
Can. J. Math., Vol. XXXV, No. 6, 1983, pp. 1030-1048 

CONCERNING THE CONE = HYPERSPACE 
PROPERTY 

DOROTHY D. SHERLING 

Introduction. In this paper it is shown that a sufficient condition for a 
continuum X to have the cone = hyperspace property is that there exists a 
selection for C(X)\{X} which, for some Whitney map for C(X), maps 
each nondegenerate Whitney level homeomorphically onto X. Also, we 
construct an example of a one-dimensional, nonchainable, noncircle-like 
continuum which has the cone = hyperspace property. The continuum is 
described by means of inverse limits using only one bonding map. Each 
factor space in the inverse limit sequence is the quotient space resulting 
from an upper semi-continuous decomposition of a disjoint union of 
simple triods. The bonding map is an adaptation of the bonding map 
defined by W. T. Ingram in his construction of an atriodic, tree-like 
continuum which is not chainable [4]. 

Definitions, notation, and terminology. By continuum we mean a 
nonempty, compact, connected metric space. If X is a continuum with 
metric d, the hyperspace of subcontinua C(X) is the space of all 
subcontinua of X metrized by the Hausdorff metric p, that is, 

p(A, B) = inf {€ > Q\A ç Nd(e9 B) and B Q Nd(e, A) }, 

where Nd(e9 A) is the set to which the point x belongs if and only if d(x, A ) 
< €. The subspace of C(X) consisting of the degenerate subcontinua of X 
is denoted by F\(X). 

The cone over X is the decomposition space of the upper semicontinuous 
decomposition of X X [0, 1] obtained by identifying XX {1} to a point. 
The cone over X is denoted by Cone (X), its base X X {0} by B(X), and 
its vertex XX {1} <E Cone (X) by v. We lctp\ be the projection mapping 
of Cone (Jf)\{v} onto X, and/?2 the projection mapping of Cone (X) onto 
[0, 1]. If X is a continuum such that Cone (X) is homeomorphic to C(X), 
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CONE = HYPERSPACE PROPERTY 1031 

then X is said to be a C-H continuum. A C-H continuum for which there 
exists a homeomorphism that maps v G Cone (X) to X e C(X) and also 
maps B(X) onto F\(X) is said to have the cone = hyper space property. 

The term mapping refers to continuous function. A Whitney map for 
C(X) is a mapping ix:C(X) —» [0, oo) satisfying the following: 

1) ju( {x} ) = 0 for each x G I , and 
2) ïfAÇ B, then /i(^) < JU(£). 

Suppose that A ,̂ A ,̂ . . . is a sequence of compact metric spaces each 
having diameter less than a fixed positive number K, and suppose that/]2 , 
f2

3, . . . is a sequence of mappings such that 

fn"
+]:Xn+l-^X„ for n = 1 , 2 , . . . . 

The inverse limit lim {A^,//4"1} of the inverse limit sequence {A„,/,/ '+1} 

is the subset of the product I I ^ i Xn to which (x\, x2y . . . ) belongs if 
and only if 

/ / + 1 ( * * + l) = *„ for « - 1, 2, 

We consider I I ^ i A^ metrized by 
oo 

d(x,y) = 2 2~ndn(xmy„)9 

where d„ denotes the metric on A^ for each positive integer n. For / = 1, 
2, . . . , let 77, be the zth-projection mapping of lim {Xm fn

n+]} into Xh 

that is, <r~ 

77,(0*1, x2, • . . , xh . . . ) ) = X; 
for each (xh x2, • • • ) e lim {Xmfn

fl+]}. 

For positive integers / < y, /J7 denotes the composite mapping 

w + l w + 2 w . v v 

y / J i+\- • -jj-\-Aj A» 

with composition of mappings denoted by juxtaposition. Thus if f\2, 
f2, . . . is a constant sequence, where fn

n + x = / f o r each positive integer n, 
then y?•=/•>-'•. 

\l f\X ^> y is a mapping of a continuum X into a continuum 7, then 
f:C(X) -» C(Y) defined b y / ( ^ ) - {/(Û)|Û e ^ }, for each A e C W , is 
the mapping induced by-/. 

In [19] J. Segal proved that the hyperspace operation C commutes with 
inverse limits. We state here a portion of this theorem as it is given in [12, 
1.169]. 
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T H E O R E M . Let X be a continuum and assume that 

X = Hm {*,„/," M } . 

where each of the spaces X„ is a continuum. Let 

CoJiX) = Hm {C(X„)J„"+l}. 
<— 

Then Ccyc{X) is homeomorphic to C(X). 

If M is a connected polyhedron, then a continuum X is said to be M-like 
provided that, for each e > 0, there exists an c-mapping from X onto M. In 
[6] Mardesic and Segal show that a continuum X is M-like if and only if X 
is homeomorphic to the inverse limit of an inverse limit sequence {Xfr 

/ ; / r + l } such that Xn = M a n d / „ " + l maps Xn + \ onto Xn for n = 1 , 2 
The term chainable is synonymous with arc-like. 

