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Abstract. Given a Banach operator ideal A, we investigate the approximation
property related to the ideal of A-compact operators, K 4-AP. We prove that a Banach
space X has the K 4-AP if and only if there exists a A > 1 such that for every Banach
space Y and every R € K4(Y, X),

Te

Re{SR:S e F(X, X), ISRk, =AIRlk.} -

For a surjective, maximal and right-accessible Banach operator ideal A, we prove that
a Banach space X has the K( 4uijua-AP if the dual space of X has the K 4-AP.

2010 Mathematics Subject Classification. 46B28, 46B45, 471.20.

1. Introduction. A Banach space X is said to have the approximation property
(AP) if

K(Y,X)=F.x)"

for every Banach space Y, where K and F are the ideals of compact and finite rank
operators, respectively. Lassalle, Turco and Oja [16, 21] introduced a general notion of
the AP. Let [A, || - |4] be a Banach operator ideal. A Banach space X is said to have
the A-APif A(Y, X)=F(Y, X )”'HA for every Banach space Y.

Carl and Stephani [1] introduced a notion of compactness determined by operator
ideals. A subset K of a Banach space X is said to be relatively A-compact if there exist
a Banach space Z, U € A(Z, X) and a relatively compact subset C of Z such that
K c U(QC). In fact, this notion is an equivalent statement of the original definition of
A-compactness (see [1, Definition 1.1 and Theorem 1.2]). Throughout this paper, we
use “A-compact” instead of “relatively .A-compact” in the notion of .A-compactness.
A linear map R : Y — X is said to be A-compact if R(By) is an A-compact subset of
X (see[1]), where By is the unit ball of Y. Let K 4(Y, X) be the space of all A-compact
operators from Y to X.

Lassalle and Turco [17] introduced a way to measure the size of .A-compact sets.
For an A-compact subset K of X, let

my(K; X) :=inf{||U||4 : U € A(Z, X), relatively compact C C Bz, K C U(C)}

and let ||R|x, := ma(R(By); X) for R € K4(Y, X). Then, [[C4, || - lIc,] is @ Banach
operator ideal (see [17, Section 2]). From [17, Remarks 1.3 and 1.7], a subset K of X is
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relatively compact if and only if K is K-compact. In this case,

my(K; X) = sup || x|
xeK
Thus, [Kic, | - e ] = U1 1]
The main notion of this paper is the K4-AP for Banach spaces, which was

introduced by Lassalle and Turco [17], namely, a Banach space X is said to have
the K 4-AP if

Ka(Y, X) = F(Y, X) "

for every Banach space Y. The main purpose of this paper is to characterize the K 4-
AP with some weakened statements and investigate in which cases the K 4-AP passes
from the dual space of a Banach space to the Banach space itself. One may refer to
[2,4-7,10,12-18, 21, 24, 25] for investigations related with the /I 4-AP.

2. Characterizations of the K 4-approximation property. In [17], the authors
introduced a locally convex topology on the space L(X, Y) of all bounded operators
from X to Y. Let A be a Banach operator ideal. The topology t,4 on L(X, Y) of strong
uniform convergence on A-compact sets, which is given by the seminorms

qr(T) = ma(T(K); Y),

where K ranges overall A-compact subsets of X. It was shown in [17, Proposition 3.2]
that a Banach space X has the I 4-AP if and only if

idy € FOO™,

where idy is the identity map on X and F(X) is the space of all finite rank operators
from X to X.

Delgado and Pifeiro [4] introduced an AP via operator ideals, denoted by (AP ),
and studied it using another locally convex topology on the space £(X, Y) determined
by A-compact sets. The topology t.(A) on L(X, Y) of uniform convergence on A-compact
sets, which is given by the seminorms

px(T) = sup | Tx],
xeK

where K ranges overall A-compact subsets of X. In particular, the topology of uniform
convergence on compact sets is denoted by .. They proved that a Banach space X has
the AP 4 if and only if

idy € FOO,

if and only if for every Banach space Y,

Ka(Y, X)C F(¥, X))

THEOREM 2.1. Let A be a Banach operator ideal and let ). > 1. The following
Statements are equivalent:
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(a) X has the K 4-AP.
(b) For every Banach space Y and every injective operator R € K (Y, X),

Re{SR:S e F(X), ISRl < AIRIc,) "

(¢) For every Banach space Y and every R € K A(Y, X), and for every § > 0,

. T(A)
idy € {S € F(X) : IISRllk, = A+ IRk} -

(d) For every Banach space Y and every R € K4(Y, X), and for every § >0
and every finite-dimensional subspace F of X, there exists an S € F(X) with
ISRI < (A + 8)I| R, such that ||Sx — x|| < 8||x|| for every x € F.

