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Suppose 2 < p < ∞ and ϕ is a holomorphic self-map of the open unit disk D. We
show the following assertions:

(1) If ϕ has bounded valence and∫
D

(
1 − |z|2

1 − |ϕ(z)|2
)p/2

dA(z)

(1 − |z|2)2
< ∞, (0.1)

then Cϕ is in the Schatten p-class of the Hardy space H2.

(2) There exists a holomorphic self-map ϕ (which is, of course, not of bounded valence) such
that the inequality (0.1) holds and Cϕ : H2 → H2 does not belong to the Schatten p-class.

Keywords: composition operators; Hardy spaces; Schatten p-class

2020 Mathematics Subject Classification: 30H10; 32A35; 47B10; 47B33

1. Introduction and main results

1.1. Backgrounds and motivations

Let D = {z ∈ C : |z| < 1} be the unit disk of the complex plane C. Let H(D) be
the space of holomorphic functions on D and let ϕ be a holomorphic function on
D with ϕ(D) ⊂ D. For f ∈ H(D), the composition operator Cϕ is a linear operator
defined by Cϕ(f) = f ◦ ϕ.

Recall that a positive T on a separable Hilbert space H is in the trace class if

tr(T ) =
∞∑

n=0

〈Ten, en〉H < +∞

for some (or all) orthonormal basis {en} of H. For any 0 < p < ∞, the Schat-
ten p-class Sp(H) of H consists of bounded linear operators T : H → H such that
(T ∗T )p/2 belongs to the trace class. In particular, S1(H) is the trace class of H,
and S2(H) is called the Hilbert–Schmidt class. It is easy to check that T ∈ Sp(H)
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2 W. Yang and C. Yuan

if and only if T ∗ ∈ Sp(H). For more details about Schatten p-class operators, we
refer the readers to Zhu [16].

The Hardy space H2 is a Hilbert space of analytic functions f on D such that

‖f‖2
H2 = sup

0<r<1

∫ 2π

0

|f(reiθ)|2 dθ

2π
< ∞.

For α > −1, the weighted Bergman space A2
α consists of holomorphic functions f

on D satisfying

‖f‖2
A2

α
=
∫

D

|f(z)|2dAα(z) < ∞,

where dAα(z) = (α + 1)(1 − |z|2)αdA(z) and dA(z) is the normalized area measure
on D. When α = 0, the space A2

0 is usually denoted by A2. Properties of composition
operator on A2

α and H2 has been widely investigated for decades, see e.g. [3, 8,
16]. In particular, conditions for Cϕ that belong to Sp(A2

α) and Sp(H2) are also
characterized, see [1, 2, 4–7, 9, 10, 12, 14].

It is well known (see e.g. Zhu [15]) that H2 can be viewed as the limit case of
A2

α as α → −1+ in some sense. It is also known that for 0 < p < ∞, Cϕ ∈ Sp(H2)
if and only if

∫
D

(
Nϕ(z)
log 1

|z|

)p/2

dλ(z) < ∞,

where

dλ(z) = (1 − |z|2)−2dA(z)

is the Möbius invariant measure on D, and

Nϕ(z) =
∑

w∈ϕ−1(z)

log
1
|w|

is the Nevanlinna counting function of ϕ. Similarly, Cϕ ∈ Sp(A2
α) if and only if

∫
D

(
Nϕ,α+2(z)
(log 1

|z| )
α+2

)p/2

dλ(z) < ∞,

where Nϕ,α+2(z) is a generalized Nevanlinna counting function of ϕ given by

Nϕ,α+2(z) =
∑

w∈ϕ−1(z)

(
log

1
|w|
)α+2

.

See Luecking-Zhu [5].
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1.2. Main results

A holomorphic map ϕ : D → D is of bounded valence if there is a positive integer
N such that for each z ∈ D, the set ϕ−1(z) contains at most N points. Zhu [14]
shows that if α > −1, 2 � p < ∞ and ϕ : D → D is an analytic function of bounded
valence, then Cϕ is in the Schatten class Sp of A2

α if and only if

∫
D

(
1 − |z|2

1 − |ϕ(z)|2
)p(α+2)/2

dλ(z) < ∞.

