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Stability of two-dimensional Taylor–Green
vortices in rotating stratified fluids

Yuji Hattori1,† and Makoto Hirota1

1Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan

(Received 1 April 2022; revised 13 June 2023; accepted 18 June 2023)

The linear stability of the two-dimensional Taylor–Green vortices, which is a spatially
periodic array of vortices, in rotating stratified fluids is investigated by local and modal
stability analysis. Five types of instability appear in general: the pure hyperbolic instability,
the strato-hyperbolic instability, the rotational-hyperbolic instability, the centrifugal
instability and the elliptic instability. The condition for each instability and the estimate
of the growth rate, which are useful in interpreting numerical results, are obtained in
the framework of local stability analysis. Realizability of an instability is introduced
to predict whether an unstable mode corresponding to an unstable region found in the
local stability analysis exists at finite Reynolds numbers. In the absence of stratification,
the pure hyperbolic instability is dominant for weak rotation; it is stabilized for strong
rotation. For strong anti-cyclonic rotation, the elliptic instability or the centrifugal
instability becomes dominant depending on the parameter values; further stronger
rotation stabilizes both instabilities. For strong cyclonic rotation, the rotational-hyperbolic
instability or the elliptic instability becomes dominant, although the growth rate is smaller
than the anti-cyclonic cases. Strong stratification changes the stability properties. The
strato-hyperbolic instability occurs for weak rotation. The rotational-hyperbolic instability
and the elliptic instability are weakened under cyclonic rotation, while the latter survives
and extends the unstable range under anti-cyclonic rotation. The pure hyperbolic instability
and the centrifugal instability are less affected by stratification. The mode structures of
each instability are in good agreement with the corresponding solution to local stability
equations, confirming the physical mechanism of the instability.

Key words: rotating flows, stratified flows, vortex instability

1. Introduction

Large-scale vortices are frequently encountered in the atmosphere of the earth and other
planets such as Jupiter and Saturn; they also appear as coherent structures such as Gulf
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(a) (b)

Figure 1. Steamlines near (a) a hyperbolic stagnation point, (b) an elliptic stagnation point.

Stream rings and meddies in the oceans (Thorpe 2005). The long life of the Great Red Spot
on Jupiter is one of the long-standing mysteries studied by a number of researchers. These
large-scale vortices in the atmosphere and the oceans sometimes form a system of vortices
such as a vortex pair and an array of vortices. For example, an array of counter-rotating
vortices resembling a von Kármán vortex street is often observed in the wake of an isolated
island (Etling 1989; Potylitsin & Peltier 1998). On Jupiter, anti-cyclones and cyclones
formed a von Kármán vortex street for approximately 50 years (Youssef & Marcus 2003).
These arrays of vortices can be generated by instabilities of a jet flow and a shear flow (the
Kelvin–Helmholtz instability), the baroclinic instability and other mechanisms.

The instability of the vortices on the atmosphere and the oceans is one of their most
fundamental properties required for understanding their dynamics and fate. For example,
most of the eddies appearing on the surface of the ocean are cyclonic, while sub-surface
eddies can be anti-cyclonic (Thorpe 2005); the von Kármán vortex street in the wake of an
isolated island sometimes becomes asymmetric with anti-cyclonic vortices being nearly
destroyed (Potylitsin & Peltier 1998; Stegner, Pichon & Beunier 2005). The preference in
the sense of rotation of the vortices is most likely caused by rotation of the system and
stratification, which strongly affect the motion of the vortices in the atmosphere and the
oceans. In our previous work (Hattori et al. 2021), the linear stability of a periodic array
of vortices in non-rotating stratified fluids has been investigated in detail. The effects of
rotation are studied in the present work.

Vortices in rotating stratified fluids are subject to several types of instability. The
elliptic instability occurs when the streamlines near the centre of a vortex are elliptical
(Miyazaki & Fukumoto 1992; Leweke & Williamson 1998; Miyazaki & Adachi 1998;
Leblanc & Cambon 1998; Otheguy, Billant & Chomaz 2006a; Aspden & Vanneste 2009;
Guimbard et al. 2010). The centrifugal instability appears depending on the vorticity
distribution and the rate of rotation of the system (Leblanc & Cambon 1998; Potylitsin &
Peltier 1998, 1999). The hyperbolic instability can occur near the hyperbolic stagnation
points (Friedlander & Vishik 1991; Lifschitz & Hameiri 1991; Sipp & Jacquin 1998;
Pralits, Giannetti & Brandt 2013; Suzuki, Hirota & Hattori 2018; Singh & Mathur
2019); in a two-dimensional incompressible flow, the stream function is approximated as
Ψ (x, y) = ax2 + bxy + cy2 at a stagnation point (x, y) = (0, 0); it is called a hyperbolic
stagnation point when b2 − 4ac > 0, while it is an elliptic stagnation point when b2 −
4ac < 0 (figure 1). The hyperbolic instability occurs in the absence of stratification (pure
hyperbolic instability), while stratification changes the resonance condition for it and
the characteristics (strato-hyperbolic instability). It is particularly important for an array
of vortices because the flow always possesses hyperbolic stagnation points. The zigzag
instability (Billant & Chomaz 2000a,b,c; Otheguy, Billant & Chomaz 2006b; Deloncle,
Billant & Chomaz 2008; Waite & Smolarkiewicz 2008; Billant 2000; Billant et al. 2010),
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the radiative instability (Le Dizès & Billant 2009) and the transient growth (Arratia,
Caulfield & Chomaz 2013; Gau & Hattori 2014) also occur in general.

How rotation and/or stratification affect the above instabilities has been studied in
several previous papers. Miyazaki & Fukumoto (1992) studied the linear stability of an
unbounded elliptical flow in stratified fluids, while Miyazaki (1993) extended the analysis
including rotation effects. This problem was also studied by Leblanc (2003), who obtained
explicit conditions for the elliptic instability by local stability analysis. The inviscid
waves on a Lamb–Oseen vortex in a rotating stratified fluid were studied by Le Dizès
(2008); the condition for the elliptic instability in the presence of strain was discussed,
although no result for the growth rate was shown. Guimbard et al. (2010) investigated
the effects of stratification on the elliptic instability in a rotating cylinder not only by
experiments but also by theoretical analysis. The instability condition and the growth rate
were shown to converge to those obtained by Leblanc (2003) in the short-wave limit. The
centrifugal instability has been studied extensively since the discovery of the Rayleigh
criterion (Rayleigh 1917); a criterion for rotating fluids has been derived by Kloosterziel
& van Heijst (1991). Leblanc & Cambon (1998) investigated the linear stability of the
Stuart vortices in rotating non-stratified fluids by modal stability analysis; the centrifugal,
elliptic and pure hyperbolic instabilities were found. Sipp, Lauga & Jacquin (1999)
studied the linear stability of the two-dimensional (2-D) Taylor–Green vortices in rotating
non-stratified fluids by local and modal stability analysis; they also found the three
instabilities reported by Leblanc & Cambon (1998). Leblanc & Godeferd (1999) showed
the structures of the pure-hyperbolic-instability modes in the 2-D Taylor–Green vortices
by direct numerical simulation (DNS). Potylitsin & Peltier (1998) investigated the stability
of periodic vortices in rotating stratified fluids by modal stability analysis; the base flow is
a quasi-steady state obtained by relaxation at low Reynolds numbers. According to them,
anti-cyclonic vortices are strongly destabilized by weak rotation but stabilized by strong
rotation; they also claimed that strong stratification stabilizes the vortices. These results
were obtained from numerical analysis with limited resolution (the number of modes in
one direction is Nt = 37, which is much smaller than 500 in the present work) at low
Reynolds numbers (Re = 300). Potylitsin & Peltier (1999) investigated the stability of the
Stuart vortices in rotating non-stratified fluids by modal stability analysis. Three types of
instability were found: the elliptic, the centrifugal and the (pure) hyperbolic instabilities.
Deloncle, Billant & Chomaz (2011) investigated the stability of vortex arrays including the
von Kármán vortex street in a stratified and rotating fluid assuming that the core size of
the vortices is much smaller than the distance between the vortices; the zigzag instability
and the 2-D pairing instability were shown to be dominant for the ‘well-separated’
vortices.

Although several important aspects of the instabilities of arrays of vortices in stratified
and/or rotating fluids have been elucidated, our understanding is still far from complete;
there are only two papers on the arrays of vortices in rotating stratified fluids (Potylitsin
& Peltier 1998; Deloncle et al. 2011). In particular, it is difficult to predict which
instability is dominant for a given flow because the problem depends on multiple key
parameters: the rotation rate of the system, the strength of stratification and the vorticity
distribution, which is partially characterized by the strain rates at the stagnation points
and the maximum vorticity. Moreover, the vertical scale is much smaller than the
horizontal scale of the vortices in the atmosphere and the oceans; strong stratification also
makes the characteristic length scale in the vertical direction small (Billant & Chomaz
2001). This implies that stability properties in a wide range of wavenumbers should
be explored because the vertical wavenumber is often bounded from below because of
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geometric constraint. The results obtained so far are limited to either low numerical
resolution, low Reynolds numbers or a narrow range of parameter values. Thus, the
stability properties of arrays of vortices in rotating stratified fluids should be further
explored for a wide range of parameter values with higher resolution from a unified point
of view.

