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Abstract

Inertial measurement units (IMUs) have proven to be valuable tools in measuring the range of motion (RoM) of
human upper limb joints. Although several studies have reported on the validity of IMUs compared to the gold
standard (optical motion capture system, OMC), a quantitative summary of the accuracy of IMUs in measuring RoM
of upper limb joints is still lacking. Thus, the primary objective of this systematic review and meta-analysis was to
determine the concurrent validity of IMUs formeasuringRoMof the upper extremity in adults. Fifty-one articles were
included in the systematic review, and data from 16were pooled formeta-analysis. Concurrent validity is excellent for
shoulder flexion–extension (Pearson’s r = 0.969 [0.935, 0.986], ICC = 0.935 [0.749, 0.984], mean difference =�3.19
(p = 0.55)), elbow flexion–extension (Pearson’s r = 0.954 [0.929, 0.970], ICC = 0.929 [0.814, 0.974], mean
difference = 10.61 (p = 0.36)), wrist flexion–extension (Pearson’s r = 0.974 [0.945, 0.988], mean difference =�4.20
(p = 0.58)), good to excellent for shoulder abduction–adduction (Pearson’s r = 0.919 [0.848, 0.957], ICC = 0.840
[0.430, 0.963], mean difference = �7.10 (p = 0.50)), and elbow pronation–supination (Pearson’s r = 0.966 [0.939,
0.981], ICC = 0.821 [0.696, 0.900]). There are some inconsistent results for shoulder internal–external rotation
(Pearson’s r = 0.939 [0.894, 0.965], mean difference =�9.13 (p < 0.0001)). In conclusion, the results support IMU as
a viable instrument for measuring RoM of upper extremity, but for some specific joint movements, such as shoulder
rotation and wrist ulnar-radial deviation, IMU measurements need to be used with caution.

1. Background

Range of motion (RoM) describes the extent of movement achievable around a joint or at a specific point
of the body. Measuring RoM is essential in clinical assessments, such as in evaluating shoulder joint
mobility for the diagnosis and staging of frozen shoulder (Ješić et al., 2022). Accurate and reliable RoM
measurements are critical for clinicians in guiding their diagnostic and treatment strategies. In clinical
settings, goniometers have become a popular choice for RoM measurement due to their affordability,
portability, and user-friendly nature. Nonetheless, they have notable limitations. First, goniometers can
only measure joint angles in a single plane and static positions, which restricts their ability to assess
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dynamic joint movements. Second, the reliability and accuracy of measurements taken with goniometers
can vary widely. The intraclass correlation coefficients (ICCs) for RoM measurements in shoulder and
elbow joints range from 0.76 to 0.94 and 0.36 to 0.91 (Muir et al., 2010; Walmsley et al., 2018),
respectively. Such variability in measurement reliability may stem from the anatomical specificity of the
joints being measured and the different levels of experience among evaluators. Consequently, goniom-
eters should be considered as a basic tool for RoM measurement. Their substantial measurement errors
limit their utility in more precise clinical research and kinematic studies.

Commercial marker-based motion capture systems, also known as optical motion capture systems
(OMCs), such as Vicon (Vicon Motion Systems Ltd., Oxford, UK), are widely regarded as the “gold
standard” in clinical human motion analysis and biomechanics research (Nagymáté and Kiss, 2018;
Valevicius et al., 2018), with a systematic review notingwithin-assessor errors less than 4.0° in the sagittal
plane and below 2.0° in the frontal plane for gait measurements (McGinley et al., 2009). For such systems,
passive reflective markers are strategically placed on specific bony landmarks of the body, corresponding
to the segments to be analyzed. These markers reflect light back to cameras, enabling the associated
biomechanics model to reconstruct three-dimensional human motion in space (Colyer et al., 2018).
However, these systems come with considerable limitations: costly, lack portability, necessitate a
dedicated laboratory setting, and involve lengthy setup and calibration procedures (Sessa et al., 2013;
Wu et al., 2022), making these systems impractical for routine clinical use. Furthermore, the occlusion of
markers by clothing can significantly affect the reliability of results, limiting the marker-based system’s
application in real-world scenarios (van der Kruk and Reijne, 2018).

Inertial measurement units (IMUs), or wearable sensors, have emerged as an alternative method that
can overcome these limitations. IMUs are widely used in human kinematics analysis research and clinical
gait assessments due to their portability and affordability. Typically, IMUs consist of three-axis acceler-
ometers, three-axis gyroscopes, with or without three-axis magnetometers (Seel et al., 2014). Users can
estimate the kinematic parameters of body segments in three-dimensional space through data fusion
algorithms and biomechanics models (Poitras et al., 2019). Therefore, the use of multiple IMUs can
provide the possibility of collecting upper limb motion parameters in daily life. While IMUs show
promise as tools for motion tracking, it is essential to conduct thorough metrological validation to ensure
their validity and reliability before they can be adopted for widespread use. Many studies have examined
their validity and reliability in measuring human kinematic parameters during various movements.
Several systematic reviews and meta-analyses on the validity and reliability of IMU measurement of
lower limb kinematics exist (Kobsar et al., 2020; Zeng et al., 2022), the results demonstrated that IMUs are
reliable tools for measuring the RoM in the lower limbs. In the context of upper extremities, a systematic
review by Walmsley et al. (2018) analyzed 22 studies conducted before 2018, found that while IMUs
exhibited higher error margins in vivo compared to OMC systems, achieving errors less than 5° was
possible with significant customization. Furthermore, another systematic review highlighted the broad
error margins of IMUs in measuring upper limb joint motions: for shoulder joints (root mean square error
[RMSE] 0.2°–64.5°), elbow joints (RMSE 0.2°–30.6°), and wrists (RMSE 2.2°–30°) (Poitras et al.,
2019), when compared to OMC systems. However, there is a notable gap in the literature regarding meta-
analysis on the validity of IMU measurements in upper extremity motion analysis. While some articles
have systematically reviewed the measurement validity of IMUs for upper limb joint motion, they
predominantly provide qualitative summaries. There is a lack of high-quality meta-analysis that quan-
titatively assesses the measurement validity of IMUs and examines the statistical significance of the
measurement errors. Therefore, it is necessary to quantitatively validate IMU systems before using them
routinely in assessments. The main objectives of this review study were: (1) to provide a summary of the
characteristics of commercially available wearable sensors, (2) to quantitatively summarize the existing
psychometric properties by comparing IMUswithOMCs, and (3) to establish evidence supporting the use
of IMUs for measuring RoM in the upper limb.
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2. Methods

2.1. Protocol and registration

This systematic review and meta-analysis adhered to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines (Page et al., 2021), and the protocol was registered
on the International Prospective Register of Systematic Review on December 28, 2022 (PROSPERO
number: CRD42022384738).

2.2. Searching strategy

We selected relevant studies published between January 1, 2016 and December 19, 2022, by searching
PubMed, Web of Science, Scopus, IEEE Xplore electronic databases, and ClinicalTrials register system.
The search terms included wearable sensor, motion analysis, range of motion, upper limbs, and optical
motion capture system. The specific search strategies in PubMed included: (wearable sens*[Title/
Abstract] OR inertial motion unit*[Title/Abstract] OR inertial movement unit*[Title/Abstract] OR
inertial sens*[Title/Abstract] OR sensor[Title/Abstract] OR accelerometer*[Title/Abstract] OR gyro-
scope*[Title/Abstract]) AND (movement*analysis[Title/Abstract] OR motion analysis*[Title/Abstract]
OR motion track*[Title/Abstract] OR track* motion*[Title/Abstract] OR measurement system*[Title/
Abstract] OR movement[Title/Abstract]) AND (joint angle*[Title/Abstract] OR angle*[Title/Abstract]
OR kinematic*[Title/Abstract] OR range of motion*[Title/Abstract]) AND (upper limb*[Title/Abstract]
ORupper extremit*[Title/Abstract] OR arm*[Title/Abstract] OR elbow*[Title/Abstract] ORwrist*[Title/
Abstract] OR shoulder*[Title/Abstract] OR humerus*[Title/Abstract]) AND (motion capture system
[Title/Abstract] OR 3D motion capture[Title/Abstract] OR marker*[Title/Abstract] OR optical[Title/
Abstract] OR camera*[Title/Abstract] OR optoelectronic[Title/Abstract]) NOT (review[Title/Abstract])
AND (Filter: 2016–2022). The basic search terms are similar for different databases with very minor
adjustments. In addition, we performed a manual search using the references of previous review articles.
Complete search strategy for all databases can be seen in Table 1.

2.3. Inclusion and exclusion criteria

Articles that met the following criteria were included in this systematic review: (1) evaluated the validity
of IMUs, (2) measured and reported specific upper extremity RoM results, (3) compared the measure-
ments captured by IMUs to the marker-based motion capture systems, (4) assessed human beings, (5)
published in English. The exclusion criteria were as follows: (1) no relevant outcomes, (2) no comparison
with standard marker-based motion capture systems, (3) only assessed lower limb motion, (4) only
assessed unnatural humanmotion, (5) animal model studies, (6) only assessed children and infants, (7) no
research studies or no full text, (8) published in other languages. Additional details on inclusion and
exclusion criteria can be seen in Supplementary file 1.

2.4. Study selection

All the results were entered into the bibliographic management tool (Endnote X9, Thomson Reuters, New
York, USA), and duplicates were removed by Endnote automatically. Two authors (Li and Qiu)
independently screened the titles and abstracts retrieved to include the articles that satisfied the criteria,
and then read the full texts for final eligibility. Any disagreements were resolved by consensus with the
third reviewer (Gan).