(e) For every Banach space Y and every R € K4(Y, X), and for every § > 0
and every finite-dimensional subspace F of X, there exists an S € F(X) with
ISRl < (A + &)IIRIk, such that Sx = x for every x € F.

In order to prove Theorem 2.1, we show that (a)=(b)=(c)=(d)=(e)=(a). First,
it was shown in [17, Proposition 3.1] that a Banach space X has the IC 4-AP if and only
if for every Banach space Y and every R € K4(Y, X),

ReSR:ScF)) ™,

which is equivalent to

Il
Re{SR:Se F(X),ISRlx, < Rlc,}

Hence, (a)=(b) follows. To show that (b)=(c), we need the following lemma which
originates from a representation of Grothendieck [11] for the dual space (L(X, Y), .)*
(cf. [19, Proposition 1.e.3]). See [1] for the definition and properties of A-null sequences.

LEMMA 2.2 ([4]). The dual space (L(X, Y), t.(A))* consists of all functionals of the
form

S(T) =" yi(Tx),
n=1

where (x,) is an A-null sequence and (y}) is an absolutely summable sequence in Y*.

Suppose that 4 is a balanced, convex and compact subset of X. Let X4 be a linear
span of 4, which is normed by the Minkowski functional of 4. Then, it is well known
that X is a Banach space and the set A is the unit ball of X4 (cf. [23, Lemma 4.11]).
Letj  : X4 — X be the inclusion map.

Proof of theorem 2.1(b)=(c). Let Y be a Banach space and let R € IC4(Y, X).
We may assume that || R||x, = 1. Let § > 0. We use Lemma 2.2 to apply the separation
theorem. Let

[i=) x5 x) € (LX), Tl A),

n=1

where (x,) is an A-null sequence and (x}) is an absolutely summable sequence in X*.
Note that the set {x,}°2, is A-compact (cf. [17, Proposition 1.4]). We may assume that
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ma({x,}>2,; X) = 8/A. Let A be a balanced and closed convex hull of the set

{xXa}pes U R(By)
ma({(xn}pl; U R(By); X)'

Then, we see that j4 € K 4(X4, X) and |j4l/c, = 1. Consider

g:= Y xi(Xn) € (L(X4, X), 7o)

n=1

Then, by (b)

Ref(idy) = Reg(j4)
< sup{Reg(§.1) : § € F(X), 154l = AMlallc,}
= sup{Ref(S) : S € F(X), 1Sallc, < Mljallc,}-

Now, if § € F(X) and [|S4llc, < Aljallc, = 2, then

ISRk, = ma(SR(By); X)
= mu(§4R(By); X)
= ma({xn},2) U R(By); X)ma(Sja(R(By)/ma({xa} 2, U R(By); X)); X)
< (ma{xalyl; X) + ma(R(By); X)ISallk.

§(§+1)x=5+/\.
Thus,
Ref(idy) < sup{Ref(S) : S € F(X), SRk, <*+ 8}

This completes the proof. O

Note that every bounded subset of a finite-dimensional subspace of a Banach
space is A-compact for every Banach operator ideal .A. From this, Theorem 2.1(c)=-(d)
follows.

Proof of theorem 2.1(d)=>(e). Let Y be a Banach space and let R € K 4(Y, X). Let
8 > 0 and let F be a finite-dimensional subspace of X. Let P : X — F be a projection.
Let y > 0 be such that y(1 + || P||) < 6.

By (d) there exists an S € F(X) with [|SR|lx, < (A + ¥)|Rllx, so that

[1Sx — x|l < yllxII
forevery x € F. Let Sy := S+ (idy — S)P € F(X). Then,
Sox=8Sx+x—Sx=x
for every x € F and
ISoRllxc, = ISRk, + IGdx — S)PIRIk, = A4y +VIPIDIRI, = A+ IRk,

g
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Proof of theorem 2.1(e)=>(a). The prototype of this proof is the proof of [17,
Proposition 3.3]. Let K be an .A-compact subset of X and ¢ > 0. By [17, Proposition
1.8], there exista 7" € A o K(£;, X) and a relatively compact subset M of ¢; such that
K c T(M). By [17, Proposition 2.1], A o K(£;, X) is isometrically equal to I 4(¢;, X).

