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Abstract. The methods used in deriving conditions for escape, retention and containment for the three-
body problem are applied to the «-body case, and similar conditions are obtained. In the «-body problem 
less stringent conditions are derived, and in the case of retention a further condition is imposed. 

1. Introduction 

The classification of the types of motion of the general three-body problem as the 
time becomes infinite is well known (Chazy, 1922), but the determination of the type 
of motion for any given initial conditions is difficult. Standish (1971, 1972) has given 
sufficient conditions for the retention or escape of a member of a three-body system. 
These conditions were strengthened by Griffith and North (1973), using a similar 
technique to that of Standish. Yoshida (1972), with an alternative approach, obtained 
slightly better conditions for escape, but with a much lengthier derivation. In this 
paper the results and methods of Griffith and North for the three-body problem are 
recapitulated, expanded and applied to the general Af-body problem. Section 2 deals 
with escape or retention in the three-body problem, Section 3 with a new containment 
theorem for the three body problem, while Section 4 extends the results to the general 
Af-body problem. All results apply to motion of the escaping body with respect to 
the barycentre of the remaining bodies. 

2. Three-Body Escape or Retention 

The three masses are denoted mfl, mb, mc with r the distance of mass ma from mass 
mb, Q the distance of mass mc from the centre of mass of ma and mb. The case where 
mc passes directly between ma and mb is avoided by the condition r ^ ^ , gbc where 
Qao Qbc a r e respectively the distances between ma and mc and between mb and mc. 

The equation of motion for g is 

Q = gl(Pe/Q3 cos2<t>+pl/Q
3) + g2(dF/dQ), (1) 

where 

g 2 = M/mc (ma + mb), M = ma + mb + mc 

and 

\ r Qac Qbc / 

The previous proofs of Standish depend upon obtaining upper and lower bounds 
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186 J. S. GRIFFITH 

for g, multiplying by g and integrating with respect to time. This procedure will be 
followed here, with 

Ma = ma/(ma + mb) and Mb = l-Ma. 

ESCAPE THEOREM 

If at some time, 10 
(i) £ 0

> r * (the maximum separation of mfl, mb = G(mamb + mbmc + mcma)/\E\, where 
E is the total energy), 

(ii) £0>0, and 

then £-»oo as r->oo. 
Now 

<?F a /M H\ 
dg 5e KQac QbJ 

where the Pf(̂ f) are Legendre polynomials, 

= G M - [ " - + ^ y ((M»r\pM) Y-M'f i (g) \ ] = 

-[-?-^l-+"(m(f)+CTf)]-
Our aim is to establish upper and lower bounds to this expression. The sharpest 

conditions may be found by determining for what value of q this attains a maximum 
or minimum, but this appears difficult as differentiation with respect to q yields 
sin q = 0 or cos q as the root of a 7th-order equation. Only for equal masses (ma = mb) 
does the equation have simpler roots. Cruder estimates of the bounds are available, 
for as 1̂ (4)1 <1, 

It is at this point that my approach diverges from that of Standish, for he used the 
additional approximation that \Mb

l~l +(— Mj1"1!^ 1 and hence obtained a simpler, 
less precise, expression. 

Using r̂  as the maximum value of r, we have 

Q>GM\ --2-Ma £ -7T2 Mb X -rr2 • 
L Q t=2 Q 1=2 Q J 
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CONDITIONS FOR ESCAPE AND RETENTION 187 

For escape, assume g > 0 in some interval of time (r0, tx), where tx > t0, then 

gg ^ GM — Ma X ^T2 <?-K I 77T2 C 
g i = 2 & i = 2 Q 

Integrating from (0 to tt gives 

L.G I £i (ei - ^ V J QdQi- Mar*U 
where 

* - ' * rAf f l ■ Mfl(Hr*)2 ■ Mb{Kr*)2 1 

and ^ , ^i are respectively the values of g, g at time tv 

For /C^O, then g\ > 0 for all finite values of gj. Then g remains positive for all 
time and ^g2^K for all t>t0 or g^yJ(2K)(t-t0) + g0. So £->oo as f->oo if K > 0 
and escape occurs. Hence the escape theorem is true. 