Selections and the cone = hyperspace property. In [7] E. Michael began 
the study of selections. The following definition of selection is restricted to 
the class of continua and is as stated by S. B. Nadler [12. Chapter V). 
Suppose that X is a cont inuum and I is a subset of the hyperspace C(X). 
A function / : F —> X is called a selection for T provided t h a t / is continuous 
and for each A e l\ f(A) e A. 

T H E O R E M 3.1. Suppose that v:C(X)\{X) —» X is a selection for 
C{X)\{X). If there exists a Whitney map fi:C(X) - » [0, \\for C(X) such 
that p\fji l(t) is a homeomorphism from JJL ](t) onto Xfor 0 ^ / < 1, then X 
has the cone = hyperspace property. 

Proof. Let h:C(X) —> Cone (X) be defined as follows: 

((HA),,(A)) itA+X 
I v if A = A. 

Clearly h is a function from C(X) into Cone (X) which is continuous on 
C(X)\{X} and satisfies h(X) = v. We wish to show that h is a 
homeomorphism from C(X) onto Cone (X), and furthermore, that h maps 
F{(X) onto B(X). 

To establish that the image under h of C(X) is Cone (X), let (x, /) G 
Cone (AT)\{v). Then 0 = / < 1, and so ^|/x_1(r) is a mapping of fi ](t) 
onto X. Hence there exists A <E J U _ 1 ( 7 ) such that v(A ) = JC; since t ^ 1, 
then /I T̂  X and thus 

A(^) = (HA), 11(A)) = (x, r). 

In order to prove that h is continuous at X, let A], A2, . . . be a sequence 
in C(X) converging to X. Since /x is continuous on C(X), the sequence 
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li{A\), ju(v42), • • . converges to 1, and hence h{A\), h(A2), . . . converges to v 
= h(X). Therefore h is a mapping from C(X) onto Cone (X). 

Suppose now that h (A) = h(B). In case h(A) = v = h(B), then we have 
that A = X = B. Assume then that h(A) ¥* v. This implies that v(A) = 
v(B) and p(A) = n(B)9 where 0 ^ ii(A) < 1. But v\\i~x(ii(A) ) is a 
homeomorphism and so A = B. Since the spaces are compact metric, this 
establishes that h is a homeomorphism from C(X) onto Cone (X). 

Now JU - 1 (0) = F}(X) and v\n~l(0) maps ^ ( X ) onto X, thus AIF^X) 
maps Fi(^) onto B(X). This concludes the proof that X has the cone = 
hyperspace property. 

A nonchainable, noncircle-like continuum with the cone = hyperspace 
property. In [15] J. T. Rogers proved that if X is a finite-dimensional 
continuum and has the cone = hyperspace property, then X is an arc, a 
circle, or an indecomposable continuum each nondegenerate proper 
subcontinuum of which is an arc. Subsequently, in [11] Nadler proved that 
if X is a finite dimensional, indecomposable C-H continuum, then every 
homeomorphism from the cone over X to the hyperspace C(X) must map 
the base B(X) onto F\(X) and map the vertex v t o l e C(X). Hence X has 
the cone = hyperspace property. As a result of the structure required of a 
finite-dimensional, indecomposable C-H continuum, Nadler asked the 
following question: "Must a finite-dimensional, indecomposable C-H 
continuum be chainable or circle-like?" [12, 8.14, p 310]. In this section we 
answer that question by constructing a finite-dimensional, indecomposa­
ble C-H continuum which is neither chainable nor circle-like. In [3] A. M. 
Dilks and J. T. Rogers prove that the plane continuum described by R. H. 
Bing in [1, p 222] answers this question. For completeness and notational 
convenience we include a description of the nonchainable, atriodic, 
tree-like continuum defined by Ingram in [4]. 

Example 4.1. (The mapping/and the continuum Y.) Let T denote the 
simple triod 

{ (r, 0)|O ^ r ^ 1 and 0 = 0, 0 = \TT, or 6 = 77} 

in polar coordinates in the plane. We denote by / the junction point (0, 0) 
= (0, » = (0, 77), by A the point (1, 577), by B the point (1, IT), and by C 
the point (1,0). IfO ë r ^ 1, we let rA be the point (r, \*n), while rB de­
notes (r, 77), and rC denotes (r, 0). Thus the triod T is the sum of the three 
arcs J A, JB, and JC, and the junction point J may also be denoted by 0A, 
0B, or OC. Let d\ be the metric on T defined as follows: 

If each of rxV\ and r2V2 belongs to T, where 0 ^ r,• ̂  1 and V, G 
{A, B, C} for i = 1, 2, then 
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diWu r2V2) {! l + r2 

if Vx = V2, 
otherwise. 

Thus T has diameter 2, and the distance between points in T measures the 
length of the shortest arc in T which contains those points. 

