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THE NUMBER OF LATTICE RULES HAVING GIVEN INVARIANTS

STEPHEN JOE AND DAVID C. HUNT

A lattice rule is a quadrature rule used for the approximation of integrals over the
^-dimensional unit cube. Every lattice rule may be characterised by an integer r
called the rank of the rule and a set of r positive integers called the invariants. By
exploiting the group-theoretic structure of lattice rules we determine the number of
distinct lattice rules having given invariants. Some numerical results supporting the
theoretical results are included. These numerical results are obtained by calculating
the Smith normal form of certain integer matrices.

1. INTRODUCTION

Lattice rules are used to approximate the s-dimensional integral

If = I /(x)«fac,
Jv

where U' = [0,1)* is the half-open cube in a dimensions, and / is assumed to be
1-periodic in each of its s variables. They are quadrature rules of the form

1
(1-1) Qf=N

in which the quadrature points Xo,..., Xjv_i consist of all the points in U* that also
belong to some 'integration lattice'. A lattice is a discrete set of points in R" such that
the sum and difference of every point in the set also belongs to the set; it is an integration
lattice if it contains Z* as a subset. A lattice rule with N distinct quadrature points
is said to be of order N.

Simple examples of lattice rules are given by the number-theoretic rules which were
developed by Korobov [5] and Hlawka [3]. Number-theoretic rules of order N may be
expressed in the form

j=0
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480 S. Joe and D.C. Hunt [2]

where z is an integer vector having no nontrivial factor in common with N, that is,

jz/N $. Z', 1 ^ j ^ N — 1. Here the braces around a vector indicate that we take the

fractional part of each component, that is, { (x i , . . . ,x,)} = (xi mod 1 , . . . ,x, mod 1).

The work of Sloan and Lyness [11] shows that every lattice rule may be written in

canonical form as the expression

. n r - l n\—\4
where N, the order of the rule, is given by

(1.4) N=n1n2-nr,

Zi, . . . ,z r are linearly independent integer vectors,

(1.5) nr > 1, and rik+i divides n* for 1 ^ k ^ r — 1.

The number r, which satisfies 1 ^ r ^ s, is the rank of the rule and n i , . . . , nr are

the invariants. Both the rank and invariants are uniquely determined for a given lattice

rule. It is clear that the number-theoretic rule given in (1.2) is a rank-1 rule with single

invariant n\ — N. We see in (1.3) that for 1 ^ k ^ r we may replace z* by z* + n^h*,

where h* G Z", without changing Qf. Thus without loss of generality, we shall always

assume that the vectors z* have components Zki satisfying

(1.6) 0 ^ z k i ^ n k - 1 , 1 < i < s , l ^ k ^ r .

One problem of interest is the total number of distinct lattice rules having order N.

Here we say that two lattice rules (having the same order) are distinct when the sets of

quadrature points for the two rules are different. If we denote this quantity by T,(N),

then the following result of Lyness and S0revik [9] allows T,(N) to be calculated for

any N.

THEOREM 1.

(a) If M and N are relatively prime numbers, then

T,(MN) = T.(M)T.(N),

that is, T,(N) is a multiplicative function.
(b) For p prime and 7 > 0, we Lave

= n
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The expression given in (1.8) is actually not found in [9]. However it is easily obtained by

expanding out the product in (1.7) and then cancelling common terms in the numerator

and denominator.

In general for given N, one can obtain different sets of invariants raj,..., n r that

satisfy (1.4) and (1.5). For example with s ^ 2 and N - 36 = 2 2 3 2 , one can ob-

tain rank-1 rules with nj = 36 or rank-2 rules with invariants rii — 18, «2 — 2 or

Tii = 12, ri2 = 3 or n\ — n.2 = 6. So though Theorem 1 gives the total number of

distinct lattice rules of order N, it does not give the number of distinct lattice rules

having a given set of invariants n j , . . . , nr. This is the problem addressed in this paper.

We shall denote this quantity by i / , (n i , . . . ,nr). For later use we shall also need the

quantity u,(ni,... ,nr), the total number of possible collections of vectors Z i , . . . , z r

(having components satisfying (1.6)) which give rise to a lattice rule having invariants

n i , . . . , n r . We shall refer to v,(ni,... ,nr) as the total number of lattice rules having

invariants n\,..., n r . Not all these lattice rules will be distinct and it turns out that

i / , (n i , . . . ,nr) is a divisor of v,{n\,... ,nr).