The value for condition (iii) given by Standish differs from this with the difference 
decreasing asymptotically as go 4- For small values of g, this revised value of K is 
markedly better than that of Standish. 

To compare these conditions in detail, we follow Standish with cc = g0/r^, G = M = 
= r^ = 1 to obtain 

T1 MaMhrl f Mb Mc 
GM\— + a ,» M ^—+ 

1 
= - + 

1 MMJ Mb Ma 

a a \<x — Mh OL — M, 

compared to Standish's expression 1/a-f MflMb/a2(a — 1). 
The numerical comparison is given in Table I, with the upper entry being the 

preceding expression, the middle entry that of Standish and the lower that of Tevzadze 
(1962). It is seen that our condition is superior to the others in all cases. Tevzadze 
used 

Mb Ma 1 Mh Mn 
GM 

1 A4 | Mt 

J 0L — Ma OL — i LQo-Ma
r* Qo-Mbrt_\ oc-Ma ct-Mb 

If g < r^ the preceding analysis will not work. Expansion in powers of g/r is not 
effective, as the result hinges on the right hand side of the inequality reversing sign 
on integration and becoming positive, thus enabling us to assert that K>0. Without 
inverse powers of g to integrate, this reversal is not possible. There are also difficulties 
in expansions in the intermediate region r<g<r^. 

For equal masses, 

OF GM d (\ 1 
2 dg 2 dg \gac gbCi 
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TABLE I 
Comparison of conditions (iii) 

a 

1.1 

1.3 

1.5 

2.0 

3.0 

5.0 

10.0 

Ma = 0.1 

1.2512 
1.6529 
1.4000 
0.8935 
0.9467 
1.0000 
0.7295 
0.7467 
0.8095 
0.5196 
0.5225 
0.5646 
0.3380 
0.3383 
0.3580 
0.20086 
0.20090 
0.20806 
0.100098 
0.100100 
0.101898 

0.3 

1.2779 
2.6446 
1.6250 
0.9515 
1.1834 
1.2000 
0.7717 
0.8533 
0.9583 
0.5375 
0.5525 
0.6425 
0.3430 
0.3450 
0.3897 
0.2019 
0.202 1 
0.2187 
0.10022 
0.10023 
0.10442 

0.5 

1.2534 
2.9752 
1.6667 
0.954 1 
1.2623 
1.2500 
0.7778 
0.8889 
1.0000 
0.541 7 
0.5625 
0.6667 
0.3444 
0.3472 
0.4000 
0.2022 
0.2025 
0.2222 
0.10026 
0.10028 
0.10526 

where 

Ql = Q2+l? + qr cosq, 

Qbc = Q2 + ir-gr cosq. 

Using (d/dq) (giidF/Sq)) = 0 we find sin q = 0 or 

2Q2 - (i r)2 + iQr c o s q {Q2+(ir)2+Qr c o s q)512 

2Q2 — (i r)2 — iQr c o sQ (Q2 + (lr)2 -Qr cosq)5,r 

This last equation gives cosg = 0 or 

V COS Q 

l-^+y*cosU((2e2-&)2)2 + H2Q2-m(Q2 + &)2) + 

+ 5(e
2+(ir)2)2) + ?2cos^(10(e

2+(ir)2)2(2e
2-(ir))2 + 

+ iO(Q2HWr(2Q2-(^)2) + (i)(Q2HWr) + 
+ (V-(WW+(M2)5W-fr)W+(W2)*=0, 

where y = qr. 
As q>r/2<yj2 the only solutions are cosq = # 1, giving motion along the perpen

dicular to the lines of centres. Using the extreme values of cos q = ± 1, we have 

GM(e
2+frf) GM(e

2 + rl) 

*' (Q2-(¥)2)2 ' {Q2-rlf ■ 
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CONDITIONS FOR ESCAPE AND RETENTION 189 

On multiplication by Q and integrating we may compare this new value of K (equal 
masses) with the value of K from the escape theorem with Mfl = Mft = j , which is 

\Qo 4ejj((?o-r„/2)/ tf0-GM[- + 

RETENTION THEOREM 

If the mutual distance between the bodies of mass ma and mb is bounded by r„, ^ r > 
^ r*mamb/(mamb + mbmc + mcma) and if at some time t0 

(i) Qo>r*, 
(ii) Q0>0, 

(iii) 1 > 2 GM GMMaMb r* 2Gg2mc \m, 
Wo< ^ ^ — V 7 > ( 1 +MbrjQ0) + 

Qo Qo Qo~r* r* [Mb 

+ ^\n(l+MarJQo)}, 

then mc is retained by the system, at least until Q becomes negative and Q becomes 
less than r#. 

