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GLOBAL ATTRACTIVITY IN DIFFERENTIAL EQUATIONS WITH
VARIABLE DELAYS
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Abstract

Consider the forced differential equation with variable delay

x\t) + b(t)x(t-z(t))=f(t), t>0,

where

/ e C([0, oo)) and b,x e C([0, oo), [0, oo)).

We establish a sufficient condition for every solution to tend to zero. We also obtain a
sharper condition for every solution to tend to zero when f,'_rW b(s)ds is asymptotically
constant.

1. Introduction

Consider the forced delay differential equation

x'(t) + b(t)x(t-r(t))=f(t), t>0, (1.1)

where

/ € C([0, oo), R) and b,z e C([0, oo), [0, oo))

with

r ( 0 ] = oo. (1.2)

1 Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA.
department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762,
USA.
© Australian Mathematical Society 2000, Serial-fee code 0334-2700/00

568

https://doi.org/10.1017/S0334270000011826 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011826


[2] Global attractivity in differential equations 569

Our aim in this paper is to study the global attractivity of solutions of (1.1).
When / (0 = 0, (1.1) reduces to

x\t) + b(t)x(t - T(0) = 0, t > 0. (1.3)

In the case of bounded delays, the asymptotic behaviour of solutions of (1.3), as well
as more general cases, has been studied by several authors; see, for example, Burton
and Haddock [1], Cooke [2,3], Gyori [7], Yorke [12] and the references cited therein.
It is well known that if there are two positive numbers /J and q such that

b(t) <P, x{t)<q and fiq < 3/2

for t > 0, then the trivial solution of (1.3) is uniformly stable. Furthermore, the upper
bound 3/2 is sharp in the sense that if pq > 3/2 there are equations with unbounded
solutions. Yoneyama [11] removed the boundedness hypothesis on b{t) and proved
the following theorem.

THEOREM A. If there is a positive number q such that

r(t)<q fort>0,

/

t+q pt+q

b(s)ds > 0 and sup / b(s)ds < 3/2,
<>o J,

then the trivial solution of (1.3) is asymptotically stable.
Recently, Kolmanovskii et al. [8] proved the following theorem which allows the

delay function in (1.3) to be unbounded.

THEOREM B. Assume that x is differentiate and

z'(t) <R<1 fort>0. (1.4)

Suppose also that

b(s)ds = P < 1,

where g(t) is the inverse function of t — r(r). Then the trivial solution of (1.3) is
uniformly stable. Moreover, if b(t) is bounded, then the trivial solution of (1.3) is
uniformly asymptotically stable.

In the above theorem, although the delay function r(f) is allowed to be unbounded,
there is still a relatively strong restriction (see (1.4)) on its growth. In addition, the
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persistence and boundedness of b(t) are also needed for the asymptotic stability. In
the present paper, we establish a sufficient condition for the asymptotic stability of
the trivial solution of (1.3) without using these hypotheses. In fact, we will establish
this attractivity result for the more general forced equation (1.1). For the case that
j ' t x b(s)ds is asymptotically constant, we obtain a sharper condition for the global
attractivity of solutions of (1.1), which is an extention of the work of Ladas et al. [9].

For the last several decades, the asymptotic behaviour of various unforced delay
equations has been investigated by many authors. However, results about the behavior
of solutions of forced delay equations are relatively scarce. In general, the presence
of the forcing term makes the problem more interesting as well as considerably more
difficult. For recent studies of first-order forced differential equations, we refer the
reader to Lim [10], Graef and Qian [6] and the references contained therein.

2. Global attractivity of (1.1)

THEOREM 1. Assume that

b(t)>0, / b(t)dt = oo (2.1)
Jo

and

lim sup / b(s)ds < 1. (2.2)

In addition, assume that

fit) _

and

/•CO

/ / it) dt converges. (2.4)
Jo

Then every solution of (1.1) tends to zero as t tends to infinity.

PROOF. First, assume that x it) is an eventually monotonic solution. Suppose that
x it) is eventually positive; the proof for the case that x it) is eventually negative is
similar and will be omitted. Let

/ = limx(O;
t—*oo
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then 0 < / < oo. Clearly, it suffices to show that / = 0. Assume, for the sake of
contradiction, that / > 0. Then there is a T > 0 such that

•*(' - T ( 0 ) > min{//2, 1} for / > T. (2.5)

Now, integrating both sides of (1.1) from T to t and letting t —*• oo, we have

l-x(T) + I b(t)x(t-r(t))dt = I f(t)dt.
JT JT

Then, from (2.5), it follows that

mm{l/2, 1} f b(t)dt<[ f(t)dt,

which contradicts (2.1) and (2.4). Hence, / = 0.
Next, assume that x (?) is an eventually nonmonotonic solution. Then there is a

sequence [tn] with

0 < t\ < t2 < • • • < tn < • • • and lim tn = oo (2.6)
/ - •oo

such that x{t) has relative extrema at tn, n = 1, 2, . . . . Since x'(tn) = 0, it follows
from (1.1) that

Then, integrating both sides of (1.1) from tn — r(tn) to tn, we obtain

X(tn) = £l^+ [" f{t)dt- [ b{t)x{t-x{t))dt. (2.7)

Clearly, (2.4) and (1.2) yield

lim / " f(s)ds = 0.

