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RESTRICTING REPRESENTATIONS OF
COMPLETELY SOLVABLE LIE GROUPS

R. L. LIPSMAN

1. Introduction. We are concerned here with the problem of describing the di-
rect integral decomposition of a unitary representation obtained by restriction from
a larger group. This is the dual problem to the more commonly investigated prob-
lem of decomposing induced representations. In this paper we work in the context
of completely solvable Lie groups—more general than nilpotent, but less general
than exponential solvable. Moreover, the groups involved are simply connected.
The restriction problem was considered originally in [2] and in [6] for nilpotent
groups. A complete solution was obtained explicitly in terms of the Kirillov or-
bital parameters (see [2, Theorems 4.6 and 4.8] and [6, Theorem 4.2]). It is pointed
out in [6] that it is highly reasonable to expect the Kirillov-Bernat orbital param-
eters to describe the direct integral decomposition for both induced and restricted
representations in the more general context of exponential solvable groups. Such a
program is carried out for induced representations in [7] (the algebraic or symmet-
ric space cases) and [8] ( the completely solvable case). Very recently, Fujiwara
sent me [3] which deals with induced (monomial) representations for arbitrary
exponential solvable groups. I now turn my attention to restricted representations.

The basic techniques of the paper are drawn from [6] and [8]. We start with
G simply connected and completely solvable together with an irreducible unitary
representaion m of G. We take H C G a closed connected subgroup. Our goal is to
describe the direct integral decomposition of 7 | in terms of the orbital parameters
of H. Exactly as in [6] or [8], we employ mathematical induction on dim G / H.The
argument starts with the case dim G/ H = 1.If H is normal—mandatory when G is
nilpotent—the argument replicates that of [6, Theorem 4.2]. If H is not normal, we
draw upon the structure theory developed in [8]. Although the invariants governing
the situation differ from those in [8], it turns out that the number of structural
possibilities for a non-normal codimension one restriction amount to—as in the
induced representation case—exactly five. These possibilities are enumerated in
Theorem 3.2.

We then use the fact that in between a completely solvable group G and a con-
nected subgroup H one can always insert a codimension 1 subgroup G, of G. The
codimension of H in G is one less than dim G/ H. One then employs restriction
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in stages, mathematical induction and the codimension 1 results to obtain a de-
composition of 7 |y. The proof that‘the resulting decomposition agrees with the
desired orbital decompostiion takes up most of section four. Basically we are re-
quired to demonstrate equality of spectrum, measure and multiplicity in two direct
integral decompositions (see (4.2)). Our task is complicated by the fact that there
is no analog to (8, §4]—that is, to the intermediate monomial case. (Every irre-
ducible representation of a completely solvable group is induced from a character,
and so the induced representation argument reduces to that of monomial represen-
tations.) Nevertheless, we are able to obtain our main theorem (Theorem 4.1)—a
complete description of the direct integral decomposition of an arbitrary restricted
representation for completely solvable groups in terms of orbital parameters. As
in [8], we must do a careful study of the generic dimensions of the varieties which
are intersections of G-orbits in g* with the pullback of H-orbits in h* to g* (see
Lemmas 4.3 and 4.4).

The other three (short) sections of the paper contain material as follows. Sec-
tion two contains a precise formulation of the orbital decomposition of a restricted
representation (Definition 2.1 and Formula (2.2)). A fundamental lemma in the
subject (Lemma 2.4) is recalled, and some notation is established. In section five
we relate the results of this paper to those of [8]. We indicate what happens when
the two operations (induction or restriction) are applied in succession (in either
order), and we use that knowledge to get an intrinsic characterization of the five
structural possibilities outlined in Theorem 3.2. Finally, section six contains sev-
eral examples to illustrate the main features of the theorems in sections three and
four.

2. Statement of the Main Result. We recall the Kirillov-Bernat orbital param-
eters (see [1], [4]). Suppose G is an exponential solvable group. That means G is
simply connected solvable and its Lie algebra g has no purely imaginary eigenval-
ues. G is called completely solvable if it is exponential solvable and every eigen-
value of g is real. The symbol g* denotes the real linear dual of g. G acts on g (re-
spectively g*) by the adjoint (respectively co-adjoint) action. Then the dual space
G of equivalence classes of irreducible unitary representations of G is parameter-
ized canonically by the orbit space g*/ G. More precisely, for ¢ € g* we may find
areal polarization b for p—that is, a subalgebra, g, C b C g, which is maximal
totally istropic for B,(X,Y) = ¢[X, Y]—that satisfies the Pukanszky condition
B-¢ = p+bt B =expb). Then the representation 7, = Ind§x,, X,(expX) =
e*® X € b is irreducible; its class is independent of the choice of b ; the Kirillov
map ¢ — Ty, §* — G is surjective and factors to a bijection g*/ G — G. Given
n € G, we write Q, € g* / G to denote the inverse image of 7 under the Kirillov
map.
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All of the preceding is valid for any exponential solvable group, but we shall
only deal with completely solvable groups in this paper. Now suppose G is com-
pletely solvable, H C G is a (closed) connected subgroup. We adopt the terminol-
ogy of [6, Definition 2.1] or [8, Definition 2.1] (see also 6, Theorem 4.2]).

DEFINITION 2.1. For 7 € G we say that the restriction 7| obeys the orbital
spectrum formula if

D
Q1) wly= /F(Q " n¥ vy dAEy ),

where p:g¢* — §h* is the canonical projection, A\, is the push-forward of the
canonical invariant measure (class) on Q, (under ¢* — b*/ H), and

nf = #H-orbits on Q, N p*'(H -).

The main result of the paper is the following. '

THEOREM 2.2. Let G be completely solvable, H C G closed and connected, m €
G. Then the restricted representation T | satisfies the orbital spectrum formula.

Both Definition 2.1 and Theorem 2.2 are the precise analog for restrictions of
the correspondingly numbered results in [8] for induced representations.

Now any exponential solvable group—in particular any completely solvable
group—is type I [10]. Therefore the unitary representation 7 | has a direct integral
decomposition

wly = [ new drow),

where the measure class [A,] is uniquely determined; the multiplicity function
n.(v)is uniquely determined ([ A, ]-a.e.); and the spectrum &, —meaning any sub-
set of G in which Ar is concentrated—is also determined ([\,]-a.e.). To prove
Theorem 2.2 we must verify that the triple AG Mo p(QW)/ H) constitutes these
ingredients for the restricted representation 7 |y. As in the case of induced repre-
sentations [8], the scheme of the proof is modelled after [6]. Namely, the argu-
ment is by induction on dim G/ H. In the case dim G/ H = 1, matters are compli-
cated by the fact that—unlike nilpotent groups—codimension 1 subgroups need

not be normal. As with induced representations, there are five distinct structural

! The referee has suggested that I mention that much less precise statements of
Theorem 2.2 were given by 1. K. Busyatskaya (Func. Anal. & Appl. 7 (1973), 79—
80) and I. M. Shchepochkina (ibid. 11 (1977), 93-94). Neither of these theses was
ever published.
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possibilities for the restricted representation when dimG/H = 1 and G is com-
pletely solvable. These cases are examined in detail in the next section. To handle
dimG/H > 1, we place between H and G a connected subgroup G, of codi-
mension 1 in G (always possible when G is completely solvable). We then employ
restriction in stages 7|y = (7|, )|u. The first restriction obeys the orbital spectrum
formula by the codimension 1 case; the second obeys it because of the induction
assumption. In section 4 we show how to combine these facts to obtain the orbital
spectrum formula for 7|y We note that there is no analog here of the monomial
step in the induced representation argument (see [8, Sections 4, 5]).

We close this section by citing two known results and establishing some nota-
tion.

THEOREM 2.3. Theorem 2.2 is true if H is normal.
This is proven in [6, Theorem 6.2].

LEMMA 2.4. Let N C G be normal and connected, p € g*, 6 = p|, €
n*, ¥ =g € N. The Lie algebra of the stability group G, is gy = g + 1. Then

Ny o =¢+gy.

See [9, Lemma 2] or [5, p. 271].

