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Abstract. Relationships between the permutations associated to periodic orbits of
maps of the interval and the topology of the space of these maps are given. These
extend the author's previous work on periodic orbits to orbit types.

Let / denote a compact interval on the real line, and for each positive integer n,
let F(n) denote the set of/ in C°(I, I) such tha t / has a periodic point of (least)
period n. A theorem of Sarkovskii [8] asserts that

F(3) c F(5) c • • • c F(2 • 3) <= F(2 • 5) <= • • • c F(4) c F(2) <= F(l).

Furthermore, if i*j and F(i)<= F(j), then F ( i ) c int (F(j)) [3], and if fc is not a
power two, then F(k)n C'{I, I) is a closed subset of C'U, /) [5]. In general, if
i ;*j and F(i) c F(j), then the closure of F(i) n C'(/, /) is a subset of the interior
of FOOnC^/ , / ) [6]. Thus, the sets F(fc) form a stratification of C'U, /) with
strata F(3), F(5)-F(3), and so on. Any C'-continuous family of maps fs moving
from one of the strata to another must pass through all the strata in between. New
periods are created one at a time, in the Sarkovskii order.

However, inside one of the strata, for example F(5) — F(3), many other bifurcations
occur. In this paper we see that at least some of these occur in a predictable pattern,
which can be described in terms of orbit types of periodic orbits and which refines
the Sarkovskii ordering.

We will let Cn denote the set of cyclic permutations of { 1 , . . . , n). An orbit type
is just an element of Cn for some positive integer n. If X = {xl < x2 < • • • < xn} is a
periodic orbit o f / e C°(I, I), the orbit type of X is the permutation F denned by
F(i) =j if and only if f(x,) = x,.

If p is an orbit type we let F(p) denote the set of maps in C°(7, /) which have
a periodic orbit of type p. Unlike the Sarkovskii sets, the sets F(p) are not linearly
ordered by inclusion. However, in this paper, we show that any linearly ordered
sublattice induces a stratification. More precisely, we prove the following.

THEOREM. If p and q are orbit types, with F(p)<= F(q) and p^q, then F(p)<=
int (F(q)), and

F(p) n C\I, I) <= int (F(q) n C\l, /)).

As noted in [1], it follows from the kneading theory, [7], that the class of unimodal
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orbit types is linearly ordered. Thus, the theorem implies that this class yields a
stratification of C\l, I). This stratification refines the Sarkovskii stratification, in
the sense that we may identify the Sarkovskii set F(n) with the set F(p), where p
is a 'simple' ([2], [6], [9]) unimodal orbit type of period n. Of course, the theorem
applies as well to orbit types which are not unimodal.

The main step in obtaining the desired theorem is the following. The remaining
step is Theorem 5, below.

THEOREM 1. If p and q are orbit types, with F(/?)<= F(q) and p^q, then F(p)ci
int (F(q)).

The proof of Theorem 1 relies on ideas from [1] and [4] concerning the relationship
between loops in the Markov graph and periodic orbits. Suppose / e C°(I, I) and
X = {x, , . . . , *„} is a periodic orbit of/ with x, <x2< • • <xn. Let /j = [x,, x 2 ] , . . . ,
/„_! = [xn_!, xn]. The Markov graph ofX is the graph with vertices Ilt..., /„_! and
an arrow from J, to J, if and only if /(/,)=> Ij. If p is an orbit type, the Markov
graph of p is the Markov graph of a map fp with an orbit X = {x, , . . . , xn} of type
p such that fp is linear on each interval joining adjacent points of X. Given a loop
in the Markov graph of p, the type of the loop may be obtained (as in [1]). Baldwin
proves in [1] that given two orbit types p and q with p # q, F(p)a F(q) if and only
if the Markov graph of p has a non-repetitive loop of type q. We will use this result
and also part of Baldwin's proof. We first note the following lemma.

LEMMA 2. Let / e C°(I, I) and let m be a positive integer. Let K = [c, d] be a closed
subinterval of I such that the intervals K, f(K),... ,fm~1(K) are pairwise disjoint.
Suppose that at least one of the following holds:

(A) Kcint ( / m (JO) .
(B) fm(c)>candfm(d)<d.

Letqe Cm be the permutation defined by labelling the disjoint intervals K,... ,fm~l(K)
asL,,...,Lm with Ll<L2<-<Lm and setting q(i) =jiff(Li) = LjOrLt =fm-\K)
andLj = K. Then feint (F(q)).