By noting this fact, (2.2) and (2.3), we see that there are three positive numbers 8, fM
and t0 such that for t > t0,

f(s)ds < S, (2.8)
b(t)

f b(s) ds <IM (2.9)
Jl—Z(t)
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(2.10)

Since (1.2) and (2.6) hold, we can choose a subsequence [tNk] of [tn] such that, for
any positive integer m,

t-x(t)> tNm when t > tNm+1 - T(/„„,

and

Let

fit)
bit) f

Jt-z(t))

f(s)ds < 8m when t >tNm.

M= max{\x(tn)\}.
0<n<Ni

We claim that

\X{U)\ <

In fact, from (2.7) we see that

for n > Nk. (2.11)

\x{tNl)\ <

<8

Now, assume that

b(t)\x{t-x{t))\dt

bit)dt

1).

\x(tn)\ < (8 + ix)(M + I) for Nx<n<m.

Then, noting that {x(tn)} is the sequence of relative extrema, it follows from (2.7),
(2.8) and (2.9) that

fUm
bitm+x)

b{t)\x{t - xit))\dt

r b(t)dt

(2.12)
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We claim that

\x(tm+l)\<M + l.

Otherwise, |*(fm+1)| > M + 1. Then, from (2.12), we see that

which implies

573

(2.13)

\x(tm+l)\ <

It follows that

1 -

which clearly contradicts (2.10). Hence, (2.13) holds and so it follows that

|*(/m+i)l < 8 + (M + l)/x < (8 + li)(M + 1).

Therefore, by induction, (2.11) holds when k = 1. Next, assume that

l*('n)l 5 (5 + /J,)m(M + 1) for n > Nm.

We are going to show that

\x(tn)\ < (8 + fx)m+l(M+ 1) forn>Nm+i.

In fact, in view of (2.14), it follows from (2.7) that

\x(tn)\<

<<5m+1 + (5 + Ai)m(M + l) / b(t)dt

< 5m+I + (8 + (x)mn{M + 1).

(2.14)

Since

we see that

|JC(4,)| < (« + ti)m+l(M + 1) for n > Nm+l.

Hence, by induction, we see that (2.11) holds for all k = 1,2, Clearly (2.11)
implies that lim,-^ x (t) = 0. The proof is complete.
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The following result is a direct consequence of Theorem 1.

COROLLARY 1. Consider (1.3) and assume that (2.1) and (2.2) hold. Then the
trivial solution of (1.3) is asymptotically stable.

EXAMPLE 1. Consider the delay differential equation

Let

1 1 1
b(t) = , r(t) = -t(l — sint) and f (t) = -.

2(f + 1) 3 (1 + 02

Observe that

/ b(t)dt = oo, lim — - = 0 , / f (t)dt = 1
Jo '^°° HO Jo

and
ft

b(s)ds =
l-T(t)

' 1
-ds

^ , 2 ( 1 + 5 )

= - (ln(l + r ) - l n ( 1 + - M J->• - I n 3 as t -*• oo.

Hence, by Theorem 1, every solution of (2.15) tends to zero as t tends to infinity.

3. A sharper condition

In this section, we establish a sharper condition for the global attractivity of solutions
of (1.1) when //_T(0 b{s)ds is asymptotically constant. Our work is motivated by a
paper of Ladas et al. [9] for (1.3) with x{t) = r, a constant.

Consider the autonomous delay differential equation

y'O) + py(t - to) = 0, t > to, (3.1)

where

p, T0 € (0, oo) and pr0 < n/2.
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It is known, see for example [4], that if y(t, t0, <p) denotes a solution of (3.1) and

y(t) = <j>(t) with <f> e C([t0 - r, t0], R) ,

then there are two positive numbers M and y such that

\y(t, to,<t>)\ < M max {|<£(/)|}<r>", t > to. (3.2)

Furthermore, if z(t, t0,0) is the solution of

z'(t) + pz(t - r0) = h(t), t > to,

with zero initial function, then

M
\z(t, t0,0)| < —e^^" max \h(s)\. (3.3)

y 4><J<<

The following lemma is needed in the proof of our main result in this section.

LEMMA 1. Consider the delay differential equation

x'(t)+x(t-a(t)) = g(t), t>0, (3.4)

where

a € C([0, oo), [0, oo)) and g € C([0, oo), R).

Suppose that

lim a {t) = x < n/2 and lim g(t) = 0.
/->00 t-*00

Then every solution of (3.4) tends to zero as t tends to infinity.

