.

Since Ann(𝑥) = Ann(𝑦), this implies

𝑥𝑛−1−ℓ 𝑦ℓ 𝑡0 = 𝑥𝑛−ℓ 𝑦ℓ𝜏0,+,

for all 0 ≤ ℓ ≤ 𝑛 − 1. If 𝑛 ≥ 𝑛1 − 1, then we take 𝑢0 = 0. Otherwise, any monomial in the support of
𝜏0,+ has bidegree ( 𝑗1, 𝑗2) with 0 ≤ 𝑗1 < 𝑛1 − 1 − 𝑛 and 0 ≤ 𝑗2 < 𝑛2.

Next, comparing the 𝑤𝑛−2-terms in 𝑝1 yields 𝑧𝑤𝑛−2𝑡𝑛−1,0 = 𝑤𝑛−2𝑥𝜏𝑛−2. Arguing in the same manner
as we did with (6) and (7), we see

𝑡𝑛−1,0 = 𝑥𝑢𝑛−1 and 𝜏𝑛−2 = 𝑧𝑢𝑛−1,

for some polynomial 𝑢𝑛−1 in 𝑥, 𝑧, where 𝑢𝑛−1 = 0, if 𝑛 − 1 ≥ 𝑛2. Comparing the 𝑤 𝑗 -terms in 𝑝1 with
𝑗 ≥ 𝑛 − 1, we have 𝑧𝑤𝑛−1𝑡𝑛−1,+ = 𝑤𝑛−1𝜏𝑛−1, and since Ann(𝑧) = Ann(𝑤), we have

𝑧ℓ+1𝑤𝑛−1−ℓ 𝑡𝑛−1,+ = 𝑤𝑛−1−ℓ 𝑧ℓ𝜏𝑛−1,

for 0 ≤ ℓ ≤ 𝑛 − 1.
Let

𝑢0 = 𝜏0,+ and 𝑢𝑛 = 𝑡𝑛−1,+.

For 𝑘 < 𝑛, using that 𝑡𝑖 = 𝑥𝑢𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 2, we see

𝑝𝑘 = 𝑝′𝑘 + 𝑥
𝑛−1−𝑘 𝑦𝑘 𝑡0 +

𝑘∑
𝑖=1

𝑥𝑛−𝑘 𝑦𝑘−𝑖𝑧𝑖𝑢𝑖 +
𝑛−2∑
𝑖=𝑘+1

𝑥𝑛−𝑖𝑧𝑘𝑤𝑖−𝑘𝑢𝑖 + 𝑧
𝑘𝑤𝑛−1−𝑘 𝑡𝑛−1.
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Next, we have

𝑧𝑘𝑤𝑛−1−𝑘 𝑡𝑛−1 = 𝑧𝑘𝑤𝑛−1−𝑘 𝑡𝑛−1,0 + 𝑧
𝑘𝑤𝑛−𝑘 𝑡𝑛−1,+ = 𝑧𝑘𝑤𝑛−1−𝑘𝑥𝑢𝑛−1 + 𝑧

𝑘𝑤𝑛−𝑘𝑢𝑛.

Combining this with the fact that 𝑥𝑛−1−𝑘 𝑦𝑘 𝑡0 = 𝑥𝑛−𝑘 𝑦𝑘𝜏0,+ = 𝑥𝑛−𝑘 𝑦𝑘𝑢0, we see

𝑝𝑘 = 𝑝′𝑘 +
𝑘∑
𝑖=0

𝑥𝑛−𝑘 𝑦𝑘−𝑖𝑧𝑖𝑢𝑖 +
𝑛∑

𝑖=𝑘+1
𝑥𝑛−𝑖𝑧𝑘𝑤𝑖−𝑘𝑢𝑖 ,

which is the desired expression for 𝑝𝑘 with 𝑘 < 𝑛.
For 𝑘 = 𝑛, we have

𝑝𝑛 = 𝑝′𝑛 +
𝑛−1∑
𝑖=0

𝑦𝑛−1−𝑖𝑧𝑖𝜏𝑖

= 𝑝′𝑛 + 𝑦
𝑛−1 (𝜏0,0 + 𝑦𝜏0,+) +

𝑛−1∑
𝑖=1

𝑦𝑛−1−𝑖𝑧𝑖 (𝑧𝑢𝑖+1)

= 𝑝′𝑛 + 𝑦
𝑛−1 (𝑧𝑢1 + 𝑦𝑢0) +

𝑛∑
𝑖=2

𝑦𝑛−𝑖𝑧𝑖𝑢𝑖

= 𝑝′𝑛 +
𝑛∑
𝑖=0

𝑦𝑛−𝑖𝑧𝑖𝑢𝑖 ,

which is the desired expression.
We have now shown that 𝑢0, 𝑢1, . . . , 𝑢𝑛 satisfy properties (i)–(iv). For (v), let 0 ≤ 𝑘 < 𝑛. If 0 ≤ 𝑖 ≤ 𝑘 ,

then 𝑥𝑛−𝑘 𝑦𝑘−𝑖𝑧𝑖𝑢𝑖 and 𝑥𝑛−1−𝑘 𝑦𝑘−𝑖𝑧𝑖𝑡𝑖 have the same support, and if 𝑖 > 𝑘 , then 𝑥𝑛−𝑖𝑧𝑘𝑤𝑖−𝑘𝑢𝑖 and
𝑥𝑛−1−𝑖𝑧𝑘𝑤𝑖−𝑘 𝑡𝑖 have the same support; furthermore, the support of 𝑧𝑘𝑤𝑛−1−𝑘 𝑡𝑛−1 is partitioned into the
supports of 𝑥𝑧𝑘𝑤𝑛−1−𝑘𝑢𝑛−1 and 𝑧𝑘𝑤𝑛−𝑘𝑢𝑛 for 𝑘 < 𝑛 − 1, and similarly for 𝑘 = 𝑛 − 1. When 𝑘 = 𝑛,
𝑦𝑛−𝑖𝑧𝑖𝑢𝑖 and 𝑦𝑛−1−𝑖𝑧𝑖𝜏𝑖−1 have the same support for 𝑖 ≥ 2, while the support of 𝑦𝑛−1𝜏0 partitions into
the support of 𝑦𝑛−1𝑧𝑢1 and the support of 𝑦𝑛𝑢0. Hence, property (v) holds too. �

3.2. Proof of Proposition 3.1

Recall that 𝜑 ∈ Hom𝑆 (𝐼, 𝑆/𝐼) is a tangent vector. The trivial tangents are the tangent vectors corre-
sponding to the homomorphisms 𝜕𝑥 , 𝜕𝑦 , 𝜕𝑧 , 𝜕𝑤 , where

𝜕𝑥 ( 𝑓 ) :=
𝜕 𝑓

𝜕𝑥
+ 𝐼, for 𝑓 ∈ 𝐼,

and 𝜕𝑦 , 𝜕𝑧 , 𝜕𝑤 are defined analogously. As I is homogeneous, the module Hom𝑆 (𝐼, 𝑆/𝐼) inherits the
grading (and the bigrading), so that

Hom𝑆 (𝐼, 𝑆/𝐼) =
⊕
𝑖∈Z

Hom𝑆 (𝐼, 𝑆/𝐼)𝑖

with Hom𝑆 (𝐼, 𝑆/𝐼)𝑖 = {𝜑 ∈ Hom𝑆 (𝐼, 𝑆/𝐼) | 𝜑(𝐼 𝑗 ) ⊆ (𝑆/𝐼)𝑖+ 𝑗 , for all 𝑗 ∈ N} (and similarly for the
bigrading). The trivial tangents have degree −1 in the standard grading.

Let us assume that 𝜑 is graded of degree 𝑗 < 0. Let

𝑝𝑘 := 𝜑(𝑥𝑛1−𝑘 𝑦𝑘 ),
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for all 0 ≤ 𝑘 ≤ 𝑛1. Relation (2) says that 𝑦𝑝𝑘 = 𝑥𝑝𝑘+1, for all 0 ≤ 𝑘 < 𝑛1. Corollary 3.4 then applies to
these values of 𝜑, with 𝑛 = 𝑛1, giving expressions

𝑝0 = 𝑝′0 +
𝑛1∑
𝑖=2

𝑥𝑛1−𝑖𝑧𝑘𝑤𝑖−𝑘 𝑡𝑖 and

𝑝𝑘 = 𝑝′𝑘 +
𝑘∑
𝑖=2

𝑥𝑛1−𝑘 𝑦𝑘−𝑖𝑧𝑖𝑡𝑖 +
𝑛1∑

𝑖=𝑘+1
𝑥𝑛1−𝑖𝑧𝑘𝑤𝑖−𝑘 𝑡𝑖 , for 0 < 𝑘 ≤ 𝑛1

(𝑖 = 0 gives a zero term and 𝑖 = 1 gives a term in Ann𝑥,𝑦). Observe that the degrees of all of the terms
𝑥𝑛1−𝑘 𝑦𝑘−𝑖𝑧𝑖𝑡𝑖 and 𝑥𝑛1−𝑖𝑧𝑘𝑤𝑖−𝑘 𝑡𝑖 equal 𝑛1 + |𝑡𝑖 | ≥ 𝑛1. Because 𝑗 < 0, we must then have 𝑡𝑖 = 0 for all i,
by Corollary 3.4(v). Moreover, as 𝑝′𝑘 ∈ Ann𝑥,𝑦 , any nonzero term of 𝑝′𝑘 must have degree at least 𝑛1−1.
This implies 𝑝′𝑘 , and hence 𝑝𝑘 , is zero, if 𝑗 < −1. By symmetry, 𝜑(𝑧𝑛2−ℓ𝑤ℓ) is also zero, if 𝑗 < −1.
Relation (4) then implies that 𝜑(𝑥𝑧−𝑦𝑤) = 0, if 𝑗 < −1. This shows that Hom𝑆 (𝐼, 𝑆/𝐼) 𝑗 = 0, for 𝑗 < −1.

Suppose that 𝑗 = −1. We still know that all 𝑡𝑖 = 0 and so 𝑝𝑘 = 𝑝′𝑘 , for all k. Thus, we now have
expressions

𝑝𝑘 =
∑

0≤𝑖<𝑛1

𝑎 (𝑘)𝑖 𝑥𝑛1−1−𝑖𝑦𝑖 + 𝐼,

where each 𝑎 (𝑘)𝑖 ∈ k, by Lemma 3.2. Also, we have

𝜑(𝑥𝑧 − 𝑦𝑤) = 𝑐0𝑥 + 𝑐1𝑦 + 𝑐3𝑧 + 𝑐4𝑤 + 𝐼,

where all 𝑐𝑖 ∈ k.
Proposition 3.1 now reduces to the following:

Proposition 3.5. Any S-linear map 𝜑 : 𝐼 → 𝑆/𝐼 of degree −1 is a k-linear combination of the trivial
tangents 𝜕𝑥 , 𝜕𝑦 , 𝜕𝑧 , 𝜕𝑤 .

Proof. Relation (4) can now be written

𝑐3𝑥
𝑛1−1−𝑘 𝑦𝑘 𝑧 + 𝑐4𝑥

𝑛1−1−𝑘 𝑦𝑘𝑤 + 𝐼 =
∑

0≤𝑖<𝑛1

𝑎 (𝑘)𝑖 𝑥𝑛1−1−𝑖𝑦𝑖𝑧 −
∑

0≤𝑖<𝑛1

𝑎 (𝑘+1)𝑖 𝑥𝑛1−1−𝑖𝑦𝑖𝑤 + 𝐼

=
∑

0≤𝑖<𝑛1

𝑎 (𝑘)𝑖 𝑥𝑛1−1−𝑖𝑦𝑖𝑧 − 𝑎 (𝑘+1)0 𝑥𝑛1−1𝑤

−
∑

0<𝑖<𝑛1

𝑎 (𝑘+1)𝑖 𝑥𝑛1−𝑖𝑦𝑖−1𝑧 + 𝐼,

as 𝑦𝑤 + 𝐼 = 𝑥𝑧 + 𝐼.
When 𝑘 = 0, this becomes

𝑐3𝑥
𝑛1−1𝑧 + 𝑐4𝑥

𝑛1−1𝑤 + 𝐼 =
∑

0≤𝑖<𝑛1

𝑎 (0)𝑖 𝑥𝑛1−1−𝑖𝑦𝑖𝑧 − 𝑎 (1)0 𝑥𝑛1−1𝑤

−
∑

0<𝑖<𝑛1

𝑎 (1)𝑖 𝑥𝑛1−𝑖𝑦𝑖−1𝑧 + 𝐼,

which implies 𝑐3 = 𝑎 (0)0 − 𝑎 (1)1 , 𝑐4 = −𝑎 (1)0 , 𝑎 (0)𝑛1−1 = 0, and 𝑎 (0)𝑖 = 𝑎 (1)𝑖+1, for all 0 < 𝑖 < 𝑛1 − 1. When
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0 < 𝑘 < 𝑛1 − 1, this becomes

𝑐3𝑥
𝑛1−1−𝑘 𝑦𝑘 𝑧 + 𝑐4𝑥

𝑛1−𝑘 𝑦𝑘−1𝑧 + 𝐼 =
∑

0≤𝑖<𝑛1

𝑎 (𝑘)𝑖 𝑥𝑛1−1−𝑖𝑦𝑖𝑧 − 𝑎 (𝑘+1)0 𝑥𝑛1−1𝑤

−
∑

0<𝑖<𝑛1

𝑎 (𝑘+1)𝑖 𝑥𝑛1−𝑖𝑦𝑖−1𝑧 + 𝐼,

which shows 𝑐3 = 𝑎 (𝑘)𝑘 − 𝑎 (𝑘+1)𝑘+1 , 𝑐4 = 𝑎 (𝑘)𝑘−1 − 𝑎 (𝑘+1)𝑘 , 𝑎 (𝑘)𝑛1−1 = 𝑎 (𝑘+1)0 = 0, and 𝑎 (𝑘)𝑖 = 𝑎 (𝑘+1)𝑖+1 , for all the
remaining coefficients. And when 𝑘 = 𝑛1 − 1, this becomes

𝑐3𝑦
𝑛1−1𝑧 + 𝑐4𝑥𝑦

𝑛1−2𝑧 + 𝐼 =
∑

0≤𝑖<𝑛1

𝑎 (𝑛1−1)
𝑖 𝑥𝑛1−1−𝑖𝑦𝑖𝑧 − 𝑎 (𝑛1)

0 𝑥𝑛1−1𝑤

−
∑

0<𝑖<𝑛1

𝑎 (𝑛1)
𝑖 𝑥𝑛1−𝑖𝑦𝑖−1𝑧 + 𝐼,

showing that 𝑐3 = 𝑎 (𝑛1−1)
𝑛1−1 , 𝑐4 = 𝑎 (𝑛1−1)

𝑛1−2 − 𝑎 (𝑛1)
𝑛1−1, 𝑎 (𝑛1)

0 = 0, and 𝑎 (𝑛1−1)
𝑖 = 𝑎 (𝑛1)

𝑖+1 , for all the remaining
coefficients. This shows that

𝑐3 = 𝑎 (0)0 − 𝑎 (1)1 = 𝑎 (1)1 − 𝑎 (2)2 = · · · = 𝑎 (𝑛1−2)
𝑛1−2 − 𝑎 (𝑛1−1)

𝑛1−1 = 𝑎 (𝑛1−1)
𝑛1−1

and

𝑐4 = −𝑎 (1)0 = 𝑎 (1)0 − 𝑎 (2)1 = · · · = 𝑎 (𝑛1−2)
𝑛1−3 − 𝑎 (𝑛1−1)

𝑛1−2 = 𝑎 (𝑛1−1)
𝑛1−2 − 𝑎 (𝑛1)

𝑛1−1,

while the remaining coefficients 𝑎 ( 𝑗)𝑘 vanish. Letting 𝑎 := 𝑐3 and 𝑎′ := −𝑐4, this yields

𝜑(𝑥𝑛1 ) = 𝑎𝑛1𝑥
𝑛1−1 + 𝐼,

𝜑(𝑥𝑛1−𝑘 𝑦𝑘 ) = 𝑎(𝑛1 − 𝑘)𝑥𝑛1−𝑘−1𝑦𝑘 + 𝑎′𝑘𝑥𝑛1−𝑘 𝑦𝑘−1 + 𝐼, for 0 < 𝑘 < 𝑛1

𝜑(𝑦𝑛1 ) = 𝑎′𝑛1𝑦
𝑛1−1 + 𝐼, and

𝜑(𝑥𝑧 − 𝑦𝑤) = 𝑐1𝑥 + 𝑐2𝑦 + 𝑎𝑧 − 𝑎′𝑤 + 𝐼 .