In this paper, we study the linear stability of arrays of vortices in rotating stratified
fluids. We clarify the condition for each instability and how the growth rate and other
characteristics of the instability depend on rotation and stratification. First, we use the
local stability analysis in the limit of infinite Reynolds number and large wavenumber
since it is a powerful tool for parametric study; we also emphasize that it also provides
physical insight into the instabilities, which is not always found by modal stability analysis.
Next, the stability properties at finite Reynolds numbers and wavenumbers are obtained
by modal stability analysis, where the types of modes are identified with the help of
local stability results. We also show the existence of a global mode corresponding to the
instability found by Sipp et al. (1999) and Godeferd, Cambon & Leblanc (2001) only by
local stability analysis. We choose the 2-D Taylor–Green vortices as a base flow. There
are several reasons for this choice: first, it is one of the few exact solutions of periodic
arrays of vortices in rotating stratified fluids; second, it possesses both hyperbolic and
elliptic stagnation points, which are important ingredients of arrays of vortices; third, it
has been studied in previous work as a typical example of periodic arrays of vortices;
and, as mentioned above, the effects of rotation on the stability of the 2-D Taylor–Green
vortices have been studied by Sipp et al. (1999) and those of stratification have been studied
in our previous work (Suzuki et al. 2018; Hattori et al. 2021). However, these two effects
have not been considered simultaneously. The present work contributes to understanding
the stability of vortices in rotating stratified fluids.

This paper is organized as follows. In § 2, the problem is formulated. In § 3, the
instability condition and an estimate for the growth rate based on the local stability
analysis are summarized; this section also includes the mechanism of the instability
reported by Sipp et al. (1999) and Godeferd et al. (2001), which is named as the
rotational-hyperbolic instability, and an extended analysis of the elliptic instability. The
methods of the numerical stability analysis are explained in § 4. The results on the 2-D
Taylor–Green vortices are presented in § 5. We conclude in § 6.

2. Problem formulation

2.1. Governing equations
We consider the linear stability of a periodic array of vortices to three-dimensional
disturbances in stably stratified and rotating fluids. The effects of density stratification
are taken into account by the Boussinesq approximation. Viscosity is taken into account,
while diffusion of density is neglected since its effects are negligible (Hattori et al. 2021).
The governing equations are

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u + 2Ω0ez × u = − 1
ρ0

∇p − g
ρ

ρ0
ez + ν�u, (2.2)

∂ρ

∂t
+ u · ∇ρ = 0, (2.3)

where u, p and ρ are the velocity, pressure and density fields, respectively, Ω0 is the
angular velocity, ρ0 is a constant reference density, g is the acceleration of gravity and ν is
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the kinematic viscosity. We consider high-Reynolds-number flows throughout the paper;
in the local stability analysis, we neglect viscous diffusion, while the Reynolds number is
set to Re = 105 in the modal stability analysis.

We consider a 2-D base flow. The vorticity equation for 2-D flows in a rotating frame
under the Boussinesq approximation reads

∂ωz

∂t
+ ∂Ψ

∂y
∂(ωz + 2Ω0)

∂x
− ∂Ψ

∂x
∂(ωz + 2Ω0)

∂y
= ν�ωz, (2.4)

where Ψ = −�−1ωz is the stream function of the base flow. Since Ω0 is constant, any 2-D
flow that satisfies

∂Ψ

∂y
∂ωz

∂x
− ∂Ψ

∂x
∂ωz

∂y
= 0 (2.5)

is steady in the absence of viscous diffusion. Equation (2.5) is the well-known condition
for 2-D steady inviscid flows without rotation and stratification. In other words, rotation
and stratification do not affect the condition for steadiness under the Boussinesq
approximation and uniform rotation.

The base flow is assumed steady not only in local stability analysis but also in modal
stability analysis because the growth of instabilities is much faster than the time evolution
of the base flow due to viscous diffusion at Re = 105. The velocity, pressure and density
fields are decomposed as

u = ub + u′, (2.6)

p = pb + p′, (2.7)

ρ = ρ0 + αz + ρ′, (2.8)

where (ub, pb, ρb) and (u′, p′, ρ′) = (u′
x, u′

y, u′
z, p′, ρ′) are the base flow and the

disturbance, the direction of the gravity force is taken as −ez and the base density is
assumed to be ρb = ρ0 + αz with α = ∂ρb/∂z < 0 being a constant. The magnitude of
the disturbance is infinitesimally small. Then the governing equations of the disturbance
in non-dimensionalized form are

∇ · u′ = 0, (2.9)

∂u′

∂t
+ (u′ · ∇)ub + (ub · ∇)u′ + 1

Ro
ez × u′ = −∇p′ − ρ′ez + 1

Re
∇2u′, (2.10)

∂ρ′

∂t
+ (ub · ∇)ρ′ − 1

F2
h

u′
z = 0, (2.11)

where Ro = U0/(2Ω0L0) is the Rossby number, Re = U0L0/ν is the Reynolds number,
Fh = U0/(L0N) is the Froude number based on the horizontal scale, N = √−αg/ρ0 is
the Brunt–Väisälä frequency, and U0 and L0 are a characteristic velocity and a length
scale, respectively; see § 4 for the actual choice of U0 and L0. In the following, the values
are scaled by U0 and L0 unless stated explicitly.
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In the local stability analysis, the disturbance is assumed to be in the form of a wave
packet with short wavelength:

u′ = (
û0 + δû1 + · · · ) exp

(
i
δ
Φ

)
, (2.12)

p′ = (
p̂0 + δp̂1 + · · · ) exp

(
i
δ
Φ

)
, (2.13)

ρ′ = (
ρ̂0 + δρ̂1 + · · · ) exp

(
i
δ
Φ

)
, (2.14)

where δ is a small parameter proportional to the wavelength and Φ is eikonal which is
assumed to satisfy DΦ/Dt = 0 (D/Dt = ∂/∂t + ub · ∇). Viscosity is neglected in the
local stability analysis. Substituting the above expressions into (2.9)–(2.11) yields a set
of ordinary differential equations at the leading order:

dX
dt

= U(X ), (2.15)

dk
dt

= −LTk, (2.16)

da
dt

= (2k̂k̂
T − I)La + (k̂k̂

T − I)rez + 1
Ro

(k̂k̂
T − I)ez × a, (2.17)

dr
dt

= 1
F2

h
az, (2.18)

where Lij = ∂Ui/∂xj and k̂ = k/|k| (Friedlander & Vishik 1991; Lifschitz & Hameiri
1991; Leblanc 1997). Here, X is the position of the fluid particle and k = ∇Φ is the local
wavevector, while a = û0 and r = ρ̂0 are the amplitudes of the disturbance corresponding
to velocity and density, respectively. The incompressibility condition in (2.9) leads to
a · k = 0, which is satisfied for t > 0 if it holds at t = 0. The base flow is unstable if
the amplitude {a, r} grows without bound.

2.2. Useful equations and approximations
Before showing the condition for each instability and the estimate of the growth rate, useful
equations and approximations are presented. We are left with four (2.17) and (2.18) after
solving (2.15) and (2.16). The incompressibility condition a · k = 0 implies that the actual
degree of freedom is three; it is further reduced to two using conservation of potential
vorticity (Aspden & Vanneste 2009; Suzuki et al. 2018).

First, we introduce

p = k
|k⊥|k⊥ · a⊥ = − kkz

|k⊥|az, q =
(

k
|k⊥|k⊥×a⊥

)
· ez, s = k

|k⊥|r (2.19a–c)
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as done by Bayly, Holm & Lifschitz (1996), where k⊥ = (kx, ky)
T and a⊥ = (ax, ay)

T are
the horizontal projections of k and a, respectively. Then, (2.17) and (2.18) reduce to

d
dt

⎛
⎝p

q
s

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d
dt

log
|k⊥|
|k|

2k2
z Hk⊥ · k⊥
|k|2|k⊥|2 + k2

z

Rok2
|k⊥|2
|k|2 kz

−ωz − Ro−1 − d
dt

log
|k⊥|
|k| 0

− 1
F2

hkz
0 − d

dt
log

|k⊥|
|k|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝p

q
s

⎞
⎠ , (2.20)

where

L =
(

L⊥ 0
0 0

)
, H = L⊥

(
0 1

−1 0

)
. (2.21a,b)

By eliminating p from the equations for p and q, we have

d2q
dt2

= Uqq + Dss, (2.22)

where

Uq =
(

d
dt

log
|k⊥|
|k|

)2

− d2

dt2
log

|k⊥|
|k| −

(
2k2

z Hk⊥ · k⊥
|k|2|k⊥|2 + k2

z

Rok2

)
(ωz + Ro−1), (2.23)

Ds = −|k⊥|2
|k|2 kz(ωz + Ro−1). (2.24)

We can also eliminate p from the equations for q and s, which leads to

dq
dt

− F2
h(ωz + Ro−1)kz

ds
dt

= −
(

d
dt

log
|k⊥|
|k|

)
(q − F2

h(ωz + Ro−1)kzs). (2.25)

Since ωz and kz are constant along a streamline, we have

d
dt

[( |k⊥|
|k|

)
(q − F2

h(ωz + Ro−1)kzs)
]

= 0 (2.26)

or

q − F2
h(ωz + Ro−1)kzs = Cpv

|k|
|k⊥| , (2.27)

where Cpv is a constant. For an unstable solution which grows exponentially, the
right-hand side of (2.27) can be neglected so that we have

q = F2
h(ωz + Ro−1)kzs. (2.28)

Then the equation for q becomes a closed equation

d2q
dt2

= Vqq, (2.29)
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Type of instability Condition Growth rate

Pure hyperbolic (PH) |Ro−1| < εh CPH(ε2
h − Ro−2)1/2

Strato-hyperbolic (SH) |Ro−1| < εh, F−1
h � ωmax/2 CSH(ε2

h − Ro−2)1/2

Rotational-hyperbolic (RH) |Ro−1| � εh CRHεh

Centrifugal (C) −ωmax < Ro−1 < 0 CCωmax

Elliptic (E) F−1
h <

1
2
ωmax, Ro−1 < −3

2
ωmax or Ro−1 > −1

2
ωmax CEεe

F−1
h >

1
2
ωmax, −3

2
ωmax < Ro−1 � 0 CEεe

Table 1. Condition and growth rate estimated by local stability analysis. The CPH , CSH , CRH , CC and CE are
O(1) coefficients which depend on the parameters in general.

