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Abstract
Copula is one of the widely used techniques to describe the dependency structure between components of a system.
Among all existing copulas, the family of Archimedean copulas is the popular one due to its wide range of capturing
the dependency structures. In this paper, we consider the systems that are formed by dependent and identically
distributed components, where the dependency structures are described by Archimedean copulas. We study some
stochastic comparisons results for series, parallel, and general 𝑟-out-of-𝑛 systems. Furthermore, we investigate
whether a system of used components performs better than a used system with respect to different stochastic orders.
Furthermore, some aging properties of these systems have been studied. Finally, some numerical examples are
given to illustrate the proposed results.

1. Introduction

Modern industries use different kinds of systems which are not only costly but also very complex in
nature. The failure of such a system may cause catastrophic damage to the concerned industry. If there
are more than one systems of similar types available (which is often the case), then the key question
is: how to choose the best one among them, keeping in mind that the lifetime of a system is a random
quantity? Stochastic orders are often used as an effective solution to this problem. Another important
problem related to the system reliability is: how to analyze the lifetime behavior of a system which has
already been operated over a period of time? The notion of stochastic agings can be used to address this
problem.

Most of the real-life systems are structurally the same as the coherent systems defined in reliability
theory (see [5] for the definition). An 𝑟-out-of-𝑛 system is a special type of coherent system. A system of
𝑛 components is said to be the 𝑟-out-of-𝑛 system if it functions as long as at least 𝑟 of its 𝑛 components
function. Again, two special cases of 𝑟-out-of-𝑛 systems are 1-out-of-𝑛 system (parallel system) and
𝑛-out-of-𝑛 system (series system). It is worthwhile to mention here that the lifetime of an 𝑟-out-of-𝑛
system can be represented by the (𝑛− 𝑟 + 1)th order statistic (of lifetimes of 𝑛 components). This means
that the study of an 𝑟-out-of-𝑛 system is the same as the study of the (𝑛 − 𝑟 + 1)th order statistic of
nonnegative random variables.

The study of stochastic comparisons of coherent systems is considered as one of the important
problems in reliability theory. Among all, Pledger and Proschan [43], to the best of our knowl-
edge, are the first who studied stochastic comparisons of two 𝑟-out-of-𝑛 systems with heterogeneous
components. Different variations of this problem were further studied by numerous researchers (see
[2,6,10,12,22,23,25,45,46,50,51], to name a few). Stochastic comparisons of coherent systems with
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independent and nonidentically distributed components were considered in [8,9,34]. Furthermore, the
same problem for coherent systems with dependent components was studied by Navarro [35], Navarro
et al. [38,40,41], Navarro and Rubio [37], Amini-Seresht et al. [1], Hazra and Finkelstein [18], Navarro
and Mulero [36], Kelkinnama and Asadi [24], and Hazra and Misra [19,20]. Recently, Li and Fang [30]
studied ordering properties of order statistics where the dependency structure between random vari-
ables was described by an Archimedean copula. They have considered the order statistics from a single
sample. Later, this problem for two samples under a specific semi-parametric model was considered
by numerous researchers (see [7,14,32], and the references therein). In all these studies, it is assumed
that the lifetimes of the components of a system either have a specific distribution (namely, exponential,
Weibull, Gamma, etc.) or follow a semi-parametric model (namely, proportional hazard rate model,
scale model, proportional odds model, etc.). To the best of our knowledge, no study has been carried out
for general systems (namely, 𝑟-out-of-𝑛 system, etc.) with components’ lifetimes having arbitrary dis-
tributions (i.e., without any specific distribution/semi-parametric model). Thus, in this paper, we study
some stochastic comparisons results for series, parallel, and general 𝑟-out-of-𝑛 systems with arbitrary
components’ lifetimes.

The systems that are used in real life are mostly composed either by new components or by used
components. Consider two systems, namely, a used system and a system of used components (see the
definitions in Subsection 3.2). An important research problem in this context is whether a system of
used components has larger lifetime than a used system in some stochastic sense. This problem was first
considered in [32]. Later, many other researchers (namely, [16,17,21], and the references therein) have
shown their interest to study this problem. Although there is a vast literature on this topic, no research
has been carried out for the systems with dependent components governed by the Archimedean copula.
Thus, another goal of this paper is to study the aforementioned problem for the systems with d.i.d.
components governed by the Archimedean copula.

The study of stochastic agings is another important problem in reliability theory. Closure properties
of various aging classes (namely, IFR, DFR, IFRA, DRFR, etc.) under the formation of coherent
systems with independent components were studied by Esary and Proschan [13], Barlow and Proschan
[5], Sengupta and Nanda [48], Franco et al. [15], Lai and Xie [29], and others. The same problem for
coherent systems with dependent components was considered in [36,39]. However, the study of aging
properties of coherent systems (especially, 𝑟-out-of-𝑛 systems) with dependent components governed
by the Archimedean copula has not yet been considered in the literature. In this paper, we focus to
study the closure properties of different aging classes under the formation of 𝑟-out-of-𝑛 systems with
dependent and identically distributed components, where the dependency structures are described by
Archimedean copulas.

The rest of the paper is organized as follows. In Section 2, we discuss some useful concepts and
introduce some notations and definitions. In Section 3, we discuss the main results of this paper. To
be more specific, in Subsection 3.1, we give some stochastic comparisons results for series, parallel,
and general 𝑟-out-of-𝑛 systems. In Subsection 3.2, we investigate whether a system of used components
performs better than a used system with respect to different stochastic orders. Different aging properties
of series, parallel, and general 𝑟-out-of-𝑛 systems are discussed in Subsection 3.3. Furthermore, in
Section 4, we give some numerical examples. Finally, the concluding remarks are given in Section 5.

All proofs of theorems, wherever given, are deferred to the Appendix.

2. Preliminaries

For an absolutely continuous random variable 𝑍 , we denote the probability density function (pdf) by
𝑓𝑍 (·), the cumulative distribution function (cdf) by 𝐹𝑍 (·), the reliability/survival function (sf) by 𝐹̄𝑍 (·),
the hazard/failure rate function by 𝑟𝑍 (·), and the reverse hazard/failure rate function by 𝑟𝑍 (·); here
𝐹̄𝑍 (·) ≡ 1 − 𝐹𝑍 (·), 𝑟𝑍 (·) = 𝑓𝑍 (·)/𝐹̄𝑍 (·), and 𝑟𝑍 (·) = 𝑓𝑍 (·)/𝐹𝑍 (·).

Copula is a very useful notion in describing the dependency structure between components of a
random vector. It builds a bridge between a multivariate distribution function and its corresponding
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one-dimensional marginal distribution functions. The joint cdf of a random vector 𝑿 = (𝑋1, 𝑋2, . . . , 𝑋𝑛)

can be written, in terms of a copula, as

𝐹𝑿 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑃(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2, . . . , 𝑋𝑛 ≤ 𝑥𝑛)

= 𝐶 (𝐹𝑋1 (𝑥1), 𝐹𝑋2 (𝑥2), . . . , 𝐹𝑋𝑛
(𝑥𝑛)),

where 𝐶 (·) is a copula. Similarly, the joint reliability function of 𝑿 can be represented as

𝐹̄𝑿 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑃(𝑋1 > 𝑥1, 𝑋2 > 𝑥2, . . . , 𝑋𝑛 > 𝑥𝑛)

= 𝐶̄ (𝐹̄𝑋1 (𝑥1), 𝐹̄𝑋2 (𝑥2), . . . , 𝐹̄𝑋𝑛
(𝑥𝑛)),

where 𝐶̄ (·) is a survival copula. In the literature, different types of survival copulas have been introduced
to describe different dependency structures between components of a random vector. The commonly
used copulas are the Farlie–Gumbel–Morgenstern (FGM) copula, the extreme-value copulas, the family
of Archimedean copulas, the Clayton–Oakes (CO) copula, etc. Among all these copulas, the family of
Archimedean copulas is the one that has paid more attention from the researchers due to its wide range
of capturing the dependency structures. Moreover, these are mathematically tractable, and there is a
large number of results available in the literature which can be used on a ready-made basis in different
problems. More information on this topic could be found in the monograph written by Nelsen [42]. In
what follows, we give the definition of the Archimedean copula (see [33]).

Definition 2.1. Let 𝜙 : [0, +∞] −→ [0, 1] be a decreasing continuous function such that 𝜙(0) = 1 and
𝜙(+∞) = 0, and let 𝜓 ≡ 𝜙−1 be the pseudo-inverse of 𝜙. Then,

𝐶 (𝑢1, 𝑢2, . . . , 𝑢𝑛) = 𝜙 (𝜓(𝑢1) + 𝜓(𝑢2) + · · · + 𝜓(𝑢𝑛)) , for (𝑢1, 𝑢2, . . . , 𝑢𝑛) ∈ [0, 1]𝑛, (2.1)

is called the Archimedean copula with generator 𝜙 if (−1)𝑘𝜙 (𝑘) (𝑥) ≥ 0, for 𝑘 = 0, 1, . . . , 𝑛 − 2, and
(−1)𝑛−2𝜙 (𝑛−2) (𝑥) is decreasing and convex in 𝑥 ≥ 0.

Stochastic orders are frequently used to compare two random variables/vectors. In the last seven
decades, it has widely been used in various disciplines of science and engineering including actuarial
science, econometrics, finance, risk management, and reliability theory. In the literature, different types
of stochastic orders (namely, usual stochastic order, hazard rate order, dispersive order, Lorenz order,
etc.) have been developed to study different kinds of problems. This topic is explicitly covered in the
book written by Shaked and Shanthikumar [49]. Below we give the definitions of stochastic orders that
are used in this paper (see [44,47,49]).

Definition 2.2. Let 𝑋 and𝑌 be two absolutely continuous random variables with nonnegative supports.
Then, 𝑋 is said to be smaller than 𝑌 in the

(a) usual stochastic order, denoted by 𝑋 ≤st 𝑌 , if 𝐹̄𝑋 (𝑥) ≤ 𝐹̄𝑌 (𝑥) for all 𝑥 ∈ [0,∞);
(b) hazard rate order, denoted by 𝑋 ≤hr 𝑌 , if 𝐹̄𝑌 (𝑥)/𝐹̄𝑋 (𝑥) is increasing in 𝑥 ∈ [0,∞);
(c) reversed hazard rate order, denoted by 𝑋 ≤rhr 𝑌 , if 𝐹𝑌 (𝑥)/𝐹𝑋 (𝑥) is increasing in 𝑥 ∈ [0,∞);
(d) likelihood ratio order, denoted by 𝑋 ≤lr 𝑌 , if 𝑓𝑌 (𝑥)/ 𝑓𝑋 (𝑥) is increasing in 𝑥 ∈ (0,∞);
(e) aging faster order in terms of the failure rate, denoted by 𝑋 ≤𝑐 𝑌 , if 𝑟𝑋 (𝑥)/𝑟𝑌 (𝑥) is increasing in

𝑥 ∈ [0,∞);
(f) aging faster order in terms of the reversed failure rate, denoted by 𝑋 ≤𝑏 𝑌 , if 𝑟𝑋 (𝑥)/𝑟𝑌 (𝑥) is

decreasing in 𝑥 ∈ [0,∞).
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Like stochastic orders, the notion of stochastic agings is another important concept in reliability
theory. Stochastic agings largely describe how a system behaves as time progresses. There are three
types of agings, namely, positive aging, negative aging, and no aging. A system has the positive aging
property if its residual lifetime decreases in some stochastic sense as time progresses. On the other
hand, negative aging describes the scenario where the residual lifetime of a system increases in some
stochastic sense as the system ages. No aging means that the system does not age over time. A variety of
positive and negative aging classes (namely, IFR, IFRA, DFR, DLR, etc.) have been introduced in the
literature to describe different aging characteristics of a system (see [5,29], and the references therein).
For the sake of completeness, we give the following definitions of aging classes that are used in this
paper.

Definition 2.3. Let 𝑋 be an absolutely continuous random variable with nonnegative support. Then, 𝑋
is said to have the

(a) increasing likelihood ratio (ILR) (resp. decreasing likelihood ratio (DLR)) property if 𝑓 ′𝑋 (𝑥)/ 𝑓𝑋 (𝑥)
is decreasing (resp. increasing) in 𝑥 ≥ 0;

(b) increasing failure rate (IFR) (resp. decreasing failure rate (DFR)) property if 𝑟𝑋 (𝑥) is increasing
(resp. decreasing) in 𝑥 ≥ 0;

(c) decreasing reversed failure rate (DRFR) property if 𝑟𝑋 (𝑥) is decreasing in 𝑥 ≥ 0;
(d) increasing failure rate in average (IFRA) (resp. decreasing failure rate in average (DFRA))

property if − ln 𝐹̄𝑋 (𝑥)/𝑥 is increasing (resp. decreasing) in 𝑥 ≥ 0.