Adjusting the argument for the remaining generators of I yields

𝜑(𝑧𝑛2) = 𝑏𝑛2𝑧
𝑛2−1 + 𝐼,

𝜑(𝑧𝑛2−ℓ𝑤ℓ) = 𝑏(𝑛2 − ℓ)𝑧
𝑛2−ℓ−1𝑤ℓ + 𝑏′ℓ𝑧𝑛2−ℓ𝑤ℓ−1 + 𝐼, for 0 < ℓ < 𝑛1

𝜑(𝑤𝑛2 ) = 𝑏′𝑛2𝑤
𝑛2−1 + 𝐼, and

𝜑(𝑥𝑧 − 𝑦𝑤) = 𝑏𝑥 − 𝑏′𝑦 + 𝑎𝑧 − 𝑎′𝑤 + 𝐼,

where 𝑏 := 𝑐1 and 𝑏′ = −𝑐2. Hence, we find 𝜑 = 𝑎𝜕𝑥 + 𝑎
′𝜕𝑦 + 𝑏𝜕𝑧 + 𝑏

′𝜕𝑤 , as desired. �

This demonstrates that I only has trivial negative tangents and finishes the proof of Proposition 3.1.

4. Vanishing nonnegative obstruction spaces, I

Continuing with the notation from Section 3, our goal in this section is to prove the following:

Proposition 4.1. [𝐼] ∈ Hilb𝑑 (A4) is a smooth point.
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Let 𝐴 = 𝑆/𝐼 and 𝑇2
𝐴 := 𝑇2 (𝐴/k, 𝐴). By Proposition 2.3, it is enough to show 𝑇2

𝐴,≥0 = 0. Let F• be a
minimal free resolution of A over S,

F• : 𝑆
𝑑F

1
←− 𝑆(−𝑛1)

𝑛1+1 ⊕ 𝑆(−𝑛2)
𝑛2+1 ⊕ 𝑆(−2)

𝑑F
2
←− F2 ←− · · · ,

and set 𝐹 := F1. The truncated cotangent complex 𝐿• := 𝐿𝐴/k ,• of the map k → 𝐴 has terms
𝐿2 = 𝑄/Kos, 𝐿1 = 𝐹/𝐼𝐹 = 𝐹 ⊗𝑆 𝐴, and 𝐿0 = Ω𝑆/k ⊗𝑆 𝐴, where 𝑄 = ker 𝑑F1 and Kos ⊂ 𝑄 is the
submodule of Koszul relations. Note that 𝐿2 � F2/Kos′, where Kos′ is the preimage of Kos under 𝑑F2 .
So 𝐿• equals

𝐿• : Ω𝑆/k ⊗𝑆 𝐴←− 𝐹/𝐼𝐹 ←− 𝑄/Kos = F2/Kos′ . (cotA/k)

Observe that F• inherits the bigrading, and moreover, 𝐿• is bigraded, as is seen from the generators and
the definition of the differential.

We denote generators of F by

(𝑥𝑛1−𝑘 𝑦𝑘 ; ), (𝑧𝑛2−ℓ𝑤ℓ ; ), (𝑞; ),

for 0 ≤ 𝑘 ≤ 𝑛1, 0 ≤ ℓ ≤ 𝑛2, and

𝑞 := 𝑥𝑧 − 𝑦𝑤,

so that 𝑑F1 (𝑔; ) = 𝑔, for a generator 𝑔 ∈ 𝐼. Albeit odd at first glance, this notation conveniently extends
to encode syzygies, where (𝑔; ℎ) is used to denote a syzygy obtained from multiplication of a generator
g by an element h. Thus, among the generators of F2 are (𝑥𝑛1−𝑘 𝑦𝑘 ; 𝑥) and (𝑧𝑛2−ℓ𝑤ℓ ; 𝑧), for 𝑘, ℓ > 0—
these elements map to the (minimal) syzygies

𝑦(𝑥𝑛1−𝑘+1𝑦𝑘−1; ) − 𝑥(𝑥𝑛1−𝑘 𝑦𝑘 ; ) and 𝑤(𝑧𝑛2−ℓ+1𝑤ℓ−1; ) − 𝑧(𝑧𝑛2−ℓ𝑤ℓ ; )

obtained, respectively, by multiplying 𝑥𝑛1−𝑘 𝑦𝑘 by x, and 𝑧𝑛2−ℓ𝑤ℓ by z (the ideals 〈𝑥, 𝑦〉𝑛1 and 〈𝑧, 𝑤〉𝑛2

are minimally resolved (individually) by the Eliahou–Kervaire resolution, which applies more generally
to stable ideals and can be completely described in notation generalizing this; see [33, Section 28]
for details). In addition, F2 has generators we shall denote (𝑞; 𝑥𝑛1−𝑘 𝑦𝑘−1) and (𝑞; 𝑧𝑛2−ℓ𝑤ℓ−1), for
1 ≤ 𝑘 ≤ 𝑛1 and 1 ≤ ℓ ≤ 𝑛2—these map to the (minimal) syzygies

𝑧(𝑥𝑛1−𝑘+1𝑦𝑘−1; ) − 𝑤(𝑥𝑛1−𝑘 𝑦𝑘 ; ) − 𝑥𝑛1−𝑘 𝑦𝑘−1 (𝑞; )

and

𝑥(𝑧𝑛2−ℓ+1𝑤ℓ−1; ) − 𝑦(𝑧𝑛2−ℓ𝑤ℓ ; ) − 𝑧𝑛2−ℓ𝑤ℓ−1 (𝑞; ),

respectively (cf. relations (2)–(5)).

Lemma 4.2. The cotangent module 𝐿2 is generated by the aforementioned syzygies, namely, by
(𝑥𝑛1−𝑘 𝑦𝑘 ; 𝑥), (𝑧𝑛2−ℓ𝑤ℓ ; 𝑧), (𝑞; 𝑥𝑛1−𝑘 𝑦𝑘−1), and (𝑞; 𝑧𝑛2−ℓ𝑤ℓ−1), for appropriate 𝑘, ℓ.

Proof. Minimality of the Eliahou–Kervaire resolution produces the generators (𝑥𝑛1−𝑘 𝑦𝑘 ; 𝑥) and
(𝑧𝑛2−ℓ𝑤ℓ ; 𝑧) of F2, while the syzygies (𝑞; 𝑥𝑛1−𝑘 𝑦𝑘−1) and (𝑞; 𝑧𝑛2−ℓ𝑤ℓ−1) are minimal between (𝑞; ) and
either (𝑥𝑛1−𝑘 𝑦𝑘 ; ) or (𝑧𝑛2−ℓ𝑤ℓ ; ). Finally, any minimal syzygies between (𝑥𝑛1−𝑘 𝑦𝑘 ; ) and (𝑧𝑛2−ℓ𝑤ℓ ; )
must be Koszul relations, as the corresponding generators of I have no variables in common. �

By definition, 𝑇2
𝐴 is the quotient of 𝐿2 := Hom𝐴(𝐿2, 𝐴) by the image of 𝑑1

𝐿 := − ◦ 𝑑𝐿2 , where
𝑑𝐿2 : 𝐿2 → 𝐿1 is induced by 𝑑F2 . We aim to understand 𝐿2

≥0, specifically showing the following.
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Proposition 4.3. Given the preceding set-up, we have 𝐿2
≥0 = 𝑑1

𝐿 (𝐿
1
≥0), i.e. 𝑇2

𝐴,≥0 = 0.

In other words, any A-linear map 𝜓 : 𝐿2 → 𝐴 of nonnegative degree extends over the differential
𝑑𝐿2 : 𝐿2 → 𝐿1 to a compatible A-linear map 𝜓 ′ : 𝐿1 → 𝐴. Before proving this, we set some notation
and record a helpful lemma. According to Lemma 4.2, 𝜓 is determined by its values on (𝑥𝑛1−𝑘 𝑦𝑘 ; 𝑥),
(𝑧𝑛2−ℓ𝑤ℓ ; 𝑧), (𝑞; 𝑥𝑛1−𝑘 𝑦𝑘−1), and (𝑞; 𝑧𝑛2−ℓ𝑤ℓ−1), for 1 ≤ 𝑘 ≤ 𝑛1 and 1 ≤ ℓ ≤ 𝑛2. Lemma 3.2 yields
expressions

𝜓(𝑥𝑛1−𝑘 𝑦𝑘 ; 𝑥) =: 𝑃𝑘 =
∑

0<𝑖<𝑛1

𝑦𝑖 (𝑃𝑘 )𝑖,0 + (𝑃𝑘 )0,0 +
∑

0< 𝑗<𝑛2

𝑤 𝑗 (𝑃𝑘 )0, 𝑗 and

𝜓(𝑞; 𝑥𝑛1−𝑘 𝑦𝑘−1) =: 𝑄𝑘 =
∑

0<𝑖<𝑛1

𝑦𝑖 (𝑄𝑘 )𝑖,0 + (𝑄𝑘 )0,0 +
∑

0< 𝑗<𝑛2

𝑤 𝑗 (𝑄𝑘 )0, 𝑗 ,

along with similar expressions for 𝜓(𝑧𝑛2−ℓ𝑤ℓ ; 𝑧) and 𝜓(𝑞; 𝑧𝑛2−ℓ𝑤ℓ−1).

Lemma 4.4. Any homomorphism 𝜓 : 𝐿2 → 𝐴 as above satisfies the following:

(i) all terms of (𝑃𝑘 )0, 𝑗 are divisible by x, for 0 ≤ 𝑗 < 𝑛2, and
(ii) the equalities 𝑥𝑄𝑘 = 𝑤𝑃𝑘 and 𝑦𝑄𝑘 = 𝑧𝑃𝑘 hold.

The analogous statements for 𝜓(𝑧𝑛2−ℓ𝑤ℓ ; 𝑧) and 𝜓(𝑞; 𝑧𝑛2−ℓ𝑤ℓ−1) are also true.

Proof. Observe that 𝑥𝑛1−𝑘 𝑦𝑘−1 (𝑥𝑛1−𝑘 𝑦𝑘 ; 𝑥) ∈ Kos′, so that

0 = 𝑥𝑛1−𝑘 𝑦𝑘−1𝜓(𝑥𝑛1−𝑘 𝑦𝑘 ; 𝑥) = 𝑥𝑛1−𝑘 𝑦𝑘−1 (𝑃𝑘 )0,0 + 𝑥
𝑛1−𝑘 𝑦𝑘−1

∑
0< 𝑗<𝑛2

𝑤 𝑗 (𝑃𝑘 )0, 𝑗

= 𝑦𝑘−1𝑥𝑛1−𝑘 (𝑃𝑘 )0,0 +
∑

0< 𝑗<𝑘
𝑦𝑘−1− 𝑗𝑥𝑛1−𝑘+ 𝑗 𝑧 𝑗 (𝑃𝑘 )0, 𝑗 +

∑
𝑘≤ 𝑗<𝑛2

𝑤 𝑗−𝑘+1𝑥𝑛1−1𝑧𝑘−1(𝑃𝑘 )0, 𝑗

=
∑

0< 𝑗<𝑘
𝑦 𝑗𝑥𝑛1−1− 𝑗 𝑧𝑘−1− 𝑗 (𝑃𝑘 )0,𝑘−1− 𝑗 + 𝑥

𝑛1−1𝑧𝑘−1(𝑃𝑘 )0,𝑘−1 +
∑

0< 𝑗≤𝑛2−𝑘

𝑤 𝑗𝑥𝑛1−1𝑧𝑘−1(𝑃𝑘 )0,𝑘−1+ 𝑗

=
∑

0< 𝑗<𝑘
𝑦 𝑗𝑥𝑛1−1− 𝑗 𝑧𝑘−1− 𝑗 (𝑃𝑘 )

𝑧
0,𝑘−1− 𝑗 + 𝑥

𝑛1−1𝑧𝑘−1(𝑃𝑘 )
𝑧
0,𝑘−1 +

∑
0< 𝑗≤𝑛2−𝑘

𝑤 𝑗𝑥𝑛1−1𝑧𝑘−1(𝑃𝑘 )
𝑧
0,𝑘−1+ 𝑗 ,

where (𝑃𝑘 )𝑧0, 𝑗 is the 𝑥0𝑧≥0-part of (𝑃𝑘 )0, 𝑗 . Since the z-degree of (𝑃𝑘 )𝑧0, 𝑗 is less than 𝑛2 − 𝑗 , this
shows (𝑃𝑘 )𝑧0, 𝑗 = 0, for all 0 ≤ 𝑗 < 𝑛2, proving (i). To prove the first equality in (ii), simply observe
that 𝑥(𝑞; 𝑥𝑛1−𝑘 𝑦𝑘−1) − 𝑤(𝑥𝑛1−𝑘 𝑦𝑘 ; 𝑥) ∈ Kos′; the second equality is similarly proved. The analogous
statements for𝜓(𝑧𝑛2−ℓ𝑤ℓ ; 𝑧) and𝜓(𝑞; 𝑧𝑛2−ℓ𝑤ℓ−1) are obtained by switching the roles of 𝑥, 𝑦 and 𝑧, 𝑤. �

Lemma 4.4(i) says that all terms of 𝜓(𝑥𝑛1−𝑘 𝑦𝑘 ; 𝑥) are divisible by x or y. Part (ii) imposes further
restrictions on the values of 𝜓. We can now proceed with the proof of Proposition 4.3.

Proof of Proposition 4.3. The goal is to find compatible values𝜓 ′(𝑥𝑛1−𝑘 𝑦𝑘 ; ),𝜓 ′(𝑧𝑛2−ℓ𝑤ℓ ; ), and𝜓 ′(𝑞; )
for the generators of 𝐿1 in order to define an extension 𝜓 ′ : 𝐿1 → 𝐴, such that 𝜓 = 𝜓 ′ ◦ 𝑑𝐿2 , that is, we
require values 𝜋𝑘 := 𝜓 ′(𝑥𝑛1−𝑘 𝑦𝑘 ; ) and 𝜌 := 𝜓 ′(𝑞; ) in A, such that the equalities

𝑃𝑘 = 𝑦𝜋𝑘−1 − 𝑥𝜋𝑘 and (8)

𝑄𝑘 = 𝑧𝜋𝑘−1 − 𝑤𝜋𝑘 − 𝑥𝑛1−𝑘 𝑦𝑘−1𝜌 (9)

hold when 𝑘 > 0, along with analogous equalities involving 𝜓(𝑧𝑛2−ℓ𝑤ℓ ; 𝑧), 𝜓(𝑞; 𝑧𝑛2−ℓ𝑤ℓ−1),
𝜓 ′(𝑧𝑛2−ℓ𝑤ℓ ; ), and 𝜌. As 𝑇2

𝐴 is bigraded and graded, we simplify by assuming that 𝜓 and 𝜓 ′ are
bihomogeneous of bidegree (−𝑑1, 𝑑2) and total degree 𝑑2 − 𝑑1 ≥ 0.

To begin, suppose that 𝑃𝑘 = 0 for all k. If all 𝑄𝑘 = 0, then (8) and (9) are solved by setting all 𝜋𝑘 = 0
and 𝜌 = 0.
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Next, assume that some 𝑄ℓ ≠ 0. Lemma 4.4(ii) then tells us 𝑄ℓ is a nonzero element of Ann𝑥,𝑦 ;
since bideg(𝑄ℓ) = (𝑛1 − 𝑑1, 1 + 𝑑2), this forces 𝑑1 = 1 and 0 < 𝑑2 < 𝑛2 − 1. We will solve (9) by
choosing 𝜌 = 0 and 𝜋0, 𝜋1, . . . , 𝜋𝑛1 ∈ Ann𝑥,𝑦; hence, (8) is trivially satisfied. Then, for all k, we have

𝑄𝑘 =
∑

0<𝑖<𝑛1

𝑦𝑖 (𝑄𝑘 )𝑖,0 + (𝑄𝑘 )0,0 +
∑

0< 𝑗<𝑛1

𝑤 𝑗 (𝑄𝑘 )0, 𝑗

=
∑

0<𝑖<𝑛1

𝑦𝑖𝑥𝑛1−1−𝑖𝑧𝑑2+1𝑏 (𝑘)𝑖,0 + 𝑥
𝑛1−1𝑧𝑑2+1𝑏 (𝑘)0,0 +

∑
0< 𝑗≤𝑑2+1

𝑤 𝑗𝑥𝑛1−1𝑧𝑑2+1− 𝑗𝑏 (𝑘)0, 𝑗 ,

where each 𝑏 (𝑘)𝑖, 𝑗 ∈ k. Similarly, we have

𝑧𝜋𝑘−1 = 𝑧
�
�

∑
0<𝑖<𝑛1

𝑦𝑖 (𝜋𝑘−1)𝑖,0 + (𝜋𝑘−1)0,0 +
∑

0< 𝑗<𝑛2

𝑤 𝑗 (𝜋𝑘−1)0, 𝑗
���

= 𝑧
�
�

∑
0<𝑖<𝑛1

𝑦𝑖𝑥𝑛1−1−𝑖𝑧𝑑2𝜇 (𝑘−1)
𝑖,0 + 𝑥𝑛1−1𝑧𝑑2𝜇 (𝑘−1)

0,0 +
∑

0< 𝑗≤𝑑2

𝑤 𝑗𝑥𝑛1−1𝑧𝑑2− 𝑗𝜇 (𝑘−1)
0, 𝑗

���
=

∑
0<𝑖<𝑛1

𝑦𝑖𝑥𝑛1−1−𝑖𝑧𝑑2+1𝜇 (𝑘−1)
𝑖,0 + 𝑥𝑛1−1𝑧𝑑2+1𝜇 (𝑘−1)

