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Abstract In this paper we consider the following semilinear elliptic equation

An + ^ - ^ u p - ^-r—u" = 0, in Rn,
(i + \x\y (i + N)"

where n ^ 3, A = ^2^-1(d
2/dx'f), and /3 ^ 0, 7 ^ 0 , q > p ^ 1, \i and v are real constants. We note

that if 7 = 0, 0 > 0 and y. ^ 2, then the equation above is called the Matukuma-type equation. If f3 = 0,
7 > 0 and v > 2, then the complete classification of all possible positive solutions had been conducted by
Cheng and Ni. If /3 > 0, 7 > 0 and fi ^ u > 2, then some results about the maximal solution and positive
solution structures can be found in Chern. The purpose of this paper is to discuss and investigate the
blow-up and positive entire solutions of the equation above for the p. Js 2 ^ v case.
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1. Introduction

In this paper we consider the following semilinear elliptic equation

w h e r e n ^ 3 , A = Y A = I ( ^ 2 / ^ X ^ ) ^ &n<^ P ^ ®i 7 ^ 0 , q > p ^ 1, (JL a n d v a r e r e a l
constants. Equation (1.1) arises from physics and geometry. When n = 3, fi = 2, p > \
and 7 = 0, (1.1) was proposed by Matukuma [8] in 1930 as a mathematical model to
describe the dynamics of a globular cluster of stars. In this context, u represents the
gravitational potential (therefore u > 0). Since the globular cluster has radial symmetry,
positive radial entire solutions are of particular interest. For the solution structures and
references of Matikuma-type equations, we refer to Li and Ni [7], Ni and Yotsutani [11]
and Yanagida [12]. When /? = 0, 7 > 0 and q = (n + 2)/(n - 2), (1.1) is then a
conformal scalar curvature equation in Kn. In this case, (1.1) becomes the following
equation, without loss of generality we can assume 7 = 1 ,

A U - ( T T W U 9 = 0> inKn- (L2)
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The complete classification of all positive solutions of (1.2) for q > 1 had been conducted
by Cheng and Ni [4]. From [4, Theorem II] they obtained Theorem 1.1.

Theorem 1.1. If v > 2, then the following conclusions hold.

(i) For every positive constant a, equation (1.2) possesses a unique positive solution
ua such that ua(x) —> a as x —> oo. Furthermore, ua is radially symmetric.

(ii) Let u be a positive solution of equation (1.2). Then either u = Uo or u = ua for
some a > 0, where ua is given by (i) above, and Uo denotes the maximal solution:

Uo(x) = sup{w(a;)|w is a positive solution of equation (1.2)}. (1-3)

(iii) If a > /3 > 0, then UQ > ua > up in Kn. Furthermore, UQ is radially symmetric
and the asymptotic behaviour of Uo near oo is given by

If (3 > 0 and 7 > 0, then, without loss of generality, we can assume 7 = 1 in (1.1) and
consider the following equation:

T-^"9 = °. in

Let

Ro = UQ(0), 7 > - / ? 1 / ( 9 - p ) , (1.5)

U = sup{t;(x)|t; is a positive solution of (1.4) with u ^ Tp on R"}, (1-6)

where Uo is defined in (1.3) of Theorem 1.1. Then some results about the maximal
solution U and positive solution structures of (1.4) can be found in Chern [5]. We proved
Theorem 1.2.

Theorem 1.2. Ifq>p^l and n ^ v > 2, then the following conclusions hold.

(a) If Tp < Ro, then for each a € [Tp, Ro), (1-4) possesses a positive radial solution va

satisfying va ^ Tp on Rn and linv^oo va (r) = C(a), where C(a) is an increasing
function in a. Furthermore, if Tp ^ a.\ < 011 < Ro, then vai < va2 < U in K",
where U is given by (1.6).

(b) For every constant c ^ Tp, (1.4) possesses the type solution uc satisfying uc —> c
as x —» 00. Furthermore, if uc ^ Tp in Rn, then such a solution uc is unique and
radially symmetric, i.e. uc(x) = «C(M) f°r a ^ x G Kn.

(c) For every bounded positive solution u of (1.4), there exists a constant c ^ 0 such
that u = uc, where uc is given by (b) above. Furthermore, ifu ^ Tp in Rn, then
such a solution uc is unique and radially symmetric.
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(d) U is radially symmetric and satisfies the asymptotic behaviour

U(r)~rlJ-2lq-1, atr = oo.

(e) Suppose that Tp < RQ and u is a positive solution of (1.4) satisfying u^Tp in Rn.
Then u is radially symmetric and either u = U or u = uc for some c > Tp.

We note that all the bounded positive solutions in both Theorems 1.1 and 1.2 tend
to positive constants at infinity. The purpose of this paper is to discuss and investigate
the blow-up and positive entire solutions of (1.4). These solution types are different from
those mentioned in the above theorems. We will seek the radial solutions, i.e. u = u(\x\).
Let r = \x\. Then, in this case, (1.4) reduces to the following initial value problem:

UP _ ui = o, r > 0,u + U + U u = o, r > 0, ]
r (1+r)" (1 + r)" ' I (1.7)

u(0) = a, u'(0) = 0. J

Now we state our results as follows.

Theorem 1.3. If q > p > 1 and fj, ^ 2 ^ v > 0, then the following conclusions hold.