Meanwhile, Zhu [16, Exercise 11.6.7] says that if p > 2 and Cϕ ∈ Sp(H2), then

∫
D

(
1 − |z|2

1 − |ϕ(z)|2
)p/2

dλ(z) < ∞.

These observations hint us to give the following result.

Theorem 1.1. If 2 < p < ∞, ϕ has bounded valence and

∫
D

(
1 − |z|2

1 − |ϕ(z)|2
)p/2

dλ(z) < ∞, (1.1)

then Cϕ ∈ Sp(H2).

For p > 2, Xia [10] constructs a holomorphic map ϕ : D → D such that∫
D

(
1 − |z|2

1 − |ϕ(z)|2
)p

dλ(z) < ∞

and such that Cϕ : A2 → A2 does not belong to the Schatten class Sp(A2).
Motivated by Xia [10], we prove the following theorem:

Theorem 1.2. For any 2 < p < ∞, there exists a holomorphic function ϕ : D → D

such that ∫
D

(
1 − |z|2

1 − |ϕ(z)|2
)p/2

dλ(z) < ∞, (1.2)

but Cϕ : H2 → H2 does not belong to the Schatten class Sp(H2).

The proof of theorem 1.1 is based on Wirths-Xiao [9] and Zhu [14]. The proof
of theorem 1.2 is modified from Xia [10]. Although the idea of the proof of
theorem 1.2 is coming from [10], there are several technical barriers we need to
overcome. Thus, we need to adapt Xia’s construction for our situation.

Notation. Throughout this paper, we only write U � V (or V � U) for U � cV for
a positive constant c, and moreover U ≈ V for both U � V and V � U . �
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2. Preliminaries

For α > −1, the Dirichlet-type space is a space of holomorphic functions f on D

for which

‖f‖2
α = |f(0)|2 + ‖f ′‖2

A2
α

< ∞.

It is easy to check that A2
α = Dα+2 and H2 = D1 with equivalent norms.

The following lemma is contained in [9, Theorem 3.2].

Lemma 2.1. Let α > −1 and 0 < p < ∞. Suppose ϕ : D → D is holomorphic. Then
Cϕ ∈ Sp(Dα) if and only if

∫
D

(∫
D

(
(1 − |w|2)ε

|1 − w̄ϕ(z)|1+ε

)2+α

|ϕ′(z)|2(1 − |z|2)αdA(z)

)p/2

dλ(w) < ∞ (2.1)

for some (any) ε > max{1/(2 + α), 2/(2p + pα)}.
For fixed α > 0, f, g ∈ Dα with

f(z) =
∞∑

n=0

anzn and g(z) =
∞∑

n=0

bnzn,

let

〈f, g〉Dα
=

∞∑
n=0

n!Γ(α)
Γ(n + α)

anbn.

Then the reproducing kernel of Dα associated with the inner product 〈·, ·〉Dα
is

given by

Kα,w(z) = Kα(z, w) =
1

(1 − w̄z)α
, z, w ∈ D.

This means that for each f ∈ Dα,

f(w) = 〈f,Kα,w〉Dα
w ∈ D.

Meanwhile, if we write

Jα,w(z) = Jα(z, w) =
∂

∂w̄
Kα(z, w) =

αz

(1 − w̄z)α+1
,

then

f ′(w) = 〈f, Jα,w〉Dα
. (2.2)

Let

‖f‖2
Dα

= 〈f, f〉Dα
.

Then

‖Kα,w‖2
Dα

=
1

(1 − |w|2)α
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and

‖Jα,w‖2
Dα

= 〈Jα,w, Jα,w〉Dα
= J ′

α,w(w) =
α(1 + α|w|2)
(1 − |w|2)α+2

≈ 1
(1 − |w|2)α+2

. (2.3)

Let

kα,w(z) =
Kα,w(z)
‖Kα,w‖Dα

and jα,w(z) =
Jα,w(z)
‖Jα,w‖Dα

.