Throughout the paper, we use the words “increasing” and “decreasing” to mean “nondecreasing” and
“nonincreasing”, respectively. Furthermore, the words “positive” and “negative” mean “nonnegative”
and “nonpositive”, respectively. By 𝑎 def.

= 𝑏, we mean that 𝑎 is defined as 𝑏. For a twice differentiable
function 𝑢(·), we write 𝑢′(𝑡) and 𝑢′′(𝑡) to mean the first and the second derivatives of 𝑢(𝑡) with respect
to 𝑡. We use the acronyms “i.i.d.” and “d.i.d.” to mean “independent and identically distributed” and
“dependent and identically distributed”, respectively. All random variables considered in this paper are
assumed to be absolutely continuous with nonnegative supports.

3. Main results

In this section, we first discuss some stochastic comparisons results for series, parallel, and general
𝑟-out-of-𝑛 systems. Then, we study whether a system of used components performs better than a used
system with respect to different stochastic orders. Lastly, the closure properties of different aging classes
under formations of different systems have been studied.

Let 𝜏𝜙1
𝑟 |𝑛

(𝑿) and 𝜏𝜙2
𝑟 |𝑛

(𝒀) be the lifetimes of two 𝑟-out-of-𝑛 systems formed by two different sets of 𝑛
d.i.d. components with the lifetime vectors 𝑿 = (𝑋1, 𝑋2, . . . , 𝑋𝑛) and𝒀 = (𝑌1, 𝑌2, . . . , 𝑌𝑛), respectively,
where the distributions of 𝑿 and 𝒀 are described by the Archimedean copulas with generators 𝜙1(·)

and 𝜙2(·), respectively. Furthermore, let 𝑋𝑖
𝑑
= 𝑋 and 𝑌𝑖

𝑑
= 𝑌 , 𝑖 = 1, 2, . . . , 𝑛, for some nonnegative

random variables 𝑋 and𝑌 ; here 𝑑
= stands for equality in distribution. In what follows, we introduce some

notation:

𝐻𝑖 (𝑢) =
𝑢𝜙′

𝑖 (𝑢)

1 − 𝜙𝑖 (𝑢)
, 𝑅𝑖 (𝑢) =

𝑢𝜙′
𝑖 (𝑢)

𝜙𝑖 (𝑢)
, and 𝐺𝑖 (𝑢) =

𝑢𝜙′′
𝑖 (𝑢)

𝜙′
𝑖 (𝑢)

, 𝑢 > 0, 𝑖 = 1, 2.

Since 𝜙𝑖 (·), 𝑖 = 1, 2, are decreasing convex functions, it follows that 𝐻𝑖 (·), 𝑅𝑖 (·), and 𝐺𝑖 (·) are all
negative-valued functions. Furthermore, we write 𝜏𝜙1

𝑟 |𝑛
= 𝜏𝜙2

𝑟 |𝑛
= 𝜏𝜙

𝑟 |𝑛
(say), 𝐻1(·) = 𝐻2(·) = 𝐻 (·) (say),

𝑅1(·) = 𝑅2(·) = 𝑅(·) (say), and 𝐺1(·) = 𝐺2(·) = 𝐺 (·) (say) whenever the distributions of both 𝑿 and 𝒀
are described by the same Archimedean copula with generator 𝜙1(·) = 𝜙2(·) = 𝜙(·) (say). Furthermore,
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we introduce a few more notations as follows:

𝐶 (𝑢) =

(
𝑢𝜙′′(𝑢)

𝜙′(𝑢)
+

𝑢𝜙′(𝑢)

1 − 𝜙(𝑢)
+ 1

)
=
𝑢𝐻 ′(𝑢)

𝐻 (𝑢)
, 𝑢 > 0,

𝐶 𝑗
𝑟 ,𝑛 = (−1) 𝑗−𝑟

(
𝑗 − 1
𝑟 − 1

) (
𝑛

𝑗

)
, 1 ≤ 𝑟 ≤ 𝑗 ≤ 𝑛,

𝑃 𝑗
𝑟 ,𝑛 (𝑢) =

𝐶 𝑗
𝑟 ,𝑛𝜙 ( 𝑗𝑢)∑𝑛

𝑗=𝑟 𝐶
𝑗
𝑟 ,𝑛𝜙 ( 𝑗𝑢)

, 𝑄 𝑗
𝑟 ,𝑛 (𝑢) =

𝐶 𝑗
𝑟 ,𝑛 (1 − 𝜙 ( 𝑗𝑢))

1 −
∑𝑛

𝑗=𝑟 𝐶
𝑗
𝑟 ,𝑛𝜙 ( 𝑗𝑢)

, 𝑢 > 0, 1 ≤ 𝑟 ≤ 𝑗 ≤ 𝑛,

𝐾 𝑗 (𝑢) =
𝑅 ( 𝑗𝑢)

𝑅(𝑢)
, 𝐿 𝑗 (𝑢) =

𝐻 ( 𝑗𝑢)

𝐻 (𝑢)
, 𝑢 > 0, 1 ≤ 𝑗 ≤ 𝑛.

3.1. Stochastic comparisons of two systems

In this subsection, we study some comparisons results for series, parallel, and general 𝑟-out-of-𝑛 systems
using different stochastic orders.

In the following theorem, we compare two 𝑟-out-of-𝑛 systems with respect to the usual stochastic
order, the hazard rate order, and the reversed hazard rate order. Here, we assume that both systems have
the same dependency structure described by the Archimedean copula with generator 𝜙. The proof of
the first part of this theorem is straightforward, whereas the proof of the third part is similar to that of
the second part and hence omitted.

Theorem 3.1. The following results hold true.

(a) Assume that
∑𝑛

𝑗=𝑟 𝐶
𝑗
𝑟 ,𝑛𝜙 ( 𝑗𝑢) (or

∑𝑛
𝑗=𝑛−𝑟+1 𝐶

𝑗
𝑛−𝑟+1,𝑛𝜙 ( 𝑗𝑢)) is decreasing in 𝑢 > 0. If 𝑋 ≤st 𝑌 , then

𝜏𝜙
𝑟 |𝑛

(𝑿) ≤st 𝜏
𝜙
𝑟 |𝑛

(𝒀);
(b) Assume that

∑𝑛
𝑗=𝑟 𝑃

𝑗
𝑟 ,𝑛 (𝑢)𝐾 𝑗 (𝑢) is increasing in 𝑢 > 0, or

∑𝑛
𝑗=𝑛−𝑟+1 𝑄

𝑗
𝑛−𝑟+1,𝑛 (𝑢)𝐿 𝑗 (𝑢) is decreasing

in 𝑢 > 0. If 𝑋 ≤hr 𝑌 , then 𝜏𝜙
𝑟 |𝑛

(𝑿) ≤hr 𝜏
𝜙
𝑟 |𝑛

(𝒀);
(c) Assume that

∑𝑛
𝑗=𝑛−𝑟+1 𝑃

𝑗
𝑛−𝑟+1,𝑛 (𝑢)𝐾 𝑗 (𝑢) is increasing in 𝑢 > 0, or

∑𝑛
𝑗=𝑟 𝑄

𝑗
𝑟 ,𝑛 (𝑢)𝐿 𝑗 (𝑢) is decreasing

in 𝑢 > 0. If 𝑋 ≤rh 𝑌 , then 𝜏𝜙
𝑟 |𝑛

(𝑿) ≤rh 𝜏
𝜙
𝑟 |𝑛

(𝒀).

Stochastic comparisons of two series/parallel systems (in the sense of the usual stochastic order,
the hazard rate order, and the reversed hazard rate order) are given in the following corollary which is
obtained from Theorem 3.1.

Corollary 3.1. The following results hold true.

(a) If 𝑋 ≤st 𝑌 , then 𝜏𝜙1 |𝑛 (𝑿) ≤st 𝜏
𝜙
1 |𝑛 (𝒀) and 𝜏𝜙

𝑛 |𝑛
(𝑿) ≤st 𝜏

𝜙
𝑛 |𝑛

(𝒀);
(b) Assume that 𝑢𝐻 ′(𝑢)/𝐻 (𝑢) is decreasing in 𝑢 > 0. If 𝑋 ≤hr 𝑌 , then 𝜏𝜙1 |𝑛 (𝑿) ≤hr 𝜏

𝜙
1 |𝑛 (𝒀);

(c) Assume that 𝑢𝑅′(𝑢)/𝑅(𝑢) is increasing in 𝑢 > 0. If 𝑋 ≤hr 𝑌 , then 𝜏𝜙
𝑛 |𝑛

(𝑿) ≤hr 𝜏
𝜙
𝑛 |𝑛

(𝒀);
(d) Assume that 𝑢𝑅′(𝑢)/𝑅(𝑢) is increasing in 𝑢 > 0. If 𝑋 ≤rh 𝑌 , then 𝜏𝜙1 |𝑛 (𝑿) ≤rh 𝜏

𝜙
1 |𝑛 (𝒀);

(e) Assume that 𝑢𝐻 ′(𝑢)/𝐻 (𝑢) is decreasing in 𝑢 > 0. If 𝑋 ≤rh 𝑌 , then 𝜏𝜙
𝑛 |𝑛

(𝑿) ≤rh 𝜏
𝜙
𝑛 |𝑛

(𝒀).

In the next theorem, we compare two series/parallel systems with respect to the likelihood ratio order
and the aging faster orders. The proof of the third part of this theorem can be done in the same line as
in the second part and hence omitted.

Theorem 3.2. The following results hold true.

(a) Assume that (𝐺 (𝑛𝑢) − 𝐺 (𝑢))/𝑅(𝑢) is positive and increasing in 𝑢 > 0. If 𝑋 ≤lr 𝑌 , then
𝜏𝜙1 |𝑛 (𝑿) ≤lr 𝜏

𝜙
1 |𝑛 (𝒀) and 𝜏𝜙

𝑛 |𝑛
(𝑿) ≤lr 𝜏

𝜙
𝑛 |𝑛

(𝒀);
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(b) Assume that (𝐶 (𝑛𝑢) −𝐶 (𝑢))/𝑅(𝑢) is positive and increasing in 𝑢 > 0. If 𝑌 ≤rh 𝑋 and 𝑋 ≤𝑐 𝑌 , then
𝜏𝜙1 |𝑛 (𝑿) ≤𝑐 𝜏

𝜙
1 |𝑛 (𝒀);

(c) Assume that (𝐶 (𝑛𝑢) −𝐶 (𝑢))/𝑅(𝑢) is positive and increasing in 𝑢 > 0. If 𝑋 ≤hr 𝑌 and 𝑋 ≤𝑏 𝑌 , then
𝜏𝜙
𝑛 |𝑛

(𝑿) ≤𝑏 𝜏
𝜙
𝑛 |𝑛

(𝒀).

The following remark provides sufficient conditions for the assumptions given in Theorem 3.2.

Remark 3.1. The following observations can be made.

(a) If 𝑢𝐺 ′(𝑢)/𝐺 (𝑢) is positive and increasing (resp. decreasing) in 𝑢 > 0, and 𝐺 (𝑢)/𝑅(𝑢) is
increasing (resp. decreasing) in 𝑢 > 0, then (𝐺 (𝑛𝑢) −𝐺 (𝑢))/𝑅(𝑢) is positive and increasing (resp.
decreasing) in 𝑢 > 0.

(b) If both 𝑢𝐶 ′(𝑢)/𝐶 (𝑢) and 𝐶 (𝑢)/𝑅(𝑢) are positive and increasing in 𝑢 > 0, then
(𝐶 (𝑛𝑢) − 𝐶 (𝑢))/𝑅(𝑢) is positive and increasing in 𝑢 > 0.

In the following theorem, we compare two parallel systems with respect to the usual stochastic order,
the hazard rate order, and the reversed hazard rate order. Here, we assume that the dependency structure
of one system differs from that of the other system. The proof of the third part of this theorem can be
done in the same line, as in the second part, and hence omitted.

Theorem 3.3. The following results hold true.