NOTATION. Whenever | is a subalgebra of g we write pg5:g* — §* for the
canonical projection pg 5 (¢) = ¢ly, ¢ € g*. If the algebras are clear from the
context we drop the subscripts. We denote

b =157 =pgp{0}) g™
By a generic subset of g* we mean a subset, the complement of whose interior is
Lebesgue null. More generally for any manifold W, we say a statement P,,, w €

W, is true generically if it holds for all points of W except for a set whose interior
is co-null with respect to the canonical measure class.

3. Codimension One. In this section we present a detailed and complete de-
scription of the decomposition of the restriction, to a codimension 1 connected
subgroup G, of a representation of a completely solvable Lie group G. We give
the orbital paramenters of the decomposition as well as related information on
various stabilitzers and orbit correspondence. We also give Mackey parameters
for G, when it is normal, and for the canonical codimension 2 subgroup (see [8,
Proposition 3.2] and below) when it is not. As with induced representations, we
relate the Mackey and orbital parameters.

We start with G completely solvable, N C G a codimension 1 closed connected
and normal subgroup. Let ¢ € g*, m = 7, € G the corresponding Kirillov-
Bernat irreducible unitary representation. The analysis of 7|y is known in great
detail (see [4] or [6]). We summarize in

https://doi.org/10.4153/CJM-1990-042-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1990-042-9

794 R. L. LIPSMAN

THEOREM 3.1. Let ¢ € g*, 0 = p|n, Y =79 € N the corresponding Kirillov-
Bernat representation. Select « € nt, a # 0,s0thatp~'(8) = { p+ta:t € R}.
Also select X € g, x(X) = 1. Then there are two mutually exclusive possibilities:

(i)G-¢ Dp'(0). Then Gy = Ny, G, =N,, Gy =N, Ng-¢p = p+ntand

D
7T<plN = /;? 79_‘ dS,

where 0; = expsX - 0. The N-orbits N - 05, s € R, are all distinct, p(G - ) =
User N - 05, and dimG - p = dimN -0, +2, s € R.

(ii) The orbits { G - (¢ +tax):t € R} are all distinct. Then Ng = N, Gy = G
Gy = Gand

7223

ﬂ(plN ="y.

Moreover, p(G - p) =N -0 and dimG - ¢ = dimN - 0.

Combining all the information in Theorem 3.1, we see that in either case, the
orbital spectrum formula

®
— ] T
WWIN N /P(Gsa)/N Al d)‘G’N(B)
is valid. Indeed, in case (i) we have

G-oNp 'N-8)=G-p,Np '(N-0,)=N- g,
ps =expsX -, sER,

and (since g, C n) the push-forward of the invariant measureon G- = U N,
N

gives the Lebesgue class in s; whereas in case (ii) we have
G-oNp 'WN-0)=N-o.

Now we pass to the non-normal codimension 1 situation. We assume G is com-
pletely solvable with G; C G a closed connected codimension 1 subgroup. We
assume G is not normal in G. We utilize the structure theory developed in [8,
Proposition 3.2]. There exist canonical subalgebras g, g, of g such that g, is a
codimension 1 ideal in g, go = g1 N @2 is a codimension 2 ideal in g, and g/ g is
isomorphic to the ax + b-algebra. We select X € g; \ go, ¥ € g2 \ g, satisfying

[X,Y] = Y mod gy.
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This determines two linear functionals o, 3 on g according to

chg,l a(Y) =1
Begr BX)=1

We sometimes abuse notation by writing « for a|q, or 3 for 8, .

Now let p € g¢*, 7 = 7, € G. We denote ¥ = ¢,,, 0 = ¢lg @ = ¢lg,-
We denote the corresponding Kirillov-Bernat irreducible representations by the
symbols

I/:VwEG] 7:7066() U:UWEGz.

Then in analogy with the codimension 1 induced representation situation [8, Sec-
tion 3], there are five possibilities for the structure of the restricted representation
7|, However the invariant that determines the structure is not gy = go + gy (as
in [8]), but rather g .. We shall discover that and examine the relationship between
the invariants in our next

THEOREM 3.2. One of the following five mutually exclusive possibilities obtains:
(i) 8y = go. Then if we set p; = expsY-p, s € R, we have p(G-¢) = UG -,

where ), = <,as|g,, the G\-orbits G| - 5, s € R are distinct, and

6= [ vy, d
s = Uy S.
p1Gy R ¥

(ii) gy = @2. Then p(G - ) = Gy - Y and 7r¥,|(;I = vy, is irreducible.
(iii) @y = qy. Then the projection p(G - @) is a union of three G-orbits

pPG-)=G -y UG -y UG -Y~,

where ) * = 1p1,. We have G| -y, = G, “Ysgnsy diM Gy -+ = dimG, -9~ =
dim G| -y +2and

Tole, = vy @ vy-.
(iv)gy = g and g, = (80)g. Then

p(G-p)=JGi- () +1B).
reR
The orbits Gy - (¢ +13), t € R are distinct and

. D
Wv‘Gl = /1!,{ Vi +13 dr.
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(v)gy = gandg, = g¢. Thenp(G-p) = G-y and m,|g, = vy is irreducible.
Moreover, in every one of the five cases we have the orbital spectrum formula

@

RS J
— v 4
™ novy dAE
ela /p<c~<p)/ ] @)

ng =#G-pNp G-I/ G =1

NOTES. (1) The restricted representation 7|, is either irreducible, a sum of
two inequivalent irreducibles, or a direct integral over a 1-parameter family of ir-
reducibles. The first and third can happen in one of two ways. But, as with induced
representations [8, Section 3, Note 1], these really represent different cases. In fact,
in case (v) itis true that 7, |G, 1s actually irreducible, but in case (ii) it is not. As for
the direct integrals, in case (i), T, |G, is a direct integral over a 2-parameter family,
whereas in case (iv) the restriction 7, |, is an infinite multiple of an irreducible.

(2) We saw in (8] that the structure of the induced representaion Indglz/w is
determined by the subalgebra gy, v = Vg, 0 = ¢|g,. The five mutually exclusive
possibilities for gy were: go, G2, g1, codimension | nonideal # ¢, or g. When
restricting, the third and fourth cases coalesce. This is because any codimension
1 subalgebra other than g, is conjugate to g;. Thus if for ¢ € g*, 0 = g,
Y = 7Yg, we have an element g satisfying g - gy = @), then the functional g - ¢
satisfies By = O1- But m,., & m,. On the other hand, the fifth case, gy = g,
actually splits into two distinct subcases according to whether g, is (gg)y or gg.
In fact, in the proof that follows, we will show that in the first three cases—i. e.,
gy = @o. G2, 81, respectively—the stabilizer g, satisfies the distinct conditions:
g, C (80)p and dim(go)s /g, = 2; dimg, = dim(go)y and (go)y # 8, C @2:
dimg, = dim(go)y and (g¢)s # 8, ¢ G2. Thus, while g4 is the invariant that
determines the structure of the induced representation, the subalgebra g, is the
invariant that determines the structure of the restricted representation 7, |, .

PROOF. The five possibilities for the stabilizers g, and g, enumerated in the
statement of the therorem are manifestly mutually distinct. We handle each case
separately. In each we verify the orbital facts asserted and derive the direct integral
decomposition of 7, |, . To substantiate the orbital spectrum formula in each case,
we must identify the spectrum, multiplicity and spectral measure. We treat the first
two separately in each of the five cases. We consider the measures together at the
end of the proof.

We use throughout that Gy = GyGy, gy = go + go.-

(i) gy = go. This implies that g, C (go)y and dim(go)g/ g, = 2. Indeed, if

@y = go, then g, C gp = (go)g- Hence (go), C gy C (30)g M Gy = (Q0)y-

But (Go)g - ¢ = ¢ + g; by Lemma 2.4. Thus
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dim (go)y / 8, = dim(go)y / (80),,
= 2.