0,0 +
∑

0< 𝑗≤𝑑2

𝑤 𝑗𝑥𝑛1−1𝑧𝑑2+1− 𝑗𝜇 (𝑘−1)
0, 𝑗 ,

along with

𝑤𝜋𝑘 = 𝑤
�
�

∑
0<𝑖<𝑛1

𝑦𝑖 (𝜋𝑘 )𝑖,0 + (𝜋𝑘 )0,0 +
∑

0< 𝑗<𝑛2

𝑤 𝑗 (𝜋𝑘 )0, 𝑗
���

= 𝑤
�
�

∑
0<𝑖<𝑛1

𝑦𝑖𝑥𝑛1−1−𝑖𝑧𝑑2𝜇 (𝑘)𝑖,0 + 𝑥
𝑛1−1𝑧𝑑2𝜇 (𝑘)0,0 +

∑
0< 𝑗≤𝑑2

𝑤 𝑗𝑥𝑛1−1𝑧𝑑2− 𝑗𝜇 (𝑘)0, 𝑗
���

=
∑

0<𝑖<𝑛1

𝑦𝑖−1𝑥𝑛1−𝑖𝑧𝑑2+1𝜇 (𝑘)𝑖,0 + 𝑤𝑥
𝑛1−1𝑧𝑑2𝜇 (𝑘)0,0 +

∑
0< 𝑗≤𝑑2

𝑤 𝑗+1𝑥𝑛1−1𝑧𝑑2− 𝑗𝜇 (𝑘)0, 𝑗

=
∑

0<𝑖<𝑛1−1
𝑦𝑖𝑥𝑛1−1−𝑖𝑧𝑑2+1𝜇 (𝑘)𝑖+1,0 + 𝑥

𝑛1−1𝑧𝑑2+1𝜇 (𝑘)1,0 +
∑

0< 𝑗≤𝑑2+1
𝑤 𝑗𝑥𝑛1−1𝑧𝑑2+1− 𝑗𝜇 (𝑘)0, 𝑗−1,

where each 𝜇 (𝑘)𝑖, 𝑗 ∈ k. Thus, (9) reduces to the system

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑏 (𝑘)𝑛1−1,0 = 𝜇 (𝑘−1)

𝑛1−1,0 if 𝑖 = 𝑛1 − 1,
𝑏 (𝑘)𝑖,0 = 𝜇 (𝑘−1)

𝑖,0 − 𝜇 (𝑘)𝑖+1,0 if 0 ≤ 𝑖 ≤ 𝑛1 − 2,
𝑏 (𝑘)0, 𝑗 = 𝜇 (𝑘−1)

0, 𝑗 − 𝜇 (𝑘)0, 𝑗−1 if 0 < 𝑗 ≤ 𝑑2, and
𝑏 (𝑘)0,𝑑2+1 = −𝜇 (𝑘)0,𝑑2

if 𝑗 = 𝑑2 + 1.

(‡)

This gives a system of linear equations in the variables 𝜇 (𝑘)𝑖, 𝑗 which splits into two independent subsystems:

(i) all equations involving 𝜇 (𝑘)𝑖, 𝑗 ’s with 𝑘 − 𝑖 + 𝑗 ≤ 𝑑2,
(ii) all equations involving 𝜇 (𝑘)𝑖, 𝑗 ’s with 𝑘 − 𝑖 + 𝑗 > 𝑑2

(the quantity 𝑘 − 𝑖 + 𝑗 is constant among 𝜇 (𝑘)𝑖, 𝑗 ’s in each equation). If 𝑖 = 𝑛1 − 1, then 𝑘 − 𝑖 ≤ 𝑑2 holds,
because 𝑘 ≤ 𝑛1 and 𝑑2 ≥ 1, so the first equation of (‡) belongs to (i). Also, 𝑗 = 𝑑2 implies 𝑘 + 𝑗 > 𝑑2
exactly when 𝑘 > 0, so the fourth equation of (‡) belongs to (ii). For (i), after fixing the 𝜇 (𝑛1)

𝑖,0 and 𝜇 (𝑛1)
0, 𝑗
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arbitrarily, there is a unique solution given by

𝜇 (𝑘)𝑖,0 =

{
𝑏 (𝑘+1)𝑖,0 + 𝑏 (𝑘+2)𝑖+1,0 + · · · + 𝑏

(𝑘+𝑛1−𝑖)
𝑛1−1,0 if 𝑖 ≥ 𝑘,

𝑏 (𝑘+1)𝑖,0 + 𝑏 (𝑘+2)𝑖+1,0 + · · · + 𝑏
(𝑛1)
𝑖+𝑛1−𝑘−1,0 + 𝜇

(𝑛1)
𝑖+𝑛1−𝑘,0 if 𝑖 < 𝑘,

𝜇 (𝑘)0, 𝑗 =

{
𝑏 (𝑘+1)0, 𝑗 + 𝑏 (𝑘+2)0, 𝑗−1 + · · · + 𝑏

(𝑛1)
0, 𝑗−𝑛1+𝑘+1 + 𝜇

(𝑛1)
0, 𝑗−𝑛1+𝑘

if 𝑗 ≥ 𝑛1 − 𝑘,

𝑏 (𝑘+1)0, 𝑗 + · · · + 𝑏
(𝑘+ 𝑗)
0,1 + 𝑏

(𝑘+ 𝑗+1)
0,0 + 𝑏

(𝑘+ 𝑗+2)
1,0 · · · + 𝑏 (𝑛1)

𝑛1−1−𝑘− 𝑗 ,0 + 𝜇
(𝑛1)
𝑛1−𝑘− 𝑗 ,0 if 𝑗 < 𝑛1 − 𝑘.

For (ii), there is a unique solution given by

𝜇 (𝑘)𝑖,0 = −𝑏 (𝑘)𝑖−1,0 − 𝑏 (𝑘−1)
𝑖−2,0 − · · · − 𝑏 (𝑘−𝑖+1)0,0 − 𝑏 (𝑘−𝑖)0,1 − · · · − 𝑏 (𝑘−𝑖−𝑑2)

0,𝑑2+1 and

𝜇 (𝑘)0, 𝑗 = −𝑏
(𝑘)
0, 𝑗+1 − 𝑏 (𝑘−1)

0, 𝑗+2 − · · · − 𝑏
(𝑘+ 𝑗−𝑑2)
0,𝑑2+1 .

This proves that (‡), and thus (9), can be solved under the assumption that all 𝑃𝑘 = 0, and therefore that
(8) and (9) can be solved under this assumption.

Lastly, we turn to the case where some 𝑃ℓ ≠ 0. Since bideg(𝑃ℓ) = (𝑛1 + 1 − 𝑑1, 𝑑2), we must have
𝑑1 > 1 and 𝑑2 < 𝑛2. Applying Lemma 4.4(i), we see 0 < 𝑛1 + 1 − 𝑑1 < 𝑛1. Now, for all k, we have

𝑃𝑘 =
∑

0<𝑖<𝑛1

𝑦𝑖 (𝑃𝑘 )𝑖,0 + (𝑃𝑘 )0,0 +
∑

0< 𝑗<𝑛1

𝑤 𝑗 (𝑃𝑘 )0, 𝑗

=
∑

0<𝑖≤𝑛1−𝑑1+1
𝑦𝑖𝑥𝑛1+1−𝑑1−𝑖𝑧𝑑2𝑐 (𝑘)𝑖,0 + 𝑥

𝑛1+1−𝑑1 𝑧𝑑2𝑐 (𝑘)0,0 +
∑

0< 𝑗≤𝑑2

𝑤 𝑗𝑥𝑛1+1−𝑑1 𝑧𝑑2− 𝑗𝑐 (𝑘)0, 𝑗 ,

where each 𝑐 (𝑘)𝑖, 𝑗 ∈ k. Similarly, we have

𝑦𝜋𝑘−1 = 𝑦
�
�

∑
0<𝑖<𝑛1

𝑦𝑖 (𝜋𝑘−1)𝑖,0 + (𝜋𝑘−1)0,0 +
∑

0< 𝑗<𝑛2

𝑤 𝑗 (𝜋𝑘−1)0, 𝑗
���

= 𝑦
�
�

∑
0<𝑖≤𝑛1−𝑑1

𝑦𝑖𝑥𝑛1−𝑑1−𝑖𝑧𝑑2𝜆 (𝑘−1)
𝑖,0 + 𝑥𝑛1−𝑑1 𝑧𝑑2𝜆 (𝑘−1)

0,0 +
∑

0< 𝑗≤𝑑2

𝑤 𝑗𝑥𝑛1−𝑑1 𝑧𝑑2− 𝑗𝜆 (𝑘−1)
0, 𝑗

���
=

∑
0<𝑖≤𝑛1−𝑑1

𝑦𝑖+1𝑥𝑛1−𝑑1−𝑖𝑧𝑑2𝜆 (𝑘−1)
𝑖,0 + 𝑦𝑥𝑛1−𝑑1 𝑧𝑑2𝜆 (𝑘−1)

0,0 +
∑

0< 𝑗≤𝑑2

𝑤 𝑗−1𝑥𝑛1+1−𝑑1 𝑧𝑑2− 𝑗+1𝜆 (𝑘−1)
0, 𝑗

=
∑

0<𝑖≤𝑛1+1−𝑑1

𝑦𝑖𝑥𝑛1+1−𝑑1−𝑖𝑧𝑑2𝜆 (𝑘−1)
𝑖−1,0 + 𝑥

𝑛1+1−𝑑1 𝑧𝑑2𝜆 (𝑘−1)
0,1 +

∑
0< 𝑗<𝑑2

𝑤 𝑗𝑥𝑛1+1−𝑑1 𝑧𝑑2− 𝑗𝜆 (𝑘−1)
0, 𝑗+1 ,

along with

𝑥𝜋𝑘 = 𝑥
�
�

∑
0<𝑖<𝑛1

𝑦𝑖 (𝜋𝑘 )𝑖,0 + (𝜋𝑘 )0,0 +
∑

0< 𝑗<𝑛2

𝑤 𝑗 (𝜋𝑘 )0, 𝑗
���

= 𝑥
�
�

∑
0<𝑖≤𝑛1−𝑑1

𝑦𝑖𝑥𝑛1−𝑑1−𝑖𝑧𝑑2𝜆 (𝑘)𝑖,0 + 𝑥
𝑛1−𝑑1 𝑧𝑑2𝜆 (𝑘)0,0 +

∑
0< 𝑗≤𝑑2

𝑤 𝑗𝑥𝑛1−𝑑1 𝑧𝑑2− 𝑗𝜆 (𝑘)0, 𝑗
���

=
∑

0<𝑖≤𝑛1−𝑑1

𝑦𝑖𝑥𝑛1+1−𝑑1−𝑖𝑧𝑑2𝜆 (𝑘)𝑖,0 + 𝑥
𝑛1+1−𝑑1 𝑧𝑑2𝜆 (𝑘)0,0 +

∑
0< 𝑗≤𝑑2

𝑤 𝑗𝑥𝑛1+1−𝑑1 𝑧𝑑2− 𝑗𝜆 (𝑘)0, 𝑗 ,
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where each 𝜆 (𝑘)𝑖, 𝑗 ∈ k. Thus, (8) reduces to the following system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑐 (𝑘)𝑛1−𝑑1+1,0 = 𝜆 (𝑘−1)

𝑛1−𝑑1 ,0 if 𝑖 = 𝑛1 − 𝑑1 + 1,
𝑐 (𝑘)𝑖,0 = 𝜆 (𝑘−1)

𝑖−1,0 − 𝜆
(𝑘)
𝑖,0 if 0 < 𝑖 ≤ 𝑛1 − 𝑑1,

𝑐 (𝑘)0, 𝑗 = 𝜆 (𝑘−1)
0, 𝑗+1 − 𝜆

(𝑘)
0, 𝑗 if 0 ≤ 𝑗 < 𝑑2, and

𝑐 (𝑘)0,𝑑2
= −𝜆 (𝑘)0,𝑑2

if 𝑗 = 𝑑2.

(†)

This system has the same general form as (‡) and can be solved in exactly the same way.
Therefore, the system (†), and thus (8), can be solved when some 𝑃ℓ ≠ 0, and we may proceed to

studying equality (9). It is easily seen from the basis B that multiplication-by-x defines an injective
k-linear map 𝐴(𝑖1 ,𝑖2) → 𝐴(𝑖1+1,𝑖2) between bigraded pieces of A when 0 ≤ 𝑖1 < 𝑛1 − 1. But 𝑑1 ≥ 2, so
Lemma 4.4 gives

𝑥𝑄𝑘 = 𝑤𝑃𝑘 = 𝑤(𝑦𝜋𝑘−1 − 𝑥𝜋𝑘 ) = 𝑥𝑧𝜋𝑘−1 − 𝑥𝑤𝜋𝑘 = 𝑥(𝑧𝜋𝑘−1 − 𝑤𝜋𝑘 − 𝑥𝑛1−𝑘 𝑦𝑘−1𝜌),

which implies that 𝜋0, 𝜋1, . . . , 𝜋𝑛1 and 𝜌 satisfy (9), for any choice of 𝜌.
To finish, we observe that by symmetry, the same approach solves the analogous equations (8′) and

(9′) obtained from (8) and (9), where the roles of 𝑥, 𝑦 and 𝑧, 𝑤 are switched. To see that the solutions
we obtain are consistent, note that 𝜌 is the only term appearing in both sets of equations (8), (9) and
(8′), (9′), and that in every case, we can solve these equations with 𝜌 = 0. Hence, 𝜓 : 𝐿2 → 𝐴 factors
through a map 𝜓 ′ : 𝐿1 → 𝐴. �

Proof of Proposition 4.1. Combine Propositions 4.3 and 2.3. �

5. Trivial negative tangents, II

In this section, we study a new socle phenomenon of elementary components. We continue our study
of negative tangents, focusing on the family of ideals described in Theorem 1.5. As before, let 𝐼 :=
〈𝑥, 𝑦〉𝑛1 + 〈𝑧, 𝑤〉𝑛2 + 〈𝑞〉, where 𝑞 := 𝑥𝑧 − 𝑦𝑤 and now 𝑛1, 𝑛2 ≥ 3, and set 𝐴 := 𝑆/𝐼. We begin with a
simple observation.

Lemma 5.1. The socle Soc 𝐴 is bigraded and equals 𝐴(𝑛1−1,𝑛2−1) = 𝐴𝑛1+𝑛2−2.

In other words, Lemma 5.1 says that the socle of A equals the bidegree (𝑛1 − 1, 𝑛2 − 1) piece of A,
which coincides with the total degree 𝑛1 + 𝑛2 − 2 piece of A.

Proof. Since 𝔪𝐴 is bigraded, Soc 𝐴 is as well. When 𝑖1 ≤ 𝑛1 − 2, multiplication-by-x gives an injective
map 𝐴(𝑖1 ,𝑖2) → 𝐴(𝑖1+1,𝑖2) ; when 𝑖2 ≤ 𝑛2−2, the multiplication-by-z map 𝐴(𝑖1 ,𝑖2) → 𝐴(𝑖1 ,𝑖2+1) is injective.
It is clear that 𝑥, 𝑦, 𝑧, 𝑤 kill 𝐴(𝑛1−1,𝑛2−1) , thus, we find that Soc 𝐴 = 𝐴(𝑛1−1,𝑛2−1) = 𝐴𝑛1+𝑛2−2. �

Let 𝐽 := 𝐼 + 〈𝑠〉, where 𝑠 ∈ 𝑆 (𝑛1−1,𝑛2−1) \ 𝐼, and 𝐵 := 𝑆/𝐽, so there is a short exact sequence

0 −→ 𝐽/𝐼 −→ 𝐴
𝜋
−→ 𝐵 −→ 0.

By Proposition 3.5, we know that I has trivial negative tangents—we wish to show that J has trivial
negative tangents too. We could proceed directly as in Section 3, performing elementary computations;
instead, we apply a standard long exact sequence in tangent cohomology (see Remark 2.1 and [18,
Theorem 3.5]). Namely, the pair of natural ring maps k → 𝐴 → 𝐵 leads to a long exact sequence
containing the following portion:

· · · −→ 𝑇1 (𝐵/𝐴, 𝐵) −→ 𝑇1 (𝐵/k, 𝐵) −→ 𝑇1 (𝐴/k, 𝐵) −→ · · · , (10)

which we use to show that 𝑇1 (𝐵/k, 𝐵)<0 = 0.
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Lemma 5.2. We have 𝑇1 (𝐵/𝐴, 𝐵)<0 = 0 and 𝑇1 (𝐴/k, 𝐵)<0 = 0.

Proof. We examine 𝑇1 (𝐴/k, 𝐵) first, using the notation of Section 4. The truncated cotangent complex
of k→ 𝐴 is described by (𝑐𝑜𝑡𝐴/k). As 𝐿0 � 𝐴(−1)4 in the standard grading, the B-dual is

Hom𝐴(𝐿•, 𝐵) : 𝐵(1)4 −→ Hom𝐴(𝐹/𝐼𝐹, 𝐵) −→ Hom𝐴(F2/Kos′, 𝐵).