The differential equation for Q (Equation (1)) may be written 

Q = \QAQ\2/Q
3+g2(dF/dQ). 

Standish deduced a time independent upper bound for \Q AQ\2 before multiplication 
by Q and integration. One way of refining his conditions is to use 

e2={(ee)2+(o A Q)2W=Q2+(o A Q)2/Q2 , 

so that 

1 . . | 2 Q2-Q2JE + F)2g2-Q2 

\QAQ\1 = ^ , 
Q Q Q 

where E is the total energy of the system and F the potential. 
The difficulty of bounding this expression is the presence of the mamb/r term in F, 

which may become large if the minimum interparticle distance is small. A set of con
ditions not yet fully utilized are those contained in the energy integral. From 

1 9 1 ^ E = — f 2 + — G 2 - F , 

201 2#2 

we have E + F^0 (here g1=(ma+ rnb)/mamb), i.e. 

( tnjHh mamc mhm\ 
- ^ + - ^ + - * - £ )> -G{mamb + mamc + mbmc)/r. 

r Qac Qbc ) 

If E is negative, 

r < r^ = G(mamb + mamc + mbmc)/\E\, 
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190 J. S. GRIFFITH 

which was noted by Standish. We have from 

i_ r(ma™b , rnamc mbmt E^ -G\ 1 h 
Qac Qbc 

the condition that, if g does become arbitrarily large, E^Gmamb/r or r^r^mjnj 
(mamb + mamc + mbmc). 

If g is allowed to become arbitrarily large, we require 

mamb 4- mamc 4- mbmc ̂  mamb 

r* r 

i.e. 

r^ rjnamb 

mamb 4- mamc + mbmc 

Let us assume that r^r^r^mamb/(mamb 4- mamc + mbmc). Thus, to keep the third body 
within the system, we do not allow the other two bodies to become so close as to 
allow their lost potential energy to manifest itself in the escape of the third body. 
With this lower bound on r we return to 

g = \QAQ\2/g3+g2(dF/dg), and \QAQ\2/g^2g2(E + F)/g, 

to obtain 

••̂ <> j r ± ^f(mamb + rnamc-{-mbmc) mamc mbmc \ \ 
g^2g2<E + G[ 4- —— 4- 77—WQ + 

I \ r* Q~Mbr^ Q-MarJ) 

+GM\-±+MaMbi e+i)-?^! 
L Q 1 = 2 Q J 

Assume that g>0 for all time t>t0. Then, multiplying the expression for g by g 
and integrating from t0 to r, gives 

1/-2 -i\^>s„ J17 . ^ (™amb + mamc + mbmc)\ ^ ^ i («-cS)<2f l f 2 ^£ + G ^ - = ^ ^ ln-

AV* L V ^ /Jo 

M,r„ L V £ /Jo L Q 1=2 Q Jo 

Now E + G(mamb 4- mc 4- mbmc)/r* = 0 giving 

1 • 2 ^ l~i • 2 _,_ 2^2wflmcG /^o ~ M / * \ , 2g2mbmcG fg0 - Mar*\ 
2Q1 ^ 2Q0 +—TZ l n I 1 + —rz l n I ) -

L Mbr* \ Qo J Mjr+ \ Qo J 
GM GMMt 

Qo ' QO(Q< 

l tfaMft^l 292™a™fi ^ (QX - Mbr+\ 
" ' ' o - r j J M*/* \ Qi J 
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CONDITIONS FOR ESCAPE AND RETENTION 191 

2g2mbmcGfQl-Mari\ GM GMMaMh 

so that 

MJ* \ Qi J Qi Q2i (Qi-r*Y 

x. GM GMMaMb r% 2Gmcg2 

Qi QI Qi-r* r* 

n^\n{\-MhrJQl)^\vi(\-MarjQl) Mb Ma 

where 

K=±QI + 
GM GMMaMh rl b ' * 

00 ^ 0 - ^ * 

| 2g2mcG fm, ^ / g 0 + M ^ \ ^ mb ^ (Qo + Mar+ 
\Mh \ Q0 / Ma \ Q0 

Now, if g > 0 for all t>t0,g1 can be made as large as desired by the proper choice 
of r, leading to the expression 

QI<0 if K<0. 