Define f:T —» T as follows: 

fix A) 

f(rB) = 

f(rC) 

(1 - Ar)B 
(4r - 1)^ 
(3 - 4r)A 
(4r - 3)C 

(1 - 3r)5 
(3r - \)A 
(2 - 3r)/4 
(3A- - 2)C 

'(1 - 2r)5 
.(2A- - 1)C 

f 0 S r g 1/4, 
f 1/4 i r ^ 1/2, 
f 1/2 â A- â 3/4, 
f 3 / 4 S r < i . 

f 0 ^ A- ^ 1/3, 
f 1/3 g A- â 1/2, 
f 1/2 g A- g 2/3, 
f 2/3 g A- g 1. 

f 0 ë A- g 1/2, 
f 1/2 g A- g 1. 

Figure 1 is a schematic representation of the mapping/. 

V2 A 

J&-AJ 

&2 

J&B 
MA. 

2às_ 
J4LC 

Figure 1 

For each positive integer n, put Tn = T andfn"
+] 

y = i im{r„ , / „ "+ '} , 

= /• Let 

and pi denote the metric on Y determined by d\. 

Example 4.2. (The mapping g and the continuum X) Let (T, d\) and/ : 7 
—> 7 be as defined in Example 4.1. We define an upper semi-continuous 
decomposition D of the disjoint union T X {1, 2} by listing the only 
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nondegenerate elements of D:{ (A, 1), (A, 2) }, { (B, 1), (B, 2) }, { (C, 1), 
(C, 2) }, { (J, 1), (/, 2) }, and { {\A, 1), ({A, 2) }. Let R be the equivalence 
relation for the decomposition D. Put S = [T X {1,2} ]/# and let ^ X 
{1, 2} —» S be the quotient map. 

If F G {A, B9 C, / , M ) , we shall denote the element \ft{(V, 1), (K, 
2) } ] in S by K; for F e r \ { ^ , 5, C, / , M }, we shall write (K, /) for 
the element \p( { (F, /) } ), / = 1, 2. We consider S = U/==1 Z,-, where Z, 
is given as follows: 

Z, = xP[JB X {1} ], Z2 = fl/J3 X {2} ], 
Z3 = fl/^ X {1} ], Z4 = tf/^ X {2} ], 
Z5 = MAA X {1} ], Z6 = ^ ^ X {2} ], 
Z7 = *[/C X {1}] ,Z 8 = fl/C X {2}]. 

Refer to Figure 2 for a diagram of the continuum S. 

Figure 2 
Suppose that M is a subcontinuum of S. Then for 1 ^ / i 8, M O Zz 

has at most two components. By considering t//_1[int Z,] as an arc in T7, 
where int Z, denotes the interior of the arc Zh let l(M n Z,) equal the sum 
of the diameters of the components of \p~][M n int Z,], where l(M n 
Z7) = 0 if M does not intersect Zz. Denote by d the metric on S 

determined as follows: if each of x and y belongs to S, then 
8 

d(x, y) = inf { 2 l(M n Zt)\M e C(S) and Af contains JC and y}. 

We have that the distance between two points of S coincides with the 
length of a shortest arc in S which contains them, and the diameter of S 
is 2. 

https://doi.org/10.4153/CJM-1983-057-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-057-3


1036 DOROTHY D. SHERLING 

G{(rA,i)) = 

We now define a relation G on [T X {1, 2} ] X [T X {1, 2} ] which will 
induce a mapping g:S —> 5. The relation G is given as follows: 

<J{rA),i) if 0 ^ r ^ 1/4, 
3/8 ^ r ^ 1/2, or 
5/8 ^ r ^ 3/4, 

(J(rA)J) where y G {1, 2},y * z, 
if 1/4 g r g 3/8, 

1/2 â r ^ 5/8, or 

3/4 ^ r ^ 1. 

{f(rB\ i) if 0 S r ^ 1/3 or, 
1/2 â r g 2/3, 

(f(rB)J) where/ G {1,2},./ * i, 
if 1/3 ^ r g 1/2 or 
2/3 S r ^ 1. 

G( ( / * , / ) ) 

G( (rC, /) ) = 
( / ( rC) , î ) i f O ^ r ^ 1/2, 
(J(rC)J) wherey e {1, 2},y # /, 

if 1/2 ^ r g 1. 

Suppose that s ^ S such that ^ e { ^ J , C , / , U } , then \p (s) is a 
nondegenerate element of Z), say vp-1(s) = { (x, 1), (x, 2) }, a n d / ( x ) G 
{,4, £, C}. Thus each of ( (x, 1), ( / (*) , 1) ), ( (x, 1), ( / (x) , 2) ), ( (x, 2), 
( / (*) , 1)), and ((x, 2), ( / (x) , 2)) belongs to G. But f(x) G ( A £, C} 
implies that 

* ( ( / ( * ) , 1)) = *( ( / (*) , 2)); 

consequently, ipG^"1^) denotes exactly one element of S. In case s G 
S \{4 , 5, C, / , M }, say j = (x, /), and each of ( (x, /), ( / (x) , 1) ), and ( (x, 
/), ( / (JC), 2) ) belongs to G, then / (x) G {/, M }, and hence 

* ( ( / ( * ) , 1)) = i/< ( / (*) , 2)). 