2.5. Assessment of risk of bias and level of evidence

The included studies were assessed according to the Critical Appraisal of Study Design for Psychometric
Articles. To make it more appropriate for assessing the psychometrics of IMUs, Kobsar et al. (2020)
modified the checklist. This modified evaluation checklist contains 12 items in five different domains: (1)
study question, (2) study design, (3) measurements, (4) analyses, and (5) recommendations. Each item is
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Table 1. Complete search strategy

Search strategy in PubMed Search strategy in Web of Science

(((((((((wearable sens*[Title/Abstract]) OR
(inertial motion unit*[Title/Abstract])) OR
(inertial movement unit*[Title/Abstract])) OR
(inertial sens*[Title/Abstract])) OR
(sensor[Title/Abstract])) OR
(accelerometer*[Title/Abstract])) OR
(gyroscope*[Title/Abstract])) AND ((((((movement*
analysis[Title/Abstract]) OR

(motion analysis*[Title/Abstract])) OR
(motion track*[Title/Abstract])) OR
(track* motion*[Title/Abstract])) OR
(measurement system*[Title/Abstract])) OR
(movement[Title/Abstract]))) AND ((((joint angle*
[Title/Abstract]) OR

(angle*[Title/Abstract])) OR
(kinematic*[Title/Abstract])) OR
(range of motion*[Title/Abstract]))) AND (((((((upper
limb*[Title/Abstract]) OR

(upper extremit*[Title/Abstract])) OR
(arm*[Title/Abstract])) OR
(elbow*[Title/Abstract])) OR
(wrist*[Title/Abstract])) OR
(shoulder*[Title/Abstract])) OR
(humerus*[Title/Abstract]))) AND (((((motion capture
system[Title/Abstract]) OR

(3D motion capture[Title/Abstract])) OR
(marker*[Title/Abstract])) OR
(optical[Title/Abstract])) OR
(camera*[Title/Abstract])) OR
(optoelectronic[Title/Abstract])) NOT (review[Title/
Abstract]) AND (Filter:2016–2022)

((TS = (wearable sens* OR
inertial motion unit* OR
inertial movement unit* OR
inertial sens* OR
sensor) AND (TS = (movement* analysis OR
motion analysis* OR
motion track* OR
track* motion* OR
measurement system OR
movement)) AND (TS = (motion capture system OR
3D motion capture OR
marker* OR
optical OR
camera*)) AND (TS = (joint angle* OR
angle* OR
kinematic* OR
range of motion*)) AND (TS = (upper limb* OR
upper extremit* OR
arm* OR
elbow* OR
wrist* OR
shoulder* OR
humerus*))))

Search strategy in Scopus Search strategy in IEEE
(TITLE–ABS–KEY (wearable AND sens* OR
inertial AND motion AND unit* OR
inertial AND movement AND unit* OR
inertial AND sens* OR
sensor)) AND (TITLE–ABS–KEY (movement* AND
analysis OR

motion AND analysis* OR
motion AND track* OR
track* AND motion* OR
measurement AND system* OR
movement)) AND (TITLE–ABS–KEY (joint AND
angle* OR

angle* OR
kinematic* OR
range AND of AND motion*)) AND (TITLE–ABS–
KEY (upper AND limb* OR

upper AND extremit* OR
arm* OR
elbow* OR
wrist* OR
shoulder* OR
humerus*)) AND (TITLE–ABS–KEY (motion AND
capture AND system OR

3D AND motion AND capture OR
marker* OR
optical OR
camera*))

(“All Metadata”:wearable sens* OR
“All Metadata”:inertial motion unit* OR
“All Metadata”:inertial movement unit* OR
“All Metadata”:inertial sens* OR
“All Metadata”:sensor) AND (“All Metadata”:motion capture system
OR

“All Metadata”:3D motion capture OR
“All Metadata”:marker* OR
“All Metadata”:optical OR
“All Metadata”:camera*) AND (“All Metadata”:upper limb* OR
“All Metadata”:upper extremit* OR
“All Metadata”:arm* OR
“All Metadata”:elbow* OR
“All Metadata”:wrist* OR
“All Metadata”:shoulder* OR
“All Metadata”:humerus*) AND (“All Metadata”:joint angle* OR
“All Metadata”:angle* OR
“All Metadata”:kinematic* OR
“All Metadata”:range of motion*) AND (“All Metadata”:movement*
analysis OR

“All Metadata”:motion analysis* OR
“All Metadata”:motion track* OR
“All Metadata”:track* motion* OR
“All Metadata”:measurement system* OR
“All Metadata”:movement)

*(Asterisk) is to replace any number of character, for example, extremit* finds “extremity” and “extremities.”
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rated as 0, 1, or 2, with a maximum total score of 24. The specific scoring criteria and descriptors for each
item can be found in Supplementary file 2. It should be noted that the question #6 pertains solely to
literature that covers reliability testing in methodology (i.e., patient reevaluation), but not all the literature
included in the review needs to be assessed for this specific question. Therefore, total score for literature
that is not relevant to this question item is 22 points. Initially, two reviewers (Li and Qiu) evaluated three
articles simultaneously, discussing and reaching consensus on each item, and then two reviewers used the
same criteria to evaluate the remaining literature separately. The agreement between the two raters was
assessed using Cohen’s kappa coefficient. An acceptable level of agreement is typically indicated by a
Cohen’s kappa coefficient greater than 0.60 (Henry et al., 2016). Two raters discussed and resolved most
disagreements, and if consensus could not be reached, a third rater (Gan) was invited to adjudicate.

According to the score percentage, the quality of the included literature can be divided into four
categories (Kobsar et al., 2020): (1) score percentage greater than 85% were classified as high quality
(HQ), (2) between 70 and 85% were classified as moderate quality (MQ), (3) between 50 and 70% were
classified as low quality (LQ), (4) below 50% were considered very low quality (VLQ). The results of
quality assessment were then used in determining the level of evidence (van Tulder et al., 2003):

(1) Strong: Consistent results among multiple HQ studies.
(2) Moderate: Consistent results among multiple MQ studies and/or only one HQ study.
(3) Limited: Consistent results among multiple LQ studies and/or only one MQ study.
(4) Very limited: Consistent results among multiple VLQ studies and/or only one LQ study.
(5) Conflicting: Inconsistent results among multiple trials, regardless of study quality.

2.6. Data extraction

Data extraction and results compilation were performed by two independent reviewers (Li and Qiu) and
data were extracted into Microsoft Excel. In case of disagreement, a third researcher (Gan) intervened.
Data extracted from the studies included the following information: (1) study information (author and
publication year), (2) sample size, (3) wearable sensor information (sensor brand, sampling rate, data
fusion algorithm/filter, calibration methods, and placement), (4) reference system, (5) measured joints
and/or movements (shoulder, elbow, and wrist, or specific complex movement), and (6) results and
statistical parameters.

Since this meta-analysis only considers the validity of the IMU for measuring the RoM of the upper
extremity compared with the marker-based motion capture system, the extracted statistics include:
mean ± standard deviation (SD), ICC, Pearson’s r, RMSE, bias (mean difference), limits of agreement
(LoA), and other statistics (i.e., coefficient of determination [r2] and coefficient of multiple correlation
[CMC]). Then, according to different upper limb joints and joint motion planes, the extracted data were
divided into the following groups: shoulders (flexion/extension, abduction/adduction, and internal/
external rotation), elbows/forearms (flexion/extension and pronation/supination), and wrists (flexion/
extension and ulnar/radial deviation).

2.7. Statistical analysis

Themeta-analysis was performed using the ReviewManager version 5.4.1 (The Cochrane Collaboration,
Copenhagen, Denmark). Data for validity outcomes were meta-analyzed based on the mean ± SD, ICC,
and Pearson’s r. The agreement metrics of ICCs were interpreted as (Han, 2020): (1) poor (< 0.500), (2)
moderate (0.500–0.749), (3) good (0.750–0.899), and (4) excellent (≥ 0.900), and r was interpreted as
(Wahyuni and Purwanto, 2020): (1) very weak relationship (< 0.2), (2) weak relationship (0.2–0.4), (3)
moderate relationship (0.4–0.6), (4) strong relationship (0.6–0.8), and (5) very strong relationship (>0.8).
Point estimates were weighted based on the sample size of the included studies and considering the non-
normality of the two parameters (ICC and r). It was necessary to perform Fisher’s Z-transformation
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(Cozzolino, 2009; Kobsar et al., 2020) and then transformed back to ICC/r for reporting, the formula are
as follows (Kobsar et al., 2020; Zeng et al., 2022):

Fisher0sZICC=r = 0:5∗
1 + ICC=r
1� ICC=r

,

SEr =

ffiffiffiffiffiffiffiffiffiffiffiffi
1

n�3
,

r

SEICC =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�3=2ð Þ ,
s

Summary
ICC

r
=
e2Z �1
e2Z + 1

:

Sensitivity analysis was consideredwhen therewas heterogeneity among the studies and the number of
studies was greater than or equal to three. Heterogeneity in the data was assessed using Tau2 and I2

statistics. ATau2 value of 0 indicates an absence of heterogeneity. I2 values are interpreted as follows: less
than 25% indicates low heterogeneity, 26–50% suggests moderate heterogeneity, and over 75% points to
high heterogeneity (Higgins et al., 2003; Walmsley et al., 2018; Zeng et al., 2022). When the I2 value
exceeded 50%, a sensitivity analysis was conducted. This involves sequentially excluding each included
study and then performing ameta-analysis on the remaining studies. If, after exclusion, the I2 decreases to
below 50% and the meta-analysis results remain unchanged, it indicates robustness in the original meta-
analysis findings. Conversely, if the I2 decreases below 50% but the results of the meta-analysis change, it
suggests non-robustness in the original meta-analysis outcomes. The level of significance was p < 0.05.
Given the heterogeneity of the trial conditions of the included studies, a random effects model was used
with 95% CI (Huedo-Medina et al., 2006). When the number of studies was sufficient (n ≥ 3) (Zeng et al.,
2022), subgroup analyses were conducted to explore possible associations between the study character-
istics and the validity of the IMUs measurements.

3. Results

3.1. Characteristics of the included studies

Our search strategy identified a total of 1,081 articles through databases and cross-referencing. Following
the removal of duplicates, 639 articles remained. After screening titles, abstracts and full-text, 51 articles
were included in this systematic review.APRISMA flow chart showing the screening process is presented
in Figure 1. Data from 491 adults were included across these studies (sample size: 9.6 (5.8); median
sample size: 10; range: 1–24). The most common sampling frequency for wearable sensors was 100 Hz
(n = 15, range: 20–1,000 Hz). All the characteristics of the included articles are shown in Table 2.