Thus if K <0 it must not be the case that g >0 for all time t > t0. 
In the expression for K, the factor mcg2 is M/(ma + mb)9 so that the undesirable 

nature of the expression obtained by Standish (which was 

Ql<GM[ 
2 Qo 

f MaMbrl 1 Q2 

L Qo(Qo-r*)] Qo' 

where 

M|L| | |2GM2M f lA4r, [MaMb r M^r 
mc{ma + mb) { mc [_ mc g0 Qo(Qo-r*)_ 

1/2 

and L is the total angular momentum) with its inverse dependence on mc is not 
present. However, we have replaced this by the requirement that the two remaining 
bodies are always sufficiently separated, a requirement that may require numerical 
integration to check. 

Note that 

r * ^ r ^ r*mamb/(mamb + ma
mc + mbmc) 

gives less variation in the relative positions ma, mb if mc is small than if mc is large. A 
large mass needs more enefgy to escape from the system, and hence the variation in 
the distance between mfl, mb can be larger without causing escape. 

We are only assured of retention as long as £ > 0 , and g<0 together with close 
passage of mc to one of the other bodies renders the retention theorem invalid. 

For motion of the third mass towards the other two, g0 is negative. We expect g 
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192 J. S. GRIFFITH 

to increase until, on passage between or close to one or both of the other two masses, 
Q changes sign and becomes positive. This change of sign must be accompanied by 
an instant when Q is zero. Can we obtain any conditions in the region of close ap
proach? There are difficulties, as the case of collisions presents obvious singularities. 

We have from the energy equation 

or 

E^ -G\ H H 
V r Qac Qbc 

If we wish to avoid gflC, gbc becoming infinite (i.e. escape), then we take E < - Gmamb/r^ 
and have 

Gmamb( )> -G ( + 
r r*J \ Qac Qbc 

or 
mamc |

 mb^c>Q 

Qac Qbc 

For any configuration we know the total energy E, and can assert that if E < 
< —Gmjnjr^ then the system is bound, as the mass mc cannot escape. This con
dition is, of course, less stringent than the retention theorem, but the retention theo
rem needs to be tested for each Q>0, g>r^ occurrence. 

Combining the conditions for escape or retention, we find the region of indetermi-
nancy given by 

Qo~r* ri [Mb \ Q0 J Ma \ Q0 

Jai GM\ Ql ( Qo~2MaMbr* 
GMrl \(g0 - Mar^) {Q0 - Mbr+\ 

3. Containment Theorem 

The procedure used for examination of the possibility of retention may be used to 
derive a containment theorem. Let us examine the condition that the mass mc does 
not move further than a distance R from the barycentre of ma, mb. We require Q\ < 0 
for some Q <R and can use Equation (2) of Section 2 to give 

GM GMMaMb r\ 2Gmcg2 (ma 

K R* R-r* 7T~[Mh 

+ ̂  ln(l + MarJR) 
To ensure return within a sphere of radius R we need 
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CONDITIONS FOR ESCAPE AND RETENTION 193 

^ GM GMaMb r% 2GMcg2 \ma m + K + - ^r^~ c—<-^\n(l+MbrJR) + 
R R< R-r^ r* (Mfc 

+ ^-ln(l+MarJR)}^0, 

or 

, , GMy , GMaMbrl t x / 

2GMcg2 fa /R + Mbr* \ m^ (R + Mar^ + 

CONTAINMENT THEOREM 

If the mutual distance between the bodies of mass ma and mb is bounded by 
G (mamb + mbmc+mcma)/\E\ = r*>r^ mambrj(mamb + mbmc+mcma) and if at some time 10 

0) Qo>r*, 
(ii) Q0>0, 

(iii) 

. ., GMtn x GMaMbr2jR-Q0) t , . 
KQo R Q0(K - rj(g0 - rj 

| 2GMcg2 fm. {JR + Mi>r*V mt ln(R + M°r* 
r* [Mb \Q0 + MbrJ Ma \e0 + Mar, 

(ma + mb) In — 
mamb \R 

then the mass mc does not move outside a sphere, centred on the barycentre of ma, mb 

of radius R. Again, this theorem only applies to this particular portion of motion, and 
mc may escape from the sphere after another passage near the centre. 