Using [23, Lemma 4.11], there exists the Banach space X4 C ¢; such that 4 is a
compact subset of ¢; and M is a compact subset of X 4. Let ny € N be such that

£
sup || Pyya — ally < ,
wed I TN, (A +e+1)

where P,, : £ — {; is the basis projection.
Now, let us consider the finite-dimensional subspace TP,j4(X4) of X. Then, by
(e) there exists an S € F(X) with [|ST |k, < (A + )| Tk, such that

STPyjs = TPuji.

We now have
ma((S — idy)(K); X) < (S — idx)Tj4ll a
< WSTjs — STPyjalla + 1STPuja — Tjalla
< WSTNalja — Pugjall + 1T all Prgja — jall

< 1 Puja = JallUIST || aok + 1T 1] 4ok)
= sup 1 Pnya — alli(IST N, + 1 Tlk,) < e
ae

This completes the proof. O

We introduce a topology on K 4(Y, X), which is weaker than the topology induced
by the norm | - [x,. For a net (T,) in K4(Y, X) and T € K4(Y, X), we say that T,
converges to 7' in the topology t..(my) if

limm 4((7e — T)(K); X) =0

for every compact subset K of Y.

THEOREM 2.3. For a Banach operator ideal A, a Banach space X has the K 4-AP if
(and only if) for every quotient space Z of £1 and every injective operator R € K 4(Z, X),

Tee(m 4)

Re FZ, x)“"™.

Proof. Let K be an A-compact subset of X and let ¢ > 0. By [1, Theorem 1.1],
there exists an .4-null sequence (x,) in X such that

K C {Zanxn C(ay) € Bg]}.

According to [1, Lemma 1.2], there exists a sequence (3,) of positive numbers with
B < 1 and B, —> 0 such that (z,,) := (x,/B,) is an A-null sequence.

Now, we define the maps Dg : €1 — ¢; and M: : £; — X by Dg(an) = (Byn) and
M:(ay) = Y, onzy, respectively. The injective operator M: : £ /ker(M:) — X isdefined
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by M:((a,) + ker(M:)) = M:(e,) and then M: = M:q, where q : £; — £;/ker(M:) is
the quotient operator.

D, M-
6 =5 0 L 0 ker(M:) 2 x.

We see that Dg is compact and M: is A-compact. Since the ideal of .A-compact
operators is surjective (cf. [17, Proposition 2.1]), M: is A-compact.
Now, by the assumption, there exists an U € F(£;/ker(M;), X) such that

ma((U — Mz)(gDp(By)); X) < g

We may assume that U =), y; ® xx, where y} € (¢;/ker(M:))* and x; € X
for each k=1,...,m and Y }_, |lxxll = 1. Since M: is injective, (¢;/ker(M:))* =
— weak® = ——

M (X*) = M:"(X*) . The second equality follows from (Z*, weak*)* = (Z*, 7.)*
for every Banach space Z (cf. [20, Theorem 2.7.8]). Then, for each k =1, ..., m, we
can choose an x}, € X* such that

sup  [yi() — Mz (X))l <
vy€qDg(By,)

| ™

We show that S = Y} | x} ® xx € F(X) is the desired operator approximating to idy.
Since, for every () € ¢,

m

(SMzqDy — UgDp)an) = Y (M= x7)qDp — yiqDp) ().
k=1

we have
ma((S — idx)(K); X)
< my((S — idy)(M:qDy(By,)); X)
= ma((SM:qDg — UqDg + UqDg — M:qDp)(By,); X)
= |SM:qDp — UqDg + UqDg — M:qDgllx,

m
< | YX(OF xpaby — viaDp) @ x| +mal(UaDy — WeqDy)(B1,); X)
k=1 A

= Y (V" xaDs — yiaDs) ® x0)(Be): X) + 5

k=1
m . - X e

= Il sup - 0) = M2 (DO + 5 < e
k=1 y€qDg(Be))

g

3. A duality of the /Cj-approximation property. One may refer to [3,22] for
definitions and information of operator ideals. Given a Banach operator ideal [A, || -
”A]a we denote by [A’ “ : ”A]mma [A’ “ : ”A]maxa [A’ ” : ||.A]sur9 [Av ” : ”A]mja [Av ” : ”A]adj

and[A, || - ||.4]%, the minimal kernel, maximal hull, surjective hull, injective hull, adjoint

https://doi.org/10.1017/5S0017089518000356 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089518000356

THE K 4-APPROXIMATION PROPERTY 551

ideal and dual ideal, respectively. For operator ideals [A, || - || 4] and [B, || - ||5], in this
paper, A = B means that [A, || - 4] =[5, | - lIz], and A C B means the norm one
inclusion.