3.2. Risk of bias of the included studies

Seven articles were rated as HQ, 14 as MQ, 23 as LQ, and 7 as VLQ (Table 3). Agreement between both
assessors was acceptable (Cohen’s kappa = 0.65; 95% CI = 0.59–0.71). More than half of the included
articles received the highest scores in Q1 (Background & Research Question), Q8 (Protocol), and Q12
(Conclusion/Recommendations), but only three articles (5.7%) reported the complete sample size
calculation process (Q5: Sample).
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3.3. Characteristics of the wearable sensor

The common commercial IMU systems used were Xsens (n = 13), APDM/Opal (n = 4). and Perception
Neuron (n = 4); it is worth noting that seven studies used customized IMU systems. A total of 32 papers
reported the calibration process before data collection. Static anatomical calibration was performed often
(n = 24), with dynamic anatomical calibration performed (n = 5).

3.4. Validity of the wearable sensors

Validity was assessed usingVicon system (n = 22), OptiTrack (n= 12), Qualisys (n = 6), Smart DX (n= 4),
and other systems (n= 7) as reference systems. Althoughmany statistical parameters related to the validity
of IMUs were included in data extraction, we found through analysis that, due to the limitation of the
number of studies and the inconsistency of the results reported, such as RMSE and LoA, there are only
three statistics of mean ± SD, ICC, and Pearson’s r could be included in the meta-analysis. For studies not
included in the meta-analysis, we also quantitatively summarized the extracted data in Supplementary file
3, and these data were used as supplements and references when discussing the results of the meta-
analysis.

3.4.1. Shoulder flexion/extension
Data from seven studies (three HQ, twoMQ to LQ, and twoVLQ; Poitras et al., 2019; Ligorio et al., 2020;
Truppa et al., 2021a,b; Choo et al., 2022; Slade et al., 2022; Wu et al., 2022) suggest that very strong
relationship between IMUandOMC for shoulder flexion/extensionmeasurements (total n= 60; r= 0.969,
95% CI [0.935, 0.986]; Tau2 = 0.51; I2 = 73%) (Figure 2a). Sensitivity analysis showed that the results
were robust even after excluding the study of Poitras et al. (2019) (I2 = 43% and r = 0.954 [0.914, 0.976]).
Based on the quality of the included studies, the level of evidence for this result is strong.

Figure 1. Study selection according to PRISMA flow diagram 2020.
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Table 2. Basic information of included studies

Study information

Sample
size (N) Sensor brands

Sampling rate of
sensors (Hz)

Data fusion algorithm/
filter

Placement of sensors
(only upper limbs)

Calibration
methods

Marker-based
motion capture
system

Measured joints and/or movements

Author Year Shoulder
Elbow/
forearm Wrist Specific tasks

Abbasi–Kesbi
et al.

2018 1 MPU–9150
(InvenSense)

50 Complementary filter
+ L2 norm total
variation algorithm

S1: wrist
S2: elbow
S3: shoulder

(reference)

N/A Qualisys N/A Flex./Ext. Flex/Ext. Movement 1: Changes
the joint angle of
his wrist and elbow
simultaneously 90
degrees from the
first state
counterclockwise
and then returns
them to the first
state

Movement 2: Angular
variations
simultaneously
until reaching
angular variations
of wrist to 150
degrees and elbow
to 90 degrees

Alarcon–
Aldana
et al.

2022 1 Customized (Imocap–
GIS)

60 (default) Kalman filter +
Madwik filters

S1: arm (outer side in
the lower third of
the arm segment)

S2: forearm (the lower
third of the
forearm)

Static calibration OptiTrack N/A Flex./Ext.
Prona‥/

Supin.

N/A N/A

Barreto et al. 2021 10 Xsens 240 N/A S1: shoulders (middle
of the scapula
spine)

S2: upper arms (lateral
side above elbow)

S3: forearms (medial
side of wrist)

S4: hands (posterior
side)

N–pose + walk +
N–pose

Qualisys Abd./Add.
Flex./Ext.
IR/ER

Flex./Ext. Flex./Ext. Round–off back
handsprings

Bessone et al. 2022 14 Aktos–t system 143 10 Hz, 2nd
Butterworth filter

S1: upper arms
S2: forearm
S3: hands

T–pose Vicon Flex./Ext.
Abd./Add.

Flex./Ext. Flex./Ext.
Ulnar

deviation

1. Repetitive
movement test

2. Walking
3. Squat jumping

Boddy et al. 2019 10 MotusBASEBALL 1,000 N/A S: forearm (2 finger
widths below the
medial epicondyle)

N/A OptiTrack Rotation N/A N/A Pitches of baseball

Callejas–
Cuervo
et al.

2017 1 Customized (MPU–
9150)

30 Kalman filter S1: upper arm
(external part of
humerus)

S2: forearm (between
radial styloid and
ulnar styloid)

N/A Qualisys N/A Flex./Ext. N/A N/A

(continued)
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Study information

Sample
size (N) Sensor brands

Sampling rate of
sensors (Hz)

Data fusion algorithm/
filter

Placement of sensors
(only upper limbs)

Calibration
methods

Marker-based
motion capture
system

Measured joints and/or movements

Author Year Shoulder
Elbow/
forearm Wrist Specific tasks

Camp et al. 2021 10 MotusBASEBALL 1,000 N/A S: forearm (2 finger
widths below the
medial epicondyle)

N/A Raptor Rotation N/A N/A Pitches of baseball

Chan et al. 2022 19 XCLR8 IMU 20 N/A S1: forearm N/A Motion
Analysis
Corp.

Flex./Ext.
ER.
Abd.

N/A N/A N/A

Chapman et al. 2019 10 APDM 128 5 Hz, 5th Butterworth
filter

S1: humerus
S2: sternum

(reference)

N/A OptiTrack Flex.
Abd.
IR/ER

N/A N/A N/A

Chen et al. 2020 14 APDM 128 Kalman filter versus
complementary
filter

S1: upper arm
S2: forearm
S3: hand

Stationary calibration OptiTrack N/A N/A N/A 1. Grasping a wooden
dowel

2. Transferring the
dowel to the
unloading
container 3.
Returning the hand
back to the
material feed
container to grasp
the next dowel

Choo et al. 2022 7 PNS (Perception
Neuron)

120 N/A S1: upper arms
S2: wrists
S3: hands

Perception Neuron
4–step calibration

Vicon Flex./Ext.
Abd./Add.

Flex./Ext. N/A 1. Stationary walk
2. Distance walk
3. Stationary jog
4. Distance jog
5. Stationary floorball

wrist shot
6. Moving wrist shot

Contreras–
Gonzalez
et al.

2020 9 LP–RESEARCH
(LPMS–URS2)

400 Kalman filter S1: shoulder (shoulder
ends)

S2: elbow (beginning
of elbow)

Functional
calibration

OptiTrack Abd./Add.
Flex./Ext.
Horiz. Add.
Rotation

N/A N/A N/A

Digo et al. 2022 6 Xsens 50 Gradient descent
algorithm

S1: right upper arm
S2: right forearm
S3: thorax

A algebraic
quaternion

OptiTrack Elevation Flex./Ext. N/A Place the box over the
cross marked on
the table

Dufour et al. 2021 11 Xsens 100 N/A S1: chest
S2: upper arm

N/A OptiTrack Elevation N/A N/A place a small machine
screw in a small
bin 0.56 m in front
of them using their
right hand

Rovini et al. 2019 20 SensHand (DAPHNE) 100 Custom–made
algorithms

S1: forearm N/A SMART DX N/A N/A N/A Forearm pronation–
supination
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Table 2 Continued

Study information

Sample
size (N) Sensor brands

Sampling rate of
sensors (Hz)

Data fusion algorithm/
filter

Placement of sensors
(only upper limbs)

Calibration
methods

Marker-based
motion capture
system

Measured joints and/or movements

Author Year Shoulder
Elbow/
forearm Wrist Specific tasks

Ertzgaard et al. 2016 10 Customized 100 Kalman filter S1: upper body
S2: upper arms
S3: lower arms

Functional calibration CodaMotion Flex./Ext.
Abd./Add.
ER/IR

Flex.
Prona./

Supina.

N/A 1. A lifting and
dropping task,
where the subject
moved 4 cones
from one lower
level on a table to a
higher in a forward
direction

2. A throwing and
catching task that
mainly involved
elbow flexion

3. Hands moved from
the starting
position to the top
of the head, to the
shoulder, clapping
back of hands
together, moved
hands to the knee
and then to the toe

4. The hands moved
from the starting
position to the ears,
to the eyes and then
to the mouth

Esfahani
et al.

2018 1 Customized 100 Kalman filter with
adaptive approach

S1: hands
S2: forearms
S3: upper arms
S4: sternum

Accelerometer
calibration +
gyroscope
calibration

Vicon Flex.
(45,90,135,180)

Ext.
Abd.

(45,90,135,180)
IR/ER

N/A N/A N/A

Fantozzi et al. 2016 8 APDM 128 Kalman–based
algorithm

S1: sternum
S2: humerus
S3: forearm (just

above the ulnar and
radial styloids)

S4: hand

Static calibration +
functional
calibration

SMART DX Flex./Ext.
Abd./Add.
IR/ER

Flex./Ext.
Prona./

Supina.

Flex./Ext.
Radial–

ulnar
deviation

Front–crawl
swimming

Breaststroke
swimming

Fischer et al. 2021 10 IMU DyCare 104 N/A S1: hand
S2: forearm

N/A Vicon N/A N/A Flex./Ext.
Radial–

ulnar
angle

Dart–throwingmotion
task

(continued)
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Study information

Sample
size (N) Sensor brands

Sampling rate of
sensors (Hz)

Data fusion algorithm/
filter

Placement of sensors
(only upper limbs)

Calibration
methods

Marker-based
motion capture
system

Measured joints and/or movements

Author Year Shoulder
Elbow/
forearm Wrist Specific tasks

Goreham et al. 2022 15 Notch 40 N/A S1: sternum
S2: forearms (50% of

distance between
distal and proximal
segment
landmarks)

S3: upper arms

Static and dynamic
calibration

OptiTrack Flex./Ext.
Abd./Add.
IR/ER

Flex./Ext. N/A 1. Hand to back
pocket

2. Hand to the
contralateral
shoulder

3. Hand to the top of
head

Guignard et al. 2021 5 Hikob Fox 100 6 Hz, 4th Butterworth
filter

S1: upper arm
S2: forearm (50% of

distance between
distal and proximal
segment
landmarks)

Functional calibration OptiTrack N/A Flex./Ext.
Prona./

Supina.