The following lemma comes from [11, Lemma 10].

Lemma 2.2. Suppose α > 0 and T : Dα → Dα is a positive operator. Let

T̂α,t(w) = 〈Tjα,w, jα,w〉Dα
, w ∈ D.

(1) Let 0 < p � 1. If T̂α,t ∈ Lp(D, dλ), then T is in Sp(Dα).

(2) Let 1 � p < ∞. If T is in Sp(Dα), then T̂α,t ∈ Lp(D, dλ).

Immediately, we have the following theorem.

Theorem 2.3. Suppose α > 0 and ϕ : D → D is a holomorphic function.

(1) If 0 < p � 2 and ∫
D

(
(1 − |z|2)α+2|ϕ′(z)|2

(1 − |ϕ(z)|2)α+2

)p/2

dλ(z) < ∞, (2.4)

then Cϕ is in Sp of Dα.

(2) If 2 � p < ∞ and Cϕ is in Sp of Dα, then (2.4) holds.

Proof. Write S = CϕC∗
ϕ, then S : Dα → Dα is a positive operator. We have

Ŝα,t(w) = 〈Sjα,w, jα,w〉Dα
= 〈C∗

ϕjα,w, C∗
ϕjα,w〉Dα

=
〈C∗

ϕJα,w, C∗
ϕJα,w〉Dα

‖Jα,w‖2
Dα

=
‖C∗

ϕJα,w‖2
Dα

‖Jα,w‖2
Dα

.

For each f ∈ Dα, (2.2) implies that

〈f, C∗
ϕJα,w〉Dα

= 〈Cϕf, Jα,w〉Dα
= f ′(ϕ(w))ϕ′(w)

= ϕ′(w)〈f, Jα,ϕ(w)〉Dα
= 〈f, ϕ′(w)Jα,ϕ(w)〉Dα

.

Thus,

C∗
ϕJα,w = ϕ′(w)Jα,ϕ(w).

Then (2.3) implies that

‖C∗
ϕJα,w‖2

Dα
≈ |ϕ′(w)|2

(1 − |ϕ(w)|2)2+α
.
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This gives that

〈CϕC∗
ϕjα,w, jα,w〉Dα

=
〈C∗

ϕJα,w, C∗
ϕJα,w〉Dα

‖Jα,w‖2
Dα

≈ (1 − |w|2)2+α|ϕ′(w)|2
(1 − |ϕ(w)|2)2+α

.

An application of lemma 2.2 gives the desired assertions. �

By letting p = 2 in theorem 2.3, we have the following corollary.

Corollary 2.4. Suppose α > 0 and ϕ : D → D is a holomorphic function. Then
Cϕ is in the Hilbert–Schmidt class of Dα if and only if∫

D

(1 − |z|2)α|ϕ′(z)|2
(1 − |ϕ(z)|2)α+2

dA(z) < ∞.

There are several well-known characterizations of the Hilbert–Schmidt compo-
sitions on H2 and A2

α, see e.g. [3, 13, 16]. Combine these characterizations with
corollary 2.4, we have the following corollaries.

Corollary 2.5. Suppose ϕ : D → D is holomorphic. Then the following statements
are equivalent:

(1) Cϕ ∈ S2(H2).

(2) The following inequality holds:∫
D

(1 − |z|2)|ϕ′(z)|2
(1 − |ϕ(z)|2)3 dA(z) < ∞.

(3) The following inequality holds:∫
D

Nϕ(z)
log 1

|z|
dλ(z) < ∞.

(4) The following inequality holds:∫ 2π

0

dθ

(1 − |ϕ(eiθ)|2) < ∞.

Corollary 2.6. Suppose α > −1 and ϕ : D → D is holomorphic. Then the follow-
ing statements are equivalent:

(1) Cϕ ∈ S2(A2
α).