Case εh εe ωmax

εe/ωmax = 0 3.14 0 6.28
εe/ωmax = 0.2 2.88 1.26 6.28

Table 2. Strain rates at hyperbolic and elliptic stagnation points and maximum vorticity of 2-D Taylor–Green
vortices considered in the present paper.

where

Vq =
(

d
dt

log sin θ

)2

− d2

dt2
log sin θ

− (2Hk̂⊥ · k̂⊥ cos2 θ + Ro−1 cos2 θ)(ωz + Ro−1) − F−2
h sin2 θ, (2.30)

and θ = cos−1 kz/|k| is the angle of wavevector and k̂⊥ = k⊥/|k⊥|. We use (2.29) in some
of the following subsections.

3. Instability condition and estimate of growth rates

In this section, we consider the condition for each instability and estimate the growth rate
in the framework of local stability analysis; most of them have been already obtained in
previous work, although there are new results for the rotational-hyperbolic instability and
the elliptic instability. Our aim is to give concise and useful expressions of the instability
condition and the growth rate for each instability under the common scaling, which are
not always rigorous but allow us to compare between the instabilities and to interpret the
results in § 5 without difficulties. They are summarized in table 1, which are applicable
to any flow if the actual values of the strain rates εh and εe at the hyperbolic and elliptic
stagnation points, respectively, and the maximum vorticity ωmax are available (see table 2
in § 4 for the 2-D Taylor–Green vortices); here, the strain rate is the larger eigenvalue of
the 2 × 2 matrix (or the strain tensor) (L⊥ + LT

⊥)/2; note that the sum of the eigenvalues
are zero for incompressible flows. It is pointed out that the most essential dependence on
the parameters is shown for the growth rate in table 1. Note that the O(1) coefficients
CPH , CSH , CRH , CC and CE in table 1 depend on the parameters in general; the actual
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Ro–1

Fh
–1

0

RH RH

PH

PH, SH

0–εh εh Ro–1

Fh
–1

–ωmax

0

0

EE

E

C

E, C

(a) (b)

1
2
ωmax

1
2
ωmax

1
2
ωmax–3

2
ωmax–

Figure 2. Unstable regions on (Ro−1, F−1
h ) plane estimated by local stability analysis. (a) Pure hyperbolic,

strato-hyperbolic and rotational-hyperbolic instabilities, (b) centrifugal and elliptic instabilities.

dependence will be checked numerically in § 5.1 (figure 8). The instability conditions are
visualized on the (Ro−1, F−1

h ) plane in figure 2.

3.1. Pure hyperbolic instability
The pure hyperbolic (PH) instability is due to stretching near the hyperbolic stagnation
points (Friedlander & Vishik 1991; Lifschitz & Hameiri 1991; Leblanc 1997). The
mechanism and the growth rate can be estimated analytically by investigating the solution
to (2.17) at the hyperbolic stagnation points. We set θ = 0◦ or k⊥ = 0 for which the growth
rate is maximum and stratification has no effect as will be confirmed in § 5. Then the
equation for a⊥ reads

da⊥
dt

=

⎛
⎜⎝ −∂ub

∂x
−∂ub

∂y
+ Ro−1

−∂vb

∂x
− Ro−1 −∂vb

∂y

⎞
⎟⎠(ax

ay

)
. (3.1)

Let us consider a hyperbolic stagnation point where the flow is expanded as (ub, vb) =
εh(x, −y) + O(x2 + y2). Then the above equation becomes

da⊥
dt

=
( −εh Ro−1

−Ro−1 εh

)(
ax
ay

)
, (3.2)

where εh = ∂ub/∂x = −(∂vb/∂y) is the strain rate. The eigenvalues of the matrix in (3.2)
are given by

λ2 = ε2
h − Ro−2. (3.3)

Thus, the pure hyperbolic instability occurs when |Ro−1| < εh. The above (3.2) has a
simple solution:

ax = ax(0)e−εht, ay = ay(0)eεht, (3.4a,b)

when Ro−1 = 0 (Friedlander & Vishik 1991; Lifschitz & Hameiri 1991). In this regard, ay
is in the stretching phase, while ax is in the compression phase. However, when the fluid
particle is away from the hyperbolic stagnation points so that the strain rate is small, the
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phase of a changes approximately as a ∝ e±iRo−1t, which we call the oscillation phase
below.

In general, an estimate for the growth rate on a closed streamline is required. In this
case, we should take into account that the wave packet does not always grow with the
eigenvalue λ; it is either stretched or compressed near the hyperbolic stagnation points
depending on the direction of a; when it is away from the hyperbolic stagnation points,
the direction of a rotates in the oscillation phase. Therefore, the growth rate is estimated
as σ = CPH(ε2

h − Ro−2)1/2, where CPH � 1 is a coefficient determined by the ratio of
time of the stretching phase, in which the fluid particle stays near the stagnation points,
and the oscillation phase, in which the fluid particle travels between the stagnation points.
In the short-wave limit, the instability condition and the growth rate are unaffected by
stratification because it occurs for θ = 0◦ where the stratification effects vanish.

3.2. Strato-hyperbolic instability
The strato-hyperbolic (SH) instability is a variant of the pure hyperbolic instability under
stratification effects; it occurs when the exponential growth near the hyperbolic stagnation
points is connected with phase shift due to the gravity waves in favour of exponential
growth. Although the waves become inertia-gravity waves under rotation effects, the
condition and the growth rate are estimated similarly as for the pure hyperbolic instability;
the growth rate is estimated as σ = CSH(ε2

h − Ro−2)1/2; it is stabilized when |Ro−1| > εh.
The coefficient CSH is smaller than CPH in general because the ratio of the stretching
phase to the oscillation phase decreases for larger θ , where the strato-hyperbolic instability
occurs. One important difference, however, is that the frequency of the gravity wave
should be large enough to generate the phase shift during the fluid particle motion where
the frequency is approximated as ωmax/2; this leads to F−1

h � ωmax/2 as an instability
condition (Suzuki et al. 2018). The resonance condition for the instability derived by
Suzuki et al. (2018) can be generalized as∫ T/2

0

√
Ro−2 cos2 θ + F−2

h sin2 θ dt = mπ, (3.5)

where T is the period of fluid particle motion and m is a positive integer. When F−1
h is

large, the left-hand side of the above equation increases monotonically with θ0, so that the
resonance condition is satisfied for |Ro−1| � 2mπ/T � F−1

h ; thus, the strato-hyperbolic
instability exists in the limit of strong stratification.

3.3. Rotational-hyperbolic instability
Although the pure hyperbolic instability is stabilized for |Ro−1| > εh, the potential Vq
in (2.29) oscillates periodically along streamlines near the cell boundaries. In fact, Vq is
approximated as

Vq ≈ − d2

dt2
log sin θ − Ro−2 cos2 θ − F−2

h sin2 θ (3.6)

near the cell boundaries; the first term is the main source of oscillation, while the other
terms are responsible for the inertia-gravity waves. This oscillation can resonate with the
inertia-gravity waves to give rise to another instability; we call it rotational-hyperbolic
(RH) instability because it is the motion near the hyperbolic points which is responsible
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Taylor–Green vortices in rotating stratified fluids

for the oscillation of Vq. This instability has been shown by Sipp et al. (1999) without
much attention and found by Godeferd et al. (2001) both by local stability analysis,
while its nature should be further explored because the corresponding unstable mode
has not been found in modal stability analysis. Since the time period of the fluid
particle motion is large on streamlines near the cell boundaries, the resonance occurs
for small frequency of the inertia-gravity waves: θ ≈ π/2 and small F−1

h . The growth
rate is estimated as σ = CRHεh, where CRH is in general smaller than CPH since the
wavevector angle θ is larger than the pure hyperbolic instability. The resonance condition
for the rotational-hyperbolic instability is the same as (3.5) for the strato-hyperbolic
instability; since it is satisfied for min(|Ro−1|, F−1

h ) � 2mπ/T � max(|Ro−1|, F−1
h ), the

rotational-hyperbolic instability exists in the limit of strong stratification or rotation,
although the growth rate becomes small for higher resonance (large m).

3.4. Centrifugal instability
The centrifugal (C) instability has been studied extensively since the discovery of
the Rayleigh criterion (Rayleigh 1917); a criterion for rotating fluids was derived by
Kloosterziel & van Heijst (1991). We set θ = 0◦ or k⊥ = 0 where the growth rate is
maximum and stratification has no effect. In addition, we approximate the base flow by
an axisymmetric flow

U = U(0)
Θ (R)eΘ (3.7)

in the polar coordinates (R, Θ) centred at an elliptic stagnation point to obtain concise
expressions for the instability condition and growth rate. Then the equation for a⊥ =
aReR + aΘeΘ reads

d
dt

(
aR
aΘ

)
+ Ωp

(−aΘ

aR

)
=

⎛
⎜⎝ 0 Ωp + Ro−1

−dU(0)
Θ

dR
− Ro−1 0

⎞
⎟⎠(aR

aΘ

)
, (3.8)

where Ωp = U(0)
Θ /R is the rotation rate of a fluid particle. The above equation is reduced

to

d2aR

dt2
= −2

(
Ωp + Ro−1

2

)
(ωz + Ro−1)aR, (3.9)

where ωz = dU(0)
Θ /dR + U(0)

Θ /R is the vorticity. Thus, the Rayleigh criterion in rotating
fluids is recovered as the condition for the centrifugal instability:(

Ωp + Ro−1

2

)
(ωz + Ro−1) < 0 (3.10)

or

− 2Ωp < Ro−1 < −ωz (3.11)

on each streamline. We assume that ωz decreases monotonically with R and ωz ≥ 0. Then,
Ωp is maximum at R = 0 where 2Ωp = ωz(0) = ωmax, by which the instability condition
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becomes

− ωmax < Ro−1 < 0. (3.12)

The maximum growth rate depends on the vorticity distribution. The growth rate at a
given streamline takes the maximum value when −Ro−1 = Ωp(R) + ωz(R)/2:

σ = Ωp − ωz

2
= CCωmax, (3.13)

where CC is an O(1) coefficient.