(a) Assume that 𝜙−1
2 (𝜙1(𝑢)) is sub-additive in 𝑢 > 0. If 𝑋 ≤st 𝑌 , then 𝜏𝜙1

1 |𝑛 (𝑿) ≤st 𝜏
𝜙2
1 |𝑛 (𝒀);

(b) Assume that 𝜓1(𝑤) ≤ 𝜓2(𝑣), for all 0 ≤ 𝑣 ≤ 𝑤 ≤ 1, and 𝐻1(𝑢)/𝐻2(𝑢) is increasing in 𝑢 > 0.
Furthermore, assume that either 𝑢𝐻 ′

1(𝑢)/𝐻1(𝑢) or 𝑢𝐻 ′
2(𝑢)/𝐻2(𝑢) is decreasing in 𝑢 > 0. If

𝑋 ≤hr 𝑌 , then 𝜏𝜙1
1 |𝑛 (𝑿) ≤hr 𝜏

𝜙2
1 |𝑛 (𝒀);

(c) Assume that 𝜓1(𝑤) ≤ 𝜓2(𝑣), for all 0 ≤ 𝑣 ≤ 𝑤 ≤ 1, and 𝑅1(𝑢)/𝑅2(𝑢) is decreasing in 𝑢 > 0.
Furthermore, assume that either 𝑢𝑅′

1(𝑢)/𝑅1(𝑢) or 𝑢𝑅′
2(𝑢)/𝑅2(𝑢) is increasing in 𝑢 > 0. If 𝑋 ≤rh 𝑌 ,

then 𝜏𝜙1
1 |𝑛 (𝑿) ≤rh 𝜏

𝜙2
1 |𝑛 (𝒀).

In the next theorem, we study the same set of results, as in Theorem 3.3, for the series system. The
proofs are similar to those of Theorem 3.3 and hence omitted.

Theorem 3.4. The following results hold true.

(a) Assume that 𝜙−1
1 (𝜙2(𝑢)) is sub-additive in 𝑢 > 0. If 𝑋 ≤st 𝑌 , then 𝜏𝜙1

𝑛 |𝑛
(𝑿) ≤st 𝜏

𝜙2
𝑛 |𝑛

(𝒀);
(b) Assume that 𝜓1(𝑤) ≥ 𝜓2(𝑣), for all 0 ≤ 𝑤 ≤ 𝑣 ≤ 1, and 𝑅1(𝑢)/𝑅2(𝑢) is increasing in 𝑢 > 0.

Furthermore, assume that either 𝑢𝑅′
1(𝑢)/𝑅1(𝑢) or 𝑢𝑅′

2(𝑢)/𝑅2(𝑢) is increasing in 𝑢 > 0. If 𝑋 ≤hr 𝑌 ,
then 𝜏𝜙1

𝑛 |𝑛
(𝑿) ≤hr 𝜏

𝜙2
𝑛 |𝑛

(𝒀);
(c) Assume that 𝜓1(𝑤) ≥ 𝜓2(𝑣), for all 0 ≤ 𝑤 ≤ 𝑣 ≤ 1, and 𝐻1(𝑢)/𝐻2(𝑢) is decreasing in 𝑢 > 0.

Furthermore, assume that 𝑢𝐻 ′
1(𝑢)/𝐻1(𝑢) or 𝑢𝐻 ′

2(𝑢)/𝐻2(𝑢) is decreasing in 𝑢 > 0. If 𝑋 ≤rh 𝑌 , then
𝜏𝜙1
𝑛 |𝑛

(𝑿) ≤rh 𝜏
𝜙
𝑛 |𝑛

(𝒀).

Remark 3.2. The following observations can be made.

(a) If 𝜙−1
2 (𝑤)/𝜙−1

1 (𝑤) is increasing in 𝑤 ∈ (0, 1], then 𝜙−1
2 (𝜙1(𝑢)) is sub-additive in 𝑢 > 0;

(b) If 𝜙1(𝑢) ≤ 𝜙2(𝑢), for all 𝑢 > 0, then 𝜓1(𝑤) ≤ 𝜓2(𝑣), for all 0 ≤ 𝑣 ≤ 𝑤 ≤ 1.

3.2. Stochastic comparisons between a used system and a system of used components

Let 𝑋 be a random variable representing the lifetime of a component/system. Then, its residual lifetime at
a time instant 𝑡 (≥ 0) is given by 𝑋𝑡 = (𝑋 − 𝑡 |𝑋 > 𝑡). We call 𝑋𝑡 as a used component/system. Further, let
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𝑿 = (𝑋1, 𝑋2, . . . , 𝑋𝑛) be a random vector representing the lifetimes of 𝑛 d.i.d. components governed by
the Archimedean copula with generator 𝜙, where 𝑋𝑖

𝑑
= 𝑋 , 𝑖 = 1, 2, . . . , 𝑛, for some nonnegative random

variable 𝑋 . We denote the vector of 𝑛 used components by 𝑿𝑡 = (𝑋1)𝑡 , (𝑋2)𝑡 , . . . , (𝑋𝑛)𝑡 ), for some fixed
𝑡 > 0. Consequently, we denote the lifetimes of the parallel and the series systems made by a set of used
components with the lifetime vector 𝑿𝑡 by 𝜏𝜙1 |𝑛 (𝑿𝑡 ) and 𝜏𝜙

𝑛 |𝑛
(𝑿𝑡 ), respectively. Further, we denote the

lifetimes of the used parallel system and the used series system formed by a set of components with the
lifetime vector 𝑿 by (𝜏𝜙1 |𝑛 (𝑿))𝑡 and (𝜏𝜙

𝑛 |𝑛
(𝑿))𝑡 , respectively, where (𝜏𝜙

𝑖 |𝑛
(𝑿))𝑡 = 𝜏𝜙

𝑖 |𝑛
(𝑿)−𝑡 |𝜏𝜙

𝑖 |𝑛
(𝑿) > 𝑡,

for 𝑡 ≥ 0 and 𝑖 = 1, 𝑛.
In the following theorem, we compare a used system and a system made by used components with

respect to different stochastic orders. Here, we particularly consider the series and the parallel systems
formed by d.i.d. components governed by the Archimedean copula with generator 𝜙. The proofs of the
fourth, the sixth, and the seventh parts of this theorem are given in the Appendix. Furthermore, the
proof of the first part is straightforward, whereas the proofs of the second, the third, and the fifth parts
are similar to that of the fourth part and hence omitted.

Theorem 3.5. The following results hold true.

(a) (𝜏𝜙1 |𝑛 (𝑿))𝑡 ≤st 𝜏
𝜙
1 |𝑛 (𝑿𝑡 ) and (𝜏𝜙

𝑛 |𝑛
(𝑿))𝑡 ≤st 𝜏

𝜙
𝑛 |𝑛

(𝑿𝑡 ), for any fixed 𝑡 ≥ 0;
(b) If 𝑢𝐻 ′(𝑢)/𝐻 (𝑢) is decreasing in 𝑢 > 0, then (𝜏𝜙1 |𝑛 (𝑿))𝑡 ≤hr 𝜏

𝜙
1 |𝑛 (𝑿𝑡 ), for any fixed 𝑡 ≥ 0;

(c) If 𝑢𝑅′(𝑢)/𝑅(𝑢) is increasing in 𝑢 > 0, then (𝜏
𝜙
𝑛 |𝑛

(𝑿))𝑡 ≤hr 𝜏
𝜙
𝑛 |𝑛

(𝑿𝑡 ), for any fixed 𝑡 ≥ 0;
(d) If 𝑢𝑅′(𝑢)/𝑅(𝑢) is positive and increasing in 𝑢 > 0, then (𝜏𝜙1 |𝑛 (𝑿))𝑡 ≤rh 𝜏

𝜙
1 |𝑛 (𝑿𝑡 ), for any fixed 𝑡 ≥ 0;

(e) If 𝑢𝐻 ′(𝑢)/𝐻 (𝑢) is negative and decreasing in 𝑢 > 0, then (𝜏𝜙
𝑛 |𝑛

(𝑿))𝑡 ≤rh 𝜏
𝜙
𝑛 |𝑛

(𝑿𝑡 ), for any fixed
𝑡 ≥ 0;

(f) If (𝐺 (𝑛𝑢) − 𝐺 (𝑢))/𝑅(𝑢) is positive and increasing in 𝑢 > 0, then (𝜏
𝜙
1 |𝑛 (𝑿))𝑡 ≤lr 𝜏

𝜙
1 |𝑛 (𝑿𝑡 ) and

(𝜏𝜙
𝑛 |𝑛

(𝑿))𝑡 ≤lr 𝜏
𝜙
𝑛 |𝑛

(𝑿𝑡 ), for any fixed 𝑡 ≥ 0;
(g) If (𝐶 (𝑛𝑢) − 𝐶 (𝑢))/𝑅(𝑢) is positive and increasing in 𝑢 > 0, then 𝜏𝜙1 |𝑛 (𝑿𝑡 ) ≤𝑐 (𝜏𝜙1 |𝑛 (𝑿))𝑡 , for any

fixed 𝑡 ≥ 0.

3.3. Preservation of aging classes under the formation of a system

In this subsection, we discuss the closure properties of different aging classes under the formation of
𝑟-out-of-𝑛 systems.

In the following theorem, we provide some sufficient conditions to show that the IFR, the DFR, and
the DRFR classes are preserved under the formation of an 𝑟-out-of-𝑛 system. The proof of the second
part of this theorem is similar to that of the first part and hence omitted.

Theorem 3.6. The following results hold true.

(a) Assume that
∑𝑛

𝑗=𝑟 𝑃
𝑗
𝑟 ,𝑛 (𝑢)𝐾 𝑗 (𝑢) is increasing (resp. decreasing) in 𝑢 > 0, or∑𝑛

𝑗=𝑛−𝑟+1 𝑄
𝑗
𝑛−𝑟+1,𝑛 (𝑢)𝐿 𝑗 (𝑢) is decreasing (resp. increasing) in 𝑢 > 0. If 𝑋 is IFR (resp. DFR), then

𝜏
𝜙
𝑟 |𝑛

(𝑿) is IFR (resp. DFR);
(b) Assume that

∑𝑛
𝑗=𝑛−𝑟+1 𝑃

𝑗
𝑛−𝑟+1,𝑛 (𝑢)𝐾 𝑗 (𝑢) is increasing in 𝑢 > 0, or

∑𝑛
𝑗=𝑟 𝑄

𝑗
𝑟 ,𝑛 (𝑢)𝐿 𝑗 (𝑢) is decreasing

in 𝑢 > 0. If 𝑋 is DRFR, then 𝜏𝜙
𝑟 |𝑛

(𝑿) is DRFR.

The following corollary immediately follows from Theorem 3.6.

Corollary 3.2. The following results hold true.

(a) Assume that 𝑢𝑅′(𝑢)/𝑅(𝑢) is increasing (resp. decreasing) in 𝑢 > 0. If 𝑋 is IFR (resp. DFR), then
𝜏𝜙
𝑛 |𝑛

(𝑿) is IFR (resp. DFR);
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(b) Assume that 𝑢𝐻 ′(𝑢)/𝐻 (𝑢) is decreasing (resp. increasing) in 𝑢 > 0. If 𝑋 is IFR (resp. DFR), then
𝜏𝜙1 |𝑛 (𝑿) is IFR (resp. DFR);

(c) Assume that 𝑢𝐻 ′(𝑢)/𝐻 (𝑢) is decreasing in 𝑢 > 0. If 𝑋 is DRFR, then 𝜏𝜙
𝑛 |𝑛

(𝑿) is DRFR;
(d) Assume that 𝑢𝑅′(𝑢)/𝑅(𝑢) is increasing in 𝑢 > 0. If 𝑋 is DRFR, then 𝜏𝜙1 |𝑛 (𝑿) is DRFR.

In the following theorem, we show that the ILR, the DLR, the IFRA, and the DFRA classes are
preserved under the formation of the parallel and the series systems.

Theorem 3.7. The following results hold true.