Now when g, = g¢, we can carry over the facts from [8, Theorem 3.3, case (i)]
to obtain

My = Indgo Yo

G
= IndG2 [

Therefore,
7T<P|Gl = (IndeUW)lal
= Indg“) (oul,) (Mackey Supgroup Theorem)

&
:Indg(') /ﬁ Ve, ds (Theorem 3.1)

&
= f% Indg(‘ﬂgJ ds  (Commutation of induction
and direct integral)

@
= / vy, ds  below .
®

To justify the last equivalence we have to show that (1), = (go)y, for every
s € R. Indeed

(819, = (@1 )expsv-o
={Ze€g;:expsy-0[Z,g0l =0}
={Z € g, : 0lexp—sY(Z)),q0] = 0}
=expsY{exp—sY-Z € g, : 0[exp—sY(Z)),q0] = 0}
CsY-qg

expsY - (go)g
(go)oy-

I

The functionals 1, s € R, are in distinct G,-orbits, for if g, - s = ¥y, g1 € Gy,
then g, -0, = Oy = exp—s'Yg, expsY € Gy = (Gy)y-If g1 = exptXgo, go € Go,
then

exp —s'Yg, expsY = exptXexp(—s'e’ +5)Y mod G.
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Hencet =0ands = s.
The equality p(G - ¢) = UG - ¥ is easy to verify. The observation ¢, =

5
©slq, = expsY - ¢|g; proves the D inclusion. The reverse inclusion is true since
giexpsY - ¢lg, = &1 - ¢slg, = &1 - ¥s. Finally we verify that

G- oNp G- y) =G - s

The only point not obvious is that if g - ¢ satisfies g - ¢|q, = g1 - s, theng- ¢ €
G| - ¢ But the hypothesis gives g - § = g, - 8, = g, expsY - 6, which implies
g 'g1expsY € Gy = (Gy)y. Write g = g} exps'Y. Then

g 'grexpsY = exp—s'Yg, g expsY € exp—s'YG expsY N Gy.

Exactly as in the previous paragraph, this implies s = 5. Hence g = g expsY =
g-p €G- g,

(ii)) gy = g». In this case g» = go + gg forces g, C g9 C g». Moreover we
can carry over the facts from [8, Theorem 3.3, case (iii)]. In particular, from [8,
Theorem 4.1 (U,a)] we have

dimg - ¢ = dimgg -6 +2.
Therefore

dimg/g, = dimgo/(go)g +2,

from which it follows that dimg, = dim(go)s. These algebras are not equal,
because g, = (go)y = (80), C 8y = (B0)g N Gy = (90),9- But the equation
(Go)g - ¢ = ¢ + g5 (Lemma 2.4) implies dim (go)s / (30), = 1. Thus (o), =
8, = (go)g is not a possibility.
Now we turn our attention to 7, |¢, in this case. Using the information from [8,
loc. cit.] again, we have:
8w = (82), from which 7, = Indg 0.
(92)g # (G0)y from which |G, = 7s;
(81)s = (80)y from which Ind{'vs = vy is irreducible.

Combiring these with the Subgroup Theorem, we obtain

ol = (Indgzcr“,)k;I
= Indg (0. |G,)
_ G
= IndG('J'Yg

=Vy.
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Next we show p(G - ¢) = Gy - 1. The inclusion D is obvious. The reverse

inclusion requires some tricky reasoning. We have (g2)s O (go)s. Hence Vs €
#

R, 3IW € gg such that sY + Wy € (g2),. It follows, since Gy is normal, that Vs €

R, dgo € Gy suchthatexpsY-0 = go-6. We also have—since (g1)y = (go)s—that

B.1) (Go)y ¥ =¥ +a5(a)).

Now we know that
(expsY - —go- )y, = 0.

If we apply equation (3.1) to go - ¥ (to which it applies equally well), then we
obtain an element g, € (Go),,.osuch that

(expsY - ¢ — g0~ @)lg, = 8080 ¥ — 8o~ Y.
That is

expsY - olg, = 8080 Y.
Then for any g = g expsY € G, we have for U € g, that

g @(U) =expsY-p(g' - U)
= g8 Y (g - U).

Thatis, p(G- ¢) C Gy - .

Finally we prove that G- ¢ N p~ (G, - ) = G - ¢. Of course the inclusion D
is obvious. The reverse is obtained as follows. Let ¢’ = g- € p~'(G; - ). Then
g1 ¢'lq, = ¢ forsome gy € G. Then gy - ¢’ = ¢ + sa for some s € R. In other
words, g1g - ¢ = ¢ + sa. But [8, Proof of Theorem 3.3(iii)] in this instance, the
functionals ¢, ¢ + sa lie in distinct orbits unless s = 0. Therefore g;g- ¢ = ¢,
andsop’ =g-p =g/ -9 €G- .

(iii) g is a codimension 1 subalgebra # g,. As explained in Note 2, there is no
loss of generality in assuming gy = @;. Then we can carry over the results of [8,
Theorem 3.3 (iv)]. In particular, g; = go + g9 = g, C ¢;. We also have in this
case that

dimg - p =dimgg -6 +2,

thus again dim g, = dim (go), . The same reasoning as in the previous case—using
that (Go) - ¢ = ¢ + g5 again implies dim (go)s / (30), = 1—gives g, # (80)g-
Any conjugate of ¢ will therefore satisfy:

dimgw = dim(go)g; L9 # (80)s5 (12 ¢ d2.

https://doi.org/10.4153/CJM-1990-042-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1990-042-9

800 R.L. LIPSMAN

Now we consider the restriction. Once again 7, is induced, so we can use the
Subgroup Theorem. In fact, from [8, Theorem 3.3 (iv)] we see that

7l'(p = Il'ldgI I/w.
Hence
_ G
Tole, = (Indg, vy)lg,»

which, in order to decompose, requires us to compute the G;-double cosets in G.
In fact,

G= Gl @] Gl €xXp YG| U G| CXp—YGl,

adisjoint union of three double cosets, the latter two of which are of full dimension.
Indeed, for any s € R, we have
expsYG, = {expsYexptXGy : t € R}
= {exptXexpe 'sYG, : t € R}
= G expsYG, = { G expuYG : sgn(u) = sgn(s)}.

Therefore, using the Subgroup Theorem, we obtain

_ G| expY Gy exp—Y
Tr‘/’lcl - IndG,ﬂexp Y-G, V«p @ IndG.ﬂexp—YG] Vy

= Ind (v3®"|¢,) ® Indg v5®"|g,).

But in this case (see [8, loc. cit.]) we have (g1)g 7# (@0)g SO that vy |G, = 7Ve.

Therefore
+Y
V‘j’xp IG() =Yg+,
where
% =exptY-0.

Combining, we have
F‘PlGI = Il’ldgofﬁﬁ D Indg(mr.

Next we shall show the latter two representations are irreducible by demonstrat-
ing that

(3.2)  (81)p+ = (G0)g+-
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We consider 6 *, the other being similar. If (3.2) were false, then J(a; X + W) €
g1,a; # 0, W, € g, such that
expY - 0[a X+ W, g0l =0.
Therefore,
Olexp—Y (@1 X+ Wi),q0l =0

= 9[a1X+a1Y+ Wg,g()], some W2 € qo
= gg # (g1)y, acontradiction.

The equation (3.2) also says that if we set
et =exptY o, ¥ =yT g,
then
Vys = Indg:) Yo+ and my|g, = vy Dry-.

Next we show the two representations v+ are pairwise inequalivalent. For that
we only need demonstrate that ¢ * lie in distinct G;-orbits. We prove more gener-
ally that if ¢* = @*|g,, ¢* = expsY - ¢, then ¢* and ¢ are in the same G;-orbit
< sgn(s) = sgn(?). In fact, if g - ¢¥* = ', then g; - 8° = 0. Writing
g1 = expuXgo, we obtain

expuXgoexpsY -6 =exptY 0.
Therefore
exp —tYexpuXexpsY € GoGy = Gy = G.
But
exp —tY expuXexpsY = expuXexp(s — te )Y € G|
<= sgn(s) = sgn(?).

Conversely, let us prove that for s > 0,v¢* and ¢* are in the same G;-orbit (we
leave v~ to the reader). Since (g )g ? (go)g» we know that forevery r € R, 3g €

Gy such that ggexptX -8 = 0. Then if ™' = s, we have
0 = goexptXexp(—e ' +s5)Y -0
= goexptXexp(—e'Y)-0°
= exp—VYgpexptX - 6°
= 0" =g,-0° ifg, = gyexptX € G,.

https://doi.org/10.4153/CJM-1990-042-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1990-042-9

802 R. L. LIPSMAN

But (g1)p+ = (go)g+ => (Go)g+ - ¥+ = ¥* + gg(a1). Hence we can choose an
element g| € G, which satisfies ¥* = g\ g; - ¥*. This proves in particular that
vy+ and vy~ are inequivalent.