3.5. Elliptic instability
The elliptic (E) instability in rotating stratified fluids was studied by Kerswell (2002) and
Leblanc (2003) for the unbounded case, and by Guimbard et al. (2010) for the flow inside
a rotating cylinder; see also Godeferd et al. (2001) for the rotating non-stratified case and
Miyazaki & Fukumoto (1992) for the non-rotating stratified case. Here we derive a new
result required for interpretation of the results in § 5 after recovering the results obtained
by Kerswell (2002) and Leblanc (2003).

We assume that the base flow is a sum of an axisymmetric flow and a weak straining
flow:

U = U(0)
Θ (R)eΘ + εe

[
U(1)

R (R) sin 2Θer + U(1)
Θ (R) cos 2ΘeΘ

]
. (3.14)

The potential in (2.29) turns out to be

Vq = V(0)
q + εeV(1)

q cos 2Ωpt + O(ε2
e ), (3.15)

V(0)
q = −(2Ωp + Ro−1)(ωz + Ro−1) cos2 θ − F−2

h sin2 θ, (3.16)

V(1)
q = 2Ωp cos2 θ

(
U(1)

R
R0

+ dU(1)
R

dR
− U(1)

R
R0Ωp

dU(0)
Θ

dR

)
− 2 cos2 θ(ωz + Ro−1)

+
[
−γ sin2 θ

dU(1)
R

dR
−
(

3
2

+ γ sin2 θ

)
U(1)

R
R0

+ U(1)
Θ

R0
+
(

−1
2

+ γ sin2 θ

)
U(1)

R
R0Ωp

dU(0)
Θ

dR

]

− sin2 θ cos2 θ

F2
hΩp

(
U(1)

R
R0

+ dU(1)
R

dR
− U(1)

R
R0Ωp

dU(0)
Θ

dR

)
, (3.17)

where γ = 1 + 1/(2RoΩp). The leading-order term determines the oscillation frequency
ω by ω2 = −V(0)

q , while the first-order term can induce resonance so that an instability
occurs.
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Taylor–Green vortices in rotating stratified fluids

First, we focus on the stability near the elliptic stagnation points. At R ≈ 0, ωz ≈ 2Ωp ≈
ωmax, which gives

ω2 = −V(0)
q ≈ (ωmax + Ro−1)2 cos2 θ + F−2

h sin2 θ. (3.18)

The resonance condition is
ω = n

2
ωmax, (3.19)

which gives, for n = 1,

cos2 θ = 1
4

ω2
max − 4F−2

h

(ωmax + Ro−1)2 − F−2
h

. (3.20)

When (3.20) has a solution, the growth rate is obtained as

σ = εe

64

∣∣∣∣∣∣
(ω2

max − 4F−2
h )

(
3ωmax + 2Ro−1)2[

(ωmax + Ro−1)2 − F−2
h

]
ω2

max

∣∣∣∣∣∣ , (3.21)

which recovers the result by Leblanc (2003) with ωmax = 2, Ro−1 = 2f , F−1
h = 2n and

ε = δ/2. The instability condition is obtained by considering 0 ≤ cos2 θ ≤ 1 in (3.20):
when F−1

h < ωmax/2,

Ro−1 < −3
2ωmax or Ro−1 > −1

2ωmax, (3.22)

and when F−1
h > ωmax/2,

− 3
2ωmax < Ro−1 < −1

2ωmax. (3.23)

Next, we consider the stability away from the elliptic stagnation points. The resonance
condition is

Ω2
p = (2Ωp + Ro−1)(ωz + Ro−1) cos2 θ + F−2

h sin2 θ. (3.24)

It is not elucidating to consider a solution to the above equation since Ωp and ωz depend
on R differently. However, the case θ = 0◦, for which stratification effects vanish, turns
out to be useful in interpreting the results in § 5. In this case, we have(

1 + Ro−1

2Ωp

)(
ωz

2Ωp
+ Ro−1

2Ωp

)
= 1

4
. (3.25)

By noting that the vorticity ωz decays more rapidly with R than Ωp, which implies
ωz/2Ωp ≤ 1, a solution to (3.25) for R exists when

− ωmax

2
� Ro−1 � 0. (3.26)

Combined with (3.23), the instability condition for F−1
h > ωmax/2 becomes

− 3
2ωmax < Ro−1 � 0. (3.27)

The dependence of the growth rate (3.21) on the parameters is not simple. We write
σ = CEεe, where CE depends on Ro−1, F−1

h and ωmax. For the non-stratified case F−1
h = 0,

CE decreases with Ro−1 when Ro−1 > 0; CE increases with |Ro−1| when −ωmax/2 <

Ro−1 < 0.
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y/Ly

x/Lx
0

0.5

1.0

0.5 1.0

Figure 3. Streamlines of 2-D Taylor–Green vortices. εe/ωmax = 0.2. The solid (red) and dashed (blue)
lines correspond to positive and negative values of the stream function, respectively. The contour levels are
Ψ/Ψmax = ±0.16, 0.32, . . . , 0.96.

4. Numerical procedure

4.1. Base flow
We choose the 2-D Taylor–Green vortices (figure 3) as a base flow as was done by Suzuki
et al. (2018) and Hattori et al. (2021). The 2-D Taylor–Green vortices are an array of
vortices doubly periodic in horizontal directions. The vorticity is

ω(x, y) = ωmax sin
2πx

A
sin 2πAy, (4.1)

where A2 is the ratio of the spatial period Lx = A in x and Ly = 1/A in y. Each vortex
is contained in a rectangular cell where the vertices are hyperbolic points. The sign of
vorticity in a cell is opposite to that in the neighbouring cells forming a staggered lattice
of vortices. The vorticity is parallel to the vertical direction. The base flow is steady in the
absence of viscous diffusion since the stream function

Ψ (x, y) = ωmax

(2π)2(A2 + A−2)
sin

2πx
A

sin 2πAy, (4.2)

satisfies (2.5) with (4.1).
Scaling and the base-flow parameter have been chosen as in our previous work (Suzuki

et al. 2018; Hattori et al. 2021) for comparison purposes. Namely, the characteristic length
has been set to the geometric mean of the rectangular cell L0 = (LxLy)

1/2/2 = 1, while
the characteristic velocity has been chosen as

U0 = ωmaxL0

2π
= 1. (4.3)

Two cases are considered: (i) A = 1, which implies Lx = Ly and εe/ωmax = 0, and (ii)
A = (7/3)1/4, which implies Lx/Ly = √

7/3 and εe/ωmax = 0.2. Other choices of scaling
are possible; for example, the Rossby number and the Froude number are divided by 2π if
we choose ωmax, as the time scale as was done by Sipp et al. (1999).

4.2. Local stability analysis
The numerical method for local stability analysis is essentially the same as that of Suzuki
et al. (2018) except that the Coriolis force is taken into account in the present work.
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Taylor–Green vortices in rotating stratified fluids

Equations (2.15)–(2.18) were integrated in time by the fourth-order Runge–Kutta method.
We consider periodic orbits of fluid particles throughout this paper. We also assume that
the wavevector k is time-periodic which is a necessary condition for exponential instability
on the periodic orbits. It is known that k is time-periodic if it is perpendicular to the
streamline initially:

k(0) · ub(X (0)) = 0. (4.4)

Then the time evolution of amplitude is described by a Floquet matrix F since the matrices
which appear in (2.17) is also time-periodic:

{a, r}(t + T) = F (T){a, r}(t), (4.5)

where T is the period of k which coincides with that of the particle motion X . Our task is
to calculate the eigenvalues {μi} of F (T) which determines the growth rate as

σi = log |μi|
T

. (4.6)

Given the strength of rotation and stratification by the Rossby number Ro and the Froude
number Fh, the initial conditions should be specified to have particular solutions. Among
the initial conditions, one parameter, which is denoted by β in the following sections, is
required for X (0) to identify a streamline in a 2-D flow. We set

X (0) =
(

Lx

4
(1 − β),

Ly

4
, 0
)T

, 0 ≤ β < 1. (4.7)

The elliptic stagnation point corresponds to β = 0, while β = 1 corresponds to the cell
boundaries.

Another parameter is required for k(0) to specify the direction of the wavevector which
satisfies (4.4); we take the angle between ez and k(0), which is denoted by θ0. It should
be pointed out that the magnitude of k(0) is arbitrary since the right-hand side of (2.17)
depends only on the direction of k and is independent of the magnitude after taking the
short-wave limit. For the amplitudes a(0) and r(0), three independent initial conditions
satisfying the incompressibility condition a(0) · k(0) = 0 are considered; the results do
not depend on the choice of the initial conditions since the space spanned by the three
initial conditions is common. As a result, we obtain the largest growth rate σ as a function
of β, θ0, Ro and Fh: σ = σ(β, θ0, Ro, Fh).

4.3. Modal stability analysis
In the modal stability analysis, (2.9)–(2.11) were solved numerically by the Fourier spectral
method (Peyret 2010) assuming periodic boundary conditions in all three directions, as
was done by Hattori et al. (2021). The time marching was performed by the fourth-order
Runge–Kutta method.

Since the base flow is 2-D, the time evolution of disturbances is separable in the vertical
direction. Thus, we set

u′ = eikzz
Kx∑

kx=−Kx

Ky∑
ky=−Ky

ũkx,ky exp(i[kx(x/Lx) + ky( y/Ly)]) (4.8)

with similar expression for p′ and ρ′. The number of the Fourier modes is 500 × 500, the
same as in the study by Hattori et al. (2021).
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The growth rate and frequency were obtained by the method of Krylov subspace
(Edwards et al. 1994; Julien, Ortiz & Chomaz 2004; Donnadieu et al. 2009; Hattori
et al. 2021). Starting from randomized initial conditions, (2.9)–(2.11) were integrated
for a certain long time. Intermediate states {(uuu′(T0), ρ

′(T0)), (uuu′(T0 + �T), ρ′(T0 +
�T)), . . . , (uuu′(T0 + (NK − 1)�T), ρ′(T0 + (NK − 1)�T))} were used as generators of
the Krylov subspace. Then the eigenvalues and the eigenmodes were obtained in the
NK-dimensional Krylov subspace.