So again ^ G ^ " 1 ^ ) denotes exactly one element of S. Thus g:S —> 5* 
defined by g(s) = ^G^ -"1^) f° r e a c r i •? G S 1S a piecewise linear mapping 
from S onto S. Figure 3 provides schematic representations of the 
mappings g|Z, for each integer 1 i / â 8. By superimposing the eight 
representations in Figure 3, we obtain the schematic of the mapping g 
given in Figure 4. 

For each positive integer n, put Sn = S and g„' /+1 

lim{S„, g„"+]}. 

g. Let 

X 
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Figure 3 

We denote by p the metric on X determined by d\ the diameter of X does 
not exceed 2. 

Throughout the remainder of this paper Y and X will denote the 
continua as defined in Examples 4.1 and 4.2, respectively. 

In [4, Theorem 1] it is proved that every nondegenerate, proper 
subcontinuum of Y is chainable. The proof of the following theorem is 
similar. 

THEOREM 4.3. Every nondegenerate, proper subcontinuum of X is an 
arc. 

Proof. Suppose that a is a nondegenerate, proper subcontinuum of X. 
Let N denote a positive integer such that if m is an integer and m i? N, 
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Figure 4 

then the projection iTm[a\ is a proper subcontinuum of Sm. Suppose, by 
way of contradiction, that there exist infinitely many integers / for which J 
e iT[[a]. Select positive integers y and k such that j ^ N + 3, k ^ j + 2, 
J <= 7Ty[a], and / G ^ [ a ] . If « ^ 2, then g"(7) = C. Thus 

contains {/, C) as a subset, is a subcontinuum of Sy, and contains at 
least one of Z7 or Z8 as a subset. Suppose that Z7 c g*[77^[a] ], then 

« f - i h W l 3 Z , U Z8, g*_2fo[a]] 3 5 \ (Z 5 U Z6), 

and hence 

gj-A^kWW = s-
But j — 3 ^ N, and hence gj^3[irk[a] ] = 7r7-3[a] is a proper subcon­
tinuum of S)_3, a contradiction. Similarly, if Zg c g7[7r^[a] ], then 

w/-3[«] = S/_3. 
Therefore, there exists a positive integer N\ such that if m is an integer and 
rn =^ N], then irm[a] does not contain J. We now consider two cases. 

Case 1. Suppose that there exist infinitely many integers i for which C 
e 7Tj[a]. Since C is a fixed point of the mapping g, it follows that C e 
TTJ[CL] for each positive integer j . Thus ^ , [«1 is an arc containing C and 
contained in (Z7 U Z 8 ) \ { / } , and moreover, if m > Ar

1, then gkw[a] is a 
linear mapping of arcs in (Z7 U Z 8 ) \ { / } . Hence ex is homeomorphic to 

l imK,[a] ,g , /<+V,,+.[«] ,« ^ JVi}; 

so « is an arc. 

https://doi.org/10.4153/CJM-1983-057-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-057-3


C O N E = HYPERSPACE P R O P E R T Y 1039 

Case 2. Suppose that there exists an integer N2 = N\ such that if m is an 
integer and m ^ N2, then 7Tm[a] does not contain C. Now 

g- ] (C) = {J, £, C}, ( g " 1 ) 2 ^ ) = {A, B, C,y, M } , and 
(g- !)3(C) = M, 5, C,J,IA) 
U { (/v4, /)|r = 1/4, 3/8, 5/8, or 3/4, and / = 1, 2} 
U { r£, /)|r = 1/3, 1/2, or 2/3, and i = 1, 2} 

u { G C 01/ = 1,2}. 

Thus if k is an integer greater than N2 + 3, then 

**[«] c S\(g_ 1)3(C). 

From the definition of g, we have that the mapping g restricted to a 
component of 5 \ (g _ l ) 3 (C) is a linear mapping. Whence gk^[a] is a 
homeomorphism of an arc in S\(g~~])3(C) to an arc in S\(g~~])3(C). 
Therefore, as in Case 1, we have that a is homeomorphic to an inverse 
limit on arcs having linear bonding maps, and so a is an arc. This 
concludes the proof of Theorem 4.3. 

The next portion of this section is concerned with proving that X has the 
cone = hyperspace property. Ultimately, this will be accomplished by 
defining a selection v for C(X)\{X) and a Whitney map \x for C(X) which 
satisfy the hypothesis of Theorem 3.1. However, some additional notation 
and terminology must first be introduced. 