4. The /i-Body Problem 

Take n + 1 bodies, with the possibility of the (w + l)th body being captured by or 
escaping from the n remaining bodies being of interest. 

The Newtonian equations of motion relative to a 'Newtonian origin' N are 

^ V1 \rN,i~TNj) 
*N.i=~G X mjr — j i , 

7 = 1 \TN,i~TNJ\ 

while the barycentre of the n particles has motion given by 
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(M-mn + 1)¥Ntb= X mfNj> 

where M = Jjt\ my 
The equation of motion of the (n+ l)th particle with respect to the barycentre is 

Q = TN, n +1 ~ TN, b 

— z 
We know that the centre of gravity c of the («+ 1) particles has 

*NC = 0-

So, as 
n + l 

so that 

and 

TNC— Z J mjrNj,> 

n + l 

J = l 

J = l 

M-mn+l 

M 
r N , n + l > M-mn+l 

giving 
GM " m/j.,, + 1 

M-mn + lj=1 |r,,,, + 1 |3 ' 

where Q is the radius vector of the (n + l)th body with respect to the barycentre of the 
remaining n bodies, rjn+l the vector between thejth body and the (n + l)th body, 
M = Yjt\ ntj. This equation allows for the recoil of the cluster in order to keep the 
barycentre fixed. 

Clearly 
-GM " ■»-

^ 

M-mn+1 j=1 rln + l 

-GM " m, GM I M-m n + 1 ^ i f e - r j 2 te-rj2' 
where r̂  is the maximum distance of any of the n bodies from the barycentre. 

We follow a similar procedure to that in Section 2 for the escape theorem to find 
n-body escape theorem. 
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CONDITIONS FOR ESCAPE AND RETENTION 195 

If at some time, t0, (i) e0
>r*> (ii) Qo>§ a nd (iii) 1Q0 > GM/(Q0 — r j , then g-+cc as 

r->oo where M is the total mass of the system. Of course, for a spherically symmetric 
cluster we expect JQI > GM/g0, so this result is rather weak in a physical sense, but 
is a rigorous proof for any distribution of matter and velocities. 

Using the a notation, GM/(g0 — r^) becomes l/(a — 1), which is clearly a much less 
stringent condition than that for the three-body problem, unless a is of the order of 10. 
This loss is caused by the replacement of (r j n + 1 g) by rjn+1, so that the angular 
position of the escaping mass has not been utilized and by the approximation used 
for rjn+l which, in the three-body case, was expanded in terms of Legendre polyno
mials. A tighter expression for r2

n+l would strengthen this result, which resembles 
placing the entire mass of the cluster, the minimum distance away (g — r j . 

However, if we know the form of the distribution of the n particles, we can improve 
on the estimate of g. For example, given n bodies constrained to move along a fixed 
straight line, then for motion of the (n+ l)th body along this line we cannot readily 
improve on g ̂  — GM/(g — r^j2 and hence readily improve on the original condition 
(iii), but for motion of the (n + l)th body perpendicular to the line, if 0j is given by 
tan 9j = rb j/g then 

„_ GM " m/,-„+1 

and 

Q> 

M-m^.j^ |r,.n+1 |3' 

GM " rri: cos 6: 
M-m„ + w = 1 (r , . r t + 1)2 

GM " g 
I **;; 

^-GM Q 

(Q2 + rl)3'2" 
In this case condition (iii) in the escape theorem becomes 

&l>GMI{Ql + riyi\ 
which approximates the spherical case if r^ is small, but which for r^ large gives less 
stringent conditions. If the N bodies remain in three groups of mass Mu M2 and Mx 

respectively, and can be approximated by three point masses, with M2 at the bary-
centre, then 

M-mn+1j^i | r J > + 1 | 3 ' 

-GM f 2MlQ M2 

yields 

M-mn+l {(e2 + rl)3>2 Q2 
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and condition (iii) is, for motion perpendicular to the line of remaining masses, 

L.2 GM { 2M t M2\ 
lQo>M-mn + i\(Q2o + rlY'2+

 QV 

which demonstrates how an increase in separation r^ decreases the velocity required 
for excape. 