PROOF. Let x(t) be a solution of (3.4). Choose to>2x + 2 such that

<r(t) <r + l foTt>t0

and

M
—e(l+y)T\r - a(/) | < 1/2 for t > t0, (3.5)
y

where the constants M and y are as defined in (3.2). Let y(t) be the solution of

y'(t) + y(t-x) = O, t>t0,
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with initial condition

y(t)=x(t), tQ-r<t<t0.

Then, by noting that r < TT/2, we see that y(t) tends to zero as t ->• co. Set

z(t)=x(t)-y(t)

and observe that z(t) satisfies the equation

z\t) + z(t -x)=x(t-r)-x(t- a(0) + g(t), t > t0,

with zero initial condition z(t) = 0 for t0 — r < t < t0. Hence, applying (3.3) with
p = 1 and h(s) =x(s — z) — x(s - cr(s)) + g(s), we find that

M
|z(OI < —ea+y)z max \x(s - x)-x(s-a(s)) + g(s)\. (3.6)

y <a<s<t

By the mean value theorem, we obtain

\x(s - r)-x(s - o(s))\ = \a(s) - r\\x'm

= \0(s)-T\\g(!;)-x(i;-a(l;))\,

where £ is between s — r and s — o(s). Setting

A = max {|g(s)|} and Bo = max{\x(s)\},
4)<s<oo 0<s<to

we have

max \x(s - r) - x(s - o(s)) + g(s)\
ta<s<t

< max \x(s - T) -X(S -a(s))\ + max |g(s)|

< max \o(s) — T| I max \g(s)\ + max |JC(^)| I + max |g(s
(b<j<( \0ss<» 0<i<( J lo<s<t

< max |CT(S) - T| |A + Bo+ max |JCC-S)I ) + max \g(s)\.

Hence it follows from (3.6) that

I*(01 ~ I?(01 < — ell+y)l | max \a(s) - r | (A + Bo + max \x(s)\ )
y \_k><s<l \ k><s<t )

+ max \g(s)\\, (3.7)
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which, in view of (3.5), implies that

I*Ml < lyMI + \ (A + Bo + max |*(*)|) + A—e(i+y)t.
2 \ to<s<t ) y

Thus

M
max \x{s)\ < 2 max \y(s)\ + A + Bo + 2A—e{l+y)z, t > t0,
io<s<t k>£s<t y

and so x(t) is bounded. Let B be a positive constant such that

|*Ml < B for f > 0 .

Then (3.7) yields

I*MI < lyMI + —e(i+r)z ((A + IB) max \a(s) - r\ + max \g(s)\) ,

which clearly implies that lim,-^ x(t) = 0. The proof is complete.

THEOREM 2. Consider (1.1). Assume that

b(t) > 0, / b(t)dt = oo, (3.8)
Jo

lim /
'-W'-r

b(s)ds = 0 < TZ/2 (3.9)
'-*°°J,-rU)

and

lim — = 0. (3.10)

Then every solution of (1.1) tends to zero as t tends to infinity.

PROOF. Set

u = o(t)= / b(s)ds, t > 0.
Jo

In view of (3.8), we see that a~x exists, lim^oo u(t) = oo and

pl-T(l) pi pi
a(t - r(f)) = / b(s)ds = I b(s)ds - I b(s)ds

Jo Jo JI-Z(I)

= u- b(s)ds.
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Then the transformation z(u) = x{a~l(u)) reduces (1.1) to

In view of conditions (3.9) and (3.10), the hypotheses of Lemma 1 are satisfied for
(3.11) and so

lim*(?) = lim z(«) = 0 .
r u-»oo

The proof is complete.

The following result is a direct consequence of Theorem 2.

COROLLARY 2. Consider (1.3). Assume that (3.8) and (3.9) hold. Then the trivial
solution of (1.3) is asymptotically stable.

REMARK 1. It has been shown (see [5]) that if

b € C([0, oo), [0, oo)),

r e C([0, oo), [0, q)) for some number q > 0, (3.12)

b(s)ds^>0 ast-+oo (3.13)
-r(i)

and

,oo

/ b(s)ds = oo,
./o

then the trivial solution of (1.3) is asymptotically stable. Here, in Corollary 2, we
need the hypothesis b(t) > 0 for the asymptotic stability of (1.3) but remove the
boundedness hypothesis (3.12) on r and improve condition (3.13) on b.

EXAMPLE 2. Consider the delay differential equation

0r > 0. (3.14)
i-tt \z / (i-tir

Let

= -t and
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Observe that

I 00

b{t)dt — oo

and

['
/ () /

JT(l) J\t

[' f 2
/ b(s)ds = / ——ds

= 2 ( l n ( l + t) - I n ( 1 + -t) ) ->• 2 In 2 < — as t - • oo.

Hence by Theorem 2 every solution of (3.14) tends to zero as t tends to infinity.
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