In this method, the error of an eigenvalue λ of a linear operator L can be evaluated by

ε = ‖Lv − λv‖
‖v‖ , (4.9)

where v is the corresponding approximate eigenvector. The error ε depends on the initial
time of the data T0, the interval between the data �T and the dimension of the Krylov
subspace NK . To obtain eigenvalues accurately, several Krylov subspaces were generated
from different sets of parameters and the eigenvalue with the smallest error for each
eigenmode was chosen. The actual values of the parameters were chosen after trial and
error. The number of data NK was fixed to 10, the start time of the data was T0 = 195
or 245 and the interval between the data �T was fixed to 5. Typically, the error of the
eigenvalue is ε = O(10−10) for the largest eigenvalue for a fixed wavenumber kz, while
it increases for subdominant eigenmodes. In the following, we discarded the eigenmodes
with ε ≥ 10−3.

4.4. Realizability as a mode
As we see in § 5, the instabilities found by local stability analysis are not always found in
modal stability analysis at finite Reynolds numbers since high-wavenumber modes are
damped by viscous damping. In this case, the corresponding region of the instability
in the (β, θ0) plane is often thin so that it is difficult to construct an unstable mode.
It is worth noting that Bayly (1988) derived a condition for construction of an unstable
eigenmode from local solutions of the form (2.12)–(2.14); the spatial width of the mode
is approximately [−σ ′′(β)/2C(β)]−1/4, where C(β) is an integral along a streamline and
C(β) > 0 is the condition since σ ′′(β) is normally negative. When |σ ′′(β)| is small, the
unstable region in the local stability analysis is wide and the corresponding mode has a
large spatial width; in other words, the radial wavenumber of the mode is small. Therefore,
the eigenmode corresponding to a wider unstable region in the (β, θ0) plane is less affected
by viscous damping. Moreover, if the unstable region is wide in the θ0 direction, an
eigenmode constructed by superposition of the local solutions can avoid viscous damping
at lower Reynolds numbers.

With the above in mind, we intuitively introduce the following quantity:

R =
∫

S
σ sin θ0 dβ dθ0, (4.10)

where S is the region of an instability on the (β, θ0) plane, to quantify realizability as
a mode of each instability; eigenmodes corresponding to an unstable region may not be
found at finite Reynolds numbers and finite wavenumbers if R is small. It should be noted
that existence of a mode depends on the Reynolds number; the critical Reynolds number
at which a particular mode appears would increase as R decreases. In the above definition
of realizability R, the factor sin θ0 is required to account for the solid angle since θ0 is the
polar angle of a wavevector from the vertical axis in three dimensions. It should be pointed
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Taylor–Green vortices in rotating stratified fluids

out that this is a crude approximation; for example, it would be better to replace θ0 by the
average of θ . However, it is sufficient to interpret the results of modal stability analysis
since only the order of magnitude of R matters.

5. Results

In this section, we show the results of local and modal stability analysis of the 2-D
Taylor–Green vortices.

5.1. Results of local stability analysis
First, we show how each instability appears in local stability analysis by observing the
growth rate σ(β, θ0, Ro, Fh) as a function of β and θ0 for given values of Ro and Fh.
We choose the values of Ro and Fh to cover nearly all conditions for the instabilities
in table 1: F−1

h = 0(< ωmax/2) and 5(> ωmax/2), and |Ro−1| = 0, 2(< εh, ωmax/2) and
|Ro−1| = 4(> εh, ωmax/2) (also see table 2).

Figure 4 shows σ(β, θ0, Ro, Fh) for the non-stratified case F−1
h = 0, comparing among

the Rossby numbers Ro−1 = 0, ±2 and ±4. Four types of instability are observed:
pure hyperbolic instability, centrifugal instability, rotational-hyperbolic instability and
elliptic instability. The pure hyperbolic instability appears for Ro−1 = ±2 near β = 1
(figure 4c,d,g,h). The growth rate is the largest at θ0 = 0◦, while the unstable region
extends to large θ0. It does not appear for Ro−1 = 0 since the stretching near a hyperbolic
stagnation point is cancelled by the compression near the next hyperbolic stagnation point,
as explained by Suzuki et al. (2018). The centrifugal instability appears for Ro−1 = −4
as a band 0.6 � β � 0.8 (figure 4a,b). The growth rate is the largest at θ0 = 0◦, while
the unstable region extends to large θ0 as in the case of the pure hyperbolic instability.
The rotational-hyperbolic instability is observed for Ro−1 = 4 (figure 4i, j). The unstable
region emanates from (β, θ0) = (1, 90◦), becomes thick at β ≈ 0.9 and then shrinks as β

decreases. The elliptic instability appears for εe/ωmax = 0.2 (figure 4b,d, f,h, j). It forms
a horizontal band emanating from (β, θ0) ≈ (0, 60◦) for Ro−1 = 0 (figure 4 f ). The band
moves to larger θ0 for Ro−1 > 0 (figure 4h, j), while it becomes wide for Ro−1 = −2
(figure 4d). The unstable region survives with reduced growth rate near (β, θ0) = (0, 0) for
Ro−1 = −4 (figure 4b), although the elliptic instability does not occur according to table 1;
the lower limit of Ro−1 for the elliptic instability is −4.3, as shown later in figure 6, which
is larger in magnitude than the limit −ωmax/2 = −3.14. The only remarkable difference
between εe/ωmax = 0 and 0.2 is that the elliptic instability appears for εe/ωmax = 0.2. The
characteristic features of each instability for εe/ωmax = 0.2 are in good agreement with
Sipp et al. (1999) for εe/ωmax = 0.3 (Lx/Ly = 2). The rotational-hyperbolic instability
was observed as many thin bands by Godeferd et al. (2001) for the Stuart vortices; in the
present case, the number of bands is small owing to the difference in vorticity distribution.

Figure 5 shows the growth rate σ(β, θ0, Ro, Fh) for a stratified case F−1
h = 5. There are

several differences from F−1
h = 0. The strato-hyperbolic instability appears for Ro−1 =

0, ±2 (figure 5c–h). The elliptic instability is stabilized for Ro−1 ≥ 0, while it survives
for Ro−1 = −2 and −4, as predicted in § 3.5. It is pointed out that the unstable region
of the elliptic instability for Ro−1 = −4 is larger than that of the non-stratified case
(figure 4b). The rotational-hyperbolic instability is hardly visible as the growth rate
decreases significantly. Most of the unstable regions are compressed to θ0 = 0◦ by
stratification; at θ0 = 0◦, however, the effects of stratification vanish according to (2.29)
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Figure 4. Growth rate σ(β, θ0, Ro, Fh) as a function of β and θ0 obtained by local stability analysis. F−1
h = 0

and (a,c,e,g,i) εe/ωmax = 0 and (b,d, f,h, j) 0.2. Ro−1 = (a,b) −4, (c,d) −2, (e, f ) 0, (g,h) 2, (i, j) 4.
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Figure 5. Growth rate σ(β, θ0, Ro, Fh) as a function of β and θ0 obtained by local stability analysis. F−1
h = 5

and (a,c,e,g,i) εe/ωmax = 0 and (b,d, f,h, j) 0.2. Ro−1 = (a,b) −4, (c,d) −2, (e, f ) 0, (g,h) 2, (i, j) 4.
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Figure 6. Growth rate σmax(Ro, Fh) as a function of Ro obtained by local stability analysis. εe/ωmax = 0.2,
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Figure 7. (a,b) Growth rate σmax(Ro, Fh) and (c,d) realizability as a function of Ro−1 obtained by local
stability analysis. Also shown as insets in (a,b) are close-up views of the growth rate σmax(Ro, Fh) for weak
rotation −0.25 ≤ Ro−1 ≤ 0.25. (a,c) εe/ωmax = 0, (b,d) εe/ωmax = 0.2.

and (2.30). As a result, the maximum growth rates of the pure hyperbolic instability and
the centrifugal instability are the same as those for F−1

h = 0.
To elucidate which instability is dominant and how it depends on stratification and

rotation, we focus on the maximum growth rate for fixed magnitude of rotation and
stratification in the rest of this subsection: σmax(Ro, Fh) = maxβ,θ0 σ(β, θ0, Ro, Fh).
Figure 6 shows σmax(Ro, Fh) as a function of Ro−1 for (εe/ωmax, F−1

h ) = (0.2, 1). In
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this figure, maximum is taken for each instability. The four types of instability are
observed as in figure 4. Important features of each instability are captured. For example,
the pure hyperbolic instability appears for |Ro−1| � 2.9. It is worth noting that the
growth rate is nearly the same for cyclonic and anti-cyclonic rotation; this is because
the pure hyperbolic instability occurs near the cell boundaries where vorticity is weak.
The centrifugal instability appears for −6.2 � Ro−1 � −2.7 bifurcating from the pure
hyperbolic instability; rigorously speaking, it is difficult to distinguish between the pure
hyperbolic instability and the centrifugal instability for −2.7 � Ro−1 < 0. In figure 7, we
show how the maximum growth rate σmax(Ro, Fh) depends not only on rotation but also
on stratification; σmax(Ro, Fh) is plotted against Ro−1 for selected values of F−1

h , while
the close-up view of σmax(Ro, Fh) for weak rotation |Ro−1| ≤ 0.25 is shown in the insets.
Also shown in this figure is the realizability R introduced by (4.10). Each curve for a fixed
value of F−1

h consists of different types of instability, as observed in figure 6. The dominant
instability for εe/ωmax = 0 changes as

Ro−1 ≥ 0 : (SH →) PH → RH, (5.1)

Ro−1 ≤ 0 : (SH →) PH → C → RH (5.2)

as |Ro−1| increases, and for εe/ωmax = 0.2 as

Ro−1 ≥ 0 : (E/SH →) PH → RH, (5.3)