The next section gives some relevant background material as well as the statement

(in Theorem 5) of the main result of this paper. The proof of Theorem 5, given in

Section 3, is obtained by exploiting the group-theoretic structure of lattice rules.

In Section 5 we provide some numerical results which support the theoretical results

found in Section 2. These numerical results are obtained by calculating the Smith

normal form of certain integer matrices. Background material on the Smith normal

form and its relevance to the general theory of lattice rules as well as to the work here

may be found in Section 4.

2. BACKGROUND MATERIAL AND RESULTS

Firstly, it is useful to find the number of possible sets of invariants obtainable from

a given N. Suppose N has the prime factorisation pflpfs • • • Pq . For convenience let

us assume that /3i = max /?;. Then one can always obtain a set of r invariants that

satisfy (1.4) and (1.5), where 1 ^ r < min(s,/31), by setting n i = pfl~r+1j42 • • • pP
q",

ri2 = • • • — nT = pi . In general, any set of invariants n i , . . . ,nr that satisfy (1.4) and

(1.5) must be of the form

(2-1) »*=P?UF?" •••!»?", l O ^ r ,
where

r

(2.2) 0 ̂  0ir ^ #,,_! ^•••<ft1and £ 0ih = ft, 1 ^ t ^ 9.
J b = l
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Then it is not hard to see that the number of ways of forming the invariants is given by

(2.3)

where x{0i) is * n e number of partitions of /3j into positive summands. We remark

that the number given in (2.3) is well-known as the number of different (pairwise non-

isomorphic) abelian groups having order N = Pi P2 • • • Pqq •

We now give a result from [11] concerning the group-theoretic structure of lattice

rules. The proof is trivial and so not given here.

THEOREM 2 . Let A(Q) denote the set of N quadrature points for the lattice

rule (1.1).

(a) «4(Q), together with the group operation

(2.4) x; o x,- = {x; + x,},

forms an abelian group of order N with the identity element being 0 .
(b) If the lattice rule in (1.1) is a rank-1 rule of order N (as given by (1.2)),

then A(Q), together with the group operation given by (2.4), forms a
cyclic group of order N .

This theorem will be used throughout the rest of this paper without further com-
ment. The canonical form for lattice rules that was obtained by Sloan and Lyness [11]
(and given in equations (1.3) to (1.5)) is then a consequence of a well-known structure
theorem for abelian groups. Theorem 2 shows that A{Q) is an abelian group under
addition modulo Z* so that it is natural to make the assumption given in (1.6). In the
rest of the paper we shall not distinguish between the set A(Q) and the group A(Q).

We now show that v,(ni,... ,nr) is in a certain sense a multiplicative function in
each of its arguments.

THEOREM 3 . Suppose n\,..., nT are given invariants expressed in the form given

in (2.1) and (2.2) so that n in 2 • • nT - pf'pf3 • • • Pq" . Then

where for 1 ̂  i ^ q, U is the largest integer t* for which flu* > 0 with 1 ̂  U ^ r.

PROOF: Let A.(Q) be the set of quadrature points for any lattice rule Q having
invariants n i , . . . , n r . It follows from [7, p.154] that A(Q) may be expressed as the
direct sum of q subgroups,

A(Q)=S1(Q)@-®Sq(Q),
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where Si{Q) is of. order p f , 1 < i < g. The group 5<(Q), 1 < i ^ g, is the Sylow

Pi-subgroup of A(Q).

We want the number of distinct lattice rules having invariants n i , . . . , n r where

the nk, 1 ^ Jb ̂  r , satisfy (2.1) and (2.2). Clearly the p f elements of S,(Q) are the
3 • Pit-

points of a lattice rule having invariants p?*1, • • • ,Pj ' • Hence for 1 ̂  i ^ q, there are
fjfpf'1,... JP,'*' ) distinct Sylow pj-subgroups possible. Since the elements of Si(Q)
consists of those elements of A(Q) which have order a power of pj, it follows that the q
Sylow pi-subgroups for a given lattice rule having invariants n i , . . . , nr must be unique.
Hence we conclude that the number of distinct lattice rules having invariants ni,..., nT

is

as claimed. U

Theorem 3 shows that we need consider only v, (p Q l , . . . , par), where p is prime,
and ai ^ 02 ^ • • • ^ a r > 0. The first and simplest such case to look at is the number
of rank-1 lattice rules having order p™1 .