N/A 1. Walking
2. Crawl
3. Rowing

Henschke
et al.

2022 24 Wave Track 147 N/A S1: sternum (10 cm
below the jugular
fossa)

S2: upper arm (15 cm
below the acromion
process)

T–pose Vicon Abd./Add.
ER/IR
Vertical Flex./Ext.
Horiz. Flex./Ext.

N/A N/A Multiplanar shoulder–
elbow movement

Hubaut et al. 2022 10 Dramco KUL 50 6 Hz, 4th Butterworth
filter

S1: center of forearm
S2: center of upper arm
S3:C7 vertebra

N/A Vicon N/A N/A N/A 1. Pushing the pole
2. Snatching the mass

with the pole
3. Pulling the pole

Humadi et al. 2021 10 Xsens 60 3rd one–dimensional
median filter

S1: upper arms
S2: forearms
S3: hands

N–pose Vicon Add.
Flex.
Rotation

Flex./Ext. N/A 1. Packing
2. Package inspection
3. Reaching an object

Laidig et al. 2017 1 Xsens N/A N/A S1: upper arm close to
the elbow

S2: forearm close to
the wrist

Anatomical calibration Vicon N/A Flex./Ext.
Prona./

Supin.

N/A N/A

Ligorio et al. 2017 15 YEI technology 220 Kalman filter S1: upper arm close to
the elbow

S2: forearm close to
the wrist

Functional calibration
+ static N–pose

Vicon N/A Flex./Ext.
Prona./

Supina.

N/A N/A

Ligorio et al. 2020 10 Pivot 100 Kalman filter S1: hand
S2: forearm
S3: upper arm
S4: sternum

N–pose Vicon Flex./Ext.
Abd./Add.
IR.ER

Flex./Ext.
Carrying

angle
Prona./

Supina.

Flex.Ext.
Abd./Add.
IR/ER

Sun salutation

Lin et al. 2021 13 Customized (WISN) 75 Quaternion–based
complementary
nonlinear filter

S1: sternum (xiphoid
process)

S2: upper arm (middle
point between the
acromion and
lateral epicondyle
of the humerus)

S3: forearm (middle
point between the
olecranon process
and the styloid
process of the ulna)

N/A Vicon Flex./Ext.
Abd.
ER/IR

N/A N/A N/A
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Table 2 Continued

Study information

Sample
size (N) Sensor brands

Sampling rate of
sensors (Hz)

Data fusion algorithm/
filter

Placement of sensors
(only upper limbs)

Calibration
methods

Marker-based
motion capture
system

Measured joints and/or movements

Author Year Shoulder
Elbow/
forearm Wrist Specific tasks

Marta et al. 2020 2 Customized 20 Kalman filter S1: trunk
S2: upper arm
S3: low arm

Static + dynamic
calibration

Smart DX Flex./Ext.
Abd./Add.

N/A N/A N/A

Mavor et al. 2020 20 Xsens 240 N/A S1: sternum
S2: upper arms
S3: forearms
S4: hands

N/A Vicon Flex./Ext.
Abd./Add.
Axial Rotation

Flex./Ext.
Abd./Add.
Axial

Rotation

N/A 1. Kneel–to–prone
2. Kneel–to–run
3. Prone–to–run
4. Walking
5. Prone–to–kneel
6. Run–to–kneel
7. Run–to–prone
8. Running

Mihcin,et al. 2019 1 Smartsuit Pro 100 N/A S1: hands
S2: forearms
S3: upper arms
S4: shoulders

N/A OptiTrack Flex. Flex. N/A The shoulder and also
elbow flexion
movements both
begin with the
palms against
subject’s sides of a
body. Then the
subject raises the
right/left arm in
front of the body to
highest point over
the head

Morrow et al. 2017 6 APDM 80 6 Hz, 4th Butterworth
filter

S1: sternum
S2: upper arm
S3: forearm

Static calibration Motion
Analysis
Corp.

Elevation Flex. N/A Surgical task

Muller et al. 2017 1 Xsens N/A Gradient descent
algorithm

S1: upper arm
S2: wrist

N/A Vicon N/A Flex./Ext.
Prona./

Supina.

N/A Grabbing a door knob,
turning the knob
and opening the
door

Ohberg et al. 2019 20 MoLab POSE 128 N/A S1: xiphoid process
S2: upper arm
S3: forearm

N/A Qualisys Flex./Ext.
Abd./Add.
IR/ER

Flex./Ext.
IR/ER

N/A 1. Drinking task
2. Finger to nose task

Pedro et al. 2021 18 Xsens N/A N/A S1: sternum
S2: upper arms
S3: forearms (close to

wrist)
S4: hands

N/A Qualisys Flex./Ext.
Abd./Add.
IR/ER

Flex./Ext.
Prona./

Supina.

Flex./Ext. Hitting the ball as fast
as they can against
a hanging cotton
cloth of 3X2 to
cushion the ball

Picerno et al. 2019 14 Xsens 100 N/A S1: thorax
S2: upper arm
S3: forearm

Anatomical calibration Smat DX Elevation
Axial Rotation

Flex./Ext.
Prono./

Supina.

N/A N/A

Poitras et al. 2019 16 Xsens 60 N/A S1: shoulders
S2: sternum
S3: upper arms
S4: forearms

N–pose Vicon Flex.
Abd.

N/A N/A Lifting tasks
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Study information

Sample
size (N) Sensor brands

Sampling rate of
sensors (Hz)

Data fusion algorithm/
filter

Placement of sensors
(only upper limbs)

Calibration
methods

Marker-based
motion capture
system

Measured joints and/or movements

Author Year Shoulder
Elbow/
forearm Wrist Specific tasks

Robert–
Lachaine
et al.

2020 5 Perception Neuron 120 Dynamic time
wrapping
algorithm

S1: sternum
S2: upper arms
S3: forearms

Steady pose + A–pose
+ T–pose + S–pose

Optotrak Flex./Ext.
Abd./Add.
IR/ER

Flex./Ext.
Prona./

Supina.

Flex./Ext. Moved five empty
boxes one at the
time from four
stations at each
corner of the
platform

Robert–
Lachaine
et al.

2017b 12 Xsens 30 N/A S1: sternum
S2: upper arms
S3: forearms
S4: hands

T–pose Optotrak Flex./Ext.
Abd./Add.
IR/ER

Flex./Ext.
Prona./

Supina.

Flex./Ext. Moved five empty
boxes one at the
time from four
stations at each
corner of the
platform

Robert–
Lachaine
et al.

2017a 12 Xsens 30 N/A S1: sternum
S2: upper arms
S3: forearms
S4: hands

T–pose + N–pose Optotrak N/A N/A N/A 1.Turning gait
2.Deep squat to pick a

box

Ruiz–
Malagon
et al.

2022 15 NOTCH 100/250/500 N/A S1: upper arm
S2: forearm

Steady pose Qualisys N/A Flex./Ext.
Prona./

Supina.

N/A Hitting ball

Schall et al. 2016 6 I2 M Motion Tracking 20 Complementary
weighting
algorithm

S1: sternal notch
S2: upper arm

N/A Vicon Elevation N/A N/A Milking cluster
attachment task

Sers et al. 2020 8 Perception Neuron 120 N/A S1: upper spine (C7)
S2: center of humerus
S3: acromions

Perception Neuron
4–step calibration

Vicon Abd. N/A N/A N/A

Shepherd et al. 2017 4 SABELSense 100 Heading Reference
System orientation
filter

S1: superior to the
distal radioulnar
articulation

T–pose Vicon Flex./Ext.
Abd./Add/

Flex./Ext. Flex./Ext. Synchronized ball
release

Slade et al. 2022 5 OpenSenseRT 30 Mahony filter S1: upper arms
S2: forearms
S3: hands
S4: torso

Static calibration OptiTrack Flex
Add,
Rotation

Flex. Flex. 1. Pick up a knife from
table

2. Cutting
3. Place the knife back

on table
Truppa et al. 2021a 10 TuringSense 100 Masgwick filter versus

Mahony filter
versus Customized
filter

S1: hand
S2: forearm
S3: upper arm
S4: trunk

N/A Vicon Flex./Ext.
Abd./Add.
IR.ER

Flex./Ext.
Carrying

angle
Prona./

Supina.

Flex.Ext.
Abd./Add.
IR/ER

Sun salutation
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Table 2 Continued

Study information

Sample
size (N) Sensor brands

Sampling rate of
sensors (Hz)

Data fusion algorithm/
filter

Placement of sensors
(only upper limbs)

Calibration
methods

Marker-based
motion capture
system

Measured joints and/or movements

Author Year Shoulder
Elbow/
forearm Wrist Specific tasks

Truppa et al. 2021b 5 TuringSense 100 Extend Kalman filter S1: hand
S2: forearm
S3: upper arm
S4: trunk

N–pose Vicon Flex./Ext.
Abd./Add.
IR.ER

Flex./Ext.
Carrying

angle
Prona./

Supina.

Flex.Ext.
Abd./Add.
IR/ER

Sun salutation

Truppa et al. 2022 10 TuringSense 100 Robust unscented
Kalman filter

S1: hand
S2: forearm
S3: upper arm
S4: trunk

N–pose Vicon Flex./Ext.
Abd./Add.
IR.ER

Flex./Ext.
Carrying

angle
Prona./

Supina.

Flex.Ext.
Abd./Add.
IR/ER

Sun salutation

Wells et al. 2019 9 Xsens 100 Kalman filter S1: upper arm
S2: forearm

Anatomical calibration
+ functional
calibration

Vicon N/A Flex,/Ext.
Prona./

Supina.

N/A N/A

Wirth et al. 2019 10 DyCare Lynx 102.4 N/A S1: hand
S2: forearm

N/A Vicon N/A N/A Flex./Ext.
Radial–

ulnar
dev.