(a) Assume that (𝐺 (𝑛𝑢) − 𝐺 (𝑢))/𝑅(𝑢) is positive and increasing (resp. decreasing) in 𝑢 > 0. If 𝑋 is
ILR (resp. DLR), then both 𝜏𝜙

𝑛 |𝑛
(𝑿) and 𝜏𝜙1 |𝑛 (𝑿) are ILR (resp. DLR);

(b) Assume that 𝑢𝑅′(𝑢)/𝑅(𝑢) is increasing (resp. decreasing) in 𝑢 > 0. If 𝑋 is IFRA (resp. DFRA),
then 𝜏𝜙

𝑛 |𝑛
(𝑿) is IFRA (resp. DFRA);

(c) Assume that 𝐻 (𝑢)/ln(1 − 𝜙(𝑢)) is increasing (resp. decreasing) in 𝑢 > 0. If 𝑋 is IFRA (resp.
DFRA), then 𝜏𝜙1 |𝑛 (𝑿) is IFRA (resp. DFRA).

4. Examples

In this section, we give some examples to illustrate the sufficient conditions used in the previous section.
Here, we specifically consider the copulas that are frequently used in practice, namely, the Clayton
copula𝐶 (𝒖) = (

∏𝑛
𝑖=1 𝑢

−𝜃
𝑖 −𝑛+1)−1/𝜃 with the generator 𝜙(𝑡) = (𝜃𝑡 +1)−1/𝜃 , for 𝜃 ≥ 0, the Ali-Mikhail-

Haq (AMH) copula 𝐶 (𝒖) = ((1 − 𝜃)
∏𝑛

𝑖=1 𝑢𝑖)/(
∏𝑛

𝑖=1(1 − 𝜃 + 𝜃𝑢𝑖) − 𝜃
∏𝑛

𝑖=1 𝑢𝑖) with the generator
𝜙(𝑡) = (1 − 𝜃)/(𝑒𝑡 − 𝜃), for 𝜃 ∈ [0, 1), etc.

We begin with the following example that demonstrates the conditions given in Theorem 3.1(b) and
(c), and Theorem 3.6.

Example 4.1. Consider the Archimedean copula with generator

𝜙(𝑢) =
1 − 𝛼1

𝑒𝑢 − 𝛼1
, 𝛼1 ∈ [−1, 1), 𝑢 > 0.

Then,

𝑘1(𝑢)
def.
=

3∑
𝑗=2

𝑃
𝑗
2,3 (𝑢)𝐾 𝑗 (𝑢) =

(𝑒𝑢 − 𝛼1)

(
6𝑒𝑢

(𝑒2𝑢−𝛼1)2 −
6𝑒2𝑢

(𝑒3𝑢−𝛼1)
2

)
(

3
𝑒2𝑢−𝛼1

− 2
𝑒3𝑢−𝛼1

) , 𝑢 > 0,

and

𝑘2(𝑢)
def.
=

3∑
𝑗=2

𝑄 𝑗
2,3 (𝑢)𝐿 𝑗 (𝑢) =

(𝑒𝑢 − 𝛼1)(𝑒
𝑢 − 1)

(
6𝑒𝑢

(𝑒2𝑢−𝛼1)2 −
6𝑒2𝑢

(𝑒3𝑢−𝛼1)2

)
1 − (1 − 𝛼1)

(
3

𝑒2𝑢−𝛼1
− 2

𝑒3𝑢−𝛼1

) , 𝑢 > 0.

In Figure 1, we plot 𝑘1 (− ln(𝑣)) against 𝑣 ∈ (0, 1], for fixed 𝛼1 = 0.3, 0.4, 0.5, and 0.6. This shows that
𝑘1 (− ln(𝑣)) is decreasing in 𝑣 ∈ (0, 1] and hence, 𝑘1(𝑢) is increasing in 𝑢 > 0. Furthermore, we plot
𝑘2 (− ln(𝑣)) against 𝑣 ∈ (0, 1], for fixed 𝛼1 = 0.8, 0.85, and 0.9. From Figure 2, we see that 𝑘2(− ln(𝑣))
is increasing in 𝑣 ∈ (0, 1] and hence, 𝑘2 (𝑢) is decreasing in 𝑢 > 0. Thus, the required conditions are
satisfied.

The following example demonstrates the condition given in Corollary 3.1(c) and (d), Theorem 3.5(c)
and (d), Corollary 3.2(a) and (d), and Theorem 3.7(b).
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Figure 1. Plot of 𝑘1 (− ln(𝑣)) against 𝑣 ∈ (0, 1].

Figure 2. Plot of 𝑘2 (− ln(𝑣)) against 𝑣 ∈ (0, 1].

Example 4.2. Consider the Archimedean copula with generator

𝜙(𝑢) = 𝑒1−(1+𝑢)1/𝛽1
, 𝛽1 ∈ (0,∞), 𝑢 > 0.

From this, we have

𝑅(𝑢) = −
1
𝛽1
𝑢(1 + 𝑢)1/𝛽1−1, for all 𝑢 > 0,

and

𝑙1(𝑢)
def.
=

𝑢𝑅′(𝑢)

𝑅(𝑢)
= 1 +

(
1
𝛽1

− 1
)

𝑢

𝑢 + 1
, for all 𝑢 > 0.

It can be easily shown that 𝑙1(𝑢) is positive and increasing in 𝑢 > 0, for all 𝛽1 ∈ (0, 1). Thus, the
required condition holds.
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Figure 3. Plot of 𝑙2(− ln(𝑣)) against 𝑣 ∈ (0, 1].

The next example illustrates the condition given in Theorems 3.2(a), 3.5(f), and 3.7(a).

Example 4.3. Consider the Archimedean copula with generator

𝜙(𝑢) = 𝑒 (1/𝛾1) (1−𝑒𝑢 ) , 𝛾1 ∈ (0, 1], 𝑢 > 0.

Then

𝑙2(𝑢)
def.
=

𝑢𝐺 ′(𝑢)

𝐺 (𝑢)
=
𝛾1 − 𝑒𝑢 − 𝑢𝑒𝑢

𝛾1 − 𝑒𝑢
and 𝑙3(𝑢)

def.
=

𝐺 (𝑢)

𝑅(𝑢)
= 1 −

𝛾1

𝑒𝑢
, 𝑢 > 0.

Let us fix 𝛾1 = 0.4, 0.6, and 0.8. In Figure 3, we plot 𝑙2(− ln(𝑣)) against 𝑣 ∈ (0, 1]. This shows that
𝑙2 (− ln(𝑣)) is positive and decreasing in 𝑣 ∈ (0, 1] and hence, 𝑙2(𝑢) is positive and increasing in 𝑢 > 0.
Furthermore, it can easily be checked that 𝑙3(𝑢) is increasing in 𝑢 > 0. Thus, the required condition
holds from Remark 3.1.

Below we cite an example that illustrates the condition given in Theorem 3.2(b) and (c), and Theorem
3.5(g).

Example 4.4. Consider the Archimedean copula with generator

𝜙(𝑢) = 𝑒−𝑢
1/𝛼2

, 𝛼2 ∈ [1,∞), 𝑢 > 0,

which gives

𝑅(𝑢) = −
1
𝛼2
𝑢1/𝛼2 and 𝐶 (𝑢) =

1
𝛼2

−
𝑢1/𝛼2𝑒−𝑢

1/𝛼2

𝛼2

(
1 − 𝑒−𝑢

1/𝛼2
) −

1
𝛼2
𝑢1/𝛼2 , 𝑢 > 0.

Let us fix 𝛼2 = 7 and 8. Furthermore, let 𝑘3 (𝑢) = 𝑢𝐶 ′(𝑢)/𝐶 (𝑢) and 𝑘4 (𝑢) = 𝐶 (𝑢)/𝑅(𝑢), for 𝑢 > 0.
From Figures 4 and 5, we see that both 𝑘3(− ln(𝑣)) and 𝑘4(− ln(𝑣)) are decreasing and positive for all
𝑣 ∈ (0, 1]. Hence, both 𝑘3(𝑢) and 𝑘4(𝑢) are increasing and positive for all 𝑢 > 0. Thus, the required
conditions hold from Remark 3.1.
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Figure 4. Plot of 𝑘3 (− ln(𝑣)) against 𝑣 ∈ (0, 1].

Figure 5. Plot of 𝑘4 (− ln(𝑣)) against 𝑣 ∈ (0, 1].

The next example demonstrates the condition given in Theorem 3.3(b). Furthermore, this may also be
used to illustrate the condition given in Corollary 3.1(b) and (e), Theorem 3.5(b) and (e), and Corollary
3.2(b) and (c).

Example 4.5. Consider two parallel systems 𝜏𝜙1
1 |𝑛 (𝑿) and 𝜏𝜙2

1 |𝑛 (𝒀), where 𝑋 ≤hr 𝑌 . Consider the
Archimedean copulas with generators

𝜙1(𝑢) = 1 − (1 − 𝑒−𝑢)1/𝛽2 , 𝛽2 ∈ [1,∞), 𝑡 > 0,

and

𝜙2(𝑢) =
1 − 𝛾2

𝑒𝑡 − 𝛾2
, 𝛾2 ∈ [−1, 1), 𝑡 > 0,
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Figure 6. Plot of 𝑘5 (− ln (𝑣)) against 𝑣 ∈ (0, 1] .

respectively. Consequently,

𝑘5 (𝑢)
def.
= 𝜙1(𝑢) − 𝜙2(𝑢) = (1 − (1 − 𝑒−𝑢)1/𝛽2 ) −

(
1 − 𝛾2

𝑒𝑢 − 𝛾2

)
, 𝑢 > 0.

Let us fix (𝛽2, 𝛾2) = (14, 0.3), (14, 0.4), (15, 0.3), and (15, 0.4). Figure 6 shows that 𝑘5 (− ln (𝑣)) is
negative for all 𝑣 ∈ (0, 1] and hence, 𝑘5 (𝑢) is negative for all 𝑢 > 0. Thus, 𝜙1(𝑢) ≤ 𝜙2(𝑢), for all 𝑢 > 0,
which, by Remark 3.2, gives 𝜓1(𝑤) ≤ 𝜓2(𝑣), for all 0 ≤ 𝑣 ≤ 𝑤 ≤ 1. Again,

𝑘6(𝑢)
def.
=

𝐻1(𝑢)

𝐻2(𝑢)
=

𝑒𝑢 − 𝛾2

𝛽2 (1 − 𝛾2) 𝑒𝑢

and 𝑘7(𝑢)
def.
=

𝑢𝐻 ′
2(𝑢)

𝐻2(𝑢)
= −

𝑢𝑒𝑢

𝑒𝑢 − 𝛾2
−

𝑢𝑒𝑢

𝑒𝑢 − 1
+ 1 + 𝑢, 𝑢 > 0.

From Figure 7, we see that 𝑘6 (− ln(𝑣)) is decreasing in 𝑣 ∈ (0, 1], whereas Figure 8 shows that
𝑘7 (− ln(𝑣)) is increasing and negative for all 𝑣 ∈ (0, 1]. Hence, 𝑘6 (𝑢) is increasing in 𝑢 > 0, and 𝑘7 (𝑢)
is decreasing and negative for all 𝑢 > 0. Thus, the condition of Theorem 3.3(b) holds.

Below we give an example that illustrates the condition given in Theorem 3.4(a).

Example 4.6. Consider the Archimedean copulas with generators

𝜙1(𝑢) = −
1
𝛼3

ln(𝑒−𝑢 (𝑒−𝛼3 − 1)), 𝛼3 ∈ (−∞,∞) \ {0}, 𝑢 > 0,

and

𝜙2(𝑢) = (1 + 𝛽3𝑢)
−1/𝛽3 , 𝛽3 ∈ [0,∞), 𝑢 > 0,

respectively. By writing 𝑙5(𝑤) = 𝜙−1
1 (𝑤)/𝜙−1

2 (𝑤), we have

𝑙5(𝑤) = 𝛽3
ln(𝑒−𝛼3 − 1) − ln(𝑒−𝛽3𝑤 + 1)

(𝑤−𝛽3 − 1)
, 𝑤 ∈ (0, 1] .
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Figure 7. Plot of 𝑘6 (− ln(𝑣)) against 𝑣 ∈ (0, 1].

Figure 8. Plot of 𝑘7 (− ln(𝑣)) against 𝑣 ∈ (0, 1].

In Figure 9, we plot 𝑙5(𝑤) against 𝑤 ∈ (0, 1], for fixed (𝛼3, 𝛽3) = (0.3, 1.1), (0.3, 1.2), (0.4, 1.1), and
(0.4, 1.2). This shows that 𝑙5(𝑤) is increasing in 𝑤 ∈ (0, 1], and hence, the condition of Theorem 3.4(a)
is satisfied.

The following example demonstrates the conditions given in Theorem 3.4(b).

