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TOPOLOGICAL LOCALIZATION, CATEGORY AND 
COCATEGORY 

GRAHAM HILTON TOOMER 

It is easy to see that a localization (in the sense of [9]) of a simply connected 
co jET-space (equivalently a simply connected space of Liusternik-Schnirelman 
category one) is again a co i7-space. (All spaces in this paper will be pointed and 
have the based homotopy type of a connected CW complex; and all maps will 
preserve base-points.) We show that the category of a simply connected space 
does not increase on localizing. We give an example to show that the hypothesis 
simple-connectivity is crucial. In strong contrast, the dual result only requires 
connectivity. 

I would like to thank Professor I. Berstein for suggesting the problem and 
for statements 5 and 6 below; and the referee for some helpful comments. 

1. We first recall some properties of topological localization. Let / be a 
(possibly empty) set of primes contained in Z, the integers; and let Zt denote 
the integers localized at the primes in /. (Thus Z{0) is the rational numbers.) 

Definition 1 [9]. A space Fis local if T+(Y) is local, i.e., 7r*(F) is a Z r module. 
A map l:X —•> X t into a local space X x is a localization of X if given any local 
space Y and a map 

X^>Y, 

there is a unique map /^X^ —» Y making the diagram 

X—l—+Xx 

Y 

commute. We refer the reader to [9] for the construction and properties of 
l\X —> X i. In particular, localizations always exist for simply connected spaces. 

There are three well-known equivalent definitions of category for connected 
CW complexes: one in terms of open coverings, one in terms of closed coverings 
and one in terms of the "fat wedge". Since it is not clear how localization be­
haves with respect to coverings or fat wedges we adopt another approach. 
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LEMMA 2 [3]. There is a sequence of fibrations 

defined for any space X, such that 
(i) 70PQ is the standard path fibration over X; 

(ii) if X is a path-connected CW complex, yn(X) has a cross section if, and 
only if cat X ^ n ; (We take cat * = 0.) 

(iii) for any space X, Cat En(X) ^ n where Cat denotes the strong Liusternik-
Schnirelmann category of a space [3] ; 

(iv) Fn(X) c^!2Z * SIX*.. .*ttX (n + 1 fold join), andhenceis (k(n + 1) - 2 ) -
connected if X is (k — l)-connected, k ^ 2. (In fact yn(X) is obtained from 
7n_i(X) as follows: Let En(X) result from En-\(X) by erecting a reduced cone 
over Fn-i(X), and YW_I(X) is extended by mapping the cone to a point. Con­
verting this map into a homotopy equivalent fibration, we get yn(X).) 

We will exhibit a map/z so that 

En(X)l^-+En(Xl) 

yn(X)\^ yln{X0 

homotopy commutes. Then if cat X ^ w, 7WP0 and hence 7„(Z{) has a sec­
tion. Thus En(Xi) dominates Xx and so by [1, 2.4], cat Xx ^ cat En{Xx). 
Ganea [3] has shown that for any space F, cat F ^ Cat F, and hence by 
(iii) above 

c a t X j g CsLtEn(Xt) ^ n. 

PROPOSITION 3. Suppose X is a simply connected space. 
(i) I: X —> Xi induces a map En(l): En(X) —» En(X x) such that 

En{X)MKEn{Xl) 

yn{x)\ \yn{Xi) 

X -J—> X, 

commutes. 
(ii) En(X) is simply connected for each n ^ 0; and En(X x) is a local space. 

(iii) There is a map fx: En(X) x —> En{X x) such that diagram (A) above 
commutes. 