N/A

Wu et al. 2022 7 Perception Neuron 100 N/A S1: shoulders (upper
portion of the
scapula)

S2: upper spine
S3: upper arms (above

the lateral elbow)
S4: forearms (just

above the lateral
side of the wrist)

Static calibration OptiTrack Flex./Ext.
Abd./Add.
IR/ER

Flex./Ext.
Prona./

Supina.

N/A Lifting box over the
shoulder

Abbreviations: Abd., abduction; Add., adduction; ER, external rotation; Ext., extension; Flex., flexion; IR, internal rotation; Pron., pronation; Supi., supination; N/A, not applicable.
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Table 3. Risk of bias assessment for included studies according to the Critical Appraisal of Study Design for Psychometric Articles

Study information
Study

question Study design Measurement Analyses Rec. Total Quality

Author Year Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
/
24 %

Abbasi–Kesbi et al. 2018 2 0 0 1 0 N/A 1 1 2 2 1 1 11 50.0 LQ
Alarcon–Aldana et al. 2022 2 0 1 1 0 N/A 2 2 2 1 0 2 13 59.1 LQ
Barreto et al. 2021 2 2 2 2 2 N/A 2 2 2 1 1 2 20 90.9 HQ
Bessone et al. 2022 2 1 1 1 1 N/A 2 2 1 2 2 2 17 77.3 MQ
Boddy et al. 2019 1 1 1 1 1 N/A 1 2 1 2 1 1 13 59.1 LQ
Callejas–Cuervo et al. 2017 1 0 0 1 0 N/A 1 1 0 1 0 1 6 27.3 VLQ
Camp et al. 2021 2 2 1 1 1 N/A 2 2 1 1 1 2 16 72.7 MQ
Chan et al. 2022 2 1 2 2 2 N/A 2 2 2 2 2 2 21 95.5 HQ
Chapman et al. 2019 2 1 2 1 1 N/A 1 2 2 1 1 1 13 59.1 LQ
Chen et al. 2020 1 2 1 0 1 N/A 2 2 1 0 0 1 11 50.0 LQ
Choo et al. 2022 2 2 2 2 1 N/A 1 2 2 2 2 1 19 86.4 HQ
Contreras et al. 2020 2 1 1 0 1 N/A 1 2 1 1 1 1 12 54.5 LQ
Digo et al. 2022 1 1 2 1 1 N/A 1 1 1 1 0 1 11 50.0 LQ
Dufour et al. 2021 1 1 1 1 1 N/A 2 2 1 1 1 1 13 59.1 LQ
Rovini et al. 2019 0 1 1 2 1 N/A 1 1 1 1 1 2 12 54.5 LQ
Ertzgaard et al. 2016 2 2 1 1 1 2 1 1 1 2 1 2 17 70.8 MQ
Esfahani et al. 2018 2 1 0 0 0 N/A 2 2 2 2 1 1 13 59.1 LQ
Fantozzi et al. 2016 2 2 1 2 1 N/A 2 2 1 1 1 2 17 77.2 MQ
Fischer et al. 2021 2 2 1 1 1 2 1 2 1 1 1 2 17 70.8 MQ
Goreham et al. 2022 1 1 1 2 1 N/A 2 2 2 1 2 1 16 72.7 MQ
Guignard et al. 2021 2 1 1 2 1 2 2 2 2 2 2 2 21 87.5 HQ
Henschke et al. 2022 2 2 2 2 1 N/A 2 2 2 2 1 2 20 90.9 HQ
Hubaut et al. 2022 1 2 1 0 1 N/A 2 2 1 1 1 1 13 59.1 LQ
Humadi et al. 2021 2 2 1 1 1 1 1 2 2 1 1 2 17 70.8 MQ
Laidig et al. 2017 0 0 0 0 0 N/A 1 0 1 0 0 1 3 13.6 VLQ
Ligorio et al. 2017 1 1 1 0 1 2 2 2 1 1 0 1 13 54.2 LQ
Ligorio et al. 2020 0 1 0 0 1 N/A 1 1 1 1 0 1 7 31.8 VLQ
Lin et al. 2021 2 2 0 1 1 2 2 2 1 1 1 2 17 70.8 MQ
Marta et al. 2020 1 0 1 1 0 N/A 1 1 2 0 0 1 8 36.4 VLQ
Mavor et al. 2020 2 1 0 1 1 N/A 1 1 1 0 1 2 11 50.0 LQ
Mihcin,et al. 2019 1 0 0 0 0 N/A 1 1 1 1 1 1 7 31.8 VLQ
Morrow et al. 2017 1 1 1 1 1 N/A 2 1 1 2 1 1 13 59.1 LQ
Muller et al. 2017 1 0 0 0 0 N/A 1 0 0 0 0 1 3 13.6 VLQ
Ohberg et al. 2019 2 2 1 1 1 2 1 1 1 2 1 2 17 70.8 MQ
Pedro et al. 2021 2 2 1 1 1 N/A 1 1 1 1 1 1 13 59.1 LQ
Picerno et al. 2019 1 1 1 1 1 N/A 1 1 2 1 1 2 13 59.1 LQ
Poitras et al. 2019 2 2 2 2 2 N/A 1 2 2 2 1 2 20 90.9 HQ
Robert–Lachaine
et al.

2020 2 1 0 1 0 N/A 2 1 1 1 0 2 11 50.0 LQ

Robert–Lachaine
et al.

2017b 2 2 0 1 1 N/A 1 2 2 2 1 2 16 72.7 MQ

Robert–Lachaine
et al.

2017a 1 1 0 0 1 2 1 1 1 2 1 2 13 54.2 LQ

Ruiz–Malagon et al. 2022 2 2 1 1 1 2 2 2 2 2 1 2 20 83.3 MQ
Schall et al. 2016 1 1 1 1 1 2 2 2 2 1 1 2 17 70.8 MQ
Sers et al. 2020 1 2 1 1 1 N/A 2 2 2 2 1 2 17 77.3 MQ
Shepherd et al. 2017 1 1 1 1 1 N/A 1 1 1 1 1 1 11 50.0 LQ
Slade et al. 2022 2 2 1 1 1 N/A 2 2 1 1 1 2 16 72.7 MQ
Truppa et al. 2021a 1 1 0 0 1 N/A 1 0 1 0 0 1 6 27.3 VLQ
Truppa et al. 2021b 2 2 0 1 1 N/A 2 1 1 1 0 2 13 59.1 LQ
Truppa et al. 2022 2 1 1 0 1 N/A 2 1 2 0 0 1 11 50.0 LQ
Wells et al. 2019 1 1 0 0 1 N/A 2 2 1 1 0 1 11 50.0 LQ
Wirth et al. 2019 2 2 0 0 1 N/A 2 1 1 1 0 2 12 54.5 LQ
Wu et al. 2022 2 2 2 2 1 2 1 2 2 2 2 2 22 91.7 HQ

HQ, high quality; LQ, low quality; MQ, moderate quality; N/A, not applicable; VLQ, very low quality.
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Figure 2. Shoulder flexion/extension. Forest plots showing the validity of shoulder flexion/extension
measured using IMU. Red squares represent Fisher’s Z; green squares represent mean difference; bars
indicate 95%CI and black diamonds as total data. Panel (a) describing the results of Pearson’s r: Choo et
al. A (stationary walk), B (distance walk), C (stationary jog), D (distance jog), E (stationary wrist shot), F
(distance wrist shot); Poitras et al. A (60° RoM), B (90° RoM), C (120° RoM);Wu et al. A (fast sample task
(flexion)), B (slow simple task (flexion)), C (fast simple task (extension)), D (slow simple task (extension)),
E (fast complex task), F (slow complex task). Panel (b) describing the results of ICC: Ertzgaard et al. A
(cone task), B (throw task), C (coordination task one), D (coordination task two). Panel (c) describing the
results of mean difference: Chan et al. A (flexion), B (extension). CI, confidence interval; IV, inverse

variance; SE, standard error.
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Figure 3. Shoulder abduction/adduction. Forest plots showing the validity of shoulder abduction/
adduction measured using IMU. Red squares represent Fisher’s Z; green squares represent mean

difference; bars indicate 95% CI and black diamonds as total data. Panel (a) describing the results of
Pearson’s r: Choo et al. A (stationary walk), B (distance walk), C (stationary jog), D (distance jog), E
(stationary wrist shot), F (distance wrist shot); Fantozzi et al. A (front-crawl task), B (breaststroke task);
Wu et al. A (fast sample task (flexion)), B (slow simple task (flexion)), C (fast simple task (extension)), D
(slow simple task (extension)), E (fast complex task), F (slow complex task). Panel (b) describing the
results of ICC: Ertzgaard et al. A (cone task), B (throw task), C (coordination task one), D (coordination

task two). Panel (c) describing the results of mean difference. CI, confidence interval; IV, inverse
variance; SD, standard deviation; SE, standard error.
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Data from three studies (one HQ and twoMQ; Ertzgaard et al., 2016; Fantozzi et al., 2016; Henschke
et al., 2022) suggested that excellent consistency between IMU and OMC for shoulder flexion/
extension measurements (total n = 42; ICC = 0.935, 95% CI [0.749, 0.984]; Tau2 = 0.71; I2 = 88%)
(Figure 2b). Sensitivity analysis showed that, after excluding the study of Henschke et al. (2022), the I2

decreased to 32% and ICC was changed to 0.961 [0.920, 0.982]. Sensitivity analysis showed that the
results were robust. Based on the quality of the included studies, the level of evidence for this result is
moderate.