Let 𝜓 : 𝐿1 = 𝐹/𝐼𝐹 → 𝐵 represent an element of 𝑇1 (𝐴/k, 𝐵)𝑖 with 𝑖 < 0; 𝜓 is determined by its
values on the generators (𝑔; ) of 𝐿1 (listed just after (𝑐𝑜𝑡𝐴/k)). Because the degrees satisfy |𝜓(𝑔; ) | =
|𝑔 | + 𝑖 < 𝑛1 + 𝑛2 − 2 = |𝑠 |, the map 𝜋 identifies 𝐴 |𝜓 (𝑔;) | with 𝐵 |𝜓 (𝑔;) | . This allows us to define an
A-linear map 𝜓 : 𝐿1 → 𝐴 satisfying 𝜓 = 𝜋 ◦ 𝜓 via 𝜓(𝑔; ) := 𝜓(𝑔; ), for each g. Checking degrees
also shows that 𝜓 ◦ 𝑑𝐿2 = 0: for instance, |𝜓 ◦ 𝑑𝐿2 (𝑥

𝑛1−𝑘 𝑦𝑘 ; 𝑥) | = 𝑛1 + 1 + 𝑖 < 𝑛1 + 𝑛2 − 2 implies
𝜓◦𝑑𝐿2 (𝑥

𝑛1−𝑘 𝑦𝑘 ; 𝑥) = 𝜓◦𝑑𝐿2 (𝑥
𝑛1−𝑘 𝑦𝑘 ; 𝑥) = 0; other generators similarly vanish. This means 𝜓 defines an

element of𝑇1 (𝐴/k, 𝐴)𝑖 . We know𝑇1 (𝐴/k, 𝐴)<0 = 0, by Proposition 3.5, so 𝜓 is a k-linear combination
of the trivial tangents 𝜕𝑥 , 𝜕𝑦 , 𝜕𝑧 , 𝜕𝑤 . The identification of 𝜓(𝑔; ) with 𝜓(𝑔; ), for each g, then implies 𝜓
is a k-linear combination of the trivial tangents. Thus, we have 𝑇1 (𝐴/k, 𝐵)<0 = 0.

We examine 𝑇1 (𝐵/𝐴, 𝐵) next, forming the truncated cotangent complex of 𝜋. As 𝜋 is surjective,
we set 𝑅𝐵/𝐴 = 𝐴; then we may choose 𝐹𝐵/𝐴 = 𝐴(−𝑛1 − 𝑛2 + 2) as 𝐽/𝐼 = 〈𝑠 + 𝐼〉 is principal. Next,
𝑄𝐵/𝐴 = 𝔪𝐴(−𝑛1 − 𝑛2 + 2) holds, because 𝑠 + 𝐼 ∈ Soc 𝐴; this also guarantees that Kos𝐵/𝐴 = 0. Finally,
Ω𝑅𝐵/𝐴/𝐴 = Ω𝐴/𝐴 = 0, so we see that the truncated cotangent complex equals

𝐿𝐵/𝐴,• : 0←− 𝐵(−𝑛1 − 𝑛2 + 2) ←− 𝔪𝐴(−𝑛1 − 𝑛2 + 2),

where the differential 𝑑𝐵/𝐴2 is a twist of 𝜋 |𝔪𝐴 : 𝔪𝐴→ 𝐵. This implies

𝑇1 (𝐵/𝐴, 𝐵) = ker 𝑑1
𝐵/𝐴 = {𝜑 : 𝐵(−𝑛1 − 𝑛2 + 2) → 𝐵 | 𝜑 ◦ 𝑑𝐵/𝐴2 = 0}

= {𝜑 : 𝐵(−𝑛1 − 𝑛2 + 2) → 𝐵 | 𝜑|𝔪𝐵 = 0} � (Soc 𝐵) (𝑛1 + 𝑛2 − 2),

so that 𝑇1 (𝐵/𝐴, 𝐵)<0 = 0 holds by the following lemma. �

Lemma 5.3. The socle Soc 𝐵 is bigraded and equals 𝐵 (𝑛1−1,𝑛2−1) = 𝐵𝑛1+𝑛2−2.

Proof. As B and 𝔪𝐵 are bigraded, so Soc 𝐵 is bigraded. When 𝑖1 ≤ 𝑛1 − 2 and 𝑖2 ≤ 𝑛2 − 2,
the multiplication-by-x and -y maps [𝑥], [𝑦] : 𝐵 (𝑖1 ,𝑖2) → 𝐵 (𝑖1+1,𝑖2) and the multiplication maps
[𝑧], [𝑤] : 𝐵 (𝑖1 ,𝑖2) → 𝐵 (𝑖1 ,𝑖2+1) are injective. When (𝑖1, 𝑖2) = (𝑛1 − 2, 𝑛2 − 1), the kernels of [𝑥] and
[𝑦] have dimension at most 1. Suppose that 𝑏 ∈ 𝐵 (𝑛1−2,𝑛2−1) satisfies 𝑥𝑏 = 𝑦𝑏 = 0; treating b as an
element of A, this means 𝑥𝑏 and 𝑦𝑏 are scalar multiples of s and thus of each other; a direct com-
putation in the basis B then shows that 𝑏 = 0. A similar occurrence holds for [𝑧] and [𝑤], when
(𝑖1, 𝑖2) = (𝑛1 − 1, 𝑛2 − 2). Thus, we find that Soc 𝐵 = 𝐵 (𝑛1−1,𝑛2−1) = 𝐵𝑛1+𝑛2−2. �

This proves the following.

Proposition 5.4. The ideal J has trivial negative tangents.

Proof. Lemmas 5.1, 5.2, and 5.3 show that 𝑇1 (𝐵/𝐴, 𝐵)<0 = 0 = 𝑇1 (𝐴/k, 𝐵)<0, proving that
𝑇1 (𝐵/k, 𝐵)<0 = 0 via the long exact sequence (10). �

We show next that the above arguments can oftentimes be iterated. This is done after a preliminary
lemma.

Lemma 5.5. Let 𝑠1, 𝑠2, . . . , 𝑠𝑟 ∈ Soc 𝐴 and 𝐴(𝑖) = 𝐴/〈𝑠1, 𝑠2, . . . , 𝑠𝑖〉. If the socle of 𝐴(𝑟 ) satisfies
Soc 𝐴(𝑟 ) = 𝐴(𝑟 )

(𝑛1−1,𝑛2−1) , then Soc 𝐴(𝑖) = 𝐴(𝑖)
(𝑛1−1,𝑛2−1) holds, for all 1 ≤ 𝑖 ≤ 𝑟 .
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Proof. We have surjections

𝐴 = 𝐴(0)
𝜋0
−−→ 𝐴(1)

𝜋1
−−→ · · ·

𝜋𝑟−1
−−−→ 𝐴(𝑟 ) .

We already know Soc 𝐴 = 𝐴(𝑛1−1,𝑛2−1) by Lemma 5.1. In particular, for all i, the image of 𝑠𝑖 in 𝐴(𝑖−1)

is contained in 𝐴(𝑖−1)
(𝑛1−1,𝑛2−1) .

We prove the lemma by backwards induction on i. We have the following diagram

Soc 𝐴(𝑖)
𝜋𝑖 �� Soc 𝐴(𝑖+1)

𝐴(𝑖)
(𝑛1−1,𝑛2−1)

��
��

��

𝐴(𝑖+1)
(𝑛1−1,𝑛2−1) .

��

��

If 𝐴(𝑖)
(𝑛1−1,𝑛2−1) ≠ Soc 𝐴(𝑖) , then there exists 𝑠 ∈ Soc 𝐴(𝑖) with bidegree (𝑘, ℓ) ≠ (𝑛1 − 1, 𝑛2 − 1). But

then 𝜋𝑖 (𝑠) ∈ 𝐴(𝑖+1)
(𝑘,ℓ)
∩ Soc 𝐴(𝑖+1) = 0. Therefore, s is a scalar multiple of the image of 𝑠𝑖+1, which we

know is in 𝐴(𝑖)
(𝑛1−1,𝑛2−1) , giving a contradiction. �

Corollary 5.6. Let 𝑠1, 𝑠2, . . . , 𝑠𝑟 ∈ 𝑆,

𝐽 ′ = 𝐼 + 〈𝑠1, 𝑠2, . . . , 𝑠𝑟 〉,

and 𝐵′ = 𝑆/𝐽 ′. Assume every 𝑠𝑖 + 𝐼 ∈ Soc 𝐴 and Soc 𝐵′ = 𝐵′
(𝑛1−1,𝑛2−1) . Then 𝐽 ′ has trivial negative

tangents.

Proof. We prove the result by induction on r. Proposition 5.4 handles the case 𝑟 = 1, so let 𝑟 > 1. Let
𝐼 (0) := 𝐼, 𝐼 (𝑖) := 𝐼 + 〈𝑠1, 𝑠2, . . . , 𝑠𝑖〉, and 𝐴(𝑖) = 𝑆/𝐼 (𝑖) for 1 ≤ 𝑖 ≤ 𝑟 . We may further suppose that
𝑠𝑖+1 + 𝐼

(𝑖) ∈ Soc 𝐴(𝑖) is nonzero. Note that, by Lemma 5.5, Soc 𝐴(𝑖) = 𝐴(𝑖)
(𝑛1−1,𝑛2−1) for all 1 ≤ 𝑖 ≤ 𝑟 .

Set 𝐼 ′ = 𝐼 (𝑟−1) , 𝐴′ = 𝑆/𝐼 ′, and 𝜋′ : 𝐴′ → 𝐵′. We use the long exact sequence of the pair of ring
maps k→ 𝐴′ → 𝐵′, studying the portion

· · · −→ 𝑇1 (𝐵′/𝐴′, 𝐵′) −→ 𝑇1 (𝐵′/k, 𝐵′) −→ 𝑇1 (𝐴′/k, 𝐵′) −→ · · · .

To understand 𝑇1 (𝐴′/k, 𝐵′), we use the truncated cotangent complex 𝐿 ′• of k → 𝐴′. Let F ′• be the
minimal free resolution of 𝐴′; we have

𝐹 ′ := F ′1 = F1 ⊕

𝑟−1⊕
𝑖=1

𝑆(𝑠𝑖; ),

where (𝑠𝑖; ) ↦→ 𝑠𝑖 and where F• is the minimal free resolution of A. Let [𝜓 ′] ∈ 𝑇1 (𝐴′/k, 𝐵′) 𝑗 . We
further assume that 𝜓 ′ is bigraded.

First, assume that 𝑗 < −1. Like in the proof of Lemma 5.2, we wish to lift a class [𝜓 ′] ∈ 𝑇1 (𝐴′/k, 𝐵′) 𝑗
to [𝜓 ′] ∈ 𝑇1 (𝐴′/k, 𝐴′) 𝑗 . We have |𝜓 ′(𝑠𝑖; ) | = 𝑛1 + 𝑛2 − 2 + 𝑗 < 𝑛1 + 𝑛2 − 2, so we can define a map
𝜓 ′ : 𝐹 ′/𝐼 ′𝐹 ′ → 𝐴′ via 𝜓 ′(𝑔; ) := 𝜓 ′(𝑔; ), for our generators 𝑔 ∈ 𝐼 ′. For this to define an element [𝜓 ′]
in cohomology, we need to show 𝜓 ′ ◦ 𝑑𝐿

′

2 = 0. Observe that F ′2 has the form

F ′2 = F2 ⊕

𝑟−1⊕
𝑖=1

𝑆(𝑠𝑖; 𝑥) ⊕ 𝑆(𝑠𝑖; 𝑦) ⊕ 𝑆(𝑠𝑖; 𝑧) ⊕ 𝑆(𝑠𝑖;𝑤),
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where (𝑠𝑖; 𝑥) maps to a choice of minimal syzygy arising from the fact that 𝑥𝑠𝑖 ∈ 𝐼 (𝑖−1) , and similarly
for (𝑠𝑖; 𝑦), (𝑠𝑖; 𝑧), and (𝑠𝑖;𝑤) (recall that 0 ≠ 𝑠𝑖 + 𝐼

(𝑖−1) ∈ Soc 𝐴(𝑖−1) ). All generators of the form (𝑠𝑖; 𝑥)
or (𝑠𝑖; 𝑦) have bidegree (𝑛1, 𝑛2 − 1), while the generators of the form (𝑠𝑖; 𝑧) or (𝑠𝑖;𝑤) have bidegree
(𝑛1 − 1, 𝑛2). Since 𝑗 < −1, we see bideg(𝜓 ′) ∉ {(−1, 0), (0,−1)}. Then identifying (bi)graded pieces
of B and A—like in the proof of Lemma 5.2—shows that 𝜓 ′ ◦ 𝑑𝐿′2 = 0, and therefore that [𝜓 ′] = 0.

It remains to show that [𝜓 ′] is trivial when bideg(𝜓 ′) ∈ {(−1, 0), (0,−1)}. We show this directly
rather than lifting to 𝜓 ′. Suppose bideg(𝜓 ′) = (−1, 0). Note that 𝜓 ′ : 𝐹 ′/𝐼 ′𝐹 ′ → 𝐵′ is an 𝐴′-linear map
satisfying 𝜓 ′ ◦ 𝑑𝐿

′

2 = 0 and so factors through 𝐼 ′/𝐼 ′2; for simplicity, we work with the corresponding
S-linear map 𝜑′ : 𝐼 ′ → 𝐵′. Considering bideg(𝜓 ′), the generators of 𝐼 ⊂ 𝐼 ′ have values

𝜑′(𝑥𝑛1−𝑘 𝑦𝑘 ) =
∑

0≤𝑖<𝑛1

𝑦𝑖𝑥𝑛1−1−𝑖𝑎 (𝑘)𝑖,0 , 𝜑′(𝑧𝑛2−ℓ𝑤ℓ) = 0, and 𝜑′(𝑞) = 𝑎𝑧 − 𝑎′𝑤,

where 𝑎, 𝑎′, 𝑎 (𝑘)𝑖,0 ∈ k, for all 0 ≤ 𝑘 ≤ 𝑛1. Observe that relation (4) holds for 𝜑′ and takes place in
𝐵′
(𝑛1−1,1) = 𝐴′

(𝑛1−1,1) = 𝐴(𝑛1−1,1) . This implies that the proof of Proposition 3.5 applies verbatim to
these values of 𝜑′; in other words, 𝜑′ acts as a derivative map on the generators of I, and so 𝜑′ |𝐼 = 𝛿 |𝐼 ,
where 𝛿 := 𝜋′ ◦ (𝑎𝜕𝑥 + 𝑎

′𝜕𝑦) and 𝑎𝜕𝑥 + 𝑎
′𝜕𝑦 : 𝐼 ′ → 𝐴′. As 𝑥𝑠1, 𝑦𝑠1 ∈ 𝐼, we have 𝑥𝜑′(𝑠1) = 𝑥𝛿(𝑠1) and

𝑦𝜑′(𝑠1) = 𝑦𝛿(𝑠1), and we see that 𝜑′(𝑠1)−𝛿(𝑠1) ∈ (Soc 𝐵′)(𝑛1−2,𝑛2−1) = 0, which means 𝜑′(𝑠1) = 𝛿(𝑠1).
Thus, 𝜑′ |𝐼 (1) = 𝛿 |𝐼 (1) holds. Repeating this for 𝑥𝑠2, 𝑦𝑠2 ∈ 𝐼 (1) now shows that 𝜑′ |𝐼 (2) = 𝛿 |𝐼 (2) holds, and
continuing, we eventually obtain 𝜑′ = 𝛿. In other words, 𝜓 ′ is a trivial negative tangent vector, and a
symmetric argument applies to the case bideg(𝜓 ′) = (0,−1). Therefore, we have 𝑇1 (𝐴′/k, 𝐵′)<0 = 0.

The argument to show 𝑇1 (𝐵′/𝐴′, 𝐵′)<0 = 0 mirrors the proof of Proposition 5.4, as 𝜋′ : 𝐴′ → 𝐵′

is a surjection, and we are assuming that Soc 𝐵′ = 𝐵′
(𝑛1−1,𝑛2−1) . Hence, the long exact sequence proves

that 𝑇1 (𝐵′/k, 𝐵′)<0 = 0. �

6. Vanishing nonnegative obstruction spaces, II

Continuing with the notation from Section 5, our goal here is to prove that 𝑇2 (𝐵/k, 𝐵)≥0 = 0. As before,
the pair of natural ring maps k→ 𝐴→ 𝐵 yields a long exact sequence, which terminates as follows:

· · · −→ 𝑇2 (𝐵/𝐴, 𝐵) −→ 𝑇2 (𝐵/k, 𝐵) −→ 𝑇2 (𝐴/k, 𝐵). (11)

Let us first examine 𝑇2 (𝐵/𝐴, 𝐵). The truncated cotangent complex of 𝜋 : 𝐴 → 𝐵 is described in the
proof of Lemma 5.2; it is

𝐿𝐵/𝐴,• : 0←− 𝐵(−𝑛1 − 𝑛2 + 2) ←− 𝔪𝐴(−𝑛1 − 𝑛2 + 2),

where the differential is a twist of 𝔪𝐴 ⊂ 𝐴→ 𝐵. By definition, this implies 𝑇2 (𝐵/𝐴, 𝐵) is a quotient of
Hom𝐵 (𝔪𝐴(−𝑛1 − 𝑛2 + 2), 𝐵), the latter being trivial in nonnegative degrees—that is, 𝔪𝐴(−𝑛1 − 𝑛2 + 2)
is generated in degree 𝑛1 + 𝑛2 − 1 while 𝐵𝑖 = 0, for all 𝑖 > 𝑛1 + 𝑛2 − 2. This shows that

𝑇2 (𝐵/𝐴, 𝐵)≥0 = 0. (12)

Recall that the truncated cotangent complex of k→ 𝐴 is described in (𝑐𝑜𝑡𝐴/k) and equals

𝐿• : 𝐴(−1)4 ←− F1 ⊗𝑆 𝐴←− F2/Kos′ .