Example 4.7. Consider the Archimedean copulas with generators

𝜙1(𝑢) =
1

1 + 𝑢1/𝛼4
, 𝛼4 ∈ [1,∞), 𝑢 > 0,

and
𝜙2(𝑢) = 𝑒−𝑢

1/𝛽4
, 𝛽4 ∈ [1,∞), 𝑢 > 0,
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Figure 9. Plot of 𝑙5(𝑤) against 𝑤 ∈ (0, 1].

Figure 10. Plot of 𝑙6 (− ln (𝑣)) against 𝑣 ∈ (0, 1].

respectively. Consequently,

𝑙6(𝑢)
def.
= 𝜙1(𝑢) − 𝜙2(𝑢) =

1
1 + 𝑢1/𝛼4

− 𝑒−𝑢
1/𝛽4

, 𝑢 > 0.

Let us fix (𝛼4, 𝛽4) = (3.8, 13), (3.8, 16), (4.9, 13), and (4.9, 16). In Figure 10, we plot 𝑙6 (− ln (𝑣))
against 𝑣 ∈ (0, 1]. This shows that 𝑙6 (− ln (𝑣)) is positive for all 𝑣 ∈ (0, 1] and hence, 𝑙6 (𝑡) is positive
for all 𝑢 > 0. Thus, 𝜙1(𝑢) ≥ 𝜙2(𝑢), for all 𝑢 > 0, which, by Remark 3.2, gives 𝜓1(𝑤) ≥ 𝜓2(𝑣), for all
0 ≤ 𝑤 ≤ 𝑣 ≤ 1. Again,

𝑙7(𝑢)
def.
=

𝑅1(𝑢)

𝑅2(𝑢)
=

𝛽4𝑡
1/𝛼4

𝛼4(1 + 𝑢1/𝛼4 )𝑢1/𝛽4
and

𝑢𝑅′
2(𝑢)

𝑅2(𝑢)
=

1
𝛽4
, 𝑢 > 0.

In Figure 11, we plot 𝑙7(− ln(𝑣)) against 𝑣 ∈ (0, 1]. This shows that 𝑙7(− ln(𝑣)) is decreasing in
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Figure 11. Plot of 𝑙7(− ln(𝑣)) against 𝑣 ∈ (0, 1].

𝑣 ∈ (0, 1] and hence, 𝑙7(𝑢) is increasing in 𝑢 > 0. Furthermore, it is trivially true that 𝑢𝑅′
2(𝑢)/𝑅2(𝑢)

is increasing in 𝑢 > 0. Thus, the required conditions are satisfied.

The following example demonstrates the condition given in Theorem 3.7(c).

Example 4.8. Consider the Archimedean copula with generator

𝜙(𝑢) =
𝛾3

ln(𝑢 + 𝑒𝛾3)
, 𝛾3 ∈ (0,∞), 𝑢 > 0,

which gives

𝐻 (𝑢) = −
𝛾3𝑢

(𝑢 + 𝑒𝛾3)(ln(𝑢 + 𝑒𝛾3) − 𝛾3) ln(𝑢 + 𝑒𝛾3)
, for all 𝑢 > 0.

Let us fix 𝛾3 = 3, 4, and 5. By writing 𝑙8(𝑢) = 𝐻 (𝑢)/(ln (1 − 𝜙(𝑢))), 𝑢 > 0, we plot 𝑙8 (− ln(𝑣)) against
𝑣 ∈ (0, 1]. From Figure 12, we see that 𝑙8(− ln(𝑣)) is decreasing in 𝑣 ∈ (0, 1] and hence, 𝑙8 (𝑢) is
increasing in 𝑢 > 0. Thus, the required condition is satisfied.

5. Concluding remarks

In this paper, we consider different coherent systems (especially, series, parallel, and general 𝑟-out-of-𝑛
systems) formed by d.i.d. components, where the dependency structures are described by Archimedean
copulas. We provide some sufficient conditions (in terms of the generators of Archimedean copulas) to
show that one system performs better than another one with respect to the usual stochastic order, the
hazard rate order, the reversed hazard rate order, the likelihood ratio order, and the aging faster orders in
terms of the failure rate and the reversed failure rate. In the same spirit, we compare a used system and a
system made by used components with respect to different stochastic orders. Furthermore, we study the
closure properties of different aeing classes (namely, IFR, DFR, DRFR, ILR, DLR, IFRA and DFRA)
under the formation of 𝑟-out-of-𝑛 systems. Moreover, we illustrate the proposed results through various
examples.

As we discussed, the main idea of this paper is to consider the dependency structure between compo-
nents of a system by an Archimedean copula. Most of the systems used in real life have inter-dependency
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Figure 12. Plot of 𝑙8(− ln(𝑣)) against 𝑣 ∈ (0, 1].

structures between their components, and hence, the assumption of “independent components” some-
times oversimplifies the actual scenario. Thus, we consider the coherent systems that are formed by
dependent components governed by the Archimedean copula. As mentioned in the Introduction section,
Archimedean copulas are extensively used in the literature due to their wide spectrum of capturing the
dependency structures. Furthermore, Archimedean copulas enjoy nice mathematical properties which
make them popular. Thus, our study based on the Archimedean copulas may be useful in different
practical scenarios where systems with dependent components are considered.

Even though we derived a large number of results in this paper, there remains ample scope to develop
further results for systems with dependent components under the Archimedean copula. Here, we only
consider the systems with dependent and identically distributed components. The same study for the
systems with dependent and nonidentically distributed components may be considered in future.
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Appendix

Proof of Theorem 3.1(b). We only prove the result under the assumption that
∑𝑛

𝑗=𝑟 𝑃
𝑗
𝑟 ,𝑛 (𝑢)𝐾 𝑗 (𝑢) is

increasing in 𝑢 > 0. The proof for the other case follows in the same line. From (3.4.3) of David and
Nagaraja [11], we have

𝐹̄𝜏
𝜙
𝑟 |𝑛

(𝑿) (𝑥) =
𝑛∑
𝑗=𝑟

𝐶 𝑗
𝑟 ,𝑛𝜙( 𝑗𝜓(𝐹̄𝑋 (𝑥))), 𝑥 > 0,

which gives

𝑟𝜏𝜙
𝑟 |𝑛

(𝑿) (𝑥) = 𝑟𝑋 (𝑥)

∑𝑛
𝑗=𝑟 𝐶

𝑗
𝑟 ,𝑛𝜙( 𝑗𝜓(𝐹̄𝑋 (𝑥)))

𝑅 ( 𝑗𝜓 (𝐹̄𝑋 (𝑥)))

𝑅 (𝜓 (𝐹̄𝑋 (𝑥)))∑𝑛
𝑖=𝑟 𝐶

𝑖
𝑟 ,𝑛𝜙(𝑖𝜓(𝐹̄𝑋 (𝑥)))

= 𝑟𝑋 (𝑡)
𝑛∑
𝑗=𝑟

𝑃 𝑗
𝑟 ,𝑛 (𝜓(𝐹̄𝑋 (𝑥)))𝐾 𝑗 (𝜓(𝐹̄𝑋 (𝑥))), 𝑥 > 0, (A.1)

Similarly, we get

𝑟𝜏𝜙
𝑟 |𝑛

(𝒀 ) (𝑥) = 𝑟𝑌 (𝑥)
𝑛∑
𝑗=𝑟

𝑃 𝑗
𝑟 ,𝑛 (𝜓(𝐹̄𝑌 (𝑥)))𝐾 𝑗 (𝜓(𝐹̄𝑌 (𝑥))), 𝑥 > 0.

Since 𝑋 ≤hr 𝑌 and 𝜓 is a decreasing function, we have 𝑟𝑋 (𝑥) ≥ 𝑟𝑌 (𝑥) and 𝜓(𝐹̄𝑋 (𝑥)) ≥ 𝜓(𝐹̄𝑌 (𝑥)), for
all 𝑥 > 0. Then, by using the assumption “

∑𝑛
𝑗=𝑟 𝑃

𝑗
𝑟 ,𝑛 (𝑢)𝐾 𝑗 (𝑢) is increasing in 𝑢 > 0”, we get

𝑛∑
𝑗=𝑟

𝑃 𝑗
𝑟 ,𝑛 (𝜓(𝐹̄𝑋 (𝑥)))𝐾 𝑗 (𝜓(𝐹̄𝑋 (𝑥))) ≥

𝑛∑
𝑗=𝑟

𝑃 𝑗
𝑟 ,𝑛 (𝜓(𝐹̄𝑌 (𝑥)))𝐾 𝑗 (𝜓(𝐹̄𝑌 (𝑥))), for all 𝑥 > 0,

which is equivalent to mean that 𝑟𝜏𝜙
𝑟 |𝑛

(𝑿) (𝑥) ≥ 𝑟𝜏𝜙
𝑟 |𝑛

(𝒀 ) (𝑥), for all 𝑥 > 0. Hence, the result is proved. �
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Proof of Theorem 3.2(a). We only prove the result for the parallel system. The proof for the series
system follows in the same line. We have

𝐹𝜏
𝜙
1|𝑛 (𝑿) (𝑥) = 𝜙(𝑛𝜓(𝐹𝑋 (𝑥))), 𝑥 > 0, (A.2)

which gives

𝑓 ′
𝜏
𝜙
1|𝑛 (𝑿)

(𝑥)

𝑓𝜏𝜙
1|𝑛 (𝑿) (𝑥)

=
𝑓 ′𝑋 (𝑥)

𝑓𝑋 (𝑥)
+
𝑓𝑋 (𝑥)

𝐹𝑋 (𝑥)

[
𝐹𝑋 (𝑡)𝜓

′′(𝐹𝑋 (𝑥))

𝜓 ′𝐹𝑋 (𝑥)
+
𝐹𝑋 (𝑥)𝜓

′(𝐹𝑋 (𝑥))

𝜓(𝐹𝑋 (𝑥))

𝑛𝜓(𝐹𝑋 (𝑥))𝜙
′′(𝑛𝐹𝑋 (𝑥))

𝜙′(𝑛𝐹𝑋 (𝑥))

]

=
𝑓 ′𝑋 (𝑥)

𝑓𝑋 (𝑥)
+ 𝑟𝑋 (𝑥)

[
𝐺 (𝑛𝜓(𝐹𝑋 (𝑥)))

𝑅(𝜓(𝐹𝑋 (𝑥)))
−
𝐺 (𝜓(𝐹𝑋 (𝑥)))

𝑅(𝜓(𝐹𝑋 (𝑥)))

]
, 𝑥 > 0, (A.3)

where the last equality follows from the fact that

𝑝𝜓 ′(𝑝)

𝜓(𝑝)
=

𝜙(𝜓(𝑝))

𝜓(𝑝)𝜙′(𝜓(𝑝))
=

1
𝑅(𝜓(𝑝))

, 0 < 𝑝 < 1.

Similarly, we have

𝑓 ′
𝜏
𝜙
1|𝑛 (𝒀 )

(𝑥)

𝑓𝜏𝜙
1|𝑛 (𝒀 ) (𝑥)

=
𝑓 ′𝑌 (𝑥)

𝑓𝑌 (𝑥)
+ 𝑟𝑌 (𝑥)

[
𝐺 (𝑛𝜓(𝐹𝑌 (𝑥)))

𝑅(𝜓(𝐹𝑌 (𝑥)))
−
𝐺 (𝜓(𝐹𝑌 (𝑥)))

𝑅(𝜓(𝐹𝑌 (𝑥)))

]
, 𝑥 > 0.