A Banach operator ideal [A, | - ||4] is called right-accessible if for all finite-
dimensional normed space M, Banach space Y, T € L(M, Y) and ¢ > 0, there exist
a finite-dimensional subspace N of Y and an S € £L(M, N) such that T = IyS and
IS4 < (1 +&)|T| 4, Wwhere Iy : N — Y is the inclusion map. Note that [A, || - || 4] is
right-accessible if and only if

AMN = Ao F

(see [3, Proposition 25.2(2)]).
It was shown in [17, Proposition 2.1] that

Ka=(AoF).
Then, we have the following Lemma.
LEMMA 3.1. Let A be a Banach operator ideal. Then,
(Amin)sur — ’CAmin
and, if A is right-accessible, then

(Amin)sur — ICA.

Now, let us consider the dual space of L(X, Y) equipped with the topology 7,4,
which was investigated in [18]. We note that ¢ € (L(X, Y), t,4)* if and only if there
exist a C > 0 and an A-compact subset of X such that

lp(T)] = Cmu(T(K); Y)

forevery T € L(X, Y).

LeEmMMA 3.2 ([18, Corollary 4.3]). Suppose that A is a maximal, right-accessible
Banach operator ideal. Let X and Y be Banach spaces. If ¢ € (L(X, Y), T;4)*, then there
exist S € A™™(¢;, X) and R € (A*9)y™"(Y, ¢,) such that

o(T) = tr(RTS)

forevery T € L(X, Y).

In view of the proof of [18, Theorem 4.2], forevery T' € L(X, Y), RTS € N'(¢y, £1),
where N is the ideal of nuclear operators, and since ¢; has the metric AP, the trace
functional tr on N (£1, £1) is well defined.

THEOREM 3.3. Suppose that A is a maximal, right-accessible Banach operator ideal
such that (A4 s surjective. Let X and Y be Banach spaces. If ¢ € (L(X, Y), T4)%,
then there exists a r € (L(Y™, X*), Ty gatiyoun)* such that

o(T) = y(T7)
forevery T € L(X, Y).
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Proof. This proof is motivated from the proof of [18, Theorem 4.7].
Let ¢ € (L(X, Y), 1,4)*. Let S e A™"(¢;, X) and R e (A*9)y™n(Y, ¢;) be the
operators in Lemma 3.2 such that

o(T) = tr(RTS)

forevery T € L(X, Y).
Now, by [3, Corollary 22.8.1],

Rec (((Aadj)dual)dual)min(y’ El) — (((‘Aadj)dual)min)dual(Y, Zl)
Thus, R* e ((A)dualymincg - y*). Since
S € ALy, X) = (A Mhdy®aleey, x),
S* e ((Aadj)dual)adj(X*’ Zoo)~ .
By [3, Corollary 21.3], (A2d)dual jg right-accessible. Then, by an application of
[3, Propositions 25.4.1 and 25.4.2],
((Aadj)dual)adj o ((Aadj)dual)min c N

Thus, S*UR* € N(€eo, £oo) for every U € L(Y*, X*).
Now, we can define a linear functional ¢ on L(Y™*, X™*) by

W (U) = tr(S*UR").
Let U be an arbitrary element of £(Y*, X*). Then,
[P (D) = |ir(STURY)| < |S*UR"| v
Since, (A2d)dual is surjective,
STUR* € ((AMdualysuryadi o ((( Aadiyduatysurymingy o < Af(p. g,
Let B := (((Axd)dualysuryadi By [3 Proposition 25.11] and Lemma 3.1, we have

W (U)] < IS*UR"||
< IS™ 151U Rl s st ysurymin
= 1™ 1 51] U R* [ (s sty
= 18" 18I UR Ik jus
= ||S™ || M gaaiyuut (UR*(By . ); X ™).

Since R*(By.,) is (A*Y)d4l-compact, ¥ € (L(Y*, X*), Ty uiyua)*, and
o(T) = tr(S*T*R*) = ¢ (T")

forevery T € L(X, Y).

From [18, Lemma 4.5], we have the following corollary.
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COROLLARY 3.4. Suppose that A is a maximal and right-accessible Banach operator
ideal such that (A*Y)3 is surjective. If the dual space of a Banach space X has the
K asiyua-AP, then X has the K 4-AP.