Let 7} denote the Hausdorff metric on C(S), where S is the 
decomposition space with metric d defined in Example 4.2. We define a 
function X:C(S) —> [0, 6] as follows: for each element M e C(S), let 

8 

X(M) = 2 /(M n Z,), 
z = l 

where 1{M n Zz) is also defined in Example 4.2. 

LEMMA 4.4. The function X:C(S) —» [0, 6] is a Whitney map for C(S). 

Proof For each x e S, 
8 

M { * } ) = 2 / ({*} n Zy), and 

/( {x} n Zi) = 0 for each 1 ^ / ^ 8. 

Thus X( {x} ) = 0. If each of M and N belongs to C(S) and TV is a proper 
subset of M, then TV n Z^ is a proper subset of M n Z^ for some \ ^ k ^ 
8, and hence l(N n Zk) < l(M n Zk). If i ¥= k and 1 â / S 8, then /(TV n 
Z,) g /(M n Z/). Thus X(N) < À(M). Clearly 
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8 

MS) = 2 l(Zt) = 6. 

To see that X is continuous, let M e C(S) and e > 0. Let 0 < 8 < e/16. 
Suppose that V <= C(S) with TJ(F, M) < <5, then 

À^(ô, M) D F and A (̂<5, K) z> M. 

If 1 ^ / ê 8, then 

/(K n Z,) < /(M n Zz) 4- 2S < /(M n Z,-) + c/8. 

Thus 
8 8 

X(V) = 2 / ( ^ n Zz) < 2 [/(M n Z/) + c/8] = X(M) + €. 

Similarly, X(M) < X(V) + c, and hence |X(M) - X(F)| < c. This 
completes the proof that X is a Whitney map for C(S). 

We denote by H the metric on 

Coo(^) = Hm{C(S„),g„"+ l} 

determined by 17; that is, if each of a and fi is an element of C^X), 
then 

00 

#(«,j8) = 2 2 " ^ ( a ) , 77,08)). 

Considering the nature of the homeomorphism from C^Z) to C(Z) given 
in the proof of [12, 1.169], where Z denotes any continuum which is the 
inverse limit of an inverse limit sequence, we shall consider C^X) as 
being identical with C(X). Thus for a e C(X), we denote TTn(a) by am for 
each positive integer «, and we write a = (aj, a2> • • • ) o r 

a = l im {am gn
n |acw + 1> 

when considering a as a point of C(X) or a subcontinuum of X, 
respectively. 

We are now ready to define the function v:C(X)\{X) —» X and prove 
that v is a selection for C(X)\{X). Recall from the proof of Theorem 4.3 
that if a is a nondegenerate, proper subcontinuum of X, then there exists a 
positive integer, denoted here by N, such that if m ^ N, then am c S\{>4, 
,6, J, 5,4} and g m

m + 1 | « m + i is linear, hence midpoint preserving. Thus 
there exists exactly one point of a, which we denote by v(a), such that for 
each m i^ JV, irm(y{a) ) is the midpoint of the arc am. I f a £ ^ i (^ ) , say a 
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= {x } for some x G X, then we put v(a) = x. Thus v is a function from 
C(X)\{X} onto X. 

THEOREM 4.5. The function v:C(X)\{X} —» X is a selection for 
C(X)\{X}. 

Proof Clearly p(a) G a for each a G C(X)\{JQ. Hence we need only to 
show that v is continuous. Suppose that a G C(X)\{X} and e > 0. Since 
the projection mappings irn'.X —» S„ are 2~("~^-mappings, there exists a 
positive integer N' and a positive sequence §#>, ôyy+1, • . . such that if m ^ 
A/' and each of x = (xj, x2, . . . ) and y = (yb y2, . . . ) belongs to X with 
f/(xwl, j>w) < 8m, then p(x, 7) < e. Let A/ be a positive integer such that N 
^ Af and if m ^ TV, then 

PutO <8 <8N such that 28 < X(aN) and if A' G C(5) with TJ(K, a^) < S, 
then Â  is a subset of the component of S\{^4, B, / , {A } containing aN. 
Thus for K G C(S) with TJ(#, a^) < 8, it follows that the midpoint of the 
arc K is within a distance 8 of the midpoint of the arc aN. Since the 
projection 77̂  is a mapping, there exists 80 > 0 such that if /? G 
C(X)\{Jr} and / /(a, 0) < 80, then Tj(a#, £#) < 8. Denote *>(<*) by (x b 

x2, . . . ) and *>(/?) by (yb j2» • • •)• Since each of aN and fiN is a subset of 
S\{v4, B, J, {A} then xN and >># are the midpoints of aN and /?#, 
respectively. Thus d(xN, yN) < 8 < 8N, and hence 

p(K«), K£) ) < €. 
This concludes the proof that v:C(X)\{X} —> X is a selection for 
C ( * ) \ { * } . 