Next we observe that

pPG-p)=UG ¢ =G -y UG - UG, 1.
We already know (by [8, Theorem 3.3 (iv)]) that
dimg, -y =dimgp-60 =dimg ¢ —2.

We also have (from [8, Theorem 4.1 (‘U,,a)]

dimg, -¢v* =dimgy -0 +2 =dimgy -0 +2 = dimg - ¢.

Thus G, - ¢ * are generic and G, - ¢ is of lower dimension. It remains to prove
G-oNp (G -¥v5) =G p*.

Consider the plus sign. Since G- ¢ = G - @™, it is enough to show
G- o'Np G Y =G - p".

But precisely this equality is proven in [8, Theorem 3.3 (ii)|—which argument is
pertinent here, since for 8* = ¢*|,,, the algebra go + gy falls into that case.

(iv) gy = g and g, = (go)g. This time we find ourselves in the situation of [8,
Theorem 3.3 (v)]. We adopt the notation from there—in particular, we have that

G _ ot —
Indg, vy =77 @7,

AL

where there is a fixed real number s( (equal to - in the notation of [8]), such

that the only G-orbits lying over ¢ are
G-(p+spax) G-(p+sia), si<sy G-(p+s50), 50> 5
and 7% = T g0, T~ = 44y Moreover, for j = 1,2, we have

(33) dimG-(«p+sja):dimG()~0+2
=dimG- (¢ +sp) + 2.

Now I claim that

g, = (80)g & s0 #0.
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Indeed, if sy # 0, then by (3.3) we have dim g, = dim(g),. But since (Go)g - =
p + g$ = ¢ (Lemma 2.4), it follows that (g9)g = (go),,. Therefore (g9)s =
(80), C @y, and so they are equal. The inclusion (go)y C g, is true regardless
of the value of sy (when gy = g). But if 59 = 0, then by (3.3) again, we have
dim g, = dim(gg)g +2. Since g, C g¢ and dim gy /(go)s = 2, the case sy = 0 is
equivalent to g, = gg—which will be our last case (v).

Let us proceed with 5o # 0. We take so < 0, the opposite sign being virtu-
ally identical. Then 7, = 7% = Indgzaw (see [8, Theorem 3.3 (v)]). Therefore,
continuing to use [8], we have

7T<PIG| = (IndgzUW)lcl
= [ndg(‘)(aulg(,)

= [ndg{'ﬂg
Jy vos d
= R Vi +18 t.

The representations v 3 are inequivalent for distinct ¢ by Lemma 2.4 (applied to
the case Gy < Gy). Next we show that

p(G-p)= L’JGI (Y +1B).
Indeed this follows immediately from the facts:
G=Gi(Gy (G =(Go)y (Ga)y- 0= 405
Finally we assert that if we set ' = ¢ +13, ' = ¢'|q,, then
G-oNp (G -y") =Gy

One inclusion is clear since ¢’ € (G), - . Conversely, suppose ¢’ = g-p € G-¢
and g - ¢’|q, = ¥ +10. Then g7'g € Gy = (G1)4(Ga)g C G\(Ga)y. Therefore

¢'=g-p€G-p" forsome 1.

Hence G, - ¢' = G; - " But this can happen only if # = #;, and so the assertion
is proven.
(v) gy = g and g, = gg. As we saw above, this means so = 0 and

dimg - ¢ = dimg; -w = dimggp - 6.

Therefore m,|G, = 0, is irreducible, and furthermore m,|G, = 0u,|g, = Vg is
irreducible. It follows a fortiori that 7, |G, must be irreducible. Next it must be
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shown that it is v, . But of course the only irreducible representations of G| which
restrict to ¥y on Gy are vy 44, t € R. Hence

TylG, = Vs, for some 7y € X.

I claim 7y = 0. To see this, let b be a real polarization for ¢ which satisfies the
Pukanszky conditon. Then b ¢ gy, since 7, is not induced from G,. Hence b, =
b M g, is codimension 1 in b. Now we know

dimg - ¢ = dimg -0 =dimg, - (¥ +13), any t € R.
Also,
Y[by,b] Cp[b,b]=0.

So by is a real polarization for v . In fact b, must satisfy Pukanszky. For we have
G = BG| and so

_ G, _ G
G = IndeIXHBﬂG; = IndB, Xeg>

TolG, = Indg)@

which is irreducible. It follows therefore that 7|, = vy,.
It remains to demonstrate that p(G- ) = G, -9 and G-Np (G, -) = G- ¢.
The inclusion p(G - ¢) D G| - ¢ is obvious. The reverse comes from the facts:

G=G(Gr)y (Ga)g ¢ =(Ga), ¥ = .

It is easy to check that the equality G- ¢ N p UG, -Y)=G,-pisa consequence
of the same facts.

To complete the proof of Theorem 3.2 we must prove the equality of the spectral
measure classes obtained in cases (1)—(v)—that is, the point mass, 2-point measure
or Lebesgue measure on the line—with the obital measure (class) ’\(f,(,'.' Let us
examine the latter more carefully in the codimension 1 situation. In case p(G -
<p)/ G is (generically) discrete—i. e., cases (ii), (iii) or (iv)—it is clear that )\(*f‘(;l ,
being the push-forward of canonical measure on G - ¢, gives a discrete measure
concentrated on the generic orbit classes. What about the continuous measures in
(i) or (iv)? In case (i), it is obvious from the description

G-o=JGiexpsY- g,

and from g, C g, that the canonical measure pushes forward to the Lebesgue
measure class in the parameter s on p(G - ¢)/ G,. The same is true in case (iv),
since again g, C @, but this time

G- =G - (p+18).
t
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Thus the push-forward yields a measure in the Lebesgue class of the parameter 7.
This completes our argument.

Each of the five cases described in Theorem 3.2 actually occurs. Examples may
be found in section 6.

4. Arbitrary Codimension. In this section we prove our main result, Theorem
4.1, giving the orbital spectrum formula for an arbitrary restricted representation.
G is completely solvable and H C G is closed and connected. We fix ¢ € ¢*, 7w =
m, the associated Kirillov-Bernat irreducible representation. The orbital spectrum
formula is

THEOREM 4.1. We have the direct integral decomposition
_ ® w 14
A0 mly= [ e ANy @)

where pq y:a* — h* is the canonical projection, /\g’H is the push-forward of the
canonical measure on G - ¢ and

n; = #H-orbitson G - p N p;{, (H - w).

PROOF. The proof of formula (4.1) is by induction on dim G/ H. It follows from
Theorems 3.1 and 3.2 that it is true if dim G/ H = 1. Now let dim G/ H be larger
than 1 and assume by induction that formula (4.1) is true for lower codimension.
Since G is completely solvable we can find a closed connected subgroup G, such
that

HC G, CG and dimG/G, = 1.

Because we will use Theorem 3.2 extensively, we preserve the notation ¢ € g,
vy € G,. It is for that reason that we alter the notation of Definition 2.1 and write
w € b*, p = p, for the orbital data on §* and A.

Now the induction assumption applies to the pair (G, H). Hence forany ¢ € g7,
we have the orbital spectrum formula

v =/ np, dAY . (w).

Now we restrict in stages and use the fact that the orbital spectrum formula is true
in lower codimension

Tolu = (Myle)n

— [ fp@ nbvy dAE G (U )]

g,g,(G‘kP)/Gl

H
®
_ ¥ 4
= nvylg dX @)
fpgmcw/c] evuln dig,
@

_ e [© 1 podAE (W) dAE g ()
Poa G0/ Gy F Jpg 5 Gy VTG GG
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Thus we must prove the equivalence of the two direct integrals

4.2) /@ 1 py dAE ()
Pan( G/ H P GH
@D @
= Y v d\E . (V).
Paay (G)/ Gy /pgl.uarwﬂn“’n‘pp‘” G @) dAG6, ()

Now the subgroup G| may or may not be normal. In the former case there are two
possibilities for the structure of the restriction 7, |, (Theorem 3.1); in the latter
case five (Theorem 3.2). In every case the multiplicity function n:ﬁ = 1. In any
event the remainder of the argument is the demonstration of the equivalence of
the two direct integrals in (4.2) in these seven cases. We must prove equality of
spectrucm, multiplicity and spectral measure (see the material after [8, equation
(4.2)] for a more elaborate discussion of what that means). As with the case of
induced representations, we shall see that the spectrum and measure are handled
without too much labor. It is the verification of equal multiplicity in (4.2) that is
difficult, and which occupies the major portion of the argument.