Ro−1 ≤ 0 : (E/SH →) PH → E (→ C) → RH, (5.4)

where occurrence of the parenthesized instabilities depends on the magnitude of
stratification. We see that the pure hyperbolic instability and the centrifugal instability
are unaffected by stratification in figure 7 since the maximum occurs at θ0 = 0◦. This
does not imply that the actual unstable modes are also independent of stratification since
stratification affects mode structures; in fact, realizability R decreases as F−1

h increases
(figure 7c,d), which is more prominent for the anti-cyclonic case (Ro−1 < 0) than for the
cyclonic case (Ro−1 > 0). However, the rotational-hyperbolic instability and the elliptic
instability are strongly affected by stratification. The rotational-hyperbolic instability
appears for Ro−1 � 3 bifurcating from the pure hyperbolic instability, while it also appears
for Ro−1 � −4. The growth rate and the realizability decrease as stratification becomes
strong; R almost vanishes for Ro−1 < 0, suggesting that it is difficult to observe the
corresponding unstable modes at finite Reynold numbers. The growth rate of the elliptic
instability, which appears only for εe/ωmax = 0.2, becomes maximum at Ro−1 ≈ −3.1.
The unstable range is different for F−1

h ≤ 3 and F−1
h ≥ 5, as predicted in § 3.5. The

growth rate decreases with F−1
h for Ro−1 > 0 and increases with F−1

h for Ro−1 � −4,
whereas the maximum growth rate at Ro−1 ≈ −3.1 does not depend on stratification.
The strato-hyperbolic instability appears for F−1

h � 2; it merges with the pure hyperbolic
instability at Ro−1 ≈ 0.03. The growth rate decreases with rotation for Ro−1 < 0.

It is of interest to evaluate the coefficients of the growth rate in table 1. Figure 8
shows the coefficient as a function of Ro−1 for each instability. Since the coefficients
CPH and CC are independent of stratification, they are compared between εe/ωmax = 0
and 0.2 (figure 8a,b). We observe that the difference between the cases εe/ωmax =
0 and 0.2 are small; it is also the case for the the strato-hyperbolic instability and
the rotational-hyperbolic instability, while the coefficient of the elliptic instability
vanishes for εe/ωmax = 0. Thus, the coefficients of the strato-hyperbolic instability, the
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Figure 8. Coefficients which appear in table 1 as a function of Ro−1 obtained by local stability analysis.
Panels (a,b) shows CPH and CC, respectively, for εe/ωmax = 0 and 0.2. Panels (c–e) shows CSH , CRH and CE

for F−1
h = 0, 1, 2, 3, 5 and 10, while εe/ωmax is fixed to 0.2. The dashed lines in (e) show the analytical values

(3.21) for F−1
h = 0, 2 and 10.

rotational-hyperbolic instability and the elliptic instability are shown for the same values
of F−1

h as in figure 7 with εe/ωmax = 0.2 (figure 8c,d,e). The magnitude of the coefficients
is O(1) for all instabilities, while it is small for the centrifugal instability and the
strato-hyperbolic instability.

Figure 8 reveals some features of subdominant modes which are not shown in figure 7.
The coefficient of the strato-hyperbolic instability CSH vanishes for F−1

h ≤ 2; it increases
with F−1

h . The coefficient of the elliptic instability is maximum CE = 1.0 at Ro−1 = −3.1;
it is independent of stratification for −3.7 � Ro−1 � −2.7, where the maximum growth
rate occurs at θ0 = 0. Also shown in figure 8(e) by the dashed lines is the analytical growth
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rate (3.21) for F−1
h = 0, 2 and 10. It is in good agreement with the numerical results except

for intervals near Ro−1 = −3.1 where θ0 = 0.
Figure 8 also helps us deduce how the coefficients depend on the Rossby number. The

coefficients CPH and CRH do not depend on Ro−1 significantly except for Ro−1 ≈ 0 for
CPH , and for Ro−1 ≈ 3 and −4 for CRH . The coefficient of the centrifugal instability
decreases with |Ro−1| as the unstable region moves to small β; this is understood by the
expression of the growth rate (3.13) since the difference between 2Ωp and ωz decreases
as β decreases. Figure 8(b) suggests that the relation between CC and Ro−1 can be
approximated as

CC ∝ 1 − |Ro−1|
ωmax

, (5.5)

which can be applicable when vorticity is non-negative and decreases monotonically
with β. However, it is not easy to find an explicit relation analytically since it depends
on the velocity distribution of the vortex in a nonlinear way.

The numerical results obtained by local stability analysis in this subsection are in good
agreement with predictions in § 3. Occurrence of each instability, its growth rate and their
dependence on rotation and stratification have been elucidated in detail. However, these
results should be checked by modal stability analysis, as is done in the next subsection.

5.2. Results of modal stability analysis
In this subsection, we show the results of modal stability analysis of the 2-D Taylor–Green
vortices. Two remarks are made before presenting the results. One is about symmetry
of the modes. The 2-D Taylor–Green vortices possess several symmetries in the absence
of rotation (Sipp et al. 1999; Suzuki et al. 2018; Hattori et al. 2021). However, rotation
breaks mirror symmetry with respect to x = mLx/2 and y = nLy/2, where m and n are
integers. The symmetries that survive under rotation are translations (x, y;ωz) → (x +
n(Lx/2), y ± n(Ly/2);ωz) and a π rotation (x, y;ωz) → (−x, −y;ωz). Thanks to the latter
symmetry, the unstable modes can be classified into symmetric and anti-symmetric modes:
the mode is symmetric when it satisfies

u′(−x, −y, z) = −u′(x, y, z), v′(−x, −y, z) = −v′(x, y, z), (5.6a,b)

w′(−x, −y, z) = w′(x, y, z), ρ′(−x, −y, z) = ρ′(x, y, z), (5.7a,b)

while it is anti-symmetric when it satisfies

u′(−x, −y, z) = u′(x, y, z), v′(−x, −y, z) = v′(x, y, z), (5.8a,b)

w′(−x, −y, z) = −w′(x, y, z), ρ′(−x, −y, z) = −ρ′(x, y, z). (5.9a,b)

One of the above sets of conditions was imposed to obtain the modes of each symmetry
separately. The other remark is that we cannot distinguish between the cyclonic (Ro > 0)
and the anti-cyclonic (Ro < 0) modes rigorously; since the 2-D Taylor–Green vortices
consist of vortices with positive vorticity and those with negative vorticity located in a
staggered arrangement, the unstable modes have non-vanishing amplitudes both in the
cyclonic vortices and in the anti-cyclonic vortices in general. This is indeed the case for
weak rotation; as wee see below, however, the modes are nearly cyclonic or anti-cyclonic
when rotation is strong. To see whether the mode is cyclonic, anti-cyclonic or in-between,
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we define the enstrophy ratio by

φ = Φ1

Φ1 + Φ2
, Φi =

∫
Di

|ω′|2 dx dy dz, (5.10a,b)

where D1 and D2 are the domains occupied by anti-clockwise and clockwise vortices,
respectively,

Di =
{
(x, y, z) | i − 1

2
≤ x

Lx
≤ i

2
, 0 ≤ y

Ly
≤ 1

2
, 0 ≤ z

Lz
≤ 1

}
. (5.11)

The mode is nearly cyclonic when φ is close to 1, while it is anti-cyclonic when φ is close
to 0, because the sense of rotation of the system is set anti-clockwise in the following
analysis.

In the modal stability analysis, the growth rate is a multi-valued function of the vertical
wavenumber kz, the Rossby number Ro and the Froude number Fh: σ = σ(kz, Ro, Fh).
Based on the local stability results, the strength of rotation is chosen from |Ro−1| =
0, 1, . . . , 4, while one case of vanishing or weak stratification F−1

h < ωmax/2 and another
case of strong stratification F−1

h > ωmax/2 are chosen: F−1
h = 0 and 5 for εe/ωmax = 0,

and F−1
h = 1 and 5 for εe/ωmax = 0.2. A few other cases were also considered, but the

above sets of parameter values proved sufficient to elucidate the effects of rotation and
stratification. The Reynolds number is fixed to Re = 105. In the following, all modes where
structures are shown are non-oscillatory (i.e. the complex parts of the eigenvalues are
zero), while there also exist oscillatory modes, which are sub-dominant.

5.2.1. εe/ωmax = 0
First, we show the results for εe/ωmax = 0 to show how each instability appears in modal
stability analysis; the difference due to the symmetry of the modes is also checked.
Figure 9 shows the growth rate plotted against the vertical wavenumber kz in the absence
of stratification (F−1

h = 0). The results are shown for three values of the Rossby number:
|Ro−1| = 0, 2 and 4; for each value of |Ro−1|, symmetric and anti-symmetric modes are
shown separately. The line colours show the enstrophy ratio φ: cyclonic modes (φ = 1) and
anti-cyclonic modes (φ = 0) are shown by red and blue lines, respectively. For Ro−1 = 0,
one symmetric mode of the pure hyperbolic instability and one anti-symmetric mode of
mixed hyperbolic instability (Hattori et al. 2021) are observed (figure 9a,b). Since the
mirror symmetry with respect to x = mLx/2 and y = nLy/2 is preserved in the absence
of rotation, the enstrophy ratio is φ = 0.5 for these modes. For |Ro−1| = 2, all modes are
due to the pure hyperbolic instability; examples of mode structures are shown in figure 10.
The maximum growth rate is σ = 1.66, which is larger than σ = 0.449 for Ro−1 = 0.
Weak rotation breaks the balance between stretching and compression at the hyperbolic
stagnation points so that many pure-hyperbolic-instability modes appear for Ro−1 /= 0.
There are a few differences between the symmetric and anti-symmetric modes. First, the
growth rates of the anti-symmetric modes are larger than those of the symmetric modes.
This is due to the symmetry conditions, which make the symmetric modes vanish at the
hyperbolic stagnation points; correspondingly, the amplitude of the disturbances is small
near the cell boundaries; in fact, the enstrophy ratio of symmetric modes is close to 0
or 1, while it takes intermediate values for the anti-symmetric modes. This reduces the
growth rates of the symmetric modes (figure 9c) in comparison to the anti-symmetric
modes (figure 9d) because the pure hyperbolic instability is due to stretching near the
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Figure 9. Growth rate σ(kz, Ro, Fh); εe/ωmax = 0, F−1
h = 0; |Ro−1| = (a,b) 0, (c,d) 2, (e, f ) 4.