Figure 4. Shoulder internal/external rotation. Forest plots showing the validity of shoulder rotation
measured using IMU. Red squares represent Fisher’s Z; green squares represent mean difference; bars
indicate 95% CI and black diamonds as total data. Panel (a) describing the results of Pearson’s r: Boddy
et al. (2019) A (fastball), B (off-speed); Ertzgaard et al. A (cone task), B (throw task), C (coordination task
one), D (coordination task two); Fantozzi et al. A (front-crawl task), B (breaststroke task);Wu et al. A (fast
sample task (flexion)), B (slow simple task (flexion)), C (fast simple task (extension)), D (slow simple task
(extension)), E (fast complex task), F (slow complex task). Panel (b) describing the results of mean
difference: Boddy et al. A (fastball), B (off-speed). CI, confidence interval; IV, inverse variance; SD,

standard deviation; SE, standard error.
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Figure 5. Elbow flexion/extension.Forest plots showing the validity of elbow flexion/extension measured
using IMU. Red squares represent Fisher’s Z; green squares represent mean difference; bars indicate
95% CI and black diamonds as total data. Panel (a) describing the results of Pearson’s r: Choo et al. A
(stationary walk), B (distance walk), C (stationary jog), D (distance jog), E (stationary wrist shot), F
(distance wrist shot); Fantozzi et al. A (front-crawl task), B (breaststroke task); Wu et al. A (fast sample

task (flexion)), B (slow simple task (flexion)), C (fast simple task (extension)), D (slow simple task
(extension)), E (fast complex task), F (slow complex task). Panel (b) describing the results of ICC:

Ertzgaard et al. A (cone task), B (throw task), C (coordination task one), D (coordination task two). Panel
(c) describing the results of mean difference. CI, confidence interval; IV, inverse variance; SD, standard

deviation; SE, standard error.
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Data from three studies (two HQ and oneMQ; Bessone et al., 2022; Chan et al., 2022; Henschke et al.,
2022) suggest that no significant measurement difference between IMU and OMC for shoulder flexion/
extension measurements (total n = 57; mean difference = �3.19, 95% CI [�13.57, 7.18]; Tau2 = 91.55;
I2 = 88%; Z = 0.60 (p = 0.55)) (Figure 2c). A sensitivity analysis was conducted, which revealed that when
the study of Henschke et al. (2022) was excluded, the I2 reduced to 67% and the mean difference was 2.39
[�4.04, 8.82], with a Z-score of 0.73 (p = 0.47). This analysis demonstrated that the results were robust.
Based on the quality of the included studies, the level of evidence for this result is strong.

3.4.2. Shoulder abduction/adduction
Data from seven studies (two HQ, three MQ to LQ, and two VLQ; Fantozzi et al., 2016; Ligorio et al.,
2020; Truppa et al., 2021a,b; Choo et al., 2022; Slade et al., 2022;Wu et al., 2022) suggest that very strong
relationship between IMU and OMC for shoulder abduction/adduction measurements (total n = 52;
r = 0.919, 95% CI [0.848, 0.957]; Tau2 = 0.29; I2 = 52%) (Figure 3a). Upon conducting a sensitivity
analysis and excluding the study of Truppa et al. (2021a), the I2 decreased to 41%, while the Pearson’s r

Figure 6. Elbow pronation/supination. Forest plots showing the validity of elbow pronation/supination
measured using IMU. Red squares represent Fisher’s Z; green squares represent mean difference; bars
indicate 95% CI and black diamonds as total data. Panel (a) describing the results of Pearson’s r:

Fantozzi et al. A (front-crawl task), B (breaststroke task); Wu et al. A (fast sample task (flexion)), B (slow
simple task (flexion)), C (fast simple task (extension)), D (slow simple task (extension)), E (fast complex
task), F (slow complex task). Panel (b) describing the results of ICC: Ertzgaard et al. A (cone task), B
(throw task), C (coordination task one), D (coordination task two). CI, confidence interval; IV, inverse

variance; SE, standard error.
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remained high at 0.905 with a confidence interval of [0.831, 0.948]. Sensitivity analysis showed that the
results were robust. Based on the quality of the included studies, the level of evidence for this result is
strong.

Data from two studies (one HQ and oneMQ; Ertzgaard et al., 2016; Henschke et al., 2022) suggest that
good consistency between IMU and OMC for shoulder abduction/adduction measurements (total n = 34;
ICC = 0.840, 95%CI [0.430, 0.963]; Tau2 = 0.65; I2 = 87%) (Figure 3b). Sensitivity analyses could not be
performed due to the insufficient number of studies. Based on the quality of the included studies, the level
of evidence for this result is moderate.

Data from three studies (two HQ and oneMQ; Bessone et al., 2022; Chan et al., 2022; Henschke et al.,
2022) suggest that no significantmeasurement difference between IMUandOMC for shoulder abduction/
adductionmeasurements (total n = 57; mean difference =�7.10, 95%CI [�27.56, 13.35]; Tau2 = 307.30;
I2 = 96%; Z = 0.68 (p = 0.50)) (Figure 3c). After excluding the study of Henschke et al. (2022), sensitivity
analysis revealed that the I2 reduced to 0% and themean difference was 7.44 [4.31, 10.57], with Z-score of
4.66 (p< 0.00001). Sensitivity analysis showed that the results were not robust. Based on the quality of the
included studies, the level of evidence for this result is strong.

3.4.3. Shoulder internal/external rotation
Data from seven studies (one HQ, four MQ to LQ, and two VLQ; Ertzgaard et al., 2016; Fantozzi et al.,
2016; Boddy et al., 2019; Ligorio et al., 2020; Truppa et al., 2021a,b; Slade et al., 2022; Wu et al., 2022)

Figure 7. Wrist flexion/extension. Forest plots showing the validity of wrist flexion/extension measured
using IMU. Red squares represent Fisher’s Z; green squares represent mean difference; bars indicate
95%CI and black diamonds as total data. Panel (a) describing the results of Pearson’s r: Fantozzi et al. A
(front-crawl task), B (breaststroke task). Panel (b) describing the results of mean difference: Wirth et al. A
(marker on the skin), B (marker on the sensor); Fischer et al. A (marker on the skin), B (marker on the
sensor). CI, confidence interval; IV, inverse variance; SD, standard deviation; SE, standard error.

Wearable Technologies e11-21

https://doi.org/10.1017/wtc.2024.6 Published online by Cambridge University Press

https://doi.org/10.1017/wtc.2024.6


suggest that very strong relationship between IMU and OMC for shoulder internal/external rotation
measurements (total n = 64; r = 0.939, 95% CI [0.894, 0.965]; Tau2 = 0.18; I2 = 48%) (Figure 4a). Based
on the quality of the included studies, the level of evidence for this result is moderate.

Data from four studies (twoHQ and two LQ; Boddy et al., 2019; Picerno et al., 2019; Chan et al., 2022;
Henschke et al., 2022) suggest that significant measurement difference between IMU and OMC for
shoulder internal/external rotation measurements (total n = 67; mean difference = �11.03, 95% CI
[�18.76,�3.31]; Tau2 = 60.98; I2 = 90%; Z = 2.80 (p = 0.005)) (Figure 4b). Sensitivity analysis showed
that after excluding the study of Chan et al. (2022) and Henschke et al. (2022), the I2 value decreased
to 67% and the mean difference was �9.13 [�13.09, �5.17], with Z-score of 4.52 (p < 0.00001).
Sensitivity analysis showed that the results were robust. Based on the quality of the included studies, the
level of evidence for this result is strong.

3.4.4. Elbow flexion/extension
Data from seven studies (two HQ, three MQ to LQ, and two VLQ; Fantozzi et al., 2016; Ligorio et al.,
2020; Truppa et al., 2021a,b; Choo et al., 2022; Slade et al., 2022;Wu et al., 2022) suggest that very strong
relationship between IMU and OMC for elbow flexion/extension measurements (total n = 52; r = 0.954,
95%CI [0.929, 0.970]; Tau2 = 0.00; I2 = 0%) (Figure 5a). Based on the quality of the included studies, the
level of evidence for this result is strong.

Data from oneMQ study (Ertzgaard et al., 2016) suggest that excellent consistency between IMU and
OMC for elbow flex./ext. measurements (total n = 10; ICC = 0.929, 95% CI [0.814, 0.974]; Tau2 = 0.15;
I2 = 57%). Based on the quality of the included studies, the level of evidence for this result is limited. Data
from two studies (one HQ and one MQ; Bessone et al., 2022; Henschke et al., 2022) suggest that no
significant measurement difference between IMU and OMC for shoulder flexion/extension measure-
ments (total n = 38; mean difference = 10.61, 95%CI [�12.32, 33.54]; Tau2 = 243.84; I2 = 89%; Z = 0.91
(p = 0.36)) (Figure 5b). Sensitivity analyses could not be performed due to the insufficient number of
studies. Based on the quality of the included studies, the level of evidence for this result is moderate.

3.4.5. Elbow pronation/supination
Data from four studies (one HQ, twoMQ to LQ, and one VLQ; Fantozzi et al., 2016; Truppa et al., 2021a,
b; Wu et al., 2022) suggest that very strong relationship between IMU and OMC for elbow pronation/
supination measurements (total n = 30; r = 0.966, 95% CI [0.939, 0.981]; Tau2 = 0.00; I2 = 0%) (Figure
6a). Based on the quality of the included studies, the level of evidence for this result is moderate. Data
from two studies (Ertzgaard et al., 2016; Ligorio et al., 2020) suggest that good consistency between IMU
and OMC for elbow pronation/supination measurements (total n = 20; ICC = 0.821, 95% CI [0.696,

Figure 8. Wrist ulnar/radial deviation. Forest plot showing the validity of wrist ulnar/radial deviation
measured using IMU. Green squares represent mean difference; bars indicate 95% CI and black

diamonds as total data. Figure describing the results of mean difference: Wirth et al. A (marker on the
skin), B (marker on the sensor); Fischer et al. A (marker on the skin), B (marker on the sensor). CI,

confidence interval; IV, inverse variance; SD, standard deviation.
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Figure 9. Complexity of motion task. Subgroup analysis showing the validity of the IMU for measuring
joint range of motion at different motion task complexities. Red squares represent Fisher’s Z; green
squares represent mean difference; bars indicate 95% CI and black diamonds as total data. Panel (a)
describing the results of Pearson’s r for measuring shoulder flexion/extension. Panel (b) describing the
results of Pearson’s r for measuring shoulder abduction/adduction. Panel (c) describing the results of
Pearson’s r for measuring shoulder internal/external rotation. Panel (d) describing the results of

Pearson’s r for measuring elbow flexion/extension. Panel (e) describing the results of mean difference for
measuring shoulder internal/external rotation. Continued
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Figure 9. (Continued)
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0.900]; Tau2 = 0.00; I2 = 0%) (Figure 6b). Based on the quality of the included studies, the level of
evidence for this result is limited.