In fact, we can dispose of the spectrum question immediately. The equality of
spectrum in (4.2) follows instantly from

Pay(G - @) = pg, 5 0Ppgq,(G-p).

The proof of equal multiplicity and spectral measure requires that we handle the
seven cases separately. We proceed to that now.

We first assume that G, is normal. In keeping with Theorem 3.1 then, we denote
itby N—so H C N4 G, dimG/N = 1. We set 8 = ¢|,,Y = Yg. We have two
subcases to consider.

(1) WWIN = 7. This is case (ii) of Theorem 3.1. In this case formula (4.2)

becomes

@.3) /® nop, dXf (w)Zf(B ns po, dAY (w)
B e pun (V) O P TONHEES
To show this we consider the projection map
G- pNpgy(H-w)—N-0NpYH w)

determined by pg . It is clearly a surjective H-equivariant map. I claim it is
actually bijective. In fact pg n: G - ¢ — N - 8 is already injective, since if

g8 ¢lh =8 ¢l 8.8 €G,

then g;'g) € Gy = G,,. Therefore
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ns =#G-oNpyy(H-w)/H
=#[N-0 N p,\(H w)/H

= ny.

It is also clear that the projection G- ¢ — N -8 carries the class of the G-invariant
measure on G - ¢ to that of the N-invariant measure on N - . Hence the spectral
measures also agree in (4.3), whence its proof is completed.
2) TrwlN =@ Yo, ds, 0, = expsX -0, g = n +RX. This is case (i) of Theorem
3.1. Now formula (4.2) becomes

® o @
w (4 w 0
4.4) /rm(G'w)/H ngpy dAG y(w) = /% /pn_x,(N-ﬂx)/H ng pu dAN y(w)ds.

The proof of equal multiplicity here is considerably more subtle. We base it on
the argument in [6, Section 4]. And for that we must employ the analog of [8,
Lemma 4.2].

LEMMA 4.2. Let H C N < G be simply connected exponential solvable Lie
groups, N normal. Fix w € §*. Then generically on p;‘lb (H - w) we have

G-0n p;}h (H - w) has the same dimensionas ¢ -0 N p;,lb(f) -w).

In addition for fixed 0 € n*, the same statement is true generically on p,, 5(G-0).

PROOF. The first statement is proven in [6, Proposition 1.7] for the case that G
is nilpotent. In that case generic means Zariski-open. It is generalized to expo-
nential solvable groups—where generic means holding on a set whose interior is
co-null—in [8, Section 2]; but only under the assumption that H - w is a singleton.
That restriction was made in [8] because that was all we needed there. We observe
now that the proof of [6, Proposition 1.7], adapted as in [8, Lemma 4.2], works
fine for bona fide orbits H - w as well as singletons—thereby giving us the stated
result. The second result also follows easily from the reasoning in [6] and [8].

Now the proof in case (2) requires the usual splitting according to generic orbit-
intersection dimensions. This is reminiscent of arguments in [2], [6], [8]. To wit,
generically on pg 5(G - ) we are in one of the two following mutually exclusive
situations:

4.5a) dim[G- ¢ N pyy(H-w)] > dimH - ¢
(4.5b) dim[G- ¢ N pyy(H-w)]l = dimH - ¢
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According to Lemma 4.2 these are equivalent to

(4.6a) dim[g - ¢ N pyp(h-w)] > dimb -
(4.6b) dim[g - ¢ N pyy(h -w)] =dimb -

And finally by the next result, Lemma 4.3, these are further equivalent to

(4.7a) dimg - > 2dimb - p —dimb - w
(4.7b) dimg - =2dimb - —dimh) - w

LEMMA 4.3. We have

dim[g ~<,oﬂpg‘_}5(b cw)]=dimg - ¢ —dimb - p +dimb - w.

PROOF. This is obtained as follows.

dim[g - ¢ N pgy(H - w)] = dim[g} N pg i (52(H))]
= dim[g, N b (g)]
= dim (g, +5,)"
= dimg/(g, +b)
= dimg —dimg, — dim ¥, +dimg, N b,
= (dimg — dimg,) — (dim b, — dim )
=dimg/g, — (dimb —dimb,,)
+(dimb — dim b,)
=dimg - —dimbh - ¢ +dimb - w.

REMARK 4.4 Case (b) characterizes finite multiplicity when the groups are nilpo-
tent (see [2], [6]). For exponential solvable groups, infinite multiplicity can occur
in case (b). For completely solvable groups, no example is known of infinite mul-
tiplicity in cases (b)—see [8, Remark before Lemma 4.4].

Now we treat the two cases (2a), (2b) separately.

(2a) m,|v = J¥Vg,dsanddimg - ¢ > 2dim} - ¢ — dim§ - w generically on

Pay(G - ). Now we need to examine the multiplicity in formula (4.4) instead

of (4.3). In this case it follows from Definition 2.1 that the multiplicity on the

left side of (4.4) is uniformly +oco. We show that the multiplicity on the right
side of (4.4) is also uniformly infinite. Of course, we use the facts in Theorem

3.1 (part (i)). We select any generic w € pq (G - ¢) for which nG = +00. Then,

mimicking the proof of Lemma 4.3, we have
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dimg -0 N pyl(h - w) = dim[nj N p;‘]b(f)j(f)))]
= dim[n; N b (n)]

= dim(n, +,)"

= (dimn —dimn,) — (dim b, — dim f,,)
=dimg -0 —dim} - p +dim} - w.

(Note weused g - 0 = nj which follows from Theorem 3.1 (i) and the equations
g-0(n,)=0[g,n,] =0,dimg-0 =dimg/gy =dimn/ng+1 =dimn/n,.)
We also have

dimg -0 =dimg - — 1.
Hence, since both sides of the inequality

dimg -0 > 2dimf - p —dimb - w
are even, we also obtain

dimg -6 > 2dimf) - ¢ —dimb - w.

Then, combining thesé facts with Lemma 4.2 we deduce

dimG -0 N py(H-w) =dimg -0 N p;t(h - w)
—dimg -0 —dimb - ¢ +dimb - w
> dimb - ¢
>dimH-0.

Moreover, using ¢, instead of ¢, the same strict inequality applies to 6.

Now we cannot at this point simply deduce that nj = +00, because dimN -
o;N p;_'h (H - w) may be one less that dim G - ;N Pap(H - w). Thus we reason as
follows. We have

G-0 =|NexpsX-0 =|JN- 6,
5 s
Therefore

G-9Np y(H-w)y=UN-0,Np,}H- w).
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Now suppose there is an s € R such that
dimG-6,N pyl (H-w) = dimN - 6,1 py (H - w).

Then clearly nj = +00, and so p = p,, occurs with infinite multiplicity. On the
other hand if this condition fails, then we must have N - 6, N p;"h(H cw) £ 0
for s € S, a set of positive Lebesgue measure. Then for any s € S, we have
H-w Cpuy(N - 85), which says that p = p,, occurs with infinite multiplicity in

/S@ /:)N.ex)/” Yo,|u-

Either way, we get infinite multiplicity on both sides of equation (4.4).

(2b) m, |y = [© Vg, ds and dimg - ¢ = 2dimb - p — dim b - w generically on
Pq.5(G - ). Once again we must prove equality of multiplicity for the two sides
of (4.4). Exactly as in case (1) we consider the projection

G-pNpih(H-w)— G0N prh(H- w).