We show the following.

Proposition 6.1. Let 𝐵 := 𝑆/𝐽, where J is as in Section 5. We have 𝑇2 (𝐵/k, 𝐵)≥0 = 0.

Proof. We must examine𝑇2 (𝐴/k, 𝐵). Suppose we are given an A-linear homomorphism𝜓 : F2/Kos′ →
𝐵 of nonnegative degree; decomposing 𝜓, we may assume that 𝜓 has bideg(𝜓) = ( 𝑗1, 𝑗2) ∈ Z2, such
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that 𝑗1 + 𝑗2 ≥ 0. We may think of 𝜓 as an S-linear map F2 → 𝐵 vanishing on Kos′. As F2 is free,
there is a bigraded lifting 𝜓 : F2 → 𝐴, such that 𝜋 ◦ 𝜓 = 𝜓. If 𝜓 |Kos′ = 0, then 𝜓 defines an element of
𝑇2 (𝐴/k, 𝐴)≥0 = 0, so 𝜓 factors through 𝑑𝐿2 ; then 𝜓 also factors through 𝑑𝐿2 , showing that 𝜓 is trivial in
𝑇2 (𝐴/k, 𝐵).

So it remains to show that 𝜓 |Kos′ = 0. Let 𝐺 ∈ Kos′ be a minimal generator, and set (𝑖1, 𝑖2) :=
bideg(𝐺) so that

(𝑖1, 𝑖2) ∈ {(2𝑛1, 0), (0, 2𝑛2), (𝑛1, 𝑛2), (𝑛1 + 1, 1), (1, 𝑛2 + 1)}.

That is, the Koszul relation 𝑥𝑛1−𝑖𝑦𝑖 (𝑥𝑛1−𝑖
′
𝑦𝑖
′ ; ) − 𝑥𝑛1−𝑖

′
𝑦𝑖
′
(𝑥𝑛1−𝑖𝑦𝑖; ) has bidegree (2𝑛1, 0); the Koszul

relation 𝑥𝑛1−𝑖𝑦𝑖 (𝑞; ) − 𝑞(𝑥𝑛1−𝑖𝑦𝑖; ) has bidegree (𝑛1 + 1, 1); etc. Without loss of generality, assume
𝑛1 ≤ 𝑛2. Since 𝜋 ◦ 𝜓 = 𝜓, we have

𝜓(𝐺) ∈ 𝐽/𝐼 ⊂ 𝐴(𝑛1−1,𝑛2−1) .

As 𝜓(𝐺) ∈ 𝐴(𝑖1+ 𝑗1 ,𝑖2+ 𝑗2) and 𝑗1 + 𝑗2 ≥ 0, we immediately find that

( 𝑗1, 𝑗2) ∉ {(−𝑛1 − 1, 𝑛2 − 1), (−2, 𝑛2 − 2), (𝑛1 − 2,−2)} =⇒ 𝜓(𝐺) = 0.

In particular, for such ( 𝑗1, 𝑗2), we have 𝑇2 (𝐴/k, 𝐵)( 𝑗1 , 𝑗2) = 0; combining this with (11) and (12), we
find 𝑇2 (𝐵/k, 𝐵)( 𝑗1 , 𝑗2) = 0.

To complete the proof, we must show that 𝑇2 (𝐵/k, 𝐵)( 𝑗1 , 𝑗2) = 0 for ( 𝑗1, 𝑗2) belonging to {(−𝑛1 −
1, 𝑛2 − 1), (−2, 𝑛2 − 2), (𝑛1 − 2,−2)}. Consider the long exact sequence induced by the ring maps
𝐴→ 𝐴/𝔪𝐴 = k→ 𝐵, which contains the following portion:

· · · −→ 𝑇1 (k/𝐴, 𝐵) −→ 𝑇2 (𝐵/k, 𝐵) −→ 𝑇2 (𝐵/𝐴, 𝐵) −→ · · · .

Because 𝐴 → k is surjective, we have 𝑇1 (k/𝐴, 𝐵)( 𝑗1 , 𝑗2) = Homk (𝔪𝐴/𝔪2
𝐴, 𝐵)( 𝑗1 , 𝑗2) = 0 since 𝑗1 or 𝑗2

is at most −2 (cf. [18, Proposition 3.8]). Since

𝑇2 (𝐵/𝐴, 𝐵)( 𝑗1 , 𝑗2) = 0

holds by (12), restricting this long exact sequence to the bidegree ( 𝑗1, 𝑗2) part shows that
𝑇2 (𝐵/k, 𝐵)( 𝑗1 , 𝑗2) = 0. Hence, we have 𝑇2 (𝐵/k, 𝐵)≥0 = 0. �

Again, the argument iterates.

Corollary 6.2. Let 𝑠1, 𝑠2, . . . , 𝑠𝑟 ∈ 𝑆,

𝐽 ′ = 𝐼 + 〈𝑠1, 𝑠2, . . . , 𝑠𝑟 〉,

and 𝐵′ = 𝑆/𝐽 ′. Assume every 𝑠𝑖 + 𝐼 ∈ Soc 𝐴 and Soc 𝐵′ = 𝐵′
(𝑛1−1,𝑛2−1) . Then 𝐽 ′ has vanishing

nonnegative obstruction space.

Proof. We prove the result by induction on r. Proposition 6.1 handles the case 𝑟 = 1, so we take 𝑟 > 1.
Let 𝐼 (0) := 𝐼, 𝐼 (𝑖) := 𝐼 + 〈𝑠1, 𝑠2, . . . , 𝑠𝑖〉, and 𝐴(𝑖) = 𝑆/𝐼 (𝑖) for 1 ≤ 𝑖 ≤ 𝑟 . We may further suppose that
𝑠𝑖+1 + 𝐼

(𝑖) ∈ Soc 𝐴(𝑖) is nonzero. Note that, by Lemma 5.5, Soc 𝐴(𝑖) = 𝐴(𝑖)
(𝑛1−1,𝑛2−1) for all 1 ≤ 𝑖 ≤ 𝑟 .

Set 𝐼 ′ = 𝐼 (𝑟−1) , 𝐴′ = 𝑆/𝐼 ′, and 𝜋′ : 𝐴′ → 𝐵′. We use the long exact sequence of the pair of ring
maps k→ 𝐴′ → 𝐵′, studying the portion

· · · −→ 𝑇2 (𝐵′/𝐴′, 𝐵′) −→ 𝑇2 (𝐵′/k, 𝐵′) −→ 𝑇2 (𝐴′/k, 𝐵′).

Our assumptions guarantee that the proof of the equality 𝑇2 (𝐵′/𝐴′, 𝐵′)≥0 = 0 follows exactly as in the
case 𝑟 = 1.
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As mentioned in the proof of Corollary 5.6, the minimal free resolution of 𝐴′ over S has terms

F ′• : 𝑆 ←− F1 ⊕

𝑟−1⊕
𝑖=1

𝑆(𝑠𝑖; ) ←− F2 ⊕

𝑟−1⊕
𝑖=1

(
𝑆(𝑠𝑖; 𝑥) ⊕ 𝑆(𝑠𝑖; 𝑦) ⊕ 𝑆(𝑠𝑖; 𝑧) ⊕ 𝑆(𝑠𝑖;𝑤)

)
←− · · · .

We wish to apply the proof of Proposition 6.1 to an 𝐴′-linear map 𝜓 ′ : F ′2/Kos′′ → 𝐵′. Note that
the generators of F ′2 not belonging to F2 all have degree 𝑛1 + 𝑛2 − 1. This implies that any 𝜓 ′ of
nonnegative degree must vanish on these generators and any syzygies involving them. The same analysis
of bidegrees as in the proof of Proposition 6.1 then holds, showing that 𝑇2 (𝐴′/k, 𝐵′)≥0 = 0. Hence, we
have 𝑇2 (𝐵′/k, 𝐵′)≥0 = 0 by the long exact sequence. �

7. Dimensions of components

Let I be as in Theorem 1.3. Having now shown that [𝐼] is a smooth point of the Hilbert scheme
and that the irreducible component containing [𝐼] is elementary, we compute the dimension of this
component (see Corollary 7.3). This is achieved by explicitly computing the dimension of the tangent
space Hom𝑆 (𝐼, 𝑆/𝐼).

Let 𝜑 ∈ Hom𝑆 (𝐼, 𝑆/𝐼). Our starting point is to reexamine relation (4), namely

𝑥𝑛1−1−𝑘 𝑦𝑘𝜑(𝑥𝑧 − 𝑦𝑤) = 𝑧𝜑(𝑥𝑛1−𝑘 𝑦𝑘 ) − 𝑤𝜑(𝑥𝑛1−1−𝑘 𝑦𝑘+1),

where 0 ≤ 𝑘 ≤ 𝑛1 − 1.

Proposition 7.1. Let 𝑞 := 𝑥𝑧 − 𝑦𝑤, 𝑟 := 𝜑(𝑞), and 𝑝𝑘 := 𝜑(𝑥𝑛1−𝑘 𝑦𝑘 ), for 0 ≤ 𝑘 ≤ 𝑛1. Let 𝑝′𝑘 ∈ Ann𝑥,𝑦
be such that 𝑝𝑘 − 𝑝′𝑘 is supported away from Ann𝑥,𝑦 . For any 𝑓 ∈ 𝑆/𝐼, let 𝑓𝑖, 𝑗 be as in Lemma 3.2. Each
(𝑝′𝑘 )𝑖, 𝑗 factors as 𝑥𝑛1−1−𝑖 (𝑝′𝑘 )

𝑧
𝑖, 𝑗 , where (𝑝′𝑘 )

𝑧
𝑖, 𝑗 is some polynomial in z. Let 𝑟 𝑧0, 𝑗 denote the 𝑥0𝑧≥0-part

of 𝑟0, 𝑗 .
Then relation (4) is equivalent to the equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑧(𝑝′𝑘 )

𝑧
𝑖,0 = (𝑛1 − 𝑘)𝑧𝑘−𝑖𝑟 𝑧0,𝑘−𝑖 , for 𝑘 ≤ 𝑖 < 𝑛1,

𝑧(𝑝′𝑘+1)
𝑧
𝑖+1,0 = 𝑧𝑘−𝑖

(
𝑧(𝑝′0)

𝑧
0,𝑘−𝑖 − (𝑘 + 1)𝑟 𝑧0,𝑘−𝑖

)
, for 0 ≤ 𝑖 < 𝑘,

𝑧 𝑗 (𝑝′𝑘+1)
𝑧
0, 𝑗−1 = 𝑧𝑘+ 𝑗

(
𝑧(𝑝′0)

𝑧
0,𝑘+ 𝑗 − (𝑘 + 1)𝑟 𝑧0,𝑘+ 𝑗

)
, for 0 < 𝑗 < 𝑛2.

(★z)

Note that terms in (★z) may vanish per Lemma 3.2, for example, if 𝑘 < 𝑖, then 𝑟 𝑧0,𝑘−𝑖 = 0.

Proof. In this notation, (4) becomes

𝑥𝑛1−1−𝑘 𝑦𝑘𝑟 = 𝑧𝑝𝑘 − 𝑤𝑝𝑘+1,

where 0 ≤ 𝑘 < 𝑛1. Applying Lemma 3.2 to the left-hand side, we have

𝑥𝑛1−1−𝑘 𝑦𝑘𝑟 = 𝑥𝑛1−1−𝑘 𝑦𝑘
�
�

∑
0<𝑖<𝑛1

𝑦𝑖𝑟𝑖,0 +
∑

0< 𝑗<𝑛2

𝑤 𝑗𝑟0, 𝑗 + 𝑟0,0
���

=
∑

0< 𝑗<𝑛2

𝑥𝑛1−1−𝑘 𝑦𝑘𝑤 𝑗𝑟 𝑧0, 𝑗 + 𝑥
𝑛1−1−𝑘 𝑦𝑘𝑟 𝑧0,0,
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where 𝑟 𝑧0, 𝑗 denotes the 𝑥0𝑧≥0-part of the polynomial 𝑟0, 𝑗 = 𝑟0, 𝑗 (𝑥, 𝑧), for 𝑗 ≥ 0. This equals

=
∑

0< 𝑗≤𝑘
𝑦𝑘− 𝑗𝑥𝑛1−1−𝑘+ 𝑗 𝑧 𝑗𝑟 𝑧0, 𝑗 +

∑
𝑘< 𝑗<𝑛2

𝑤 𝑗−𝑘𝑥𝑛1−1𝑧𝑘𝑟 𝑧0, 𝑗 + 𝑥
𝑛1−1−𝑘 𝑦𝑘𝑟 𝑧0,0

=
∑

0≤𝑖<𝑘
𝑦𝑖𝑥𝑛1−1−𝑖𝑧𝑘−𝑖𝑟 𝑧0,𝑘−𝑖 + 𝑦

𝑘𝑥𝑛1−1−𝑘𝑟 𝑧0,0 +
∑

0< 𝑗<𝑛2−𝑘

𝑤 𝑗𝑥𝑛1−1𝑧𝑘𝑟 𝑧0,𝑘+ 𝑗

=
∑

0<𝑖≤𝑘
𝑦𝑖𝑥𝑛1−1−𝑖𝑧𝑘−𝑖𝑟 𝑧0,𝑘−𝑖 +

∑
0< 𝑗<𝑛2−𝑘

𝑤 𝑗𝑥𝑛1−1𝑧𝑘𝑟 𝑧0,𝑘+ 𝑗 + 𝑥
𝑛1−1𝑧𝑘𝑟 𝑧0,𝑘 ,

which is the expression guaranteed by Lemma 3.2 for the element 𝑥𝑛1−1−𝑘 𝑦𝑘𝑟 ∈ 𝐴 = 𝑆/𝐼.
Now consider the right-hand side 𝑧𝑝𝑘 − 𝑤𝑝𝑘+1. A straightforward calculation with the expressions

from Corollary 3.4 shows that 𝑧𝑝𝑘 −𝑤𝑝𝑘+1 = 𝑧𝑝′𝑘 −𝑤𝑝′𝑘+1, where 𝑝′𝑘 is the part of 𝑝𝑘 annihilated by x
and y. For any element 𝑓 =

∑
𝑖>0 𝑦

𝑖 𝑓𝑖,0 +
∑

𝑗>0 𝑤
𝑗 𝑓0, 𝑗 + 𝑓0,0 expressed using Lemma 3.2 and belonging

to Ann𝑥,𝑦 = 𝐴(𝑛1−1,∗) , we may assume 𝑓𝑖, 𝑗 has the form 𝑥𝑛1−1−𝑖 𝑓 𝑧𝑖, 𝑗 , where 𝑓 𝑧𝑖, 𝑗 is a polynomial in z.
Thus, we have

𝑧𝑝′𝑘 = 𝑧
�
�

∑
0<𝑖<𝑛1

𝑦𝑖 (𝑝′𝑘 )𝑖,0 +
∑

0< 𝑗<𝑛2

𝑤 𝑗 (𝑝′𝑘 )0, 𝑗 + (𝑝
′
𝑘 )0,0

���
= 𝑧

�
�
∑

0<𝑖<𝑛1

𝑦𝑖𝑥𝑛1−1−𝑖 (𝑝′𝑘 )
𝑧
𝑖,0 +

∑
0< 𝑗<𝑛2

𝑤 𝑗𝑥𝑛1−1 (𝑝′𝑘 )
𝑧
0, 𝑗 + 𝑥

𝑛1−1 (𝑝′𝑘 )
𝑧
0,0

���
=

∑
0<𝑖<𝑛1

𝑦𝑖𝑥𝑛1−1−𝑖𝑧(𝑝′𝑘 )
𝑧
𝑖,0 +

∑
0< 𝑗<𝑛2−1

𝑤 𝑗𝑥𝑛1−1𝑧(𝑝′𝑘 )
𝑧
0, 𝑗 + 𝑥

𝑛1−1𝑧(𝑝′𝑘 )
𝑧
0,0.