(a,c,e) Symmetric modes, (b,d, f ) anti-symmetric modes. The colour shows the enstrophy ratio φ.

hyperbolic points. The local stability results showed that the growth rate of the pure
hyperbolic instability does not depend on the sense of rotation; this explains the presence
of anti-symmetric modes which span both cyclonic and anti-cyclonic vortices with φ close
to 0.5 (figure 10b).

The growth rates for stronger rotation |Ro−1| = 4 (figure 9e, f ) are smaller than those for
|Ro−1| = 2; the maximum is σ = 0.756, which is 45 % of that for |Ro−1| = 1. In contrast
to weaker rotation case |Ro−1| = 2, there is little difference between the symmetric and
anti-symmetric modes. This is because the amplitude of the modes is small near the cell
boundaries so that they are unaffected by the symmetry conditions. The modes are nearly
cyclonic (red, φ ≈ 1) or anti-cyclonic (blue, φ ≈ 0). The pure hyperbolic instability is
absent. The cyclonic modes are due to the rotational-hyperbolic instability (figure 11a),
while the anti-cyclonic modes are due to the centrifugal instability (figure 11b). The
maximum growth rate of the rotational-hyperbolic instability occurs at kzL0 = 16.3, while
that of the centrifugal instability occurs at kzL0 = 44.0. This difference can be explained
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Figure 10. Mode structures shown by contours of ω′
z on the xy plane; εe/ωmax = 0, F−1

h = 0 and
|Ro−1| = 1. (a) Symmetric pure-hyperbolic-instability mode with kzL0 = 62.8, σ = 1.40 and φ = 0.925,
(b) anti-symmetric pure-hyperbolic-instability mode with kzL0 = 62.8, σ = 1.73 and φ = 0.554. The contours
of ω′

z are drawn for |ω′
z|/|ω′

z|max = 0.1, 0.3, 0.5, 0.7 and 0.9; the red and blue lines correspond to positive and
negative values, respectively.
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Figure 11. Mode structures shown by contours of ω′
z on the xy plane. 2-D Taylor–Green vortices with

εe/ωmax = 0, F−1
h = 0 and |Ro−1| = 4. (a) Anti-symmetric rotational-hyperbolic-instability mode with

kzL0 = 25.1, σ = 0.729 and φ = 0.852, (b) anti-symmetric centrifugal-instability mode with kzL0 = 62.8,
σ = 0.626 and φ = 0. The contours of ω′

z are drawn as in figure 10.

by the angle of the wavenumber vector at which the growth rate is maximum in the local
stability analysis; θ0 is close to 90◦ for the rotational-hyperbolic instability, while θ0 = 0◦
for the centrifugal instability; if we assume that the magnitude k of the wavenumber
vector is determined by the viscous diffusion and of the same order, then kz = k cos θ0
is larger for the centrifugal instability than for the rotational-hyperbolic instability. It is
pointed out that there is no anti-cyclonic mode of the rotational-hyperbolic instability,
for which the realizability R is small (figure 7c). Next, we show how stratification
affects the stability properties. Figure 12 shows the growth rate plotted against the
vertical wavenumber for the stratified case (F−1

h = 5). For Ro−1 = 0 (figure 12a,b), several
modes of the strato-hyperbolic instability and the mixed instability of the pure hyperbolic
and strato-hyperbolic instabilities appear as both symmetric and anti-symmetric modes
(Hattori et al. 2021).

For |Ro−1| = 2 (figure 12c,d), all modes are due to the pure hyperbolic instability
(figure 13). The growth rates of the anti-symmetric modes are slightly smaller than those
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Figure 12. Growth rate σ(kz, Ro, Fh). Two-dimensional Taylor–Green vortices with εe/ωmax = 0, F−1
h = 5.

|Ro−1| = (a,b) 0, (c,d) 2, (e, f ) 4. (a,c,e) Symmetric modes, (b,d, f ) anti-symmetric modes. The colour shows
the enstrophy ratio φ.

for F−1
h = 0, while the growth rates of the symmetric modes are further reduced. It is

worth noting that the anti-cyclonic modes are nearly absent as the enstrophy ratio is larger
than 0.5 for most of the branches; this is associated with the asymmetric reduction of
realizability by stratification observed in figure 7(c,d). As shown in figure 13, stratification
compresses the modes to flatten in the xy plane compared to the non-stratified case with the
same wavenumber (figure 10) as observed in our previous work for the strato-hyperbolic
instability (Hattori et al. 2021).

For |Ro−1| = 4 (figure 12e, f ), the growth rates are significantly reduced by
stratification. There are no rotational-hyperbolic-instability modes; this is expected since
the maximum growth rate as well as the realizability decrease with stratification according
to the local stability analysis. The growth rate of the centrifugal instability is reduced in
comparison to the non-stratified case, although the maximum growth rate obtained by
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Figure 13. Mode structures shown by contours of ω′
z on the xy plane. Two-dimensional Taylor–Green vortices

with εe/ωmax = 0, F−1
h = 5, |Ro−1| = 1. (a) Symmetric pure-hyperbolic-instability mode with kzL0 = 62.8,

σ = 1.14 and φ = 0.915, (b) anti-symmetric pure-hyperbolic-instability-mode with kzL0 = 62.8, σ = 1.44 and
φ = 0.722. The contours of ω′

z are drawn as in figure 10.

local stability analysis does not depend on stratification. This point will be discussed later
in § 5.3 (see also figure 18).

5.2.2. εe/ωmax = 0.2
Next, we show the results for εe/ωmax = 0.2 to see the effects of strain. We focus on the
anti-symmetric modes below since the differences due to the symmetry are similar to the
case of εe/ωmax = 0.

Figure 14 shows the growth rate plotted against the vertical wavenumber kz; the results
for weak stratification (F−1

h = 1) and strong stratification (F−1
h = 5) are compared. For

Ro−1 = 0, all modes are due to the elliptic instability for F−1
h = 1 (figure 14a), while

the elliptic instability is stabilized by stratification for F−1
h = 5 (Suzuki et al. 2018)

(figure 14b); the mixed-hyperbolic-instability modes and the strato-hyperbolic-instability
modes are observed as in the case of εe/ωmax = 0 and F−1

h = 5.
For |Ro−1| = 2 with F−1

h = 1 (figure 14c), most of the modes are due to the pure
hyperbolic instability (figure 15a), while some modes of the elliptic instability also exist
(figure 15b). The magnitude of the growth rates is comparable to the case εe/ωmax = 0 and
F−1

h = 0 (figure 9a,b). For F−1
h = 5 (figure 14d), the pure-hyperbolic-instability modes

also appear with reduced growth rates (figure 16a). The elliptic instability occurs for
|Ro−1| = 2 as anti-cyclonic modes (shown by blue lines in figure 14d).

For |Ro−1| = 4 with F−1
h = 1 (figure 14e), the rotational-hyperbolic instability appears

at low wavenumbers kzL0 ≈ 30 and the centrifugal instability appears for kzL0 � 20 as
in the case of εe/ωmax = 0, F−1

h = 0 and |Ro−1| = 4, although the growth rates are
smaller. An example of the rotational-hyperbolic-instability modes shown in figure 15(c) is
similar to that for εe/ωmax = 0 (figure 11a), while that of the centrifugal-instability modes
shown in figure 15(d) is similar to that for εe/ωmax = 0 (figure 11b) except for the aspect
ratio in the xy plane. For F−1

h = 5, however, most of the modes are due to the elliptic
instability (figure 16b), while a few modes of the centrifugal instability are observed; no
rotational-hyperbolic-instability mode is observed. These are in accordance with the local
stability results.
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Figure 14. Growth rate σ(kz, Ro, Fh). Two-dimensional Taylor–Green vortices with εe/ωmax = 0.2.
|Ro−1| = (a,b) 0, (c,d) 2, (e, f ) 4. (a,c,e) F−1

h = 1, (b,d, f ) F−1
h = 5. The colour shows the enstrophy ratio φ.

The mode structures of the centrifugal instability for weak stratification shown in
figure 15(c,d) are similar to those obtained by Sipp et al. (1999) in the absence of
stratification. The elliptic-instability mode shown in figure 15(a,b) is also similar to that of
Sipp et al. (1999), although the disturbance has wider distribution in our case; we must also
take into account that the mode of Sipp et al. (1999) is shown by energy. The hyperbolic
instabilities were not identified as a mode by Sipp et al. (1999); we will confirm the origin
of the instabilities including the hyperbolic instabilities in the next subsection.

5.3. Comparison between local and modal stability analysis
In this subsection, we compare the local stability results and the modal stability results.
Direct correspondence between the local and modal stability analysis would give a firm
physical origin of the unstable modes found in the modal stability analysis because the
mechanism of the instability is clear in the local stability analysis. Conversely, it further
supports the usefulness of the local stability analysis.
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Figure 15. Mode structures shown by contours of ω′
z on the xy plane. Two-dimensional Taylor–Green vortices

with εe/ωmax = 0.2, F−1
h = 1. All modes are anti-symmetric modes. (a) Pure-hyperbolic-instability mode with

|Ro−1| = 2, kzL0 = 62.8, σ = 1.42 and φ = 0.441; (b) elliptic-instability mode with |Ro−1| = 2, kzL0 = 13.8,
σ = 0.867 and φ = 0; (c) rotational-hyperbolic-instability mode with |Ro−1| = 3, kzL0 = 25.1, σ = 0.576 and
φ = 0.896; (d) centrifugal-instability mode with |Ro−1| = 4, kzL0 = 62.8, σ = 0.394 and φ = 0. The contours
of ω′

z are drawn as in figure 10.
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Figure 16. Mode structures shown by contours of ω′
z on the xy plane. Two-dimensional Taylor–Green vortices

with εe/ωmax = 0.2, F−1
h = 5. All modes are anti-symmetric modes. (a) Pure-hyperbolic-instability mode with

|Ro−1| = 2, kzL0 = 62.8, σ = 1.11 and φ = 0.572; (b) elliptic-instability mode with |Ro−1| = 3, kzL0 = 62.8,
σ = 1.01 and φ = 0. The contours of ω′

z are drawn as in figure 10.