(i) For every a > / ^ / (S -P ) ^ o, there exists R(a) > 0 such that the solution u(r, a) of
(1.7) satisfies

u(r,a)>0, on [0, R(a)) and lim u(r, a ) = oo. (1.8)
>ft-()

(ii) There exists ao > 0 such that for every a 6 (0,ao], (1-7) possesses a positive
solution ua on [0, oo) satisfying

ua(0) ^ a and lim uQ(r) = 0. (1.9)
r—>oo

In addition, if (n + 2)/(n - 2) > p > 1, then (1.7) possesses a positive solution u(r)
on [0, oo) satisfying

u(r) = o(r2~n), at r = oo. (1.10)

We organize this paper as follows. In § 2, we prove the blow-up result of part (i) of
Theorem 1.3. Finally, we give the complete proofs of the existence results of parts (ii) of
Theorem 1.3 in §3.

2. Proof of the blow-up solutions

In this section we give the proof of part (i) of Theorem 1.3.
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Proof of part (i) of Theorem 1.3. Let a > Z?1/^-?) and u(r, a) be the positive
solution of (1.7). Then, from q > p > 1 and fj, ̂  v, there exists r% > 0 such that

ui-p(r, a) - /3(1 + ry-* > 0 Vr e [0, n] . Prom (1.7) we can easily obtain

u'(r.a) = - L . / r

" Jo
>0 , for allr 6 (0,n]. (2.1)

Hence, we obtain that u(r, a) is increasing on (0,ri], and

u'(r, a) > 0 and u(r, a) > a, for all r in the interval in which u can be denned.
(2.2)

We shall prove that there exists R(a) > 0 such that u(r,a) —¥ oo as r -> /?~(a).
Suppose that this is not true. Then u(r,a) is defined on the entire domain [0,oo).
Prom (2.1) and (2.2), it is easy to see that

«-P_0_L_ttP(Sta)ds. (2.3)

Since 2 ̂  v, it follows that there exists R\ > 0 such that

1 1
(1 + r)" ^ r2 ' ^

Let r > Ri. Then, from (2.3), we have

J i _ ( £ )

(2.4)

for r ̂  i?2 ̂  2i?j and for some Ci > 0.
Now the rest of the argument is the same as that in the proof of Theorem 2.1 in [2].

We can get a contradiction. We omit the details. This completes the proof of part (i) in
Theorem 1.3. •

3. Proofs of existence results

In this section we give the complete proofs of part (ii) of Theorem 1.3.

Proof of the first result of part (ii). First we consider the equation

v" + v' + .., , vp = 0, r > (, ,
(1 + r)" } (3.1)

v(0) = a, t/(0) = 0.
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Since fi ^ 2 and p > 1, from [11, Theorem 3], there exists ao > 0 such that for every
a e (0,ao], (3.1) possesses a solution v(r, a) > 0 on [0,oo) and v is monotonically
decreasing in r, which satisfies

lim v(r, a) — 0.
r—>oo

It is easy to see that v is a super-solution of (1.4).
Now, we choose

]
and define

ve{x)=ve(x\) = \ K ' u " ' ' ^ (3.2)
[0, for |x| ^ e 1 / 2 ,

where fc = (5g - 4)/(q - 1). Then ve E C2(Rn) and

(1 + r )"" £

: - l_ e -2 r 2 ) 3 [ ( n + 8 ) r 2_ n £ ] ^ ( r £ r )

(TT^6"8^"1-6"2^5'- (3'3)

In order to show that ve is a sub-solution of (1.4), we estimate (3.3) by two cases as
follows.

(i) For e1'2 >r> (n/(n + &))ll2e1'2:

(3.3) ^ 1 g ^ g - 1 - e-2r2)5p[/3 - (1+ r ) " - ^ " " ^ ^ - 1 - e-2r2)5^^}

> 0 ( since e ^ f /? - —— 1 and q> p> l\.

(ii) For 0 ̂  r ̂  (n/(n + 8))1/2e1/2:

(3.3) ^ -10nek-4 + . ^ . f — ^K ' (l + ry\n

> -(10n + l^/C-t) + L

- (10n

[ 8 / 8 \5p

2 ^ (
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Then we conclude that

Hence, ve is a sub-solution of (1.4).

Moreover, since v(r, a.) is monotonically decreasing in r, we can make sure that

v£(r) ^ v(r, a), for all r ^ 0 if e is sufficiently small.

Therefore, (1.4) possesses a radial solution ua = ua(r) satisfying

ve{r) < ua(r) <u(r ,a) , for all r ^ 0. (3.4)

Then it is easy to see that limr_>oo ua(r) = 0 and

a ^ ua(0) ^ el'^-l\ ua(r) > 0, Vr ^ 0. (3.5)

This proves the first result of part (ii) in Theorem 1.3. D

Proof of the second result of part (ii). Since (n + 2)/(n — 2) > p > 1 and \x ̂  2,
by [1, Theorem 1.1], there exists a positive radial solution w = w(r) of (3.1), r = |a;|,
such that

lim rn~2w{r) = CQ, for some positive constant CQ. (3-6)
1 VOO

Furthermore, w(r) is strictly decreasing in r and a super-solution of (1.4).
Hence, (1.4) possesses a positive radial solution u = u(r) and we have

ve(r) ^ u(r) ^ w(r), for all r ^ 0 and for e sufficiently small, (3-7)

where ve is defined in (3.2). From (3.2), (3.6) and (3.7), we obtain

u{r) = o(r2~n), at r = oo.

This proves the second result and completes the proof of part (ii) of Theorem 1.3. D
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