It is not a bijection this time, but it does set up a bijection of H-orbits. The argument
for that is identical to the one in case (ia) of [6, Section 2]. In short, if g-0 = k-8,
then h=lg € Gy = Nyg.But Ny - ¢ = ¢ + Ra = Hy - o, because Hy - ¢ can
only fail to be ¢ + R if Hy = H,—which is not so (see below). We have the
decomposition

4.8) G-0Npi(H-w)=N-0,Npyk(H w)

Now dimG-0 N p;,'b (H-w) = dim H - 0. This is because each side has dimension
one less than the corresponding variety when 8 is replaced by ¢. (The first is
shown in part (a), the second below.) Therefore, the left side of (4.8) is a countable
union of disjoint H-orbits. Thus at most countably many of the intersections in the
right side of (4.8) are non-empty. We suppose they are indexed by sy, s2,..., so
that

G-0NpyH w)=N-0,Np,§H-w).
j=1

We next show that the dimensions are all the same. Assume first that s; = 0. Then
we have

2dim} -0 <dimn -6 +dim}) - w
=dimg-¢ —2+dim} - w
=2dimb - ¢ — 2.
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Thus
dimb -0 <dimb - p — 1.
The reverse inequality is obvious. Hence

dimn -0 =dimg -9 —2
=2dimb - p —2—dimb - w
=2dim} -0 —dim} - w.

By Lemma 4.2, this says
dimN -8 N p,Y(H w)=dimH- 6.

Now the point is that, after replacing ¢ by ¢, the same argument applies and
establishes the claim. Thus finally

(4.9 18 =#G-eNpy(H-w)/H

= fj#[zv 0, N pyy(H-w)/H,
j=1

which is precisely the multiplicity in the direct integral of the right side of equation
(4.4). (This last computation is nicely illustrated by Example 4 in section 6.)

This completes the proof of equal multiplicity in case(2). To complete the proof
of formula (4.4) therefore, we only need to demonstrate that the spectral measures
are equivalent. Indeed, the argument for that is word-for-word identical to that of
the nilpotent situation—[6, Section 4]—and so we do not repeat it.

Now we drop the assumption that G| is normal. Then the restriction from G to
G, is controlled by Theorem 3.2 instead of Theorem 3.1. We have H C G| C
G, Y = ¢lg,v = vy and five cases to consider. In some of these we need to
split the argument into two subcases according to the generic dimension of orbit
intersections, sometimes we don’t. Actually the situation turns out to be analogous
to the normal situation in that we need to split exactly when the codimension 1
restriction is not irreducible. That occurs in cases (i), (iii) and (iv) of Theorem 3.2.
Hence we will consider those last.

(1) (Case (ii) of Theorem 3.2) g, = g@». In this case m,|g, = vy is irreducible
and formula (4.2) becomes

) y ’ ® " "
(4.10) Haps D) = [ 1S po dAE ().

PabGp) pﬂ]-h((i|~w>/H
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Since, as explained earlier, we are only dealing with multiplicities at this stage,
we must show now that n = n}. Consider the projection

G- N pgy(H-w)— Gy -v N pyly(H-w).

This is well-defined (even though G is not normal) since pg ,(G- ) = G| - in
this case. The map is obviously an H-equivariant surjection. We only need to show
it is injective. So suppose ¢’, 0" € G- ¢ N p;{,(H - w) have the same restriction
on g;. Since g, is an ideal, it is no loss of generality to replace ¢ by ¢’. Then we
must take ¢, ¢ - ¢ € G- N p, { (H - w) satistying

<AD|§!| = g Qplm’

and deduce that g € G,. But equality on g; says that g - ¢ = ¢ + sa for some
s € R. However, we know that when gy = g5 (see [8, Theorem 3.3 (iii)}]), the
functionals ¢ + sa lie in distinct G-orbits as s varies. Hence g - ¢ = .

The same argument works in the other instance of an irreducible codimension
I restriction, namely

(2) (Case (v) of Theorem 3.2) gy = ¢ and g, = @g. In this case we again have
Ty|G, = vy is irreducible. Equal multiplicity in (4.10) is proven by the identical
argument to the previous case, since gy = g is an ideal and the functionals ¢ and
¢ +sa, s # 0, lie in distinct orbits. (In this case the orbit of ¢ + sa is determined
by sgn(s).)

(3) (Case (iii) of Theorem 3.2) gy is non-ideal codimension 1 subalgebra. Con-
jugating ¢ if necessary, we may assume g, = @;. Then, in the notation of Section
3, we have 7, |, = vy+ @ vy-. Formula (4.2) becomes

411 N Y NS
@.11) /MGWHng,pw &)

@ D -

= Sepo A @)@ [ Y pu dAY L (w).
PglAh(Gl'ww/Hnw Pu G],H( )@ pg'h(cl_w—)/Hnb Puw (II.H(w)

In fact we know from Theorem 3.2 (iii) that
Pea(G-9) =G - Y UG ¢y UG ¢

where the G-orbit G, - ¢ has dimension 2 less than G - ¢, and the other two G-
orbits have the same dimension as that of G- ¢. Of course we have G- ¢ = U, G, -
©*. Furthermore, we assert that G, - ¢* = G, - ¢ if and only if sgn(s) = sgn(s’).
This follows easily from the facts established in Section 3, namely
G ¢’ =G 9" Npyy (G -¥") and Gy -y* =Gy §*
if and only if sgn(s) = sgn(s).
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Thus we have a disjoint union
G-¢o=G-¢"UG -9 UG, ¢

Moreover, the first two are of full dimension (since dimg; - p* > g, - ¥t =
dimg - ¢), and the last is of lower dimension (since g, = (g1),,). Thus we also
have

G- Npgy(H-w) =[G ¢ N pyy(H-w)U
[Gi- ¢~ N pgy(H-D)IU[G) - N pyy(H-w)].

Furthermore, reasoning as in [8, proof of Lemma 4.3 (iv)], we see that either

(4.12)  dim[G; - ¢ N p 4 (H - w)] < dim[G, - ™ N pg(H - w)], or
G- o™ Npgy(H-w)=0.

But we only need to pay attention to generic w € pq (G - ¢). Thus we can ignore
the subvariety pq (G| - ). That is, within the choices in (4.12), it must be true
that the first one holds generically—in particular for generic w, at least one of

(4.13) Gy " Npyy(H-w) # 0.

Now we are ready to bifurcate according to orbit intersection dimensions.
(3a)dimg - ¢ > 2dimb - ¢ —dimb - w generically on pq (G - ). Then of

course n‘; = +00 on the left side of (4.11). It is infinite on the right side as well,

which we show as follows. We may suppose G| - p* N p;‘%} (H - w) # 0, and by
the dimension condition

dimGy - "N pyy(H-w) > dimH - ¢.
We show
dimG, - ¢v* N p,ly(H-w) > dimH - .

The argument is modelled after [8, Theorem 4.1 (U, a)]. Set 2n = dimg - p* =
dimg, - p*,m =dim} - ¢*, 2r = dim}) - w, so that 2n > 2m — 2r. Then

dimGy - "N p y(H-w)=dimg, - * —dimb - ¢ +dimb - w

=2n—m+2r.
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But the surjective projection

Gi- @' M pgy(H w) = G- 9" Npgly(H - w)
has fiber of dimension at most 1. Therefore

dim G, -w+ﬂp;"b(H~w) >2n—m+2r—1.
On the other hand

dimH-¢* <dimH- ¢ =m.
Since 2n — m +2r — 1 > m, we are done.

(3b)dimg - ¢ = 2dimb - ¢ —dim} - w generically. In this case we will show
that

G- pNpgy(H-w)=0.

In fact, we can reason as in Lemmas 4.3 and 4.4 to show that, generically on
Pg.5(G - ), we have

dimGy - ¢ N pgy(H-w) =dimg; - N pgy(h - w)
= dim((g1)5(8)N b))
=dimg —dim(g;);, —dimb -y +dimb - w
=dimg-¢ — 1 —dim) -y +dimb - w.
But in case (b) we also have
2dimf) -y <dimg; -y +dim}b -w
=dimg -y —2+dim}) - w
=2dimb - ¢ —2.
Since the codimension cannot be any less than 1, we have
dim} - ¢ =dimb - p — 1.
Combining, we obtain

dimGy - N p,y(H-w) = dimH - p.
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This is incompatible with (4.12) and (4.13) unless G| - ¢ N p;}) (H-w) = 0. Thus
to prove equality of multiplicity in (4.11), we only need to show

#Gy - ™ N pyy(H-w)I/H=#G-y* N pyly(H-w)/H.
That is, we must show that the projection
+ —1 + —1
G- " Npgy(H-w)y— G-y N pg o(H-w)

yields a bijection of H-orbits. It is clearly surjective and H-equivariant. In fact, it
is injective. For if

g ¢’ la = ¢"lgr &1 €G,
then g; € Gyy+ C G, (or alternatively ¢*, o™ + sa lie in distinct orbits in this
case).