Figure 17 compares the structures of unstable modes to the corresponding solutions
to the local stability equations for four cases: the rotational-hyperbolic-instability mode
for (F−1

h , Ro−1) = (0, 4) shown in figure 11(a), the centrifugal-instability mode for
(F−1

h , Ro−1) = (0, −4) shown in figure 11(b), the pure-hyperbolic-instability mode
for (F−1

h , Ro−1) = (5, 1) shown in figure 13(b) and the elliptic-instability mode for
(F−1

h , Ro−1) = (5, −3) shown in figure 16(b). The strato-hyperbolic instability is omitted
because it has been already investigated by Suzuki et al. (2018) and Hattori et al.
(2021). The horizontal divergence ∇h · u′

h = ∂u′/∂x + ∂v′/∂y, the vertical component of
vorticity ω′

z and the density ρ′ of the unstable mode on a streamline of nearly largest
amplitude of ω′

z are plotted against time of fluid particle motion which is dictated by
(2.15) (figure 17a,c,e,g); the corresponding variables p, q and s defined by (2.19a–c)
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of the solution to the local stability equations on the same streamline are shown in
figure 17(b,d, f,h), where the values are multiplied by e−σ t to compensate the exponential
growth. The values are normalized by the maximum values to resolve arbitrariness of the
initial amplitudes in the linear stability analysis. We observe good agreement between
the modal and local results; there are some differences in amplitude ratios, but the
shapes of the curves are in excellent agreement. Differences between the instabilities
are also elucidated; the change in phase is 4π for the rotational-hyperbolic and the
pure-hyperbolic-instability modes and 2π for the elliptic-instability mode, while the
variables do not change their signs for the centrifugal-instability mode. These results
establish the correspondence between local and modal stability results, clarifying the
physical origin of each instability.

Figure 18 compares the growth rates obtained by the local and modal stability analysis;
the growth rate σmax(Ro, Fh) obtained by local stability analysis is shown by lines as a
function of Ro−1 for each instability, while the maximum growth rate obtained by modal
stability analysis is shown for selected values of Ro−1 by solid circles. For the latter, the
corrected growth rate in the absence of viscous effects was also estimated by subtracting
the viscous contribution as

σinv = σ − 1
Re

∫
u′ · ∇2u′ dx dy dz∫ |u′|2 dx dy dz

(5.12)

and is included as open circles; it should be noted that this does not coincide with the
inviscid limit since the mode structures and the wavenumber are affected by viscous
effects. The modal stability growth rates are smaller than σmax(Ro, Fh) except for the
special case of the pure hyperbolic instability at Ro−1 = 0; this is reasonable since the
modal stability growth rate cannot exceed the local stability results. The ratio of the
growth rate is between 57 % and 99 % for weak stratification (figure 18a,b), while it
drops to 24 % ∼ 68 % for the pure hyperbolic and centrifugal instabilities for strong
stratification (figure 18c,d). The corrected growth rate of the elliptic instability is close
to the local stability results. For the centrifugal instability, the corrected growth rate is
close to the local stability results for weak stratification; however, the differences are
remarkable for strong stratification. As shown by Yim & Billant (2016), the growth rate
of the centrifugal instability is damped by viscous effects even at high Reynolds numbers
for strong stratification since the wavenumber giving the maximum growth rate scales as
k ∝ (Re/Fh)

1/3 and is large. The differences would decrease for much higher Reynolds
numbers and a wider range of wavenumbers; this may also be the case for the hyperbolic
instabilities, although higher resolution is required to confirm it numerically.

6. Concluding remarks

The linear stability of an array of vortices in rotating stratified fluids has been studied
by local and modal stability analysis. The 2-D Taylor–Green vortices are chosen as a
base flow. The growth rate and the conditions of each instability are first estimated
in the short-wave limit. Next, they are investigated numerically by local stability
analysis and modal stability analysis. Several types of instability are identified: the pure
hyperbolic instability, the strato-hyperbolic instability, the rotational-hyperbolic instability,
the centrifugal instability and the elliptic instability; there are also a few instabilities
which consist of two of the above instabilities (mixed hyperbolic instability in figure 9a,b
and the mixed instability of the pure hyperbolic and strato-hyperbolic instabilities in
figure 12a,b). The zigzag and radiative instability were not found in the present work.
The zigzag instability has been found for a vortex pair; it may be absent for the 2-D
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Figure 17. Comparison between modal and local stability analysis. (a,c,e,g) Values of ∇h · u′
h = ∂u′/∂x +

∂v′/∂y, ω′
z and ρ′ of the unstable eigenmode obtained by modal stability analysis are shown as a function

of time of a fluid particle on the streamline where ω′
z is maximum. (b,d, f,h) Corresponding values of

p, q and s on the same streamline are multiplied by e−σ t to compensate the exponential growth. (a,b)
Rotational-hyperbolic-instability mode with εe/ωmax = 0, F−1

h = 0, Ro−1 = 4, kzL0 = 25.1, σ = 0.729 and
β = 0.9; (c,d) centrifugal-instability mode with εe/ωmax = 0, F−1

h = 0, Ro−1 = −4, kzL0 = 62.8, σ = 0.626
and β = 0.775; (e, f ) pure-hyperbolic-instability mode with εe/ωmax = 0, F−1

h = 5, Ro−1 = 1, kzL0 = 62.8,
σ = 1.44 and β = 0.9; (g,h) elliptic-instability mode with εe/ωmax = 0.2, F−1

h = 5, Ro−1 = −3, kzL0 = 62.8,
σ = 1.01 and β = 0.225.
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Figure 18. Growth rate σmax(Ro, Fh) as a function of Ro. Comparison between local stability analysis
(lines) and modal stability analysis (solid circles); the growth rate for the inviscid case is also estimated by
subtracting the viscous contribution for the modal stability analysis (open circles). (a) εe/ωmax = 0, F−1

h = 0;
(b) εe/ωmax = 0.2, F−1

h = 1; (c) εe/ωmax = 0, F−1
h = 5; (d) εe/ωmax = 0.2, F−1

h = 5.

Taylor–Green vortices because of strong symmetry imposed by double periodicity. It may
not be easy to find the radiative instability in the present case because it is not a strong
instability (Park & Billant 2013). The characteristics of the instabilities and the effects
of stratification and rotation are investigated in detail. In the absence of stratification,
the pure hyperbolic instability is dominant when rotation is weak, although it vanishes
in the non-rotating case; it is stabilized for strong rotation. For strong anti-cyclonic
rotation, the elliptic instability or the centrifugal instability becomes dominant depending
on the parameter values; further stronger rotation stabilizes both instabilities. For strong
cyclonic rotation, the rotational-hyperbolic instability or the elliptic instability becomes
dominant, although the growth rate of the latter is smaller than the anti-cyclonic case.
When stratification is present, the strato-hyperbolic instability occurs for weak rotation.
The rotational-hyperbolic instability and the elliptic instability under cyclonic rotation are
weakened by stratification. The pure hyperbolic instability and the centrifugal instability
are less affected by stratification, while the mode structures are flattened. Stratification
also changes the instability condition of the elliptic instability under anti-cyclonic rotation;
although it almost reverses the instability condition at F−1

h = ωmax/2, it has been found
that the unstable region extends to Ro−1 ≈ 0 near θ0 = 0◦ in the local stability analysis.

We emphasize that the whole picture of the instability of an array of vortices in rotating
stratified fluids has been elucidated. The instability condition and the growth rate depend
on the rotation of the system, the magnitude of stratification and the vorticity distribution.
The important parameters of the vorticity distribution are the strain rates at the hyperbolic
and elliptic stagnation points and the maximum vorticity. The estimates based on the
local stability analysis summarized in table 1 are not only in good agreement with the
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local stability results but also consistent with the modal stability results, whereas some
differences remain at a finite Reynolds number as high as Re = 105. They would serve as
useful sources of information for the instability of vortices in rotating stratified fluids in
general and should be valuable for understanding their dynamics.

Another important contribution of the present work is the discovery of the
rotational-hyperbolic-instability modes. Although the rotational-hyperbolic instability
appeared in the investigation of Sipp et al. (1999) without much attention and was studied
by Godeferd et al. (2001) by local stability analysis, the actual mode has been found for
the first time in the present work to the best of the authors’ knowledge. In addition, it
has been further shown that the local stability analysis not only serves as a powerful tool
for parametric study but also provides physical insight into the instabilities. Introduction
of the realizability R proved helpful for interpreting the modal stability results at finite
Reynolds numbers based on the local stability results.

Some future works are listed below. The effects of rotation and stratification on other
flows possessing hyperbolic stagnation points, which include the Stuart vortices, vortex
pairs and wake vortices such as the von Kármán vortex street, are of interest. How
each instability evolves in the nonlinear regime is also of great interest. Some of them
can destroy vortices, while some can promote merging of vortices or creation of strong
vorticity (Hattori 2016, 2018), which will be studied by direct numerical simulation.
In reality, the effects of non-uniform stratification and those of variation of the Coriolis
parameter (β-effect) would be important; in-plane stratification would also be of great
interest, although the base flow should be carefully chosen. They will be also investigated
as future works.
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