We now define a function A:C(X)\{^} —> [0, +00) which we shall use 
to define a Whitney map /x on C(X). Let 

A:C(X)\{X} -> [0, + 00) 

be given by 
CO 

A(a) = 2 X(«/) for each a in C(X)\{X}. 
/ - I 

LEMMA 4.6. The function A:C(X)\{X] —* [0, + 00) Z'S continuous. 

Proof Suppose that a G C ( I ) \ { I } . We wish to show that 
2 / ^ i Ma/) converges. If a G ^ ( X ) , then a, is degenerate and so A(a,) = 
0. Thus 

CO 

2 A(«,) = 0. 
1 = 1 
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Suppose that a is nondegenerate. From the definition of X, we have that 0 
^ X(at) ^ 6 for each positive integer /'. There exists a positive integer N 
such that if m ^ N, then am c S\{A, B, 7, \A} and g m

m + 1 | « m + 1 is a 
linear mapping; moreover, from the definition of the mapping g, we have 
that 

A(aw+1) ^ [X(am) ]/2 for each m — TV. 

oo 

Therefore 2 Mai) converges. 
1 = 1 

To establish that A is continuous at a, let e > 0. Since each of X and g is 
uniformly continuous, then there exists a positive sequence 8j, 52, . . . 
satisfying the following conditions: 

1) if / is a positive integer and each of M and V belongs to C(S) with 
TJ(M, V) < 8h then 

\X(M) - A(F)| < € /2 / + 1 . 

2) if / is an integer, / i? 2, and each of M and V belongs to C(S) with 
TJ(M, F) < 8f., then 

rKg"(M), g"(K) ) < «,-_„ for \ ^ n ^ i - 1. 

Let /* be a positive integer such that if m = r, then 

aw c S\{A, B, J, U } and \(am) < e/2. 

Put 0 < 8 < 8r such that if A' G C(S) and i\{K, ar) < 8, then 

Since <nr is continuous, there exists a positive number ô0 such that if /? G 
C ( * ) \ { * } and # ( a , /?) < S0, then i\(an &) < 8. 

Now 
oo oo 

\A(a)- A(/8)| = 12 X(«;) - 2 X(A-)I 

^ ( S |A(a,) - X(j8,.)|) + |\(ar) - \(fir)\ 

+ ( 2 |A(«,) - A(A)l). 

Since rj(ar, /?r) < ô < ô,., then from (1) we have that 

\X(ar) - \(/3r)\ < € / 2 ' + 1 . 

https://doi.org/10.4153/CJM-1983-057-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-057-3


CONE = HYPERSPACE PROPERTY 1043 

If 1 S w â r - 1, then from (2), 

But gT(ar) = ar_H and g"(j8,) = A - , - Thus 

•»ï(«r-/i, & - « ) < 8r-m 

and hence from (1), 

|X(ar_„) - X(A-„)I < € / 2 ' " " + l . 

So we have that 
/• oo 

|A(a) ~ A(j8)| < 2 c /2 / + l + 2 |X(a.) - X(ft)| 

oo 

= 6/2 - £/2'-+1 + 2 |X(«/) - X(A)I-

By the nature of the bonding map g and the choice of the integer r, for 
each integer j i^ 1, we have that 

0 ^ Mor+j) ^ A(a,)/2> < £/2/ + 1. 

Since i7(ar, /?r) < ô < ô,., then 

0 g X(j8r+y) ^ A(y8/.)/2
/ < (c/2 + c/2/"f ,)/2Â 

Hence 

|A(ar+7) - X(j8r+/)| < (c/2 + £/2'-+1)/2y. 

Consequently, 
CO CO-

2 |A(a,) - A(/3,)| < 2 (e/2 + e/2' + l) /2 ' = c/2 + e /2 r + I . 
/ = r f 1 /' = 1 

Thus 

|A(a) - A(j8)| < (6/2 - e/2''+I) + (6/2 + c/2 r+1) = 6, 

and hence 

A:C(X)\{X) -» [0, +oo) 

is continuous. This concludes the proof of Lemma 4.6. 

Let T:[0, -foo) —» [0, 1) be a homeomorphism, and define /x by TA U 
{ ( x i ) } . 

THEOREM 4.7. 7%e function n:C(X) —> [0, 1] « a Whitney map for 
C(X). 
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Proof. The proof follows immediately from Lemmas 4.4 and 4.6, and the 
definition of /x. 

Having now defined a selection v for C(X)\{X] and a Whitney map \x 
for C{X) with \i(X) = 1, we need only to prove that v\\x~x(t) is a 
homeomorphism from / i _ 1 (0 o n t o ^ f o r 0 = t < 1 in order to establish 
that X has the cone = hyperspace property. 

THEOREM 4.8. The selection v\fi~\t) is homeomorphism from \i~ (t) onto 
XforO g / < 1. 