Then, the result holds if, and only if,

𝑓 ′𝑋 (𝑥)

𝑓𝑋 (𝑥)
+ 𝑟𝑋 (𝑥)

[
𝐺 (𝑛𝜓(𝐹𝑋 (𝑥)))

𝑅(𝜓(𝐹𝑋 (𝑥)))
−
𝐺 (𝜓(𝐹𝑋 (𝑥)))

𝑅(𝜓(𝐹𝑋 (𝑥)))

]
≤

𝑓 ′𝑌 (𝑥)

𝑓𝑌 (𝑥)
+ 𝑟𝑌 (𝑥)

[
𝐺 (𝑛𝜓(𝐹𝑌 (𝑥)))

𝑅(𝜓(𝐹𝑌 (𝑥)))
−
𝐺 (𝜓(𝐹𝑌 (𝑥)))

𝑅(𝜓(𝐹𝑌 (𝑥)))

]
, 𝑥 > 0. (A.4)

Since 𝑋 ≤lr 𝑌 , we have

𝑟𝑋 (𝑥) ≤ 𝑟𝑌 (𝑥) and 𝐹𝑋 (𝑥) ≥ 𝐹𝑌 (𝑥), for all 𝑥 > 0, (A.5)

and
𝑓 ′𝑋 (𝑥)

𝑓𝑋 (𝑥)
≤

𝑓 ′𝑌 (𝑥)

𝑓𝑌 (𝑥)
, for all 𝑥 > 0. (A.6)

Since 𝜓 is a decreasing function, we have, from (A.5),

𝜓(𝐹𝑋 (𝑥)) ≤ 𝜓(𝐹𝑌 (𝑥)), for all 𝑥 > 0. (A.7)

Again, from the assumption, we have that

𝐺 (𝑛𝑢)

𝑅(𝑢)
−
𝐺 (𝑢)

𝑅(𝑢)
is positive and increasing in 𝑢 > 0,

which, by (A.7), gives

0 ≤
𝐺 (𝑛𝜓(𝐹𝑋 (𝑥)))

𝑅(𝜓(𝐹𝑋 (𝑥)))
−
𝐺 (𝜓(𝐹𝑋 (𝑥)))

𝑅(𝜓(𝐹𝑋 (𝑥)))
≤
𝐺 (𝑛𝜓(𝐹𝑌 (𝑥)))

𝑅(𝜓(𝐹𝑌 (𝑥)))
−
𝐺 (𝜓(𝐹𝑌 (𝑥)))

𝑅(𝜓(𝐹𝑌 (𝑥)))
, (A.8)

for all 𝑥 > 0. On combining (A.5), (A.6), and (A.8), we get (A.4) and hence, the result follows. �
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Proof of Theorem 3.2(b). From (A.2), we have

𝑟𝜏𝜙
1|𝑛 (𝑿 ) (𝑥) = 𝑟𝑋 (𝑥)

[
(1 − 𝐹𝑋 (𝑥)) 𝜓

′(𝐹𝑋 (𝑥))

𝜓(𝐹𝑋 (𝑥))

] [
𝑛𝜓(𝐹𝑋 (𝑥))𝜙

′(𝑛𝜓(𝐹𝑋 (𝑥)))

1 − 𝜙(𝑛𝜓(𝐹𝑋 (𝑥)))

]
= 𝑟𝑋 (𝑥)

𝐻 (𝑛𝜓(𝐹𝑋 (𝑥)))

𝐻 (𝜓(𝐹𝑋 (𝑥)))
, 𝑡 > 0.

Similarly,

𝑟𝜏𝜙
1|𝑛 (𝒀 ) (𝑥) = 𝑟𝑌 (𝑥)

𝐻 (𝑛𝜓(𝐹𝑌 (𝑥)))

𝐻 (𝜓(𝐹𝑌 (𝑥)))
, 𝑥 > 0.

Then,
𝑟𝜏𝜙

1|𝑛 (𝑿) (𝑥)

𝑟𝜏𝜙
1|𝑛 (𝒀 ) (𝑥)

=
𝑟𝑋 (𝑥)

𝑟𝑌 (𝑥)

𝐻 (𝑛𝜓 (𝐹𝑋 (𝑥)))
𝐻 (𝜓 (𝐹𝑋 (𝑥)))

𝐻 (𝑛𝜓 (𝐹𝑌 (𝑥)))
𝐻 (𝜓 (𝐹𝑌 (𝑥)))

, 𝑥 > 0.

Since 𝑋 ≤𝑐 𝑌 , we have that 𝑟𝑋 (𝑥)/𝑟𝑌 (𝑥) is increasing in 𝑥 > 0. Thus, to prove the result, it suffices to
show that

𝐻 (𝑛𝜓(𝐹𝑋 (𝑥)))𝐻 (𝜓(𝐹𝑌 (𝑥)))

𝐻 (𝜓(𝐹𝑋 (𝑥)))𝐻 (𝑛𝜓(𝐹𝑌 (𝑥)))
is increasing in 𝑡 > 0,

or equivalently,

𝑟𝑋 (𝑥)

[
𝐶 (𝑛𝜓(𝐹𝑋 (𝑥)))

𝑅(𝜓(𝐹𝑋 (𝑥)))
−
𝐶 (𝜓1(𝐹𝑋 (𝑥)))

𝑅(𝜓1(𝐹𝑋 (𝑥)))

]
≥ 𝑟𝑌 (𝑥)

[
𝐶 (𝑛𝜓(𝐹𝑌 (𝑥)))

𝑅(𝜓(𝐹𝑌 (𝑥)))
−
𝐶 (𝜓(𝐹𝑌 (𝑥)))

𝑅(𝜓(𝐹𝑌 (𝑥)))

]
, (A.9)

for all 𝑥 > 0. Since 𝑌 ≤rh 𝑋 , we have

𝑟𝑋 (𝑥) ≥ 𝑟𝑌 (𝑥) and 𝐹𝑋 (𝑥) ≤ 𝐹𝑌 (𝑥), for all 𝑥 > 0. (A.10)

Since 𝜓 is a decreasing function, we have, from the above inequality,

𝜓(𝐹𝑋 (𝑥)) ≥ 𝜓(𝐹𝑌 (𝑥)), for all 𝑥 > 0. (A.11)

Again, from the assumption, we have that

𝐶 (𝑛𝑢)

𝑅(𝑢)
−
𝐶 (𝑢)

𝑅(𝑢)
is positive and increasing in 𝑢 > 0,

which, by (A.11), gives

0 ≤
𝐶 (𝑛𝜓(𝐹𝑌 (𝑥)))

𝑅(𝜓(𝐹𝑌 (𝑥)))
−
𝐶 (𝜓(𝐹𝑌 (𝑥)))

𝑅(𝜓(𝐹𝑌 (𝑥)))
≤
𝐶 (𝑛𝜓(𝐹𝑋 (𝑥)))

𝑅(𝜓(𝐹𝑋 (𝑥)))
−
𝐶 (𝜓(𝐹𝑋 (𝑥)))

𝑅(𝜓1(𝐹𝑋 (𝑥)))
, (A.12)

for all 𝑥 > 0. On combining (A.10) and (A.12), we get (A.9) and hence, the result follows. �

Proof of Theorem 3.3(a). We have

𝐹
𝜏
𝜙1
1|𝑛 (𝑿)

(𝑥) = 𝜙1(𝑛𝜓1(𝐹𝑋 (𝑥))) and 𝐹
𝜏
𝜙2
1|𝑛 (𝒀 )

(𝑥) = 𝜙2(𝑛𝜓2 (𝐹𝑌 (𝑥))), 𝑥 > 0. (A.13)

Since 𝑋 ≤st 𝑌 and 𝜓1 is a decreasing function, we have 𝜙1(𝑛𝜓1 (𝐹𝑋 (𝑥))) ≥ 𝜙1(𝑛𝜓1(𝐹𝑌 (𝑥))) for
all 𝑥 > 0. Furthermore, from the assumption “𝜙−1

2 (𝜙1(𝑢)) is sub-additive in 𝑢 > 0”, we have
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𝜙1(𝑛𝜓1(𝐹𝑌 (𝑥))) ≥ 𝜙2(𝑛𝜓2 (𝐹𝑌 (𝑥))) for all 𝑥 > 0. On combining these two inequalities, we get
𝜙1(𝑛𝜓1(𝐹𝑋 (𝑥))) ≥ 𝜙2(𝑛𝜓2 (𝐹𝑌 (𝑥))) for all 𝑥 > 0 and hence, the result follows �

Proof of Theorem 3.3(b). We only prove the result under the condition that 𝑢𝐻 ′
2(𝑢)/𝐻2(𝑢) is decreasing

in 𝑢 > 0. The proof follows in the same line for the other case. Note that, for all 𝑝 ∈ (0, 1),

(1 − 𝑝)𝜓 ′
𝑖 (𝑝)

𝜓𝑖 (𝑝)
=

1 − 𝜙𝑖 (𝜓𝑖 (𝑝))

𝜓𝑖 (𝑝)𝜙
′
𝑖 (𝜓𝑖 (𝑝))

=
1

𝐻𝑖 (𝜓𝑖 (𝑝))
, for 𝑖 = 1, 2. (A.14)

Now, from (A.13), we get

𝑟
𝜏
𝜙1
1|𝑛 (𝑿 )

(𝑥) =
𝑓𝑋 (𝑥)𝜙

′
1 (𝑛𝜓1 (𝐹𝑋 (𝑥)))𝑛𝜓

′
1 (𝐹𝑋 (𝑥))

1 − 𝜙1(𝑛𝜓1 (𝐹𝑋 (𝑥)))

= 𝑟𝑋 (𝑥)

[
(1 − 𝐹𝑋 (𝑥)) 𝜓

′
1(𝐹𝑋 (𝑥))

𝜓1(𝐹𝑋 (𝑥))

] [
𝑛𝜓1(𝐹𝑋 (𝑥))𝜙

′
1(𝑛𝜓1 (𝐹𝑋 (𝑥)))

1 − 𝜙1(𝑛𝜓1 (𝐹𝑋 (𝑥)))

]
= 𝑟𝑋 (𝑥)

𝐻1 (𝑛𝜓1 (𝐹𝑋 (𝑥)))

𝐻1(𝜓1(𝐹𝑋 (𝑥)))
, 𝑥 > 0,

where the last equality follows from (A.14). Similarly, from (A.13) and (A.14), we get

𝑟
𝜏
𝜙2
1|𝑛 (𝒀 )

(𝑥) = 𝑟𝑌 (𝑥)
𝐻2 (𝑛𝜓2(𝐹𝑌 (𝑥)))

𝐻2(𝜓2 (𝐹𝑌 (𝑥)))
, 𝑥 > 0.

Thus, the result holds if, only if,

𝑟𝑋 (𝑥)
𝐻1 (𝑛𝜓1 (𝐹𝑋 (𝑥)))

𝐻1(𝜓1(𝐹𝑋 (𝑥)))
≥ 𝑟𝑌 (𝑥)

𝐻2 (𝑛𝜓2 (𝐹𝑌 (𝑥)))

𝐻2(𝜓2(𝐹𝑌 (𝑥)))
, for all 𝑥 > 0.

Since 𝑋 ≤hr 𝑌 , we have 𝑟𝑋 (𝑥) ≥ 𝑟𝑌 (𝑥). Thus, the above inequality holds if

𝐻1(𝑛𝜓1 (𝐹𝑋 (𝑥)))

𝐻1(𝜓1(𝐹𝑋 (𝑥)))
≥
𝐻2(𝑛𝜓2 (𝐹𝑌 (𝑥)))

𝐻2(𝜓2(𝐹𝑌 (𝑥)))
, for all 𝑥 > 0. (A.15)

Now, from the assumptions “𝜓1(𝑤) ≤ 𝜓2(𝑣) for all 0 ≤ 𝑣 ≤ 𝑤 ≤ 1” and “𝑋 ≤hr 𝑌”, we have

𝜓1(𝐹𝑋 (𝑥)) ≤ 𝜓2(𝐹𝑌 (𝑥)), for all 𝑥 > 0. (A.16)

Again, we have that 𝑢𝐻 ′
2(𝑢)/𝐻2(𝑢) is decreasing in 𝑢 > 0. This implies that

𝐻2(𝑛𝑢)

𝐻2(𝑢)
is decreasing in 𝑢 > 0,

which further, by (A.16), gives

𝐻2(𝑛𝜓1 (𝐹𝑋 (𝑥)))

𝐻2(𝜓1(𝐹𝑋 (𝑥)))
≥
𝐻2(𝑛𝜓2 (𝐹𝑌 (𝑥)))

𝐻2(𝜓2(𝐹𝑌 (𝑥)))
, for all 𝑥 > 0. (A.17)

Again, on using the condition “𝐻1 (𝑢)/𝐻2(𝑢) is increasing in 𝑢 > 0”, we get

𝐻1(𝑛𝜓1(𝐹𝑋 (𝑥)))

𝐻1(𝜓1 (𝐹𝑋 (𝑥)))
≥
𝐻2(𝑛𝜓1 (𝐹𝑋 (𝑥)))

𝐻2(𝜓1(𝐹𝑋 (𝑥)))
, for all 𝑥 > 0. (A.18)