(4) (Case (i) of Theorem 3.2) gy = @o. In this case m,|g1 = [T vy ds, ¥ =
©slq,» @5 = expsY - ¢. Thus formula (4.2) becomes

@ ® 1O
w ¢ _ w Vs
(4.14) /,Jg_.,(c-w/ﬂn"pw d\y(w) = /se /p((;.,w.\.)/ﬂn“’-“p“’ dAg, y(w)ds.
The reasoning begins like the corresponding part in the normal case. We have
G-o=GiexpsY- ¢

= UGI © P

Therefore,
G- N pgy(H-w)=UGi oM pyy(H-w).

Now we split the argument.

(4a) Assume dimg - ¢ > 2dimb - ¢ —dimb - w generically on pg (G - ¢).
Then we have ni; = +00 on the left side of equation (4.14). We demonstrate infinite
multiplicity for the right side. Suppose there is an s € R such that

dimG - N pg‘%(H-w) =dimGj - p; N pg_{)(H-w).

We reason as in case (3a). Consider the projection

Gy - @M pgy(H-w)— Gy -, N pyly(H - w),
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the fiber of which has dimension at most 1. Set 2n = dimg - ¢y, m = dim}) - ¢y,
2r = dim} - w. By hypothesis 2n > 2m — 2r. Then

dimG, - ¢, N pyy(H-w)=dimG- o N p (H - w)

=2n—m+2r.

Therefore

dimGy -, N pgy(H-w) >2n—m+2r—1
>m
=dimH - ¢
>dimH - ;.

It follows that ny = +00 and so p = p,, occurs with infinite multiplicity. Thus
we can assume that no such s exists. Then we must have

G- oM pgy(H-w) # 0
for s € S, a set of positive Lebesgue measure. Consequently
G- ¥s N pyy(H-w) # 0

for s in the same set S. In particular, H-w C pq, (G| -4y), s € S, which guarantees
that p,, occurs with infinite multiplicity in

/'ﬂ‘ /(D I
Vy |H-
5€S Jpg, 5(Grv)/H

Either way, we get infinite multiplicity on both sides of equation (4.14).
(4b)dimg - ¢ = 2dim} - ¢ —dim} - w, generically. Then consider the natural
projection

G- @M pgy(H-w)— G- N pyly(H-w).

It is clearly an H-equivariant surjection. It is not injective now, but it is a bijection
of H-orbits. To see this , it is enough to show that if for g; € G| we have

g ¢l = Plas

then ¢ and g, - ¢ are in the same H-orbit. For that, it suffices to prove

Hy ¢ =9 -qi.
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It is obvious that Hy, - ¢ C ¢ +g;i . But in the situation (4b) we have

2dim} - <dimg, -y +dimb -w
=dimg-¢ —2+dim} - w
=2dim} - —2.

It follows that
dimb) -y =dimb - p — 1,

from which H,, - ¢ is an open connected subset of ¢ + g . But the same argument
applies to any other ¢’ € ¢ + g (since ¢’ € G -  in this case, see [8, Proof of
Theorem 3.3 (i)]), and so the result follows.

Now the same reasoning is valid for any ¢,. Hence

4.15) G-pNp yH w) =G ;N pyyH w)—

UGr- 4N py s (H - w)

sets up a bijection of H-orbits. The left side of (4.15) is a countable union of H-
orbits. Thus at most countably many of the intersections on the right side of (4.15)
are non-empty, say for sy, s2, ...,

o0
G-oNpyyH-w)= G ¢, N pyy(H-w).
j=1

Next we show that every intersection G - ¢, M p;.l.b (H - w) is of full dimension.

Just as in the normal case, the following argument is independent of s;. So assume
s1 = 0 and show

(4.16) dimG, -y Np;'(H w)=dimH - .
After that we compute

ng = #[G-goﬂp;;,(H-w)]/H

=Y #Gi - N pyly(H-w)]/ H,
j=1
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the equality of multiplicity in formula (4.14). It remains to prove (4.16). This is
done by

dimG, -y N py'y(H - w) = dimg; -y —dimb - ¢ +dimb - w
=dimgy —2—dim} - ¢ +dimh - w
=2dimb -4 —dimb -w —2 —dimbp -4
+dim} - w
=2dim(h - p — 1) —dim b - ¢
=dim} - ¢

We arrive at the last case.
(5) (Case (iv) of Theorem 3.2) gy = g and g, = (go)y. Then 7r¢,](;, =
J€ vy wpdt, and formula (4.2) becomes

@i [° 1 py dAE (w):/@afB 1 pudAE (w) di
' PGy i P O R Jpaa Gy VTS EC G

This case is handled in a manner analogous to the previous case, this time using
the partition

G-p =G (p+1B).

t

To prove that, we note the inclusion D is clear from (G,),,-¢ = cp+g2L. The reverse
inclusion comes from G = G,(G>),,. The partition is disjoint because if we write
o' =@ +1B, 0" =1 +18 = ¢'|;, wehave G, - ¢’ = G, - ¢ = G, - =
G- 1/1’/—which impossible by the normal go < g theory (since (g,)g 7 (a0)s )-
We split the argument now.

(5a) dimg - ¢ > 2dim}) - ¢ —dim} - w, generically. We have n, = +00 on
the left in (4.17). To show infinite multiplicity on the right, we reason virtually
word-for-word as in case (4a), replacing the parameter s everywhere by ¢.

(5b)dimg-p =2dimb - —dimb -w, w generic onp;,;)(G- ). Now consider
the projection

Gy N pgh(H-w)— G- N prly(H-w).

It is clearly an H-equivariant surjection—we prove it is a bijection of H-orbits. As
in (4b), to see this it is enough to prove that for g; € Gy, if wehave gi-¢lq, = ©lq,>
then ¢ and g - ¢ are in the same H-orbit. Now the equality insures that g, - ¢ = ¢,
for some s € R. But in this case, the G-orbit structure forces s and 0 to lie on the
same side of s (see [8], Theorem 4.1 (Ub)]). Reasoning exactly as in that case [8]
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as well as in (4b), we see that Hy, - ¢, is an open and connected subset of ¢ + g,i,
for any s on the same side of sy as 0. Hence g, - ¢ = h - ¢ for some h € Hy. The
rest of the argument is finished precisely as in (4b).

To complete the proof of formula (4.2), and so of Theorem 4.1, we must demon-
strate the equivalence of the measures that appear on each side of the equation. We
have already accomplished that when the intermediary subgroup G, is normal, the
argument is identical to that of [6, Section 4]. Now for the non-normal situation. In
subcases (1) and (2), wherein pg 4, (G - @) = G| - ¢, the equivalence of measures
in (4.10) is obvious. It is also evident in case (3) since

P (G- @) =G - v UG ¥ UG, -7,

and the third orbit is of smaller dimension than the first two. The equivalence of
measure in (4.11) is then clear, since the canonical measure class on G - ¢ must
project to those on G - ¢ *. The remaining two cases—where pg 4,(G - @) isa -
parameter family of G| -orbits—are handled very similarly. I include the argument
for case (4) and leave the other to the reader. We have pg 4,(G - ¢) = U; Gy - ¥,
and a natural fiber space

Gi Y5 — pag (G- @)

l

R(~ exp RX).

Moreover, the push-forward of the canonical measure on G - ¢ is the natural
fiber measure—that is, Lebesgue measure on the base the canonical G-invariant
measure on the fiber. The picture is H-equivariant, and so factors to a fiber space

Pm.b(Gl . ws)/H _>pg,f)(G . QD)/H

J

R;

from which it is evident that the measures on the two sides of (4.14) are equiv-
alent. This concludes the proof of Theorem 4.1.