We also have

𝑤𝑝′𝑘+1 = 𝑤
�
�

∑
0<𝑖<𝑛1

𝑦𝑖 (𝑝′𝑘+1)𝑖,0 +
∑

0< 𝑗<𝑛2

𝑤 𝑗 (𝑝′𝑘+1)0, 𝑗 + (𝑝
′
𝑘+1)0,0

���
= 𝑤

�
�
∑

0<𝑖<𝑛1

𝑦𝑖𝑥𝑛1−1−𝑖 (𝑝′𝑘+1)
𝑧
𝑖,0 +

∑
0< 𝑗<𝑛2

𝑤 𝑗𝑥𝑛1−1(𝑝′𝑘+1)
𝑧
0, 𝑗 + 𝑥

𝑛1−1(𝑝′𝑘+1)
𝑧
0,0

���
=

∑
0<𝑖<𝑛1

𝑦𝑖−1𝑥𝑛1−𝑖𝑧(𝑝′𝑘+1)
𝑧
𝑖,0 +

∑
0< 𝑗<𝑛2−1

𝑤 𝑗+1𝑥𝑛1−1(𝑝′𝑘+1)
𝑧
0, 𝑗 + 𝑤𝑥

𝑛1−1(𝑝′𝑘+1)
𝑧
0,0

=
∑

0<𝑖<𝑛1−1
𝑦𝑖𝑥𝑛1−1−𝑖𝑧(𝑝′𝑘+1)

𝑧
𝑖+1,0 +

∑
0< 𝑗<𝑛2

𝑤 𝑗𝑥𝑛1−1(𝑝′𝑘+1)
𝑧
0, 𝑗−1 + 𝑥

𝑛1−1𝑧(𝑝′𝑘+1)
𝑧
1,0,

and combining these gives

𝑧𝑝′𝑘 − 𝑤𝑝′𝑘+1 =
∑

0<𝑖<𝑛1

𝑦𝑖𝑥𝑛1−1−𝑖𝑧
(
(𝑝′𝑘 )

𝑧
𝑖,0 − (𝑝

′
𝑘+1)

𝑧
𝑖+1,0

)
+

∑
0< 𝑗<𝑛2

𝑤 𝑗𝑥𝑛1−1
(
𝑧(𝑝′𝑘 )

𝑧
0, 𝑗 − (𝑝

′
𝑘+1)

𝑧
0, 𝑗−1

)
+ 𝑥𝑛1−1𝑧

(
(𝑝′𝑘 )

𝑧
0,0 − (𝑝

′
𝑘+1)

𝑧
1,0

)
,

where 𝑖 = 𝑛1 − 1 implies (𝑝′𝑘+1)
𝑧
𝑖+1,0 and 𝑗 = 𝑛2 − 1 implies 𝑤 𝑗 𝑧 = 0. Thus, (4) is equivalent to the
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conditions {
𝑧𝑘−𝑖𝑟 𝑧0,𝑘−𝑖 = 𝑧(𝑝′𝑘 )

𝑧
𝑖,0 − 𝑧(𝑝′𝑘+1)

𝑧
𝑖+1,0, for 0 ≤ 𝑖 < 𝑛1

𝑤 𝑗 𝑧𝑘𝑟 𝑧0,𝑘+ 𝑗 = 𝑤 𝑗 𝑧(𝑝′𝑘 )
𝑧
0, 𝑗 − 𝑤 𝑗 (𝑝′𝑘+1)

𝑧
0, 𝑗−1, for 0 < 𝑗 < 𝑛2,

where terms may vanish for certain values of their indices (as indicated in the preceding summation
notation). Moreover, these conditions are unchanged when w is replaced by z. When 𝑖 ≥ 𝑘 , we rewrite
the first condition as

𝑧(𝑝′𝑘 )
𝑧
𝑖,0 = 𝑧(𝑝′𝑘+1)

𝑧
𝑖+1,0 + 𝑧

𝑘−𝑖𝑟 𝑧0,𝑘−𝑖 = 𝑧(𝑝′𝑘+2)
𝑧
𝑖+2,0 + 2𝑧𝑘−𝑖𝑟 𝑧0,𝑘−𝑖 = · · ·

= 𝑧(𝑝′𝑛1 )
𝑧
𝑖+𝑛1−𝑘,0 + (𝑛1 − 𝑘)𝑧𝑘−𝑖𝑟 𝑧0,𝑘−𝑖 = (𝑛1 − 𝑘)𝑧𝑘−𝑖𝑟 𝑧0,𝑘−𝑖 ,

as (𝑝′𝑛1 )
𝑧
𝑛1+𝑖−𝑘,0 = 0 by definition. When 0 ≤ 𝑖 < 𝑘 , we rewrite the first condition differently as

𝑧(𝑝′𝑘+1)
𝑧
𝑖+1,0 = 𝑧(𝑝′𝑘 )

𝑧
𝑖,0 − 𝑧𝑘−𝑖𝑟 𝑧0,𝑘−𝑖 = 𝑧(𝑝′𝑘−1)

𝑧
𝑖−1,0 − 2𝑧𝑘−𝑖𝑟 𝑧0,𝑘−𝑖 = · · ·

= 𝑧(𝑝′𝑘−𝑖)
𝑧
0,0 − (𝑖 + 1)𝑧𝑘−𝑖𝑟 𝑧0,𝑘−𝑖

= 𝑧𝑘−𝑖
(
𝑧(𝑝′0)

𝑧
0,𝑘−𝑖 − (𝑘 − 𝑖)𝑟

𝑧
0,𝑘−𝑖

)
− (𝑖 + 1)𝑧𝑘−𝑖𝑟 𝑧0,𝑘−𝑖

= 𝑧𝑘−𝑖
(
𝑧(𝑝′0)

𝑧
0,𝑘−𝑖 − (𝑘 + 1)𝑟 𝑧0,𝑘−𝑖

)
,

assuming the third condition in the statement of the proposition holds. To obtain the latter, we rewrite
the second condition above as

𝑧 𝑗 (𝑝′𝑘+1)
𝑧
0, 𝑗−1 = 𝑧 𝑗+1(𝑝′𝑘 )

𝑧
0, 𝑗 − 𝑧𝑘+ 𝑗𝑟 𝑧0,𝑘+ 𝑗 = 𝑧 𝑗+2(𝑝′𝑘−1)

𝑧
0, 𝑗+1 − 2𝑧𝑘+ 𝑗𝑟 𝑧0,𝑘+ 𝑗 = · · ·

= 𝑧 𝑗+𝑘+1(𝑝′0)
𝑧
0, 𝑗+𝑘 − (𝑘 + 1)𝑧𝑘+ 𝑗𝑟 𝑧0,𝑘+ 𝑗 .

Hence, we obtain the desired conditions. �

Corollary 7.2. The unique irreducible component of Hilb𝑑 (A4) containing [𝐼] has dimension

𝐷 = 𝐷 (𝑛1, 𝑛2) := 𝐹 (𝑛1, 𝑛2) + 𝐹 (𝑛2, 𝑛1) + 𝑑 (𝑛1, 𝑛2) − 1,

where

𝐹 (𝑎, 𝑏) :=
𝑎−1∑
𝑖=2
(𝑖 − 1)

(
𝑏 − 𝑖

1

)
+ (𝑎 − 1)

(
𝑏 − 𝑎 + 1

2

)
+ (𝑎 + 1) (𝑎 + 𝑏 − 1) +

(
𝑏 − 1

2

)
,

𝑑 = 𝑑 (𝑛1, 𝑛2) =
𝑛1𝑛2

2 (𝑛1 + 𝑛2), and
( 𝑗
𝑘

)
denotes 𝑗!

𝑘!( 𝑗−𝑘)! if 𝑗 ≥ 𝑘 ≥ 0 and is 0 otherwise.

Proof. We shall compute the dimension of the tangent space Hom𝑆 (𝐼, 𝐴) at the smooth point [𝐼] rather
directly. A homomorphism 𝜑 : 𝐼 → 𝐴 is determined by its values

𝑟 = 𝜑(𝑥𝑧 − 𝑦𝑤), 𝑝𝑘 = 𝜑(𝑥𝑛1−𝑘 𝑦𝑘 ), 𝑞ℓ = 𝜑(𝑧𝑛2−ℓ𝑤ℓ), for 0 ≤ 𝑘 ≤ 𝑛1 and 0 ≤ ℓ ≤ 𝑛2.

There are four kinds of relations that put restrictions on coefficients, namely:

(i) relations among 𝑝0, 𝑝1, . . . , 𝑝𝑛1 described in Corollary 3.4;
(ii) relations among 𝑞0, 𝑞1, . . . , 𝑞𝑛2 described in Corollary 3.4 with 𝑛1 and 𝑛2 swapped;

(iii) relations among 𝑝0, 𝑝1, . . . , 𝑝𝑛1 and r described in Proposition 7.1;
(iv) relations among 𝑞0, 𝑞1, . . . , 𝑞𝑛2 and r described in Proposition 7.1 with 𝑛1 and 𝑛2 swapped.
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Moreover, these conditions are independent, in the sense that (i) only restricts the coefficients of the
𝑝𝑘−𝑝

′
𝑘 , whereas (iii) only restricts the coefficients of the 𝑝′𝑘 ’s and uses the coefficients of r as parameters

(ensuring (iii) and (iv) are independent).
Starting with (i), we apply Corollary 3.4 to the sequence 𝑝0, 𝑝1, . . . , 𝑝𝑛1 to show

𝑝𝑘 = 𝑝′𝑘 +
𝑘∑
𝑖=0

𝑥𝑛1−𝑘 𝑦𝑘−𝑖𝑧𝑖𝑡𝑖 +
𝑛1∑

𝑖=𝑘+1
𝑥𝑛1−𝑖𝑧𝑘𝑤𝑖−𝑘 𝑡𝑖

= 𝑝′𝑘 +
𝑘∑
𝑖=2

𝑥𝑛1−𝑘 𝑦𝑘−𝑖𝑧𝑖𝑡𝑖 +
𝑛1∑

𝑖=𝑘+1
𝑥𝑛1−𝑖𝑧𝑘𝑤𝑖−𝑘 𝑡𝑖 ,

where 𝑝′𝑘 is the part of 𝑝𝑘 annihilated by x (equivalently, y); the second equality follows as 𝑖 = 0
implies 𝑥𝑛1−𝑘 𝑦𝑘−0 = 0 and 𝑖 = 1 gives either the term 𝑥𝑛1−1𝑧0𝑤1−0𝑡1 ∈ Ann(𝑥) for 𝑘 = 0 or the term
𝑥𝑛1−𝑘 𝑦𝑘−1𝑧1𝑡1 ∈ Ann(𝑥) for 𝑘 > 0. Observe that the term containing 𝑡𝑖 also has a monomial of bidegree
(𝑛1 − 𝑖, 𝑖). Corollary 3.4 states that 𝑡𝑖 is a polynomial in 𝑥, 𝑧 for 2 ≤ 𝑖 < 𝑛1, so the x-degree satisfies
deg𝑥 (𝑡𝑖) < 𝑖 − 1 (a term of x-degree 𝑖 − 1 would produce an element of Ann(𝑥)) and the z-degree
satisfies deg𝑧 (𝑡𝑖) < 𝑛2 − 𝑖. These imply that 𝑡𝑖 has (𝑖 − 1) (𝑛2 − 𝑖) free coefficients, if 𝑖 < 𝑛2, and 0 free
coefficients, if 𝑖 ≥ 𝑛2; we denote this number by (𝑖 − 1)

(𝑛2−𝑖
1
)
. Similarly, 𝑡𝑛1 is a polynomial in 𝑥, 𝑧, 𝑤

and deg𝑥 (𝑡𝑛1) < 𝑛1 − 1 and deg𝑧,𝑤 (𝑡𝑛1) < 𝑛2 − 𝑛1. This gives (𝑛1 − 1)
(2+𝑛2−𝑛1−1

2
)
= (𝑛1 − 1)

(𝑛2−𝑛1+1
2

)
free coefficients. Thus, a formula for the contribution of 𝑡2, . . . , 𝑡𝑛1 to the dimension is

𝑛1−1∑
𝑖=2
(𝑖 − 1)

(
𝑛2 − 𝑖

1

)
+ (𝑛1 − 1)

(
𝑛2 − 𝑛1 + 1

2

)
. (ti-count)

The analogous count using (ii) is obtained by swapping 𝑛1 and 𝑛2.
For (iii), we use Proposition 7.1 to find free parameters in each 𝑝′𝑘 . The first condition of (★z) says

that the coefficients 𝑓0, 𝑓1, . . . , 𝑓𝑛2−2 of 𝑓0 + 𝑓1𝑧 + · · · + 𝑓𝑛2−1𝑧
𝑛2−1 := (𝑝′𝑘 )

𝑧
𝑖,0 are determined by those

of 𝑟 𝑧0,𝑘−𝑖; only the coefficient 𝑓𝑛2−1 is free, so (𝑝′𝑘 )
𝑧
𝑖,0 contributes exactly one degree of freedom (when

𝑘 < 𝑖, we have 𝑟 𝑧0,𝑘−𝑖 := 0; when 𝑘 = 𝑖, we get 𝑧(𝑝′𝑘 )
𝑧
𝑘,0 = (𝑛1 − 𝑘)𝑟

𝑧
0,0, further implying 𝑟 𝑧0,0 (and in turn

r) has trivial constant term—this is expected as I has trivial negative tangents and deg 𝑞 = 2). The second
condition of (★z) says that the coefficients 𝑓0, 𝑓1, . . . , 𝑓𝑛2−2 of 𝑓0 + 𝑓1𝑧 + · · · + 𝑓𝑛2−1𝑧

𝑛2−1 := (𝑝′𝑘+1)
𝑧
𝑖+1,0

are determined by those of (𝑝′0)
𝑧
0,𝑘−𝑖 and 𝑟 𝑧0,𝑘−𝑖; the coefficient 𝑓𝑛2−1 is free. The third condition of (★z)

says that the coefficients 𝑓0, 𝑓1, . . . , 𝑓𝑛2− 𝑗−1 of 𝑓0 + 𝑓1𝑧 + · · · + 𝑓𝑛2− 𝑗 𝑧
𝑛2− 𝑗 := (𝑝′𝑘+1)

𝑧
0, 𝑗−1 are determined

by those of (𝑝′0)
𝑧
0,𝑘+ 𝑗 and 𝑟 𝑧0,𝑘+ 𝑗 ; the coefficient 𝑓𝑛2− 𝑗 is free. In other words, letting 0 < 𝜅 ≤ 𝑛1, every

term in the following expansion contributes a single degree of freedom:

𝑝′𝜅 =
∑

0<𝜄<𝑛1

𝑦 𝜄𝑥𝑛1−1− 𝜄 (𝑝′𝜅 )
𝑧
𝜄,0 + 𝑥

𝑛1−1(𝑝′𝜅 )
𝑧
0,0 +

∑
0<𝜂<𝑛2

𝑤𝜂𝑥𝑛1−1 (𝑝′𝜅 )
𝑧
0,𝜂 ,

=
∑

0<𝜄<𝜅
𝑦 𝜄𝑥𝑛1−1− 𝜄 (𝑝′𝜅 )

𝑧
𝜄,0 +

∑
𝜅≤ 𝜄<𝑛1

𝑦 𝜄𝑥𝑛1−1− 𝜄 (𝑝′𝜅 )
𝑧
𝜄,0

+ 𝑥𝑛1−1 (𝑝′𝜅 )
𝑧
0,0 +

∑
0<𝜂<𝑛2

𝑤𝜂𝑥𝑛1−1(𝑝′𝜅 )
𝑧
0,𝜂 ,

=
∑

0≤𝑖<𝑘
𝑦𝑖+1𝑥𝑛1−2−𝑖 (𝑝′𝑘+1)

𝑧
𝑖+1,0 +

∑
𝜅≤ 𝜄<𝑛1

𝑦 𝜄𝑥𝑛1−1− 𝜄 (𝑝′𝜅 )
𝑧
𝜄,0

+ 𝑥𝑛1−1 (𝑝′𝑘+1)
𝑧
0,0 +

∑
1< 𝑗<𝑛2+1

𝑤 𝑗−1𝑥𝑛1−1(𝑝′𝑘+1)
𝑧
0, 𝑗−1,

where 𝑘 = 𝜅 − 1, 𝑖 = 𝜄 − 1, and 𝑗 = 𝜂 + 1; the only term here not covered by (★z) is (𝑝′𝑘+1)
𝑧
0,𝑛2−1,

which is therefore a free constant. As each term contributes one degree of freedom, the contribution by
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𝑝′1, 𝑝
′
2, . . . , 𝑝

′
𝑛1 equals 𝑛1 (𝑛1 + 𝑛2 − 1). Now considering

𝑝′0 =
∑

0<𝑖<𝑛1

𝑦𝑖𝑥𝑛1−1−𝑖 (𝑝′0)
𝑧
𝑖,0 + 𝑥

𝑛1−1(𝑝′0)
𝑧
0,0 +

∑
0< 𝑗<𝑛2

𝑤 𝑗𝑥𝑛1−1(𝑝′0)
𝑧
0, 𝑗 ,

we find that each (𝑝′0)
𝑧
𝑖,0 contributes one degree of freedom, for 𝑖 ≥ 0, giving 𝑛1. Each (𝑝′0)

𝑧
0, 𝑗 is free

and contributes 𝑛2 − 𝑗 degrees of freedom, for 0 < 𝑗 < 𝑛2, giving
∑𝑛2−1

𝑗=1 𝑛2 − 𝑗 =
(𝑛2

2
)
. Thus, a formula

for the contribution to the dimension by 𝑝′0, 𝑝
′
1, . . . , 𝑝

′
𝑛1 is

𝑛1 (𝑛1 + 𝑛2) +

(
𝑛2
2

)
. (p′𝜅 -count)

The analogous count for (iv) is obtained by swapping 𝑛1 and 𝑛2, and neither (iii) nor (iv) restricts the
coefficients of r.