3.4.6. Wrist flexion/extension
Data from four studies (twoMQ to LQ and twoVLQ; Fantozzi et al., 2016; Ligorio et al., 2020; Truppa et
al., 2021a,b) suggest that very strong relationship between IMU and OMC for wrist flex./ext. measure-
ments (total n = 33; r = 0.974, 95% CI [0.945, 0.988]; Tau2 = 0.00; I2 = 0%) (Figure 7a). Based on the
quality of the included studies, the level of evidence for this result is moderate. Data from three studies
(two MQ and one LQ; Wirth et al., 2019; Fischer et al., 2021; Bessone et al., 2022) suggest that no
significant measurement difference between IMU and OMC for wrist flex./ext. measurements (total
n = 34; mean difference =�4.20, 95% CI [�18.96, 10.57]; Tau2 = 194.87; I2 = 70%; Z = 0.56 (p = 0.58))
(Figure 7b). Sensitivity analysis showed that after excluding the study of Bessone et al. (2022), the I2 value
decreased to 0%. Furthermore, the mean difference was �10.64 with a 95% confidence interval of
[�20.05,�1.23], Z-score of 2.22 (p = 0.03). Sensitivity analysis showed that the results were not robust.
Based on the quality of the included studies, the level of evidence for this result is moderate.

3.4.7. Wrist ulnar/radial deviation
Data from three studies (twoMQ and one LQ;Wirth et al., 2019; Fischer et al., 2021; Bessone et al., 2022)
suggest that the validity for wrist ulnar/radial deviation measured with IMUs (total n = 34; mean
difference = 4.98, 95% CI [�0.64, 10.59]; Tau2 = 22.64; I2 = 55%; Z = 1.74 (p = 0.08)) (Figure 8).
Sensitivity analysis showed that after excluding the study ofWirth et al. (2019), the I2 reduced to 38%, and
the mean difference was 8.85 [2.27, 15.42], with Z-score of 2.64 (p = 0.008). Sensitivity analysis showed
that the results were not robust. Based on the quality of the included studies, the level of evidence for this
result is moderate.

3.5. Subgroup analysis

The selection of subgroup analysis is mainly based on two key considerations. First, the subgroup
classification needs to have practical significance and may affect the validity of IMU measurement, such
as different fusion algorithms, the complexity of measuredmotion, and so forth. Second, there needs to be

Figure 9. (Continued)
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sufficient sample size for the corresponding subgroup (at least three studies and no less than 20 subjects).
By reading the included literature and comparing the characteristics of different studies, this study mainly
conducts subgroup analysis based on two different classifications: complexity of task and placements of
markers. However, it is important to note a limitation regarding the fusion algorithms, which are crucial
for the data processing of IMUs. We observed that most studies did not provide detailed reports on the
algorithm parameters used. This lack of detailed reporting hindered our ability to effectively generalize
and categorize the algorithms for subgroup analysis. As a result, the fusion algorithms could not be
classified as a separate subgroup in this study.

3.5.1. Complexity of motion task
Based on the complexity of upper limb motor tasks, the included motor tasks in this study were
categorized as either complex tasks (CTs) or simple tasks (STs). The CTs were defined as upper limb

Figure 10. Placement of markers. Subgroup analysis showing the validity of the IMU for measuring joint
range of motion at different placement of markers. Green squares represent mean difference; bars

indicate 95%CI and black diamonds as total data. Panel (a) describing the results of mean difference for
measuring wrist flexion/extension. Panel (b) describing the results of mean difference for measuring wrist

ulnar/radial deviation.
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movements that involvedmultiple planes of motion, such as baseball pitching or moving objects. The STs
referred to upper limb movements that occurred in only one plane of motion, such as simple flexion and
extension of the shoulder joint. Furthermore, the arm swing motion of the upper limb during walking,
which is periodic and mostly occurs in the sagittal plane, was also classified as a simple motion task.

The results of subgroup analysis showed that the validity of IMU in measuring shoulder flexion/
extension under complex motor tasks is the same as that of simple motor tasks (CT: Pearson’s r = 0.903
[0.762, 0.963], ST: Pearson’s r = 0.961 [0.887, 0.987]) (Figure 9a). The IMU has less validity in
measuring shoulder abduction/adduction in complex motion tasks than simple motion tasks (CT:
Pearson’s r = 0.774 [0.558, 0.892], ST: Pearson’s r = 0.920 [0.770, 0.973]) (Figure 9b). The IMU has
less validity in measuring shoulder internal/external rotation in complex motion tasks than simple motion
tasks (CT: Pearson’s r = 0.797 [0.647, 0.890], ST: Pearson’s r = 0.966 [0.933, 0.983]) (Figure 9c). The
validity of IMU in measuring elbow flexion/extension under complex motor tasks is the same as that of
simple motor tasks (CT: Pearson’s r = 0.910 [0.811, 0.959], ST: Pearson’s r = 0.963 [0.920, 0.983])
(Figure 9d). The results of subgroup analysis showed that for shoulder internal/external rotation, both CTs
and STs shown significant mean difference between IMU and OMC measurements (p < 0.00001 and
0.005, respectively) (Figure 9e).

3.5.2. Placements of markers
The vast majority of included studies used standard marker placement, but two studies (Wirth et al., 2019;
Fischer et al., 2021) compared joint RoMmeasurements whenmarkers were placed on the skin and on the
sensors. The results of subgroup analysis showed that for wrist flexion/extension, when the marker was
placed on the sensor, there was a statistically significant difference in the joint RoM measurements
between the IMU and the OMC (mean difference = �17.25 [�31.41, �3.08], Z = 2.39 (p = 0.02)),
whereas when the marker was placed on the skin, there was no statistically significant difference between
the two measurements (mean difference = �5.42 [�18.01, 7.17], Z = 0.84 (p = 0.40)) (Figure 10a). For
wrist ulnar/radial deviation, neither marker on skin nor on sensors shown significant difference (p = 0.40
and 0.73, respectively) (Figure 10b).

4. Discussions

4.1. Principal findings

This systematic review provided an overview of the characteristics of IMUs used to measure upper
extremity motion, and evaluates their concurrent validity compared to marker-based motion capture
systems in measuring RoM of upper extremity joints. A total of 51 articles were included in this review,
and the data in the literature were quantitatively integrated and meta-analyzed. To the best of our
knowledge, this is the first meta-analysis study on the validity of IMU measurements of upper extremity
RoM, and as such, there is a scarcity of relevant references pertaining tomethodology and data extraction.
The research methodology employed in this article was primarily based on the meta-analysis process
recommended by PRISMA, as well as previous systematic review and/or meta-analysis studies (Walms-
ley et al., 2018; Kobsar et al., 2020; Zeng et al., 2022) focused on IMUs measuring kinematic parameters
of the lower and upper extremities.

Unlike marker-based motion capture systems, there is no consensus on where to place IMUs when
measuring human kinematic parameters. The previous studies had the same findings. The systematic
reviews ofKobsar et al. (2020) and Zeng et al. (2022) both pointed out that, whenmeasuring the kinematic
parameters of the lower limbs, the IMU placements reported in the relevant literature were varied, and
similar conclusions also appeared in the kinematic measurements of the upper limbs. In this review, the
placement of IMUs was described differently across studies, even for the same brand of IMU. Indeed, we
found that some commercial IMUs only provide limited or vague descriptions of anatomical positions,
such as upper arm or forearm, to guide placements. Without a relatively uniform IMU placements
specification, measurement inconsistency will inevitably be introduced.
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Calibration methods for IMU systems are also inconsistent. Most studies use static calibration, also
called anatomical calibration, as recommended by manufacturers, the main purpose of which is to
establish an anatomical reference system for joints, such as T-pose (participants to have shoulders
abducted by 90° with the palms facing the floor) and S-pose (participants to bend knees approximately
45° and place arms in front and position them parallel to the floor). Dynamic calibration, also known as
functional calibration, is a customized calibration method based on the joint motion pattern to be
measured and can be used to estimate the joint rotation axis; for example, when measuring the movement
of the elbow joint, it is necessary to calibrate the flexion–extension and pronation–supination axes in
advance. Most of the literature claiming to use dynamic calibration did not describe the specific
calibration method, making the methodological lack of reproducibility. In addition, a study (Ligorio et
al., 2017) compared the impact of anatomical calibration and dynamic calibration on the accuracy of IMU
measurement of elbow joint angles, and found that dynamic calibration is more targeted, which indicated
that functional calibration methods are more accurate than anatomical methods when estimating the
elbow joint angle.

Additionally, three main types of data fusion algorithms are used for IMU data processing: Kalman,
complementary and customized algorithms. Classical Kalman algorithm is one of the most common
models to reduce noise from sensor signals, and it is based on recursive Bayesian filtering, while the noise
is assumed Gaussian (Marta et al., 2020). Some other filters based on the Kaman algorithms, such as
extended Kalman algorithm (EKF; Truppa et al., 2021), are also used to process IMU signals. However,
Kalman filter has a complex mathematical model, which is not friendly to non-professionals, so the
simpler complementary filters appeared. Complementary filters include both low-pass and high-pass
filters. The low-pass filter removes high-frequency noise like the accelerometer in the case of vibration,
and high-pass filter removes low-frequency noise such as the drift of the gyroscope. Chen et al. (2020)
compared the validity of four data fusion algorithms in the IMU measurement of upper limb kinematics,
including Kalman and complementary filters. The results showed that compared with the reference
system (OMC), the measurement errors of the peak joint angles of the four algorithms were all less than
4.5°, and the authors believed that the complementary filters were comparable to the more complex
Kalman filters. However, data fusion algorithms were not reported in nearly half of the included literature
(43%), and the reason may be that most commercial wearable sensors use built-in signal processing
software with embedded algorithms, so the user does not know the type of algorithm used. In addition,
many literatures used various custom algorithms (Truppa et al., 2021, 2022; Yang et al., 2022), and this
inconsistence is similar to previous review article (Zeng et al., 2022) and makes it difficult to quantita-
tively compare the impact of different algorithms on the measurement validity of IMUs.