On combining (A.17) and (A.18), we get (A.15). Thus, the result is proved. �
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Proof of Theorem 3.5(d). We only prove the result for the parallel system. The proof for the series
system can be done in the same line. Now, for any fixed 𝑡 ≥ 0, we have

𝐹(𝜏
𝜙
1|𝑛 (𝑿))𝑡

(𝑥) =
𝜙(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))) − 𝜙(𝑛𝜓(𝐹𝑋 (𝑡)))

1 − 𝜙(𝑛𝜓(𝐹𝑋 (𝑡)))
, 𝑥 > 0, (A.19)

and

𝐹𝜏
𝜙
1|𝑛 (𝑿 𝑡 )

(𝑥) = 𝜙

(
𝑛𝜓

(
𝐹𝑋 (𝑥 + 𝑡) − 𝐹𝑋 (𝑡)

1 − 𝐹𝑋 (𝑡)

))
, 𝑥 > 0, (A.20)

which give

𝑟 (𝜏𝜙
1|𝑛 (𝑿 ))𝑡

(𝑥) =
𝑓𝑋 (𝑥 + 𝑡)𝜙

′(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))𝑛𝜓
′(𝐹𝑋 (𝑥 + 𝑡))

𝜙(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

×
𝜙(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝜙(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))) − 𝜙(𝑛𝜓(𝐹𝑋 (𝑡)))

= 𝑟𝑋 (𝑥 + 𝑡)

[
(𝐹𝑋 (𝑥 + 𝑡))𝜓

′(𝐹𝑋 (𝑥 + 𝑡))

𝜓(𝐹𝑋 (𝑥 + 𝑡))

]
×

[
𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))𝜙

′(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

𝜙(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

]
×

[
𝜙(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝜙(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))) − 𝜙(𝑛𝜓(𝐹𝑋 (𝑡)))

]
= 𝑟𝑋 (𝑥 + 𝑡)

𝑅(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

𝑅(𝜓(𝐹𝑋 (𝑥 + 𝑡)))

×
𝜙(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝜙(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))) − 𝜙(𝑛𝜓(𝐹𝑋 (𝑡)))
, 𝑥 > 0,

and

𝑟𝜏𝜙
1|𝑛 (𝑿 𝑡 )

(𝑥) =
𝑓𝑋 (𝑥 + 𝑡)𝜙

′
(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝑛𝜓 ′

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)
𝐹̄𝑋 (𝑡)𝜙

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))

= 𝑟𝑋 (𝑥 + 𝑡)

⎡⎢⎢⎢⎢⎢⎣
(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)
𝜓 ′

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

) ⎤⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎣
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)
𝜙′

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝜙

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)) ⎤⎥⎥⎥⎥⎥⎦
×

[
𝜙(𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝜙(𝜓(𝐹𝑋 (𝑥 + 𝑡))) − 𝜙(𝜓(𝐹𝑋 (𝑡)))

]

= 𝑟𝑋 (𝑥 + 𝑡)
𝑅

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝑅

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
×

𝜙(𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝜙(𝜓(𝐹𝑋 (𝑥 + 𝑡))) − 𝜙(𝜓(𝐹𝑋 (𝑡)))
, 𝑥 > 0.
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Thus, to prove the result, it suffices to show that, for any fixed 𝑡 ≥ 0,

𝑅(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

𝑅(𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝜙(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

𝜙(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡)) − 𝜙 (𝑛𝜓(𝐹𝑋 (𝑡)))

≤
𝑅

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝑅

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)) 𝜙(𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝜙(𝜓(𝐹𝑋 (𝑥 + 𝑡))) − 𝜙(𝜓(𝐹𝑋 (𝑡)))
, 𝑥 > 0. (A.21)

Since 𝑢𝑅′(𝑢)/𝑅(𝑢) ≥ 0 for all 𝑢 ≥ 0, we get that 𝑅(𝑢) is decreasing in 𝑢 > 0. This implies that, for any
fixed 𝑡 ≥ 0,

𝜙(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

𝜙(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡)) − 𝜙(𝑛𝜓(𝐹𝑋 (𝑡)))
≤

𝜙(𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝜙(𝜓(𝐹𝑋 (𝑥 + 𝑡))) − 𝜙(𝜓(𝐹𝑋 (𝑡)))
, (A.22)

for all 𝑥 > 0. Note that, for any fixed 𝑡 ≥ 0,

𝐹𝑋 (𝑥 + 𝑡) ≥
𝐹𝑋 (𝑥 + 𝑡) − 𝐹𝑋 (𝑡)

1 − 𝐹𝑋 (𝑡)
, 𝑥 > 0,

which, by decreasing property of 𝜓, gives

𝜓(𝐹𝑋 (𝑥 + 𝑡)) ≤ 𝜓

(
𝐹𝑋 (𝑥 + 𝑡) − 𝐹𝑋 (𝑡)

1 − 𝐹𝑋 (𝑡)

)
, 𝑥 > 0. (A.23)

Again, we have that 𝑢𝑅′(𝑢)/𝑅(𝑢) is increasing in 𝑢 > 0. This implies that

𝑅 (𝑛𝑢)

𝑅(𝑢)
is increasing in 𝑢 > 0,

which further, by (A.23), gives

𝑅(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

𝑅(𝜓(𝐹𝑋 (𝑥 + 𝑡)))
≤
𝑅

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝑅

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)) , (A.24)

for all 𝑥 > 0 and for fixed 𝑡 ≥ 0. On combining (A.22) and (A.24), we get (A.21) and hence, the result
is proved. �

Proof of Theorem 3.5(f). From (A.19) and (A.20), we have that, for any fixed 𝑡 ≥ 0,

𝑓 ′
(𝜏

𝜙
1|𝑛 (𝑿 ))𝑡

(𝑥)

𝑓(𝜏𝜙
1|𝑛 (𝑿 ))𝑡

(𝑥)
=
𝑓 ′𝑋 (𝑥 + 𝑡)

𝑓𝑋 (𝑥 + 𝑡)
+
𝑓𝑋 (𝑥 + 𝑡)𝑛𝜓

′(𝐹𝑋 (𝑥 + 𝑡))𝜙
′′(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

𝜙′(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

+
𝑓𝑋 (𝑥 + 𝑡)𝜓

′′(𝐹𝑋 (𝑥 + 𝑡))

𝜓 ′(𝐹𝑋 (𝑥 + 𝑡))

=
𝑓 ′𝑋 (𝑥 + 𝑡)

𝑓𝑋 (𝑥 + 𝑡)
+
𝑓𝑋 (𝑥 + 𝑡)

𝐹𝑋 (𝑥 + 𝑡)

[
𝐹𝑋 (𝑥 + 𝑡)𝜓

′′(𝐹𝑋 (𝑥 + 𝑡))

𝜓 ′(𝐹𝑋 (𝑥 + 𝑡))

+
𝐹𝑋 (𝑥 + 𝑡)𝜓

′(𝐹𝑋 (𝑥 + 𝑡))

𝜓(𝐹𝑋 (𝑥 + 𝑡))

𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))𝜙
′′(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

𝜙′(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

]
=
𝑓 ′𝑋 (𝑥 + 𝑡)

𝑓𝑋 (𝑥 + 𝑡)
+ 𝑟𝑋 (𝑥 + 𝑡)

[
𝐺 (𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

𝑅(𝜓(𝐹𝑋 (𝑥 + 𝑡)))
−
𝐺 (𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝑅(𝜓(𝐹𝑋 (𝑥 + 𝑡)))

]
, 𝑥 > 0,
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and

𝑓 ′
𝜏
𝜙
1|𝑛 (𝑿 𝑡 )

(𝑥)

𝑓𝜏𝜙
1|𝑛 (𝑿 𝑡 )

(𝑥)
=
𝑓 ′𝑋 (𝑥 + 𝑡)

𝑓𝑋 (𝑥 + 𝑡)
+
𝑓𝑋 (𝑥 + 𝑡)𝑛𝜓

′
(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)
𝜙′′

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝐹̄𝑋 (𝑡)𝜙′

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
+
𝑓𝑋 (𝑥 + 𝑡)𝜓

′′
(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)
𝐹̄𝑋 (𝑡)𝜓 ′

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)
=
𝑓 ′𝑋 (𝑥 + 𝑡)

𝑓𝑋 (𝑥 + 𝑡)
+
𝑓𝑋 (𝑥 + 𝑡)

𝐹𝑋 (𝑥 + 𝑡)

[
𝜙(𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝜙(𝜓(𝐹𝑋 (𝑥 + 𝑡))) − 𝜙(𝜓(𝐹𝑋 (𝑡)))

]

×

⎡⎢⎢⎢⎢⎢⎣
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡) 𝜓 ′′
(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)
𝜓 ′

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

) +

𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)
1−𝐹𝑋 (𝑡) 𝜓 ′

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)

×
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)
𝜙′′

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝜙′

(
𝑛𝜓( 𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡) )
) ⎤⎥⎥⎥⎥⎥⎦

=
𝑓 ′𝑋 (𝑥 + 𝑡)

𝑓𝑋 (𝑥 + 𝑡)
+ 𝑟𝑋 (𝑥 + 𝑡)

×

⎡⎢⎢⎢⎢⎢⎣
𝐺

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝑅

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)) −
𝐺

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝑅

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)) ⎤⎥⎥⎥⎥⎥⎦
×

[
𝜙(𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝜙(𝜓(𝐹𝑋 (𝑥 + 𝑡))) − 𝜙(𝜓(𝐹𝑋 (𝑡)))

]
, 𝑥 > 0. (A.25)

Thus, to prove the result, it suffices to show that, for any fixed 𝑡 ≥ 0,

𝐺 (𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

𝑅(𝜓(𝐹𝑋 (𝑥 + 𝑡)))
−
𝐺 (𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝑅(𝜓(𝐹𝑋 (𝑥 + 𝑡)))

≤

⎡⎢⎢⎢⎢⎢⎣
𝐺

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝑅

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)) −
𝐺

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝑅

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)) ⎤⎥⎥⎥⎥⎥⎦
×

[
𝜙(𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝜙(𝜓(𝐹𝑋 (𝑥 + 𝑡))) − 𝜙(𝜓(𝐹𝑋 (𝑡)))

]
, 𝑥 > 0. (A.26)

Since 𝜙 is a decreasing function, we have that, for any fixed 𝑡 ≥ 0,

[
𝜙(𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝜙(𝜓(𝐹𝑋 (𝑥 + 𝑡))) − 𝜙(𝜓(𝐹𝑋 (𝑡)))

]
≥ 1, for all 𝑥 > 0. (A.27)

Again, from the assumption, we have that

𝐺 (𝑛𝑢)

𝑅(𝑢)
−
𝐺 (𝑢)

𝑅(𝑢)
is positive and increasing in 𝑢 > 0,
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which, by (A.23), gives

0 ≤
𝐺 (𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

𝑅(𝜓(𝐹𝑋 (𝑥 + 𝑡)))
−
𝐺 (𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝑅(𝜓(𝐹𝑋 (𝑥 + 𝑡)))

≤
𝐺

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

𝐹𝑋 (𝑡)

))
𝑅

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

𝐹𝑋 (𝑡)

)) −
𝐺

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

𝐹𝑋 (𝑡)

))
𝑅

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

𝐹𝑋 (𝑡)

)) , (A.28)

for any fixed 𝑡 ≥ 0 and for all 𝑥 > 0. Finally, by combining (A.27) and (A.28), we get (A.26) and hence,
the result follows. �

Proof of Theorem 3.5(g). From (A.19) and (A.20), we have that, for any fixed 𝑡 ≥ 0,

𝑟 (𝜏𝜙
1|𝑛 (𝑿))𝑡

(𝑥) =
𝑓𝑋 (𝑥 + 𝑡)𝜙

′(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))𝑛𝜓
′(𝐹𝑋 (𝑥 + 𝑡))

1 − 𝜙(𝑛𝜓(𝐹̄𝑋 (𝑥 + 𝑡)))

= 𝑟𝑋 (𝑥 + 𝑡)

[
(1 − 𝐹𝑋 (𝑥 + 𝑡))𝜓

′(𝐹𝑋 (𝑥 + 𝑡))

𝜓(𝐹𝑋 (𝑥 + 𝑡))

] [
𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))𝜙

′(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

1 − 𝜙(𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

]
= 𝑟𝑋 (𝑥 + 𝑡)

𝐻 (𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

𝐻 (𝜓(𝐹𝑋 (𝑥 + 𝑡)))
, 𝑥 > 0,

and

𝑟𝜏𝜙
1|𝑛 (𝑿 𝑡 )

(𝑥) =
𝑓𝑋 (𝑥 + 𝑡)𝜙

′
(
𝑛𝜓

(
𝐹 (𝑥+𝑡)−𝐹 (𝑡)

1−𝐹 (𝑡)

))
𝑛𝜓 ′

(
𝐹 (𝑥+𝑡)−𝐹 (𝑡)

1−𝐹 (𝑡)

)
𝐹̄ (𝑡)

(
1 − 𝜙

(
𝑛𝜓

(
𝐹 (𝑥+𝑡)−𝐹 (𝑡)

1−𝐹 (𝑡)

)))

= 𝑟𝑋 (𝑥 + 𝑡)

⎡⎢⎢⎢⎢⎢⎣
(
1 −

𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)
1−𝐹𝑋 (𝑡)

)
𝜓 ′

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

) ⎤⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎣
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)
𝜙′

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
1 − 𝜙

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)) ⎤⎥⎥⎥⎥⎥⎦
= 𝑟𝑋 (𝑥 + 𝑡)

𝐻
(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝐻

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)) , 𝑥 > 0.