COROLLARY 3.5. Suppose that A is a surjective, maximal and right-accessible Banach
operator ideal. If the dual space of a Banach space X has the K 4-AP, then X has the
IC(Aadj)duul'AP

Proof. Let us consider the ideal (Adiydual jnstead of A in Corollary 3.4. Then,
(Aadiydual js maximal and right-accessible by [3, Corollary 21.3], and

(((Aadj)dual)adj)dual = A.

Since A is surjective, by Corollary 3.4, if the dual space of a Banach space X has the
K 4-AP, then X has the /C( 4adoun-AP. U

In view of [18, Proposition 1.8], we see that 4 = K gsur (cf. [1]). Then, Corollary
3.5 can be reformulated as follows.

COROLLARY 3.6. Suppose that A is a maximal and right-accessible Banach operator
ideal. If the dual space of a Banach space X has the K 4-AP, then X has the IC( gsuryaiya-
AP

The notion of p-compactness was introduced by Sinha and Karn [24], which stems
from Grothendieck’s criterion [11] of compactness. For 1 < p < 0o, a subset K of X is
said to be p-compact if there exists (x,) € £,(X) such that

K € p-cox,) = | S et @) € By L

n=1

where [% + [% = 1 and ¢,(X) is the Banach space with the norm || - ||, of all X-valued
absolutely p-summable sequences. A linear map 7 : Y — X is said to be p-compact if
T(By) is a p-compact subset of X. Delgado, Pifieiro, and Serrano [5] defined a norm
on the space K,(Y, X) of all p-compact operators from Y to X. For T € IC,(Y, X)), let

Tk, := inf {[[(x)ll, : (xa) € £,(X) and T(By) C p-co(x,)}.

Then, [KC,, || - llx,] is a Banach operator ideal [6] and Ki, = I, [17].

For 1 < p < oo, the space £;(X), which is a closed subspace of the Banach space
€7 (X) with the norm || - ||/ of all X-valued weakly p-summable sequences, consists of
all sequences (x;,) satisfying that

€0, ..., 0, Xpy X1, - I, —> 0

as m — oo (cf. [3, Section 8.2] and [8,9]). In [13], the sequence was called the
unconditionally p-summable sequence, and the unconditionally p-compact (u-p-compact)
set and the u-p-compact operator were defined by replacing the space £,(X), in the
definition of p-compactness, by the space £,(X). The space of all u-p-compact operators
from Y to X is denoted by KC,,( Y, X) and a norm || - ||k, on Kyy(Y, X) was defined in
[13] by

1T, == inf {II(x)ll, : (x2) € €,(X) and T(By) C p-co(x,)}.
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Then, [Ky, || - Ik, ] is @ Banach operator ideal [13, Theorem 2.1] and &, = (LZ,‘,‘P“)S“r
[14, Proposition 3.1], where £+ is the ideal of p*-factorable operators.

A Banach operator ideal [ A, || - ||4] is said to be associated to a tensor norm « if the
canonical map (A(M, N), || - [l4) = M* ®, N is an isometry for all finite-dimensional
normed spaces M and N. We denote by /o and \«, respectively, the left-injective
associate and left-projective associate of o (see [3, Sections 20.6 and 20.7]).

For 1 < p < 00, let g, and d, be the Chevet-Saphar tensor norms (see [23, Section
6.2]). It was shown in [10, Theorem 3.3] that K, is associated with /d,. Consequently,
G 1s associated with /d, and so is surjective and totally accessible (see [3, Theorem
20.11(2), the symmetric version of Proposition 21.1(2), Proposition 21.3 and Theorem
21.5)).

For 1 < p < oo, it was shown in [12] that if the dual space X* of a Banach space
X has the K,,-AP, then X has the K,-AP, and if X* has the IC,-AP, then X has the
K.p-AP. In [15], it was shown that if X™* has the KC,;-AP, then X has the KC;-AP.

COROLLARY 3.7 ([18, Theorem 4.7]). If the dual space of a Banach space X has the
K1-AP, then X has the K,1-AP.

Proof. Consider the ideal K** in Corollary 3.5. Recall that d; = g;. Then, the
ideal

((’CrlrlaX)adj)dual
is associated with
(/&) =\g1 = \g| = &wo

(see [3, Proposition 20.14]). Since L, is associated with goo, ((KP*¥)adiydual — £
Hence, by Corollary 3.5, if the dual space of a Banach space X Ahas the IC;qnax-AP,
then X has the K -AP. The proof follows since Kjemas = ((KJ**)M)™ = (K1) =
’C}Cl = /Cl and ICLOO = ICul. O
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