Proof. The hypothesis of the lemma holds for all g in a neighbourhood of / and
implies the existence of a periodic orbit of type q.

Proof of Theorem 1. Suppose pe Cn andge Cm. Let/e F(/>),andletX = {x, , . . . , xn}
be a periodic orbit of type p. By the theorem of Baldwin, there is a non-repetitive loop

in the graph of X which has type q. As in the proof of Theorem 3.3 of [1] we can

form closed intervals J2m, J2m-i,. •••> J\, JQ such that the following hold:
(i) J2m = Iam, J2 m_! c /Om_i, . . . , Jm+1 c / j ;

Jm C Jim, Jm-1 C hm-l , - ^ l C Jm+U -A) C Jm-
(ii) /( int (/,)) = int (J1+1) for i = 0 , . . . . 2m - 1 .

(iii) J0,Jiy..., Jm~i are pairwise disjoint.
(iv) If z is a periodic point of/ in / 0 of period m, then the orbit of z has type q.

We have two cases.
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Case 1. yocint (/OJ.
Since each endpoint of Jo is mapped by f2m to an endpoint of IQm, neither endpoint
of /(, is a fixed point of fm. Also, the endpoints of / 0 are mapped by f" onto the
endpoints of Jm, and J0^Jm. Thus, if K = Jo, the hypothesis of Lemma 2 is satisfied.
Hence, feint (F{q)).

Case 2. Jo is not a subset of int (/„„,).
In this case, each of the intervals Jo, / , , ..., Jm-X contains a point of X. Thus, if
m = n, then p = q, a contradiction. Hence, m^n.

We will show that m is not a multiple of n. Suppose m is a multiple of n. Then
w>2n. It follows that three of the intervals J0,J1,...,Jm_1 are in the same Ij.
Hence for some k = 0,..., m - 1 , Jk contains no elements of X. It follows that Jo

contains no elements of X, a contradiction to Case 2. Thus, m is not a multiple of n.
Let Jo = [c, d]. Either c or d is an endpoint of IQm; we may suppose without loss

of generality that c is. Then ceX, and hence, also/m(c)eX. Since/m(c)^ c, it
follows that f" reverses the order of the endpoints of Jo. Thus, if K = J0, the
hypothesis of Lemma 2 is satisfied, with (B) holding. Hence, feint (F(q)), and
the proof of Theorem 1 is complete.

Definition. Let peCn and q e Ck. We say q=p/2 if the following hold:
(i) k=n/2.
(ii) If /3, = {1,2}, 02 = {3,4},. . . , j8t = {n-l , f i} , then p(p,) = p, if and only if

The case q = p/2 corresponds to an orbit of type p formed from an orbit of type q
by period doubling.

LEMMA 3. Suppose p and q are orbit types and q = p/2. Then

F(p) n C\I, I) cz int (F(q) n C\l, I)).

Proof. Suppose/is the limit of a sequence of maps in F(p) n C'(/, / ) . By Theorem
1 of [5], / has a periodic orbit of type p or q. By Theorem 1, we need only consider
the case where / has an orbit X of type q. In this case, the derivative of / * must
be less than or equal to zero at each point of X. In particular, the derivative of J*
is not equal to one at each point of X. Hence, the orbit is preserved under
perturbations, and thus, fe int (F(q) n C\l, I)).

The following lemma was observed by Baldwin, [1].

LEMMA 4. Suppose p, q, and r are orbit types with q = p/2, p^r, and F(p) c F(r).
ThenF{q)cF{r).

From Lemma 3 and its proof, Lemma 4, and Theorem 1, we immediately obtain
the following.

THEOREM 5. If p and q are orbit types with F(p) <= F(q) and p^ q, then

Cl(I,I)^int (F(q)n C\l, I)).

We conclude with an intermediate value type result concerning orbit types and
families of maps.
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COROLLARY 6. Suppose f, is a continuous one-parameter family of C1 maps of the
interval Ifor 0< t ̂  1 (i.e. the map t-*f, from [0,1] toCl{I, I) is continuous). Suppose
p, r, and q are orbit types with F(p) c F(r) c F(q) and r¥= q. Iff e F{p) andfo£ F(r)
then there is a parameter tx with fhe F(q) — F(r).

Proof. Let t0 denote the infimum of {te[0,1]: feF(r)}. If fheF(r), then for tx

slightly less than t0, fh e F{q) - F(r). If V F(r), then for f, = t0, /,, e F(g) - F(r).
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