The total contribution by 𝑝0, 𝑝1, . . . , 𝑝𝑛1 to the dimension is therefore the sum of (ti-count) and
(p′𝜅 -count), which equals

𝐹 (𝑛1, 𝑛2) :=
𝑛1−1∑
𝑖=2
(𝑖 − 1)

(
𝑛2 − 𝑖

1

)
+ (𝑛1 − 1)

(
𝑛2 − 𝑛1 + 1

2

)
+ 𝑛1 (𝑛1 + 𝑛2) +

(
𝑛2
2

)
.

Symmetrically, the contribution by 𝑞0, 𝑞1, . . . , 𝑞𝑛2 is 𝐹 (𝑛2, 𝑛1). To finish, we need the contribution by
r. The only condition on r, imposed by (★z) when 𝑘 = 𝑖, is of having a trivial constant term. Thus, r
contributes dimk (𝑆/𝐼) − 1 dimensions.

Hence, combining with the dimension formula in Lemma 3.2, we see

𝐷 = dimk Hom𝑆 (𝐼, 𝐴) = 𝐹 (𝑛1, 𝑛2) + 𝐹 (𝑛2, 𝑛1) +
𝑛1𝑛2

2
(𝑛1 + 𝑛2) − 1,

as desired. �

Corollary 7.3. The dimension D simplifies to

𝐷 =
1
3
𝑚3 + 𝑚𝑀2 + 𝑚2 + 2𝑚𝑀 + 𝑀2 −

1
3
𝑚 − 1,

where 𝑚 := min{𝑛1, 𝑛2} and 𝑀 := max{𝑛1, 𝑛2}. In particular, the dimension D of the irreducible
component of Hilb𝑑 (A4) containing the point [𝐼] satisfies 𝐷 < 4𝑑, and moreover, if (𝑚, 𝑀) ∉
{(2, 2), (2, 3), (2, 4)}, then 𝐷 < 3(𝑑 − 1).

Proof. Let 𝑎 = 𝑛1, 𝑏 = 𝑛2, and assume 𝑎 ≤ 𝑏 without loss of generality. We first simplify the summations
in 𝐹 (𝑎, 𝑏) and 𝐹 (𝑏, 𝑎) coming from (ti-count). For 𝐹 (𝑎, 𝑏), we have

𝑎−1∑
𝑖=2
(𝑖 − 1)

(
𝑏 − 𝑖

1

)
=

𝑎−1∑
𝑖=2
(𝑖 − 1) (𝑏 − 𝑖) =

𝑎−2∑
𝑖=1

𝑖(𝑏 − 1 − 𝑖) = (𝑏 − 1)
𝑎−2∑
𝑖=1

𝑖 −
𝑎−2∑
𝑖=1

𝑖2

= (𝑏 − 1)
(
𝑎 − 1

2

)
−

(
𝑎 − 1

2

)
2(𝑎 − 2) + 1

3
=

(
𝑎 − 1

2

) (
𝑏 −

2
3
𝑎

)
so that

𝐹 (𝑎, 𝑏) =

(
𝑎 − 1

2

) (
𝑏 −

2
3
𝑎

)
+ (𝑎 − 1)

(
𝑏 − 𝑎 + 1

2

)
+ 𝑎(𝑎 + 𝑏) +

(
𝑏

2

)
.
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For 𝐹 (𝑏, 𝑎), we have

𝑏−1∑
𝑖=2
(𝑖 − 1)

(
𝑎 − 𝑖

1

)
=

𝑎−1∑
𝑖=2
(𝑖 − 1) (𝑎 − 𝑖) =

𝑎−2∑
𝑖=1

𝑖(𝑎 − 1 − 𝑖) = (𝑎 − 1)
𝑎−2∑
𝑖=1

𝑖 −
𝑎−2∑
𝑖=1

𝑖2

= (𝑎 − 1)
(
𝑎 − 1

2

)
−

(
𝑎 − 1

2

)
2𝑎 − 3

3
=

(
𝑎 − 1

2

)
1
3
𝑎

so that

𝐹 (𝑏, 𝑎) =

(
𝑎 − 1

2

)
1
3
𝑎 + 0 + 𝑏(𝑎 + 𝑏) +

(
𝑎

2

)
, as (𝑏 − 1)

(
𝑎 − 𝑏 + 1

2

)
= 0.

Therefore, we find that

𝐷 = 𝐹 (𝑎, 𝑏) + 𝐹 (𝑏, 𝑎) + 𝑑 (𝑎, 𝑏) − 1

=

(
𝑎 − 1

2

) (
𝑏 −

1
3
𝑎

)
+ (𝑎 − 1)

(
𝑏 − 𝑎 + 1

2

)
+ (𝑎 + 𝑏)2 +

(
𝑎

2

)
+

(
𝑏

2

)
+
𝑎𝑏(𝑎 + 𝑏)

2
− 1,

which gives the desired expression 1
3𝑎

3 + 𝑎𝑏2 + 𝑎2 + 2𝑎𝑏 + 𝑏2 − 1
3𝑎 − 1 when expanded.

Now we examine when 3(𝑑 − 1) > 𝐷, or rather

3(𝑑 − 1) − 𝐷 = 3
𝑎𝑏(𝑎 + 𝑏)

2
− 3 −

(
1
3
𝑎3 + 𝑎𝑏2 + 𝑎2 + 2𝑎𝑏 + 𝑏2 −

1
3
𝑎 − 1

)
= −

1
3
𝑎3 +

3
2
𝑎2𝑏 +

1
2
𝑎𝑏2 − 𝑎2 − 2𝑎𝑏 − 𝑏2 +

1
3
𝑎 − 2

=

(
1
2
𝑎 − 1

)
𝑏2 +

(
3
2
𝑎2 − 2𝑎

)
𝑏 −

1
3
𝑎3 − 𝑎2 +

1
3
𝑎 − 2 > 0.

If 𝑎 = 2, then this reduces to 2𝑏 − 8 > 0, so the inequality is satisfied if and only if 𝑏 > 4. Now let
𝑎 > 2. Then 3(𝑑 − 1) − 𝐷 is quadratic in b with roots

𝑟±(𝑎) =
2𝑎 − 3

2𝑎
2 ±

√(
3
2𝑎

2 − 2𝑎
)2
− 4

(
1
2𝑎 − 1

) (
− 1

3𝑎
3 − 𝑎2 + 1

3𝑎 − 2
)

𝑎 − 2

and discriminant simplifying to 35
12𝑎

4 − 16
3 𝑎3 − 2

3𝑎
2 + 16

3 𝑎 − 8; the discriminant is positive for 𝑎 > 2. If
both roots satisfy 𝑟±(𝑎) < 𝑎, then 𝑎 ≤ 𝑏 implies 3(𝑑 − 1) − 𝐷 > 0, as the 𝑏2-term in the expression for
3(𝑑 − 1) − 𝐷 has a positive coefficient. We check

𝑎 > 𝑟±(𝑎) ⇐⇒ 𝑎2 − 2𝑎 > 2𝑎 −
3
2
𝑎2 ±

√
35
12

𝑎4 −
16
3
𝑎3 −

2
3
𝑎2 +

16
3
𝑎 − 8

⇐⇒

(
5
2
𝑎2 − 4𝑎

)2
>

35
12

𝑎4 −
16
3
𝑎3 −

2
3
𝑎2 +

16
3
𝑎 − 8

⇐⇒
10
3
𝑎4 −

44
3
𝑎3 +

50
3
𝑎2 −

16
3
𝑎 + 8 > 0.

The latter factors as 2
3 (𝑎−2) (5𝑎3−12𝑎2+𝑎−6) and is positive for 𝑎 ≥ 3. Hence, the point [𝐼] ∈ Hilb𝑑 (A4)

lies on a component of dimension 𝐷 < 3(𝑑 − 1).
When (𝑎, 𝑏) ∈ {(2, 2), (2, 3), (2, 4)}, we immediately find 𝐷 (𝑎, 𝑏) < 4𝑑 (𝑎, 𝑏). Hence, here the

point [𝐼] ∈ Hilb𝑑 (A4) lies on a component of dimension 𝐷 < 4𝑑. �
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Remark 7.4. When 𝑛1 = 𝑛2 = 𝑛, we obtain 𝐷 = 4
3𝑛

3 + 4𝑛2 − 1
3𝑛 − 1 and 4𝑑 = 4𝑛3.

8. Compendium of elementary components

Collecting the results from Sections 3–7, we prove the theorems from the Introduction.

Proof of Theorems 1.3 and 1.5. Let I be as in Theorem 1.3. Proposition 3.1 shows that every irreducible
component containing [𝐼] is elementary. Proposition 4.1 then shows that [𝐼] is a smooth point, so it must
lie on a unique irreducible component. The formula for 𝑑 = dimk 𝑆/𝐼 is given in Lemma 3.2. Lastly,
the formula for the dimension D of the irreducible component containing [𝐼] is given in Corollary 7.3,
where it is also shown that 𝐷 < 4𝑑 and if (𝑚, 𝑀) ∉ {(2, 2), (2, 3), (2, 4)}, then 𝐷 < 3(𝑑 − 1). This
proves Theorem 1.3.

Finally, let J be as in Theorem 1.5. Corollary 5.6 shows that J has trivial negative tangents, so every
component containing it is elementary by [29, Theorem 1.2]. Corollary 6.2 then proves that [𝐽] is a
smooth point, so it must lie on a unique irreducible component. Lastly, Lemma 5.3 shows that the
condition on the socle is automatic when 𝑟 = 1. This proves Theorem 1.5. �

Proof of Theorem 1.2. Let I, d, and D be as in Theorem 1.3. By Theorem 2.2, there is an open subset
𝑈 ⊂ 𝑋 := Hilb+𝑑 (A

4) × A4, such that 𝜃 |𝑈 : 𝑈 → Hilb𝑑 (A4) is an open immersion with 𝜃 |𝑈
(
([𝐼], 0)

)
=

[𝐼]. Consider the Cartesian diagram

𝑈 �� 𝑋
𝜃 �� Hilb𝑑 (A4)

𝑉 ����

��

𝑍 ����

��

Z
��

�� ,

where Z is the reduced closed subscheme of points [𝐽] supported at the origin. By Theorem 1.3, we
know [𝐼] is a smooth point contained on a unique elementary component, so shrinking U if necessary,
we may assume U is smooth, irreducible, and of dimension D.

We show that every irreducible component of V containing ([𝐼], 0) has dimension exactly equal to
𝐷 − 4. For the purposes of computing dimensions, it suffices to replace V by its reduction 𝑉red. Since
𝑉 ⊂ 𝑍 is open,𝑉red = 𝑉×𝑍 𝑍red, and so we may replace Z by any closed subscheme of X whose reduction
agrees with 𝑍red. By definition of 𝜃, thek-points of Z are precisely those of 𝑋0 := Hilb+𝑑 (A

4)×{0}. Thus,
𝑋0 and Z have the same reduction. We have therefore reduced to showing that dim(𝑈 ∩ 𝑋0) = 𝐷 − 4.

Since 𝑈 ⊂ 𝑋 is open and 𝑋 = Hilb+𝑑 (A
4) × A4 → A4 is flat, we have a flat map 𝑓 : 𝑈 → A4.

Then 𝑈 ∩ 𝑋0 is the fiber of f over 0. As U and A4 are smooth and irreducible k-schemes, we see
dim(𝑈 ∩ 𝑋0) = dim(𝑈) − 4 = 𝐷 − 4.

Hence, this shows that every irreducible component of Z containing [𝐼] has dimension at most 𝐷−4.
Theorem 1.3 tells us 𝐷 < 3(𝑑−1) for (𝑚, 𝑀) ∉ {(2, 2), (2, 3), (2, 4)}, and one verifies 𝐷−4 < 3(𝑑−1)
when (𝑚, 𝑀) ∈ {(2, 3), (2, 4)}. �

Proof of Corollary 1.4. First, 𝐴 := 𝑆/𝐼̃ � 𝐴 so dimk 𝐴 = dimk 𝐴 = 𝑑. Next, we compute the dimension
of the tangent space of Hilb𝑑 (A𝑛) at [ 𝐼̃]. Note that if 𝜑 ∈ Hom𝑆 ( 𝐼̃ , 𝐴), then 𝜑|𝐼 ∈ Hom𝑆 (𝐼, 𝐴). Since
every minimal syzygy involving some 𝑢𝑖 is Koszul, 𝜑(𝑢𝑖) can take any value in 𝐴. In particular, 𝐼̃ has
trivial negative tangents, and moreover, we find

dimk Hom𝑆 ( 𝐼̃ , 𝐴) = 𝑟𝑑 + dimk Hom𝑆 (𝐼, 𝐴) = 𝑟𝑑 + 𝐷.

Since 𝐴 is isomorphic to A as k-algebras, the vanishing of 𝑇2 (𝐴/k, 𝐴)≥0 follows from that of
𝑇2 (𝐴/k, 𝐴)≥0. Hence, by Proposition 2.3, [ 𝐼̃] is a smooth point and therefore lives on a unique compo-
nent which is elementary.
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This component has dimension strictly less than (𝑛− 1) (𝑑 − 1) = (3 + 𝑟) (𝑑 − 1) if 𝐷 < 3(𝑑 − 1) − 𝑟 .
The proof of Corollary 7.3 shows that this inequality is always satisfied for sufficiently large 𝑛1 and 𝑛2.
Indeed, letting 𝑎 = min(𝑛1, 𝑛2) and 𝑏 = max(𝑛1, 𝑛2), we see

3(𝑑 − 1) − 𝑟 − 𝐷 =

(
1
2
𝑎 − 1

)
𝑏2 +

(
3
2
𝑎2 − 2𝑎

)
𝑏 −

1
3
𝑎3 − 𝑎2 +

1
3
𝑎 − 2 − 𝑟. (13)

For 𝑎 > 2, this is a quadratic in b with positive leading term; for 𝑎 = 2, this is a linear expression in b with
positive leading term. In either case, for fixed a, and b sufficiently large, this expression is positive. �

Remark 8.1. Let 𝑚 = min(𝑛1, 𝑛2) and 𝑀 = max(𝑛1, 𝑛2). By considering the quadratic (13), we see the
unique component containing [ 𝐼̃] ∈ Hilb𝑑 (A𝑛) has dimension strictly less than (𝑛 − 1) (𝑑 − 1) if

𝑚 = 2 and 𝑀 >
𝑟

2
+ 4.

If 𝑚 > 2, then one computes that the discriminant of the quadratic in b is positive and so (13) is positive
whenever M is strictly larger than the positive root of the quadratic. That is, letting

𝑟+ :=
2𝑚 − 3

2𝑚
2 ±

√(
3
2𝑚

2 − 2𝑚
)2
− 4

(
1
2𝑚 − 1

) (
− 1

3𝑚
3 − 𝑚2 + 1

3𝑚 − 2 − 𝑟
)

𝑚 − 2
,

we see if

𝑚 > 2 and 𝑀 > 𝑟+,

then the unique component containing [ 𝐼̃] ∈ Hilb𝑑 (A𝑛) has dimension strictly less than (𝑛− 1) (𝑑 − 1).

We end the paper by discussing some examples and variations of Theorems 1.3 and 1.5. For a survey
of the known elementary components prior to our work, see [29, Remark 6.10] and the section on
smoothability in [1, Appendix B].

Example 8.2. Plugging in some values of (𝑛1, 𝑛2) to define I, we obtain the following:

◦ for (𝑛1, 𝑛2) = (2, 2), the point [𝐼] ∈ Hilb8 (A4) lies on the 25-dimensional component first discovered
by Iarrobino–Emsalem [26, Section 2.2];

◦ for (𝑛1, 𝑛2) = (2, 3), the point [𝐼] ∈ Hilb15(A4) is smooth on a 44-dimensional component;
◦ for (𝑛1, 𝑛2) = (2, 4), the point [𝐼] ∈ Hilb24(A4) is smooth on a 69-dimensional component;
◦ for (𝑛1, 𝑛2) = (2, 5), the point [𝐼] ∈ Hilb35(A4) is smooth on a 100-dimensional component;
◦ for (𝑛1, 𝑛2) = (3, 3), the point [𝐼] ∈ Hilb27(A4) is smooth on a 70-dimensional component;
◦ for (𝑛1, 𝑛2) = (3, 4), the point [𝐼] ∈ Hilb42(A4) is smooth on a 104-dimensional component.

The scheme Hilb35(A4) is already known to have a 124-dimensional elementary component, denoted
Z (3) in [29]. Thus, this Hilbert scheme has at least two elementary components.