Proof, (i) This is a routine check. 
(ii) The first part is true since we have a fibration Fn(X) ^ En(X) —> X 

with Fn(X) at least 2-connected by Lemma 2 (iv). 
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To see that En(Xt) is a local space, we need only show that the fibre Fn(Xz) 
is local [9, Chapter 2]; and this follows inductively from the following short 
exact sequence of Svarc [10] : 

0-> E Ht(A)® Hj(B)-^Hr(A*B)-> £ fft(A) <g> HS(B) -* 0 

(for if any two terms are local, so is the third by [9, Chapter 1].) The induction 
begins at n = 0 since X t is local and QXt is the fibre of P(Xh *) —> Z j and 
hence is local by [9, Chapter 2]. 

(iii) This is an easy consequence of the universality of Sullivan's construc­
tion stated in Definition 1, and (i) and (ii) above. (We note that an easy 
induction shows t h a t / j induces an isomorphism of Z rhomology and since 
En(Xi) is local and simply connected, ft will be a homotopy equivalence.) 

We can thus state 

THEOREM 4. / / Xt is a localization of a simply connected space X then 
c a t X j ^ cat X. 

It follows from [9] that the rationalization, X{0), of X is a localization of X t 

for any /, and so cat X^ ^ cat Xx ^ cat X. Peter Hilton has raised (in 
private communication) the question of when cat X is the supremum of cat Xv 

over all primes p. We remark that X has to be simply connected. For, Ganea 
has pointed out in [6] that the Eilenberg MacLane space K(Q, 1) has category 
two, and K(Q, 1) is clearly the rationalization of K(Z, 1) = Sl. Thus Theorem 
4 is false for non-simply connected spaces. 

2. In [2], Bousfield and Kan have extended the theory of localization to 
apply to spaces X for which the action of wi(X) on each irn(X) is nilpotent— 
see [2, p. 58] for the definition; and have characterized nilpotent spaces as 
those spaces for which each stage of its Postnikov system can be refined to a 
finite composition of principal fibrations with abelian fibre [2, III . 5.3]. 

We refer the reader to [4] for the definition of cocategory. James [7] and 
Ganea [4 ; 5] have shown that TJ-spaces are precisely the spaces of cocategory 
one. Since the action of ir\{X) on T*(X) is trivial for an i7-space, it follows 
that cocat X ^ 1 implies that the action of iri(X) on T*(X) is nilpotent. More 
generally, 

THEOREM 5 (Berstein). If cocat X < oo , then for each n the action of ir\(X) 
on irn(X) is nilpotent. 

Proof. Ganea [5, 3.14] showed that if Xm denotes the mth stage of a Postnikov 
system for X, then cocat Xm ^ cocat X. The result therefore follows from 

PROPOSITION 6 (Berstein). The action of wi(X) on 7r*(X) is nilpotent if, and 
only if for each m cocat Xm < oo , where Xm denotes the mth stage of a Postnikov 
system for X. 
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Proof. Since the action may be written in terms of Whitehead products, and 
the Whitehead product length is always bounded above by the cocategory 
[4, 3.17], the sufficiency is clear. Conversely, if the action is nilpotent, theaction 
of TTi{Xm) = 7ri(X) on w*(Xm) is nilpotent and thus the rath stage Postnikov 
system may be refined into a finite tower of principal fibrations. Hence by 
[4, 6.3], cocat Xm < oo. 

We now outline the proof of the dual of Theorem 4, viz. 

THEOREM 7. If cocat X ^ k, and Xt denotes a localization of X, then 
cocat X i ^ k. 

Proof. By Theorem 5, X t makes sense. Ganea [4] has defined a sequence of 
cofibrations X c* Fk(X) —-> Bk(X) satisfying the duals of Lemma 2 (i), (ii) and 
(iii). (Warning: the dual of (iv) is false—see [4, Remark 3.5].) Nevertheless, 
Fk(Xi) is a local space, and we can construct a map ft: Fk{Xt) —» Fk(X t) as 
before; and it is easy to see t h a t / / induces isomorphisms of homology groups. 
Now Tn(Fk(X)) = 0 by [4, 6.9], and so by [9, Chapter 2], / , is a homotopy 
equivalence of local spaces. 
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