Thus, to prove the result, it suffices to show that, for any fixed 𝑡 ≥ 0,

𝑟𝜏𝜙
1|𝑛 (𝑿 𝑡 )

(𝑥)

𝑟 (𝜏𝜙
1|𝑛 (𝑿))𝑡

(𝑥)
=
𝐻

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝐻 (𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝐻
(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝐻 (𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

is increasing in 𝑥 > 0,

or equivalently,

⎡⎢⎢⎢⎢⎢⎣
𝐶

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝑅

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)) −
𝐶

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝑅

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)) ⎤⎥⎥⎥⎥⎥⎦
[

𝐹𝑋 (𝑥 + 𝑡)

𝐹𝑋 (𝑥 + 𝑡) − 𝐹𝑋 (𝑡)

]

≥

[
𝐶 (𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

𝑅(𝜓(𝐹𝑋 (𝑥 + 𝑡)))
−
𝐶 (𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝑅(𝜓(𝐹𝑋 (𝑥 + 𝑡)))

]
, for all 𝑥 > 0. (A.29)
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Since 𝐹 (·) is a increasing function, we have

𝐹𝑋 (𝑥 + 𝑡)

𝐹𝑋 (𝑥 + 𝑡) − 𝐹𝑋 (𝑡)
≥ 1, for all 𝑥 > 0 and 𝑡 ≥ 0. (A.30)

Again, from the assumption, we have that

𝐶 (𝑛𝑢)

𝑅(𝑢)
−
𝐶 (𝑢)

𝑅(𝑢)
is positive and increasing in 𝑢 > 0,

which, by (A.23), gives

0 ≤
𝐶 (𝑛𝜓(𝐹𝑋 (𝑥 + 𝑡))

𝑅(𝜓(𝐹𝑋 (𝑥 + 𝑡)))
−
𝐶 (𝜓(𝐹𝑋 (𝑥 + 𝑡)))

𝑅(𝜓(𝐹𝑋 (𝑥 + 𝑡)))

≤
𝐶

(
𝑛𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝑅

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)) −
𝐶

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

))
𝑅

(
𝜓

(
𝐹𝑋 (𝑥+𝑡)−𝐹𝑋 (𝑡)

1−𝐹𝑋 (𝑡)

)) , (A.31)

for any fixed 𝑡 ≥ 0 and for all 𝑥 > 0. On combining (A.30) and (A.31), we get (A.29) and hence, the
result follows. �

Proof of Theorem 3.6(a). We only prove the result under the condition that
∑𝑛

𝑗=𝑟 𝑃
𝑗
𝑟 ,𝑛 (𝑢)𝐾 𝑗 (𝑢) is

increasing (resp. decreasing) in 𝑢 > 0. The proof follows in the same line for the other case. From
(A.1), we have

𝑟𝜏𝜙
𝑟 |𝑛

(𝑿) (𝑥) = 𝑟𝑋 (𝑥)
𝑛∑
𝑗=𝑟

𝑃 𝑗
𝑟 ,𝑛 (𝜓(𝐹̄𝑋 (𝑥)))𝐾 𝑗 (𝜓(𝐹̄𝑋 (𝑥))), 𝑥 > 0.

Since 𝑋 is IFR (resp. DFR), we have that 𝑟𝑋 (𝑥) is increasing (resp. decreasing) in 𝑥 > 0. Thus, to prove
the result, it suffices to show that

𝑛∑
𝑗=𝑟

𝑃 𝑗
𝑟 ,𝑛 (𝜓(𝐹̄𝑋 (𝑥)))𝐾 𝑗 (𝜓(𝐹̄𝑋 (𝑥))) is increasing (resp. decreasing) in 𝑥 > 0. (A.32)

Now,

𝑑

𝑑𝑥

(
𝑛∑
𝑗=𝑟

𝑃 𝑗
𝑟 ,𝑛 (𝜓(𝐹̄𝑋 (𝑥)))𝐾 𝑗 (𝜓(𝐹̄𝑋 (𝑥)))

)
=

𝑑

𝑑𝑢

(
𝑛∑
𝑗=𝑟

𝑃 𝑗
𝑟 ,𝑛 (𝑢)𝐾 𝑗 (𝑢)

)
𝑑𝑢

𝑑𝑡
,

where 𝑢 = 𝜓
(
𝐹̄𝑋 (𝑡)

)
. Since 𝜓 is a decreasing function, we have 𝑑𝑢/𝑑𝑡 ≥ 0. On using this together with

the condition “
∑𝑛

𝑗=𝑟 𝑃
𝑗
𝑟 ,𝑛 (𝑢)𝐾 𝑗 (𝑢) is increasing (resp. decreasing) in 𝑢 > 0”, we get

𝑑

𝑑𝑥

(
𝑛∑
𝑗=𝑟

𝑃
𝑗
𝑟 ,𝑛 (𝜓(𝐹̄𝑋 (𝑥)))𝐾 𝑗 (𝜓(𝐹̄𝑋 (𝑥)))

)
≥ (resp. ≤) 0,

which implies that (A.32) is true. Hence, the result is proved. �

Proof of Theorem 3.7(a). We only prove the result for the series system. The result for the parallel
system can be shown in the same line. We have

𝐹̄𝜏
𝜙
𝑛|𝑛

(𝑿) (𝑥) = 𝜙(𝑛𝜓(𝐹̄𝑋 (𝑥))), 𝑥 > 0,
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which gives

𝑓 ′
𝜏
𝜙
𝑛|𝑛

(𝑿)
(𝑥)

𝑓𝜏𝜙
𝑛|𝑛

(𝑿) (𝑥)
=
𝑓 ′𝑋 (𝑥)

𝑓𝑋 (𝑥)
− 𝑟𝑋 (𝑥)

[
𝐺 (𝑛𝜓(𝐹̄𝑋 (𝑥)))

𝑅(𝜓(𝐹̄𝑋 (𝑥)))
−
𝐺 (𝜓(𝐹̄𝑋 (𝑥)))

𝑅(𝜓(𝐹̄𝑋 (𝑥)))

]
, 𝑥 > 0.

Since X is ILR (resp. DLR), we have that 𝑓 ′𝑋 (𝑥)/ 𝑓𝑋 (𝑥) is decreasing (resp. increasing) in 𝑥 > 0, and
𝑟𝑋 (𝑥) is increasing (resp. decreasing) in 𝑥 > 0. Thus, to prove the result, it suffices to show that

𝐺 (𝑛𝜓(𝐹̄𝑋 (𝑥)))

𝑅(𝜓(𝐹̄𝑋 (𝑥)))
−
𝐺 (𝜓(𝐹̄𝑋 (𝑥)))

𝑅(𝜓(𝐹̄𝑋 (𝑥)))
(A.33)

is positive and increasing (resp. decreasing) in 𝑥 > 0. Since 𝜓 is a decreasing function, we have that

𝜓(𝐹̄𝑋 (𝑥)) is increasing in 𝑥 > 0. (A.34)

Again, from the assumption, we have that

𝐺 (𝑛𝑢)

𝑅(𝑢)
−
𝐺 (𝑢)

𝑅(𝑢)
is positive and increasing (resp. decreasing) in 𝑢 > 0. (A.35)

On combining (A.34) and (A.35), we get (A.33) and hence, the result is proved. �

Proof of Theorem 3.7(b). To prove the result, we have to show that

𝐹̄𝜏
𝜙
𝑛|𝑛

(𝑿) (𝛼𝑥) ≥ (resp. ≤) (𝐹̄𝜏
𝜙
𝑛|𝑛

(𝑿) (𝑥))
𝛼, 𝑥 > 0,

or equivalently,

𝜙(𝑛𝜓(𝐹̄𝑋 (𝛼𝑥))) ≥ (resp. ≤)(𝜙(𝑛𝜓(𝐹̄𝑋 (𝑥))))
𝛼, 𝑥 > 0 and 0 < 𝛼 < 1. (A.36)

Since 𝑋 is IFRA (resp. DFRA), we have

𝐹̄𝑋 (𝛼𝑥) ≥ (resp. ≤)(𝐹̄𝑋 (𝑥))
𝛼, for all 𝑥 > 0 and 0 < 𝛼 < 1.

On using the decreasing property of 𝜙 in the above inequality, we get

𝜙(𝑛𝜓(𝐹̄𝑋 (𝛼𝑥))) ≥ (resp. ≤)𝜙(𝑛𝜓((𝐹̄𝑋 (𝑥))
𝛼)), (A.37)

for all 𝑥 > 0 and 0 < 𝛼 < 1. Again, the assumption “𝑢𝑅′(𝑢)/𝑅(𝑢) is increasing (resp. decreasing) in
𝑢 > 0” implies that

− ln(𝜙(𝑛𝜓(𝑒−𝑢))) is convex (resp. concave) in 𝑢 > 0,

which further implies that

− ln(𝜙(𝑛𝜓(𝑒−𝑢))) is starshaped (resp. anti-starshaped) in 𝑢 > 0,

or equivalently,

− ln(𝜙(𝑛𝜓(𝑒−𝛼𝑢))) ≤ (resp. ≥) − 𝛼 ln(𝜙(𝑛𝜓(𝑒−𝑢))), for all 𝑢 > 0 and 0 < 𝛼 < 1.

Furthermore, this implies that

𝜙(𝑛𝜓(𝑢𝛼)) ≥ (resp. ≤)(𝜙(𝑛𝜓(𝑢)))𝛼, for all 0 < 𝑢 < 1 and 0 < 𝛼 < 1,
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and hence,
𝜙(𝑛𝜓((𝐹̄𝑋 (𝑥))

𝛼)) ≥ (resp. ≤)(𝜙(𝑛𝜓(𝐹̄𝑋 (𝑥))))
𝛼, (A.38)

for all 𝑥 > 0 and 0 < 𝛼 < 1. On combining (A.37) and (A.38), we get (A.36). Hence, the result is
proved. �

Proof of Theorem 3.7(c). Note that, for all 𝑥 > 0,

− ln 𝐹̄𝜏1|𝑛 (𝑿) (𝑥)

𝑥
=

(
− ln (1 − 𝜙(𝜓(𝐹𝑋 (𝑥))))

𝑥

) (
− ln(1 − 𝜙(𝑛𝜓(𝐹𝑋 (𝑥))))

− ln (1 − 𝜙(𝜓(𝐹𝑋 (𝑥))))

)
.

Since 𝑋 is IFRA (resp. DFRA), we have that

− ln(1 − 𝜙(𝜓(𝐹𝑋 (𝑥))))

𝑥
is increasing (resp. decreasing) in 𝑥 > 0. (A.39)

Again, from the assumption “𝐻 (𝑢)/log(1− 𝜙(𝑢)) is increasing (resp. decreasing) in 𝑢 > 0”, we get that

− ln(1 − 𝜙(𝑛𝜓(𝐹𝑋 (𝑥))))

− ln(1 − 𝜙(𝜓(𝐹𝑋 (𝑥))))
is increasing (resp. decreasing) in 𝑥 > 0. (A.40)

On combing (A.39) and (A.40), we get that

− ln(1 − 𝜙(𝑛𝜓(𝐹𝑋 (𝑥))))

𝑥
is increasing (resp. decreasing) in 𝑥 > 0,

or equivalently,
− ln 𝐹̄𝜏1|𝑛 (𝑿) (𝑥)

𝑥
is increasing (resp. decreasing) in 𝑥 > 0,

and hence, the result follows. �
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