(2) The following inequality holds:∫
D

(1 − |z|2)α+2|ϕ′(z)|2
(1 − |ϕ(z)|2)α+4

dA(z) < ∞.

(3) The following inequality holds:∫
D

Nϕ,α+2(z)
(log 1

|z| )
α+2

dλ(z) < ∞.
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(4) The following inequality holds:∫
D

(1 − |z|2)α

(1 − |ϕ(z)|2)2+α
dA(z) < ∞.

3. Proof of theorem 1.1

Theorem 1.1 is just the case α = 1 of the following proposition.

Proposition 3.1. Suppose α > 0, 2 � p < ∞ and pα > 2. Let ϕ : D → D is a
holomorphic function which has bounded valence and

∫
D

(
1 − |z|2

1 − |ϕ(z)|2
)pα/2

dλ(z) < ∞, (3.1)

then Cϕ is in the Schatten class Sp of Dα.

The condition pα > 2 in the above proposition is necessary. Indeed, if 0 < pα � 2,
then the involved integral is trivially divergent.

Proof. When p = 2, the condition pα > 2 implies that α > 1. Notice that in this case
Dα = A2

α−2. According to [14], the condition (3.1) implies that Cϕ ∈ Sp(A2
α−2).

Now we suppose 2 < p < ∞. According to lemma 2.1, if we can check the inequal-
ity (2.1) for some ε > max{1/(2 + α), 2/(2p + pα)}, then we have Cϕ ∈ Sp(Dα).
Write q = p/2, then q > 1. Let

F (w) =
∫

D

(1 − |w|2)(2+α)ε

|1 − w̄ϕ(z)|(2+α)(1+ε)
|ϕ′(z)|2(1 − |z|2)αdA(z).

Then it is sufficient to check that F ∈ Lq(D, dλ).
Let

H(w, z) =
(1 − |w|2)(α+2)ε(1 − |ϕ(z)|2)α(1 − |z|2)2|ϕ′(z)|2

|1 − w̄ϕ(z)|(2+α)(1+ε)

and

h(z) =
(

(1 − |z|2)
(1 − |ϕ(z)|2)

)α

.

Then,

F (w) =
∫

D

H(w, z)h(z)dλ(z).

Recall that ϕ : D → D is holomorphic. Schwarz’s lemma implies that

(1 − |z|2)2|ϕ′(z)|2
(1 − |ϕ(z)|2)2 � 1. (3.2)
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Then, for each ε > 1/(2 + α), Forelli–Rudin’s estimate implies that∫
D

H(w, z)dλ(w) = (1 − |ϕ(z)|2)α(1 − |z|2)2|ϕ′(z)|2
∫

D

(1 − |w|2)(α+2)ε−2dA(w)
|1 − w̄ϕ(z)|(2+α)(1+ε)

� (1 − |ϕ(z)|2)α(1 − |z|2)2|ϕ′(z)|2
(1 − |ϕ(z)|2)2+α

� 1. (3.3)

Meanwhile, recall that ϕ is of bounded valence. Let nϕ(z) be the number of points
in ϕ−1(z). Then,

sup
z∈D

nϕ(z) < ∞

and ∫
D

H(w, z)dλ(z) =
∫

D

(1 − |w|2)(α+2)ε(1 − |ϕ(z)|2)α|ϕ′(z)|2
|1 − w̄ϕ(z)|(2+α)(1+ε)

dA(z)

= (1 − |w|2)(α+2)ε

∫
D

nϕ(z)(1 − |z|2)α

|1 − w̄z|(2+α)(1+ε)
dA(z)

� 1. (3.4)

Put (3.3) and (3.4) together. Application of Schur’s test tells us that the integral
operator with kernel H(w, z) is bounded on Lq(D, dλ). Recall that condition (3.1)
implies that h ∈ Lq(D, dλ). This gives that F ∈ Lq(D, dλ) as desired. �

4. Proof of theorem 1.2

4.1. Construction of ϕ

The construction is modified from Xia [10]. We adapt some parameters for our
argument. For n = 1, 2, . . . , let

Tn =
(
2−(n+1), 2−n

]
and Sn =

(
(4/3)2−(n+1), (5/3)2−(n+1)

]
.