Example 8.3. Consider the following example, where Theorem 1.5 holds. Define I using (𝑛1, 𝑛2) =
(3, 3), and set 𝑠1 := 𝑥2𝑧2, 𝑠2 := 𝑥2𝑤2, and 𝑠3 := 𝑦2𝑧2. For 0 ≤ 𝑖 ≤ 3, let 𝐼 (𝑖) := 𝐼 + 〈𝑠1, . . . , 𝑠𝑖〉 and
𝐴(𝑖) = 𝑆/𝐼 (𝑖) . One can verify that

◦ the point [𝐼 (0) ] ∈ Hilb27(A4) is smooth on a 70-dimensional component (as above);
◦ the point [𝐼 (1) ] ∈ Hilb26(A4) is smooth on a 77-dimensional component;
◦ the point [𝐼 (2) ] ∈ Hilb25(A4) is smooth on an 82-dimensional component;
◦ the point [𝐼 (3) ] ∈ Hilb24(A4) is smooth on an 85-dimensional component.

That is, each [𝐼 (𝑖) ] ∈ Hilb27−𝑖 (A4) is a smooth point on an elementary component of dimension less
than that of the main component, namely, 4(27 − 𝑖). Furthermore, we see that Hilb24 (A4) has at least
two elementary components, by comparing with Example 8.2.
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Example 8.4. Further examples similar to Example 8.3 can be found. For instance, the ideals

𝐼 = 〈𝑥, 𝑦〉4 + 〈𝑧, 𝑤〉4 + 〈𝑥𝑧 − 𝑦𝑤, 𝑥𝑦2𝑤3, 𝑥3𝑤3, 𝑦3𝑧𝑤2, 𝑦3𝑧3〉 and

𝐼 = 〈𝑥, 𝑦〉3 + 〈𝑧, 𝑤〉5 + 〈𝑥𝑧 − 𝑦𝑤〉

lie on distinct elementary components of Hilb60(A4) of respective dimensions 179 and 146.

Example 8.5. It is an amusing coincidence that the point [𝐼] ∈ Hilb103
(A4) defined by

𝐼 = 〈𝑥, 𝑦〉10 + 〈𝑧, 𝑤〉10 + 〈𝑥𝑧 − 𝑦𝑤〉

lies on an elementary component of dimension 1729. The dimension 1729 is the second taxicab number,
that is, the minimal positive integer expressible as a sum of two distinct cubes in two different ways:
1729 = 93 + 103 = 13 + 123.

Example 8.6. As mentioned in the Introduction (see Question 1.7), producing a local, zero-dimensional
Gorenstein quotient of S with trivial negative tangents gives a way to distinguish cactus and secant
varieties (see [5, Proposition 7.4]). Our techniques allow us to produce an example with socle-dimension
2 (as opposed to socle-dimension 1).

Let us return to the setting of Example 8.3. Letting (𝑛1, 𝑛2) = (3, 3), we find that

Soc 𝐴 = 〈𝑥2𝑧2 + 𝐼, 𝑥2𝑧𝑤 + 𝐼, 𝑥2𝑤2 + 𝐼, 𝑥𝑦𝑧2 + 𝐼, 𝑦2𝑧2 + 𝐼〉

is 5-dimensional.
Then,

Soc 𝐴(3) = 〈𝑥2𝑧𝑤 + 𝐼 (2) , 𝑥𝑦𝑧2 + 𝐼 (2) 〉

is 2-dimensional. By Theorem 1.5 and Remark 1.6, 𝐴(3) has trivial negative tangents and vanishing
nonnegative obstruction space.

Remark 8.7. Natural variants of the ideals in Theorem 1.3 also produce trivial negative tangents. For
instance, Table 1 displays some triples (𝑛1, 𝑛2, 𝑛3) that determine ideals

𝐽 := 〈𝑥, 𝑦〉𝑛1 + 〈𝑧, 𝑤〉𝑛2 + 〈𝑥𝑧 − 𝑦𝑤, (𝑥𝑧)𝑛3〉

with trivial negative tangents, verified by direct computations in Macaulay2 [15] (for any ideal, it suffices
to check that 𝑇1

𝐴,𝑖 = 0 for finitely many 𝑖 < 0; e.g., if I is homogeneous, then Hom(𝐼, 𝑆/𝐼)<−𝑁 = 0,
where N is the highest degree of a generator of I). Letting 𝐵 := 𝑆/𝐽 for (𝑛1, 𝑛2, 𝑛3) = (4, 4, 2), one
can verify that the quotient 𝐵/〈𝑠1, 𝑠2, 𝑠3, 𝑠4〉 has trivial negative tangents and socle-dimension 2, where
each 𝑠𝑖 is sufficiently general inside the socle of 𝐵/〈𝑠1, 𝑠2, . . . , 𝑠𝑖−1〉.

Furthermore, setting 𝑑𝐵 := dimk 𝐵, the examples in Table 1 satisfy the inequality
dimk Hom𝐵 (𝐽, 𝐵) < 4𝑑𝐵. For (𝑛1, 𝑛2, 𝑛3) ≠ (4, 4, 2), we have the stronger inequality

dimk Hom𝐵 (𝐽, 𝐵) < 3(𝑑𝐵 − 1).

These examples may define singular points [𝐽], however, since the obstruction spaces 𝑇2 (𝐵/k, 𝐵)≥0 are
nontrivial. Thus, the examples from Table 1 define (possibly singular) points which lie exclusively on
elementary components of Hilb𝑑𝐵 (A4) with dimensions less than that of the main component; moreover,
with the exception of (4, 4, 2), Table 1 provides additional examples which answer Question 1.1.

Remark 8.8. Theorem 1.5 also allows one to produce natural points on the nested Hilbert scheme,
which parametrizes flags of ideals. Specifically, letting 𝐼 (𝑖) = 𝐼 + 〈𝑠1, . . . , 𝑠𝑖〉, we see that

[𝐼 (𝑟 ) ⊃ · · · ⊃ 𝐼 (1) ⊃ 𝐼] ∈ Hilb(𝑑−𝑟 ,...,𝑑−1,𝑑) (A4).
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Table 1. Triples defining further ideals with trivial negative tangents.

(𝑛1 , 𝑛2 , 𝑛3)

(4,4,2) (4,5,3)
(5,5,3) (5,6,3–4) (5,7,4)

(6,6,3–4) (6,7,4–5) (6,8,4–5) (6,9,5)
(7,7,4–5) (7,8,4–6) (7,9,5–6) (7,10,5–6) (7,11,6)
(8,8,4–6) (8,9,5–7) (8,10,5–7) (8,11,6–7) (8,12,6–7) (8,13,7)
(9,9,5–7) (9,10,5–8) (9,11,6–8) (9,12,6–8) (9,13,7–8) (9,14,7–8) (9,15,8)

Preliminary investigations suggest the points [𝐽 ⊃ 𝐼] ∈ Hilb(𝑑−1,𝑑) (A4) are smooth. This raises the
question: Does [𝐼 (𝑟 ) ⊃ · · · ⊃ 𝐼 (1) ⊃ 𝐼] always define a smooth point of Hilb(𝑑−𝑟 ,...,𝑑−1,𝑑) (A4)?

9. Failure of surjectivity for 𝜕≥0 and 𝜓<0

As mentioned in subsection 1.1 of the Introduction, Jelisiejew [29] circumvents the need for explicit
computations by making use of the flag Hilbert scheme. To do so, he needs surjectivity of two particular
maps, 𝜕≥0 and 𝜓<0 (see [29, Diagram 2.1]). In this section, we prove that both of these maps fail to be
surjective for our examples, and hence, one cannot apply arguments as in [29, Corollary 4.13] and [29,
Proof of Theorem 1.4] to prove smoothness and trivial negative tangents of [𝐼].

Proposition 9.1. Keep the notation as in Theorem 1.3. Then:

◦ 𝜓<0 is not surjective, and
◦ if min(𝑛1, 𝑛2) ≥ 4, then 𝜕≥0 is not surjective.

Proof. Let 𝑀 = 〈𝑥, 𝑦〉𝑛1 + 〈𝑧, 𝑤〉𝑛2 . Then 𝐼 = 𝑀 + 〈𝑞〉 with 𝑞 = 𝑥𝑧 − 𝑦𝑤. Without loss of generality,
𝑛1 ≤ 𝑛2. The exact sequences

0→ 𝑀 → 𝐼 → 𝐼/𝑀 → 0

and

0→ 𝐼/𝑀 → 𝑆/𝑀 → 𝐴→ 0

with 𝐴 = 𝑆/𝐼 induce homomorphisms

Hom𝑆 (𝑀, 𝑆/𝑀)
𝜙 ��

𝜓

��

Hom𝑆 (𝑀, 𝐴)

𝜕

��
Ext1𝑆 (𝐼/𝑀, 𝑆/𝑀) �� Ext1𝑆 (𝐼/𝑀, 𝐴).

We first show that if 𝑛1 ≥ 4, then the degree 0 piece 𝜕0 is not surjective. As 𝐼/𝑀 is generated by q,
we have 𝐼/𝑀 � (𝑆/𝑀 ′) (−2), where 𝑀 ′ = 〈𝑥, 𝑦〉𝑛1−1 + 〈𝑧, 𝑤〉𝑛2−1; applying Hom𝑆 (−, 𝐴) to

0→ 𝑀 ′ → 𝑆 → 𝑆/𝑀 ′ → 0

shows that elements of Ext1𝑆 (𝐼/𝑀, 𝐴) are homomorphisms ℎ′ : 𝑀 ′ → 𝐴 modulo those induced by
multiplication by an element of S.

Denote the generators of 𝑀 ′ by 𝑓 ′𝑘 = 𝑥𝑛1−𝑘 𝑦𝑘−1, for 1 ≤ 𝑘 ≤ 𝑛1, and 𝑔′ℓ = 𝑧𝑛2−ℓ𝑤ℓ−1, for
1 ≤ ℓ ≤ 𝑛2. Similarly, write 𝑓𝑘 = 𝑥𝑛1−𝑘 𝑦𝑘 , for 0 ≤ 𝑘 ≤ 𝑛1, and 𝑔ℓ = 𝑧𝑛2−ℓ𝑤ℓ , for 0 ≤ ℓ ≤ 𝑛2. Given a
homomorphism ℎ : 𝑀 → 𝐴, by rewriting the product 𝑓 ′𝑘𝑞 ∈ 𝑀 ′ in terms of the generators of M, one
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sees that the homomorphism 𝜕ℎ is given by

𝜕ℎ : 𝑀 ′ → 𝐴

𝜕ℎ( 𝑓 ′𝑘 ) = 𝑧ℎ( 𝑓𝑘−1) − 𝑤ℎ( 𝑓𝑘 ) and 𝜕ℎ(𝑔′ℓ) = 𝑥ℎ(𝑔ℓ−1) − 𝑦ℎ(𝑔ℓ ).

In particular, any such map satisfies

𝑦𝜕ℎ( 𝑓 ′𝑘 ) = 𝑦
(
𝑧ℎ( 𝑓𝑘−1) − 𝑤ℎ( 𝑓𝑘 )

)
= 𝑧ℎ(𝑦 𝑓𝑘−1) − 𝑦𝑤ℎ( 𝑓𝑘 ) = 𝑧ℎ(𝑥 𝑓𝑘 ) − 𝑥𝑧ℎ( 𝑓𝑘 ) = 0,

and moreover, 𝑦
(
[𝑎] ( 𝑓 ′𝑘 )

)
= 𝑎𝑦 𝑓 ′𝑘 = 𝑎 𝑓𝑘 = 0 in A, where [𝑎] : 𝑆 → 𝐴 denotes multiplication by 𝑎 ∈ 𝐴.

To see that 𝜕0 is not surjective, we produce a map ℎ′ : 𝑀 ′ → 𝐴 of degree 2 (to account for the twist)
not of the form 𝜕ℎ + [𝑎]. Define

ℎ′( 𝑓 ′𝑘 ) = 𝑦2𝑧𝑘−1𝑤𝑛1−𝑘 and ℎ′(𝑔′ℓ) = 0

for each k and ℓ. The map ℎ′ is well-defined, as the relation 𝑦𝑤 = 𝑥𝑧 in A ensures 𝑦ℎ′( 𝑓 ′𝑘 ) = 𝑥ℎ′( 𝑓 ′𝑘+1).
Examining the 𝑧𝑤-degree shows 𝑔′ℓℎ

′( 𝑓 ′𝑘 ) = 𝑓 ′𝑘ℎ
′(𝑔′ℓ) = 0, for all 𝑘, ℓ. Moreover,

𝑦ℎ′( 𝑓 ′1 ) = 𝑦(𝑦2𝑤𝑛1−1) ≠ 0 when 𝑛1 ≥ 4.

Hence, 𝜕0 is not surjective.
Second, we show that the degree −1 piece 𝜓−1 is not surjective; here we simply assume 𝑛1 ≥ 2, that

is, we are no longer assuming 𝑛1 is at least 4. Using 𝐼/𝑀 � (𝑆/𝑀 ′) (−2) and applying Hom𝑆 (−, 𝑆/𝑀)
to the exact sequence

0→ 𝑀 ′ → 𝑆 → 𝑆/𝑀 ′ → 0

shows that elements of Ext1𝑆 (𝐼/𝑀, 𝑆/𝑀) are homomorphisms ℎ′ : 𝑀 ′ → 𝑆/𝑀 modulo those induced
by a single element. As before, given a homomorphism ℎ : 𝑀 → 𝑆/𝑀 , we obtain 𝜓ℎ : 𝑀 ′ → 𝑆/𝑀
with values

𝜓ℎ( 𝑓 ′𝑘 ) = 𝑧ℎ( 𝑓𝑘−1) − 𝑤ℎ( 𝑓𝑘 ) and 𝜓ℎ(𝑔′ℓ) = 𝑥ℎ(𝑔ℓ−1) − 𝑦ℎ(𝑔ℓ ).

Define

ℎ′ : 𝑀 ′ → 𝑆/𝑀

ℎ′( 𝑓 ′1 ) = −𝑦
𝑛1−1𝑤 and ℎ′( 𝑓 ′𝑘 ) = ℎ′(𝑔′ℓ) = 0,

for all 𝑘 > 1 and all ℓ. Then ℎ′ is well-defined, as 𝑦ℎ′( 𝑓 ′1 ) = 0 and 𝑔′ℓℎ
′( 𝑓 ′1 ) = −𝑦

𝑛1−1𝑤𝑔ℓ′ = −𝑦𝑛1−1𝑔ℓ =
0 in 𝑆/𝑀 , for all ℓ. Since this is a map of degree 1, after accounting for the twist, it yields a class of
degree −1 in Ext1𝑆 (𝐼/𝑀, 𝑆/𝑀).

We wish to show ℎ′ is not of the form 𝜓ℎ+ [𝑣], for any degree −1 homomorphism h and 𝑣 ∈ (𝑆/𝑀)1.
If ℎ′ = 𝜓ℎ + [𝑣], then evaluating on 𝑓 ′1 ,

−𝑦𝑛1−1𝑤 = 𝑧ℎ( 𝑓0) − 𝑤ℎ( 𝑓1) + 𝑣𝑥
𝑛1−1 (14)

holds, and we see v is a linear form in z and w, that is, 𝑣 = 𝑐𝑧+ 𝑑𝑤 for 𝑐, 𝑑 ∈ k. One solution to Equation
(14) is given by ℎ( 𝑓0) = 0, ℎ( 𝑓1) = 𝑦𝑛1−1 and 𝑣 = 0; thus, any other solution differs from this by a
syzygy among 𝑧, 𝑤, 𝑥𝑛1−1. As a result, every solution is of the form

ℎ( 𝑓0) = 𝑤𝑏 − 𝑐𝑥𝑛1−1, ℎ( 𝑓1) = 𝑦𝑛1−1 + 𝑧𝑏 + 𝑑𝑥𝑛1−1, 𝑣 = 𝑐𝑧 + 𝑑𝑤,
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where 𝑏 ∈ (𝑆/𝑀)𝑛1−2. Using that 𝑥 𝑓1 = 𝑦 𝑓0, we see

0 = 𝑥ℎ( 𝑓1) − 𝑦ℎ( 𝑓0) = 𝑞𝑏,

where, recall, the equality takes place in 𝑆/𝑀 . As a result, b arises from a syzygy between the generators
of 𝐼 = 𝑀 + 〈𝑞〉. But the minimal degree of such a syzygy is 𝑛1 + 1, putting b in degree 𝑛1 − 1 (after
accounting for the twist), and so 𝑏 = 0. To finish the proof, we evaluate ℎ′ at 𝑓 ′2 = 𝑥𝑛1−2𝑦, which shows

0 = ℎ′( 𝑓 ′2 ) = 𝑧ℎ( 𝑓1) − 𝑤ℎ( 𝑓2) + 𝑣 𝑓
′

2 = (𝑦𝑛1−1𝑧 + 𝑑𝑥𝑛1−1𝑧) − 𝑤ℎ( 𝑓2) + (𝑐𝑧 + 𝑑𝑤)𝑥
𝑛1−2𝑦.

Reducing modulo w gives

0 = 𝑦𝑛1−1𝑧 + 𝑑𝑥𝑛1−1𝑧 + 𝑐𝑥𝑛1−2𝑦𝑧.

But this is impossible, as all three monomials here are basis elements of 𝑆/(𝑀 + 〈𝑤〉). Hence, ℎ′ cannot
equal 𝜓ℎ + [𝑣], which implies 𝜓−1 is not surjective. �
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