For the remaining masses constrained to lie in a plane, we would expect escape 
from the plane to be easier for motion of circularly the (n + l)th body out of the plane. 
With a symmetric distribution in the plane, motion in the plane gives %Qo > GM/(Q0 — r j , 
while motion along the line of symmetry perpendicular to the plane gives 

-GM " mjQ 
Q'M-mn + ljk(Q2 + r l ^ 

with &l>GMI{Ql + riyi2. 
With mass M2 at the barycentre and MY distributed in a ring of radius r^, motion 

perpendicular to the plane gives 

-GM \M2 MXQ 
Q>T7——1TT+; M-mn + l{Q2 (e2 + ^ ) 3 / 2 f 

with 

IA2 teo>-
GM \M2 M 

2U/2 M-mn+1 [go {ql + rl) 

For containment we need to extend the energy argument to the rc-body problem, 
but unfortunately appear to require additional assumptions. 

Clearly 

" + 1 n+l mm 

i=\ j=l rij 

Let the maximum and minimum separation of the n particles be r+, s* respectively 

IT ̂  i v v mimJ v mi 
i=l j=l $* i = l g — r^ 

If Q is allowed to become large, E ̂  \ Z?=I Z;=i mimj/s* an<^' f° r E negative and finite 
n n 

Z Z mimj 
0<s*^ * = 1 7 = 1 

* " 2\E\ 
If 

5 
" n mm-
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Q cannot become infinite. This lower bound on the mutual distance between the n 
bodies ensures that the cluster remains bound. If there is an upper bound r^ to the 
mutual distances, we apparently do not have the restriction, found in the three-body 
case, that r^ necessarily exists for E negative. Escape of more than one body would 
not be unexpected, however, with these bounds on the distances between the n bodies, 
we return to the n-body form of Equation (1) 

Q = \QAQ,2Q3+g2dF/dQ, 

where g2 = M/mn + l (M — mn+ x) and M = £? = t m{ to find 

2g2(E^F) dF 

Q OQ 

2g2 j G 1 /"+1 "+1 \ " mn+imi\ 

Q I 2s„Al=l j=l ) 1=1 <?-»"* J 
-GM 

+- 1 >: "•;■'' K 
M — m. 

UQ>0 

n+1 L /= l rj,n+l J 

2g2G f^ ™n+\mi\ GM ^ m7 

2^G mn+l(M-mn+l) > GM 
^ X - f - ~ 

2g2G . GM 
m„ + 1 (M-m„ + 1 ) -£(£->**) (Q-r*f 

. 2g2Gmn + 1{M-mn+l) GMQ 

i-2 i-2^-292Gmn+1(M-mn + l) g GM 

, 2gf2Gmn+1(M-mn+1) £0 GM 
H ln-Qo ~ r* £o — r* 

Here g2 is forced to become zero if 

2Gg2mn+l(M-mn+1)^f g0 \ GM 
In - ^ — + & 8 < 0 , 

Qo-rJ Qo-r* 
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or 
1>2 GM 2GAf 

Qo "~ r * r * 

We obtain: n-body retention theorem. 
If the mutual distances between the n bodies are bounded by 

v A mtmj 

* , 4 A |£| 
and if at some time t0 (i) Q0 > r̂ , (ii) Q0 >0, (iii) 

1>2 GM 2GAf 
i£o< + l n ( l - r > 0 ) , 

then the body of mass mn+l does not escape from the system on this particular passage. 
Subsequent motion after Q<r^ following £<0, may allow escape, and this theorem 
needs to be re-applied to every Q > r#, Q > 0 situation. We have not shown that the rest 
of the cluster does not 'blow up', but include this restriction in the conditions of the 
theorem. 

If the total energy is negative, 

Z W f - i Z ^ ^<o , 
i = l j=l rij 

and the cluster cannot totally disintegrate. At least one of the distances ru must be 
finite. 

As for the rc-body escape theorem, the conditions of the retention theorem can be 
improved for certain specific mass distributions. 