That is, Sn is the middle third of Tn. Let tn = (4/3)2−(n+1) be the left end-point
of Sn.

For fixed p ∈ (2, ∞), let ε be a fixed rational number such that

0 < ε <
2
p

< 1.

We can choose a strictly increasing sequence k(1) < · · · < k(n) < . . . of positive
integers such that

2−( 2
p +ε)k(n) · 2 · 2εk(n) = 2−

2
p k(n)+1 � (1/3)2−(n+1) = |Sn|

for all n and such that every εk(n) is an integer.
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Schatten class composition operators on the Hardy space 9

For integers n � 1 and 1 � j � 2εk(n), recall that tn is the left end-point of Sn.
Define the intervals

Jn,j = (an,j , cn,j) =
(
tn + 2−( 2

p +ε)k(n) · 2 · (j − 1), tn + 2−( 2
p +ε)k(n) · 2 · j

)
and

In,j = (an,j , bn,j) =
(
tn + 2−( 2

p +ε)k(n) · 2 · (j − 1), tn + 2−( 2
p +ε)k(n) · (2j − 1)

)
.

It is easy to check that In,j is the left half of Jn,j , Jn,j ’s are pairwise disjoint,

2εk(n)⋃
j=1

Jn,j ⊂ Sn,

and the length of the interval In,j is denoted by ρn, that is

ρn = |In,j | = bn,j − an,j = 2−( 2
p +ε)k(n). (4.1)

We now define a measurable function u on the unit circle T = {w ∈ C : |w| = 1}
as follows:

u(eit) = 2−k(n) if t ∈
2εk(n)⋃
j=1

In,j , n � 1,

u(eit) = 1 if t ∈ (−π, π] \
⎛⎝ ∞⋃

n=1

2εk(n)⋃
j=1

In,j

⎞⎠ .

The harmonic extension of u to D is also denoted by u. Let

h(z) =
1
2π

∫ π

−π

eit + z

eit − z
u(eit) dt

and

ϕ(z) = exp(−h(z)) (4.2)

for all z ∈ D. Then, Re(h(z)) = u(z) > 0 for each z ∈ D, and thus,

|ϕ(z)| = eRe(h(z)) = e−u(z) < 1.

This implies ϕ(D) ⊂ D. We will need the fact that ϕ ∈ H2 with

‖ϕ‖2
H2 = sup

0<r<1

1
2π

∫ π

−π

∣∣ϕ(reiθ)
∣∣2 dθ =

1
2π

∫ π

−π

∣∣ϕ(eiθ)
∣∣2 dθ. (4.3)
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4.2. Estimates

For z ∈ D and eit ∈ T, let

P (z, eit) =
1 − |z|2
|eit − z|2

be the Poisson kernel. It is shown in [10, p. 2508] that if 1/2 � r < 1 and |θ − t| � 5,
then there exist constants 0 < α < β < ∞ such that

α(1 − r)
(1 − r)2 + (θ − t)2

� 1
2π

P (reiθ, eit) � β(1 − r)
(1 − r)2 + (θ − t)2

. (4.4)

We have the following lemma modified from [10, Lemma 4].

Lemma 4.1. For any positive integer n and 1 � j � 2εk(n), let Gn,j be the Carleson
box based on In,j, i.e.