5. Distinguishing like cases. For G| C G of codimension 1 and non-normal,
we have enumerated five possibilities for the structure of an induced representation
Indgl vy, or of arestricted representation 7, |, . The distinguishing invariant for the
former is the subalgebra g + gg, where g is the canonical codimension 2 ideal
determined by g and 6 = v |,,; for the latter it is g.,. However, in both categories
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only three possible configurations are manifested by the representation—namely
irreducible, a sum of two inequivalent irreducibles, or a 1-parameter direct integral
of irreducibles. In either category, the sum of two irreducibles occurs in only one
way, so no confusion can arise. But the other two possibilities (irreducible or a
direct integral) occur in pairs. The invariants are different within each pair, but it
is not transparent how that is reflected in the structure of the representation itself.
The answer is to be found in the reciprocal process. To illustrate, the representation
T o= lndfflz/,/, will be irreducible if gy + g equals either gy or g,. That these
irreducible induced representations really reflect different cases can be understood
by restricting each back to G;. Thus if

[¢3]
m = m, and gy + gy = go, then 7r¢|(,-, = / vy, ds;

while if

m =m, and go+ @9 = ¢, thenm,

G, = l/u//,i (D 1/14" .

Similarly, if 7 is a I-parameter direct integral of irreducibles, then each of the com-
ponents in the direct integral restricts back to G| to give the same representation—
but that restriction differs according to the case. Thus if

@D
™ = / 7r\p+md‘" and gy +gs = @2, then T p+sa

G =Vy Vs
while if

{D

T = / Toespdt and go + gg is non-ideal, # g,

then TowB |G, = Vo @ Vs Vt,

where ¢’ is determined as follows. There is a unique s such that if ¢, = expsoY-
@, 05, = ¢y lq, then g + g0 = @1. Then v’ = @y g,

We can reverse the roles of induction and restriction. The restricted represen-
tation 7, |G, can be a sum of two inequivalent irreducibles in only one way. But
it can be irreducible or a 1-parameter direct integral in two ways. These can be
distinguished by inducing back up to G. Thus if

Tola, = vy and dimg, = dim(go)y, (g0)y # g, C G2,

, @®
then lndf}lvw = / Tp4sads;

while if

To|G, = Vy and 9o = G0, then ll’ldgll/‘/, = T+ D UIPEN
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where o are determined as follows. There exists a unique sy such that dim G -
(p +soa) = dimGy - ¢. Then ¢~ = ¢ + s, any 51 < 89, @7 = ¢ + 5,
any s, > so. Finally, if 7, |, is a 1-parameter direct integral of irreducibles, each
of the components induces to the same (class of) representation(s) on G—but that
class depends on the invariant g,,. To wit, if

® . G
Tole, = / vy,ds and dim(go)g / 8, = 2, then Ind¢, vy, = m,, Vs;
while if

53
WIGI = / vywg dtand g, = (8o)y,

then IndgI Vg = Tp+ O -, VIt

where % are determined as above.

6. Examples. We give several examples to illustrate Theorems 3.1, 3.2 and 4.1.
These are analogous to the examples provided in [8]. We also give an example to
illustrate the multiplicity computation (formula 4.9) in Theorem 4.1. The symbol
Q will denote co-adjoint orbits.

(1) ax + b algebra ¢ = sp{A,X},[A,X] = X, 0 = par = aA*+£X* €

a*, Qu = aA*,a €R; QF = {aA* +EXa € R, ¢ z 0}

(@ n =sp{X} 0 = p|ln = £X*

(L it =0
Tolv = {f® Vo, ds = fgnie)=sgn(e) Vo d§', i€ #0

() g1 =sp{A}, g0 = {0}, ¥ = o = aA”

X ife =0
molor = 5 Xy, do’, if € # 0.

) g =sp{A. X, Y, Z}, (X.Y]=2, [A,X]1 =X, [A,Y]=Y, [A,Z] =2Z
P = Pagac = AT +HEX +Y" +(Z7 € g7

Qp ={aA*+&X* +nY* +erZ* 1o, §,n € R, r> 0}, e = 1
a1 = sp{A,X,Z}, g0 = sp{X,Z}

G, —orbits : Q) = a0A*, x € R
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Q= {aA" +rEX"+r°(Z" a € R,r > 0}, (£,¢) € C aBorel cross-section
for the action of ® on %2\ {0} by a- (£,¢) = (en,d* ).

¥ = $0,00.1

(&)
Tola, Z/ vy, ds

00D
= f—oo Vlbm,u; dS, —&_"///——
since p(G + ) = {Yag @€ €RC {/\\

> 0};andif we write y = ¢lq, = Y0.0.1),

then v, = (expsY - ©o00.)|g, = Yo s.1-
Similarly TF(()‘(),()ﬁ])I(;l = f® unn.—n ds.

3)g = Sp{A,X, Y,Z}, X, Y]1=2Z2 [AX]=X, [A,Y]=—-Y
© = Paggc = A +EX +Y +(Z" € g”

Qy =aA*, a el

Q¢ = { @A +rEX +r 'nY* a0 € R, r > 0},(£,¢) € C aBorel cross-section
for the action &t on ®* \ {0} by a(&,n) = (e“€,e7n)

Qa,0) =G paoocy « €ERC#0
(@ g1 =sp{A,X.Z}, g0 = sp{X.Z}
G -orbits: Q(lx'c =aA"+(Z" a,( €R

Qli,( ={aA*+reX*+(Z" a €R,r>0}, e =1, €R

P = P@,000) TolG, = Vs Va = V(.00
® !

Y = Pa0n0) Tole, = / vy, do

P = Plakier0n.0) 7r<P|G| = Viaen

P = Pa0.04¢ 10 7T'»°|G| = Vg @ Vijpamicy

The preceding four decompositions represent cases (v), (iv), (ii), (iii) of Theo-
rem 3,2, respectively. Case (i) is exemplified by example (2). The following are
also illustrative.
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(b) § =sp{A,Z}
Y = P@00¢) Toln = 2/(9 Plarc) do'.
(c) b =sp{A, X}

© = Q00¢) Toln = oy @ po,-1)-

(4) The following example actually involves nipotent groups, but it illustrates
very nicely the equality of multiplicity computation in Theorem 4.1.

g =sp{A.X,Y,Z}, [AX]I=Y, [AY]=Z
O = Qagnc = A +EX +Y +(Z" € g”

(expzZ expyY expxX expaA)'I CPaknd

= Pa —xn—y¢ & +an+( % ya*{ m+ac £ *

Consider ¢ = @oeoc, &€ € R, ¢ > 0,and h = RX. b is contained in a
codimension 1 ideal in g—namely n = sp{ X, Y, Z}, which is abelian. Now

Pen(G-9) = Pas{ ¢ s erhcace P4y € RY
={&X" 16 2 ¢}

Moreover, for £; > £, we have

_ 1
G-pN Pg,{,({fl}) = {nyg,,sﬂ%ml(,a(,( yeRE +(§)02C =&}
which has one component or H-orbit if §; = &, namely { ¢(q¢,0¢): @ € R}, but

two components or H-orbits if §; > &, namely { ¢ fty/6 e L € R}.
Thus

@
Tolu = 2/5.25 pe,dE;1.
On the other hand, we can compute the restriction in stages. We have

Pan(G - p) = {g(él,n() 6128, n€ éR},
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which is not a point, so we are in case (i) of Theorem 3.1. In particular,

00B
7er|N = Loo ')’g.\ds,

where 6, = expsA - 0, of which a computation reveals that if § = 6 o), then
0_‘- = 0(5"‘(%)»"2(,74‘( <) s e éR. NOW

1
Py (N -05) = pay(0) = (€ + (5)OX,
Uy (V-6 = pay(G- ) = {6X7: & = €}

Moreover, for s € R and &, = £, we have

N-0,0 prh (€)= {Beriacacor a €RY Nps{&D)
- {0§|,i~m,§}'
Thus
G-0npydah =UIN -6, p e} s =126 —€)/C}.

Also, for every s € R, there exists precisely one &, such that £, = £ + %szg ;and
conversely, given §; > £, there exist precisely two s for each of which ny' = 1.

This illustrates the computation (formula (4.9)) of equal multiplicity in formula
(4.4) when both H and N are abelian.
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