Proof Clearly, if / = 0, then v\ii~\t) is homeomorphism from /x_1(0) = 
F\(X) onto X. Suppose then that 0 < t < 1. We first show that p\fi~ ](t) is 
a mapping from n~\t) onto X, that is if x e X, then there exists a e 
[i~ \t) such that *>(a) = x. To establish the existence of such an a, we first 
prove the following: 

1) if x e X and a > 0, then there exists y e C(X) such that v(y) = x 
and A(À) > a. 

We denote x e X by (xh x2, . . . ) and let k be an integer such that 6k > 
a. We consider two cases. 

Case 1. Suppose that Xj £ Z7 U Z8 for infinitely many integers j . Then 
there exists a positive integer TV such that if m i^ N, then 

xm G s \ {^ , £, c , / , M}. 

We choose integers r and s so that 

r ^ max {k + 3, N), J ^ r 4- 2, and xr £ Z7 U Z8. 

Thus *5 e int Z^ for some integer I ^ q ^ S. Denote by ŷ  the maximal 
arc in Zq having midpoint xs. Then ys n {A, B, C, / , ^4} is nonempty, 
and hence g2[ys] contains C. Since C is a fixed point of the mapping g, 
then for n = 2, g"[yj contains C. Consequently, gs~r[ys] is a 
subcontinuum of S containing both C and a point not in Z7 U Z8, namely 
x,., and hence 

gs~r+3[ys) = s. 

For each positive integer j < s, put yy = g5~ ;[yj . Now again we make use 
of the fact that the mapping g restricted to a component of g~] [S\{A, B, 
J, \A } ] is linear; for each positive integer n, let ys + n be the closure of the 
component of g~'[int ys + n^]] which contains xs + n. Then xs + n is the 
midpoint of the arc ys + m and for n ^ 2, ys + n does not intersect {A, B, J, 
\A }. Thus if y = (yb y2, . . . ), then y G C(X) \{*} and KY) = *. 
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Sinceg"_ , J+3[yJ - S, then 

Yr-3 = g'rslTs] = S. 

But r - 3 § A: and X(S) = 6, so 
oo A co 

A(y) = 2 A(7/) = 2 A(Y/) + 2 MY.) 
/ = 1 7 = 1 / = A + 1 

CO 

= 6k + 2 A(Y/) > cr. 
, = A + 1 

Case 2. Suppose that there exists a positive integer TV' such that if m is 
an integer and m ^ N\ then .Y,,, G Z7 U Z8. This supposition and the 
definition of the mapping g imply that there exists an integer N ^ N' such 
that d(Xj, C) < 1/2 for each integer y = N. 

We put r = max {k -f 4, N}< and let yA. be an arc in Z7 U Z%\{J] such 
that xr is the midpoint of yn C e yn and y7. Pi { (|C, 1), (jC, 2) } is 
nonempty. Then y,. does not intersect {A, B, / , {A } and ghv] must con­
tain one of Z7 or Z s as a subset. Hence g4[y,] = 5. For each positive 
integer j such that y < i\ we put y;- = g'~y[7,]. From the definition of the 
mapping g, we have that the component of g~][ (Z7 U Z8) \{7} ] which 
contains C is mapped linearly by g onto (Z7 U Z 8 ) \ { / } . Thus for each 
positive integer n, we denote by yr + n the component of g~][yr+n-\] which 
contains xr+n] clearly xr+n is the midpoint of yr+n. Hence if y = (yi, 
72, • • • ), then 7 <= C(A )\{X) and K7) = x. 

Now 
00 A 00 

A(7) = 2 X(Y/) = 2 A(7/) + 2 X(Y/). 
/ = ! / - l / = A + 1 

Since 7,._4 = gJ.-4[7, ] = g4[7, ] = 5, r — 4 ^ /:, and X(S) = 6, it follows 
that 

A 00 00 

2 MY,-) + 2 MY/) = 6A- + 2 MY,) > *• 
/ = 1 i=k+\ i=k+\ 

This establishes statement (1). 
Thus for 0 < t < 1 and x e \\ we have that r _ , ( 0 > 0, and hence 

there exists 7 — (71, y2, . . . ), belonging to C(Ar)\{Ar} such that 

v(y) = x and A(y) > T _ 1 (0-

But A(y) > r _ 1 ( / ) implies that ^i(y) > t\ thus 7 is an arc in X such that 
v(y) = x and 7 is "above" the Whitney level \x~\t). 
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Let N be a positive integer such that if m is an integer and m â N, then 
ym c £\{v4, B, J, \A }. Hence xm is the midpoint of ym for each m ^ TV. 
Consider C(yz) as a subset of C(Sj) for i = 1 ,2 , . . . . For each integer m â 
TV, let 

Um = {V e C(ym)| F = {xm} or xw is the midpoint of V. 

Thus Um is an order arc in C(ym) from {;cm} to ym; we refer the reader to 
[12, Chapter I, Section A] for a discussion of order arcs in the hyperspaces 
of sets. Since g\ym+\ is linear, thus midpoint preserving, then g\Um+\ is a 
homeomorphism from the arc Um+\ onto the arc Um. If j is an integer such 
that 1 ^ j < N, let 

Uj = gN-J[UN]; 

thus Uj is a subcontinuum of C(Sj). Put 

l / = lim{£/„,g„" + l | ! /„+,}. 