Gn,j =
{
reiθ : θ ∈ In,j , 0 < 1 − r � ρn

}
. (4.5)

Then there is a constant C1 independent of n, j such that∫
Gn,j

(
1 − |z|

1 − |ϕ(z)|
)p/2

dλ(z) � C12−
pε
2 k(n). (4.6)

Proof. Given such a pair of n, j, we write

Gn,j =
k(n)⋃
ν=0

Gν
n,j ,

where

G0
n,j =

{
reiθ : θ ∈ In,j , 0 < 1 − r � ρn · 2−k(n)

}
,

and

Gν
n,j =

{
reiθ : θ ∈ In,j , ρn · 2−k(n) · 2ν−1 < 1 − r � ρn · 2−k(n) · 2ν

}
,

for 1 � ν � k(n).
It is shown in [10, p. 2509] that there is a constant 0 < c < 1 independent of n, j

such that

1 − |ϕ(z)| = 1 − e−u(z) � 1 − exp(−c2−k(n)+ν)

if z ∈ Gν
n,j and 0 � ν � k(n). Let δ = inf0<x�1 x−1(1 − e−x). Then,

inf
z∈Gν

n,j

(1 − |ϕ(z)|)p/2 � (δc)p/2 · 2−p/2k(n) · 2p/2ν , 0 � ν � k(n). (4.7)
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This implies that∫
Gn,j

(
1 − |z|

1 − |ϕ(z)|
)p/2

dλ(z)

=
∫

G0
n,j

(
1 − |z|

1 − |ϕ(z)|
)p/2

dλ(z) +
k(n)∑
ν=1

∫
Gν

n,j

(
1 − |z|

1 − |ϕ(z)|
)p/2

dλ(z)

� 2p/2k(n)

(δc)p/2

∫
G0

n,j

(1 − |z|2)p/2−2dA(z)

+
k(n)∑
ν=1

2p/2k(n)

(δc)p/2 · 2p/2ν

∫
Gν

n,j

(1 − |z|)p/2−2dA(z). (4.8)

Notice that p/2 − 2 > −1. Straightforward computation shows that∫
G0

n,j

(1 − |z|2)p/2−2dA(z) =
1
π

∫
In,j

dθ

∫ 1

1−ρn·2−k(n)
(1 − r2)p/2−2r dr

� C2ρ
p/2
n · 2−(p/2−1)k(n) (4.9)

for some C2 > 0, and∫
Gν

n,j

(1 − |z|)p/2−2dA(z) =
1
π

∫
In,j

dθ

∫ 1−ρn·2−k(n)·2ν−1

1−ρn·2−k(n)·2ν

(1 − r)p/2−2r dr

� C3ρ
p/2
n · 2−(p/2−1)k(n) · 2(p/2−1)ν (4.10)

for some C3 > 0. Put (4.8), (4.9) and (4.10) together, we have∫
Gn,j

(
1 − |z|

1 − |ϕ(z)|
)p/2

dλ(z)

� C2 · 2k(n) · ρp/2
n

(δc)p/2
+

k(n)∑
ν=1

2p/2k(n) · C3ρ
p/2
n · 2−(p/2−1)k(n) · 2(p/2−1)ν

(δc)p/2 · 2p/2ν

= 2k(n) · ρp/2
n ·

⎛⎝ C2

(δc)p/2
+

C3

(δc)p/2

k(n)∑
ν=1

2−ν

⎞⎠.

Recall the inequality (4.1), we get the desired inequality (4.6) by letting

C1 =
C2

(δc)p/2
+

C3

(δc)p/2

∞∑
ν=1

2−ν =
C2 + C3

(δc)p/2
. �

The following lemma is quoted from [10, Lemma 7].
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Lemma 4.2. There is a C4 > 0 such that

u(z) � C4 for every z ∈ D \
⎛⎝ ∞⋃

n=1

2εk(n)⋃
j=1

Gn,j

⎞⎠,

where Gn,j is defined by (4.5).

4.3. Proof of theorem 1.2

Let ϕ be the holomorphic self-map of D given by (4.2). It is sufficient to check
the inequality (1.2) for this ϕ, and Cϕ /∈ Sp(H2).

Let

G =
∞⋃

n=1

2εk(n)⋃
j=1

Gn,j ,

where Gn,j is given by (4.5). For z ∈ D \ G, lemma 4.2 implies that

|ϕ(z)| = e−Re(h(z)) = e−u(z) � e−C4 .