The retention theorem technique may be applied to a capture situation. 
Given (i) Q0 > r„ (ii) Q0 < 0, (iii) 

, . GM 2GM t 
h&< + ln(l -rjQ0), 

Qo ~ r * r * 

then the body of mass mw + 1 will either be permanently captured (if Q>r# for all time) 
or will pass closer to the barycentre of the n particles than the distance r*. 

With G the centre of gravity of the entire system and B the barycentre of the first n 
particles we have, from the angular momentum integral 

n + l 
Z w,rjvi A rm = constant. 

i = l 

Using 
n + l 

https://doi.org/10.1017/S007418090007056X Published online by Cambridge University Press

https://doi.org/10.1017/S007418090007056X


CONDITIONS FOR ESCAPF-! AM) RITKNTION 199 

n+1 

Z mi*NG=*t + b> *B,n+l=Q> 
i=l 

t m,r„ = 0, M=£Af„ 
i=l i=l 

n 

- Z m<r™ 
r*i 

m 
we find 

n + 1 n + 1 

Z " M ^ A f ^ Z mfrGlArGi = 
i = l 

n + 1 

= Z ^i(rGB + rBi)A(fGB + rBl). 

Now 
r G i — TGB + rBi> 

n+1 n+1 n+1 

0= Z mirGi= Z w,rGB+ Z m«rBi = 
i=l i = l i = l 

n 

= (M + m) rGB + Z mirBi + WQ = 
i = i 

= (M-hm)rGB + mQ, 
so the angular momentum is 

n+1 n 

Z mirGBAtGB + mQAiGB + rGBAmQ + mQAmQ+ Z m i r B i A ^ = 
i = l i = l 

= -mQArGB + mQTGB-——AmQ + mQAQ+ ^ mixBiAtBi = 

mM " 
= T T - — C A 0 + Z w,.rKAfBj. M + m i=i 

In polar coordinates 

2 (M + m)[ x " ' . 1 
Q2C0S9<}>= ^ M fl-0- Z W'mi*Bi**Bi • 

For g-»oo, # must -►0 and- f l -^ or $-+0. 

In other words the escaping particle must eventually be moving away from the 
system. Note that the origin is moving - as it is the barycentre of the n particles. 
Reversing time, we must initially 'fire' particles towards system (from infinity!). 

The region of indeterminancy of the n-body problem is given by 
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GM GM 2GM t > + ln(l -rjQ0). 
Qo~r* Qo~~r* r * 

The use of velocity of escape of the form \v\ = GM/r^ is criticized by Kurth (1957) 
who states that 
It is... usually assumed that a star with this or with a higher energy will actually leave the system.... It is 
doubtful whether this procedure is reliable. The motion of the star in the course of time also depends, for 
example, on its initial direction and, to a large extent, on the motions of the remaining stars. 

In this paper I derive rigorous conditions for escape, which also show that the usual 
assumption of a velocity of escape is valid, provided that the remaining cluster is 
bounded in space for all time. 

It is also known (Jacob's criterion of stability) that a gravitating system is unstable 
if its total energy E is positive. Kurth (p. 65) states 
up to the present no satisfactory criterion has been found, for systems with negative total energy, to decide 
between the two possibilities of periodicity and disintegration. It appears to be one of the most important 
unsolved problems in the mechanics of stellar system to discover such a criterion.... 

Kurth also states that (p. 61) if the mass centre of the system is taken as origin, then 
YJ=I Miri = 0 shows that if one particle escapes to infinity, at least another and most 
probably two will escape to infinity. Hence if a system disintegrates, at least three 
bodies will, as a rule, escape to infinity. This conclusion is not valid if, as one par
ticle escapes from the cluster, the rest of the cluster en masse 'escapes to infinity', 
but remains bound together. Such a motion will satisfy the preceding equation, but 
will from the point of view of an external observer, present the picture of a single 
particle escaping from a moving system. 
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DISCUSSION 

S. J. Aarseth: It is of interest to note that this type of escape criterion is sharper than is usually required 
for numerical studies. Thus the computations of three-body systems by Szebehely showed in every case 
that all escaping particles satisfied both the simple two-body criterion discussed here, when using r^ = 15. 
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