Then U is a subcontinuum of C(X) which is homeomorphic to 

\im{Un/g/+]\ Un+Un ^7V} , 

so U is an order arc in C(X) from {x} to y, and U c ^" ' [x] . Now /x[£/] = 
[0, ju(y) ] and /x(y) > /, thus there exists a e £/ such that jti(a) = /. 
Therefore v\ix~\t) maps JU _ 1 ( / ) onto X. 

We wish to show that J>|/A_1(/) is one-to-one. Suppose that v(a) = *>(/?) 
for a, /? e ju_ ^f ). Denote *>(a) by (jq, ^ . . . ). Then there exists a positive 
integer K such that if m is an integer and m ê Ky then ;cm is the midpoint 
of each am and fim. Thus for m ^ AT, we have that am c /?w or fim c aw, 
and hence a c /? or fi c a. Since ju,(a) = f = K/?), this implies that a = ft. 
This concludes the proof of Theorem 4.8, and thus establishes that X has 
the cone = hyperspace property. 

The final portion of this section is concerned with proving that the 
continuum X is neither chainable nor circle-like. 

In [9] T. A. Moebes proved that Y is not weakly chainable, that is, Y is 
not the continuous image of a chainable continuum. Next, we define a 
mapping $ from X onto Y thus establishing that X is not chainable, in fact 
not weakly chainable. We subsequently use the mapping $ in proving that 
X is not circle-like. 

Letp:T X {1, 2} —> Tdenote the projection mapping. For each element 
s e S, put k(s) = p[\p~l(s) ], where \p:T X {1, 2} —* S is the quotient map 
as defined in Example 4.2. Thus k:S —> Tcollapses S onto Tin the natural 
manner. From the definition of the mapping g, we have that kg = fk, and 
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thus inductively, kg" = fnk for each positive integer n. If x = (x\, x2,. . . ) 
belongs to X, let 

$(*) = (k(xx), k(x2), . . . ). 

Clearly <£ is a well-defined function on X. Furthermore, if n is a positive 
integer, then 

fnn+\k(xn + 0) = k(gn"
 + \xn+l)) = k(xn), 

and thus $(x) e 7. It follows immediately that $ is continuous and maps 
X onto 7. 

THEOREM 4.9. 77ze continuum X is neither chainable nor circle-like. 

Proof. As previously mentioned, since 7 is not weakly chainable and $ 
is a mapping from X onto 7, then X is not chainable, in fact X is not 
weakly chainable. 

Suppose, by way of contradiction, that X is circle-like. Then X is 
homeomorphic to the inverse limit of an inverse limit sequence in which 
each factor space is the unit circle S1. From [8, Theorem 3], if ex > 0, then 
there exists a positive integer n and mappings y.S —> Sl and fi:Sl —> S 
such that 

d(g"(z), Py(z) ) < ex for each z e S. 

Let r:T —> Z\ U Z3 U Z5 U Z7 denote the embedding such that kr is 
the identity mapping on T. Then for each x e T, we have that 

/ " ( * ) = % " T ( X ) ; 

also, if each of y and z belongs to S, then 

dx(k(y),k(z)) â </(j,z). 

Hence 

J , ( /" (x) , /c/?yr(x)) = rf,(fcg"^), ^ y r ( x ) ) 

and 

dx{k{gnT(x) ), *(j8yT<x) ) ) ^ rf(gM*), £^ (* ) )• 

But 

d{g"(z), 0y(z) ) < €} for each z e S, 

thus 

dxif"(x), kf3yr(x) ) < c, for each x G T. 
50 for each q > 0, there exists a positive integer A? and mappings yr: T —> 
51 and ^ S 1 -> 7 such that 

dx{fn(x\ kf3yr(x) ) < ex for each i e T. 
Let € > 0. There exists a positive integer N and a positive sequence SN, 

SN+h 8N + 2I - • • s u c n t n a t if m = ^ a n ( l e a c n of A; = (xj , ̂ 2, -X3. . . . ) and y 
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= (yu J>2, y^- • • ) belongs to Y with </,(*,„, >',„) < Sm, then p,(x, >>) < e 
and 77-m:y —> r m is an €-rnapping. As established above, there exists a 
positive integer n and mappings y, T, A-, and /? such that 

di(fn(x), fcj8yr(jc) ) < 8N/2 for each JC e 7. 
Thus the mapping yrirN + n is an €-mapping from Y to S1. Since F is not 
chainable, this implies that Y is circle-like. However, in [2] C. E. Burgess 
proved that a continuum which is both tree-like and circle-like is 
chainable. This is a contradiction, since Y is tree-like but not chainable. 
Therefore X is not circle-like. 
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