This review focuses on the validity of IMUs in measuring RoM in the three major joints and seven
degrees of freedom (shoulder: 3DOF, elbow: 2DOF, and wrist: 2DOF) of the upper extremity in adults.
Similar to previous reviews (Walmsley et al., 2018; Poitras et al., 2019), this review found that IMUs have
high validity in measuring sagittal motion (flexion and extension) of the upper extremity joints. However,
IMUs showed less validity in measuring shoulder adduction–abduction and elbow pronation–supination,
albeit within an acceptable range. The level of evidence for the above results is moderate and/or strong.
Notably, the results for the shoulder rotation were conflicting. Pearson’s r showed excellent agreement
between IMU andOMC, but there was a statistically significant difference in themean difference between
the two measurement systems. In addition, although the meta-analysis result showed that there was no
significant difference between the IMU and OMC systems in measuring the ulnar-radial deviation of the
wrist joint, the p-value was 0.08, so we could not draw a firm conclusion, and more high-quality studies
are needed in the future. As mentioned above, many included literatures only reported statistical
parameters such as RMSE and LoA. Due to the lack of homogeneity of these results, meta-analysis
could not be performed. In this review, the RMSE for 3DOF of shoulder were all of 16° or less (Callejas-
Cuervo et al., 2017;Mavor et al., 2020; Lin et al., 2021; Bessone et al., 2022; Choo et al., 2022), the RMSE
for flexion–extension of elbowwas from 1.9° to 27.1° and for pronation–supination of elbowwas from 6°
to 16.7° (Fantozzi et al., 2016; Mavor et al., 2020; Bessone et al., 2022). These findings are basically
consistent with those reported by Poitras et al. (2019).
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Although this review did not discuss the reliability of IMUs for measuring upper extremity RoM, this
has been reported in previous systematic reviews (Walmsley et al., 2018; Poitras et al., 2019).Walmsley et
al. (2018) reported that adequate to excellent agreement for 2DOF at the shoulder (ICC 0.68–0.81), poor
to moderate agreement for the 2DOF at the elbow (ICC 0.16–0.83), and the highest overall agreement
with ICC values ranging from 0.65 to 0.89 for 2DOF at wrist. Similar conclusions can be found in the
article by Poitras et al. (2019), the results show poor to good reliability (ICC = 0.2 to 0.77) at elbow and
good to excellent intra-rater reliability for all joint movements (CMC and ICC between 0.79 and 0.96).
However, compared with validity, there are fewer literatures on the reliability of IMU measurement
results, and only a few references are included in the above-mentioned review articles, so the level of
evidence for these conclusions is insufficient.

The complexity of motion may impact the validity of IMUmeasurements. Subgroup analysis revealed
that the validity of IMU measurements in complex movements was lower than in simple movements,
particularly in adduction–abduction and internal–external rotation of the shoulder joint, with moderate
agreements between IMU and OMC measurements. This conclusion is supported by the findings of
Walmsley et al. (2018). Future research is needed to explore factors that influence the validity of IMU
measurements in complex movements, and to develop appropriate strategies for enhancing the accuracy
of IMU-based measurements in these scenarios.

We employed sensitivity analysis to mitigate heterogeneity in our meta-analysis. The major source of
heterogeneity stems from three specific literature sources (Wirth et al., 2019; Bessone et al., 2022;
Henschke et al., 2022). Upon further examination of the full text, it was revealed that these three studies
utilized IMUs from less well-known brands that lack sufficient reliability and validity testing on large
samples. Consequently, the research conducted in these sources is considered exploratory psychometrics,
and the findings can serve to enhance the performance of IMU products. Some wearable sensors are
primarily designed for use by clinicians and physical therapists, and their measurement accuracy may not
satisfy laboratory requirements. Therefore, it is advisable for laboratory users to assess whether there are
any psychometric research reports available on the IMU system currently in use. In the sensitivity analysis
focusing on the mean difference of shoulder flexion/extension and rotation, the value of I2 decreased but
did not fall below 50% after certain studies were excluded. This suggests persistent moderate heteroge-
neity among the remaining studies. Consequently, the findings in these two parts should be approached
with caution, acknowledging the continued presence of variability across the studies.

The RoM calculation is predicated on the disparity between peak joint angles. However, a potential
issue is that it is still possible to obtain the same RoM when the peak joint angles measured by the IMU
differ greatly from the reference system. While few of the studies we evaluated provided peak joint angle
data, some sources furnished absolute joint angle curves for both IMU and OMC systems, with most
curves indicating that the measurement curves for the two systems were relatively comparable. Never-
theless, Bessone et al. (2022) conducted a comparison of two systems, Vicon (OMC) and aktos-t (IMU),
and discovered that while moderate to good agreements were noted for measuring the total RoM of the
shoulder and elbow joints, therewas a significant disparity in themeasurement of peak angle ofmotion for
both joints. Although our systematic review’s findings offer supportive evidence for the validity of IMU-
based measurement of upper extremity RoM, further research is required to ascertain the accuracy of
IMU-based peak joint angle measurement.

In practical applications, the inherent limitations and drawbacks of IMUs cannot be overlooked. A
notable issue with IMUs is drift, which is a gradual deviation in the sensor’s measurements over time,
especially evident during the process of integrating acceleration data to calculate velocity and position,
leading to cumulative errors. Additionally, IMUs are sensitive to environmental influences such as
temperature changes, electromagnetic fields, and vibrations, all of which can significantly compromise
sensor accuracy. Another challenge with IMUs, particularly in wearable applications, is their limited
operational duration due to reliance on battery power. This constraint becomes a significant issue in long-
term monitoring or tracking tasks. Moreover, the size and design of the IMU device could impact user
comfort and acceptance, especially in scenarios requiring extended wearing. Finally, while IMUs are
adept at measuring acceleration and rotational changes, they do not directly provide spatial information.
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Obtaining positional data requires additional processing and integration, potentially introducing further
errors.

4.2. Recommendations for future studies

Finally, it is worth noting that over half of the studies we included were deemed to have low or very low
methodological quality, a finding that alignswith the results of certain prior systematic reviews (Walmsley
et al., 2018; Poitras et al., 2019; Kobsar et al., 2020; Zeng et al., 2022). Furthermore, most of the literature
we reviewed did not furnish information on the sample size estimation method, and over half of the
research samples comprised 10 participants or fewer, further compromising the robustness of the
conclusions drawn from this study. Of equal importance, the lack of standardized reporting guidelines
for validity outcomes has led to substantial differences in statistical parameters among the included
literature, thereby limiting the number of sources that can be leveraged for data integration and meta-
analysis. As such, future research must seek to enhance the methodological quality of their investigations
by considering the aforementioned findings.

4.3. Review limitations

This systematic review solely examined the validity of IMU technology in the measurement of upper
extremity joint RoM and did not address reliability. Additionally, since all the literature we reviewed
comprised comparative studies of IMU and marker-based motion capture systems, the applicability of
IMUs is confined to laboratory settings. Consequently, the conclusions of our study cannot be readily
extrapolated to assess the measurement performance of IMUs in real-world working environments.
Future reviews should instead aim to evaluate the measurement performance of IMUs in non-laboratory
settings.

Given the rapid pace of updates and iterations in commercial IMU systems, coupled with the existence
of a prior systematic review summarizing relevant research prior to 2016 (Walmsley et al., 2018), our
systematic review exclusively incorporates literature published after 2016, a factor that may introduce
potential bias and compromise the accuracy of our conclusions. Although the number of studies we
included is substantial (51 studies), most of the literature is of low to moderate quality, with only 13.4%
comprising high-quality studies. This increased likelihood of bias could impact the validity of our
findings. Furthermore, the sample size of the studies included in our review ranges from 1 to 24
participants. Generally, for psychometric research, an ideal sample size should exceed 50 (Mokkink et
al., 2010). This relatively small sample size may also contribute to additional bias in our conclusions and
subsequent misinterpretation.

Moreover, the heterogeneity of included studies represents another potential source of bias. Currently,
there is no standardized IMUmeasurement process. Out of the 51 studies included in this review, there is
no consensus on the standard system calibration methods, data fusion algorithms, and biomechanical
models utilized. In addition, different studies use a variety of result parameters (ICC, r, RMSE, LoA, etc.),
making it challenging to extract high-quality data and conduct accurate meta-analysis.

In this study, the meta-analysis employed a methodology similar to that used by Zeng et al. (2022) for
data inclusion. This approach entailed performing meta-analysis on the results of IMU measurement
validity across different tasks within the same study. The primary benefit of this method is its ability to
incorporate a larger sample size, thereby enhancing the efficiency of statistical test. However, this method
is with potential drawbacks. The repeated inclusion of results from a single study could obscure the
heterogeneity that exists between different studies. Furthermore, if a particular study utilizes a more
reliable fusion algorithm or IMUs with lower measurement error, the repeated inclusion of data under the
same experimental conditions might lead to an overestimation of the IMU’s measurement validity.
Conversely, studies with less reliable algorithms or higher measurement errors could lead to an under-
estimation of validity. Therefore, while this approach allows for a broader inclusion of data, it also
introduces the risk of bias in the overall assessment of IMU measurement validity.
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5. Conclusions

The findings of this systematic review suggested that IMUs are a promising tool formeasuring the RoMof
the upper extremity, with good to excellent agreement and very strong correlation compared to OMC.
However, caution is advised when using IMUs to measure certain joint movements, such as shoulder
internal–external rotation and wrist ulnar-radial deviation. Subgroup analysis revealed that IMUs were
less valid than OMC in measuring complex upper-limb movements across multiple planes of motion. To
facilitate practical application, further research and standardization are needed to establish guidelines for
sensor placement, calibration methods, and data fusion algorithms.

Abbreviations

Abd abduction
Add adduction
CMC coefficient of multiple correlation
ER external rotation
Ext extension
Flex flexion
HQ high quality
ICC intraclass correlation coefficient
IMUs inertial measurement units
IR internal rotation
LoA limit of agreement
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OMC marker-based motion capture system
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
Pron pronation
RMSE root mean square error
SD standard deviation
Supi supination
VLQ very low quality.
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