Since p/2 − 2 > −1, we have

∫
D\G

(
1 − |z|2

1 − |ϕ(z)|2
)p/2

dλ(z) � 1
(1 − e−C4)p/2

∫
D\G

(1 − |z|2)p/2−2dA(z)

� 1
(1 − e−C4)p/2

∫
D

(1 − |z|2)p/2−2dA(z) < ∞.

(4.11)

Meanwhile, lemma 4.1 implies that

∫
G

(
1 − |z|2

1 − |ϕ(z)|2
)p/2

dλ(z) ≈
∫

G

(1 − |z|)p/2−2

(1 − |ϕ(z)|)p/2
dA(z)

=
∞∑

n=1

2εk(n)∑
j=1

∫
Gn,j

(1 − |z|)p/2−2

(1 − |ϕ(z)|)p/2
dA(z)

� C1

∞∑
n=1

2εk(n) · 2− pε
2 k(n) � C1

∞∑
n=1

2−(p/2−1)εk(n) < ∞,

(4.12)

where the last inequality is following from the fact that p/2 − 1 > 0. Now (1.2)
follows from (4.11) and (4.12) easily.

It remains to check that Cϕ /∈ Sp(H2), or equivalently, tr((C∗
ϕCϕ)

p
2 ) = ∞. Let

e	(z) = z	,  = 0, 1, 2, . . . . It is well known that {e	 :  � 0} is an orthonormal
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basis for H2. Since p/2 > 1, we have〈(
C∗

ϕCϕ

)p/2
e	, e	

〉
H2

�
(〈

C∗
ϕCϕe	, e	

〉
H2

)p/2

= ‖Cϕe	‖p
H2 =

∥∥ϕl
∥∥p

H2 =
(

1
2π

∫ π

−π

∣∣ϕ(eiθ)
∣∣2	

dθ

)p/2

.

Write

In =
2εk(n)⋃
j=1

In,j .

Then,

|In| = 2εk(n)ρn = 2−
2
p k(n),

and ∣∣ϕ(eiθ)
∣∣ = exp(−u(eiθ)) = exp(−2−k(n))

for almost every θ ∈ In. Thus,∫ π

−π

∣∣ϕ(eiθ)
∣∣2	

dθ �
∞∑

n=1

∫
In

∣∣ϕ(eiθ)
∣∣2	

dθ =
∞∑

n=1

e−2	·2−k(n) · 2− 2
p k(n).

Notice that (∑
n

an

)s

�
∑

n

as
n

if s � 1 and an � 0. We get

(∫ π

−π

∣∣ϕ(eiθ)
∣∣2	

dθ

)p/2

�
( ∞∑

n=1

e−2	·2−k(n) · 2− 2
p k(n)

)p/2

�
∞∑

n=1

e−p	·2−k(n) · 2−k(n).

This gives that

tr
(
(C∗

ϕCϕ)p/2
)

=
∞∑

	=0

〈
(C∗

ϕCϕ)p/2e	, e	

〉
H2

�
∞∑

	=0

(
1
2π

∫ π

−π

∣∣ϕ(eiθ)
∣∣2	

dθ

)p/2

� 1
(2π)p/2

∞∑
	=0

∞∑
n=1

e−p	·2−k(n) · 2−k(n)

=
1

(2π)p/2

∞∑
n=1

(
2−k(n)

∞∑
	=0

e−p	·2−k(n)

)

=
1

(2π)p/2

∞∑
n=1

2−k(n) · 1
1 − e−p·2−k(n) .
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Since

sup
x>0

1 − e−x

x
� 1.

We have
1

1 − e−p·2−k(n) � 1
p · 2−k(n)

.

Then,
∞∑

n=1

2−k(n) · 1
1 − e−p·2−k(n) �

∞∑
n=1

2−k(n) · 1
p · 2−k(n)

=
∞∑

n=1

1
p

= ∞.

This implies that Cϕ /∈ Sp(H2) and the proof is complete.
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