THEOREM 4 .

(a) i?.(p«i)=Pai '-Pai '~'-

(b) u, (pQi ) = ? ? .
V ' K* ' p"l -p«l-!

PROOF: We see from either (1.2) or (1.3) that a rank-1 lattice rule of order p° l

in canonical form may be written as

The cyclic group formed by the set of p"1 points for this lattice rule is generated by
the element c = z/p™1 • Since this generator must have order p a i , that is, p"1 is the
least positive integer u for which {uc} = 0 (recall that the group operation is given
by (2.4)), it follows that at least one of the components of z is not divisible by p.
(Otherwise, if z = pz', then c = z/p™1 = z'/p"1"1 has order at most p"!"1.)

For any positive integer M, let <j>(M) be Euler's totient function. We recall that
u,{jpax) is the number of z with components satisfying 0 ^ Z{ ^ p"1 — 1, 1 ̂  i ^ a,
that produce a rank-1 rule of order p a i . Because p°l - <f>(pai) — p"1"1 [7, p.17], we
see that though there are p"1' possible choices of z, (p a i - 1 ) of them do not produce
a rank-1 rule of order p°l since all their components are divisible by p. Thus v, (pai )
is given by
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However different z may produce the same rank-1 lattice rule of order pai. The
theory of cyclic groups (for example, see [7, p.159]) shows that the generating element
may be chosen in <j>(pai) ways. Thus we obtain

which completes the proof. U

We now give expressions for v, ( p a i , . . . , p a p ) and v, (p™1,..., pQ r ).

THEOREM 5 . Suppose pai,...,par are given invariants.

(a) T ie total number of a-dimensional lattice rules having the given invariants

is

(2.5) £.(pav. . ,pQ p)=n (p-»'-P-»—+*-1).
J f c = l

(b) Suppose d of the given invariants are distinct. Let p a i , . . . , pa<t be these

distinct invariants with a j > • • • > a*d > 0, and let wj. be the number of

invariants equal to p™*, 1 ̂  k ̂  d. If

k d

Sk=a*kYiwj +

then the number of distinct s-dimensional lattice rules having the given
invariants is

r

n (pat* - pak'~'+k~i)
(2.6) u.{pa\...,par) =

NOTE. In early November 1991, it was learnt that Dr. J.N. Lyness of Argonne National
Laboratory had independently obtained a result equivalent to Theorem 5(b). However,
his approach to the problem was different from the group-theoretic approach that is
used here.

As the proof of Theorem 5 is quite lengthy, we shall defer it until the next section.
We remark that (2.6) yields v, (p™1,...,pQr) = 0 when r > s which is a sensible
conclusion since we already know that the rank of a lattice rule cannot exceed s.
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As a simple example, consider the case when all the a*, 1 ̂  k ^ r , are equal to
1 so that d — 1, wi = r, and 6\ = r. Then by using (2.6) and a few lines of algebra,
it is easy to show that

r
 n«-r+Jt _ -l

(2.7) ^ 1 = 11 • > - ! '

where, for simplicity, we have used i/,[p;r] to denote v, I p,... ,p I . Using (2.7), it is

\ r times /

easily verified that we have the relationship

(2.8) v.[p;r]=u,-1[p;r]+p-ru.^[P;r-l}, 2 < r < J - 1.

A derivation of (2.8) using the Smith normal form for integer matrices may be found
in Section 4.

From Theorems l(b) and 4(b) we see that algebraically T,{p) and v,(p) are the
same, while these same theorems along with (2.7) can be used to verify that the identity
T,(p2) = v.[j>2) + v,{p,p) holds algebraically too. By using (2.6) to obtain

one can verify (after some tedious algebra) that algebraically we also have T,(j>3) =

".(P3) + "«(P2»P) + V.{V,V,V)-
For the more general case, suppose N = pa, a > 0, is given. Then (2.3) shows

that there are x{a) ways of forming invariants p " 1 , . . . , p°T such that a = a i + • • • + a r ,
and a i ̂  • • • ̂  ar > 0. For given s, we must then have the (formal) identity

|-ar=a

where we assume that u, (pai,..., par) = 0 in the cases when r > s. Clearly this
identity must not only hold formally but algebraically as well.

3. PROOF OF THEOREM 5

The proof of Theorem 5 depends on the following three lemmas. We shall say that
a lattice rule Q' is 'embedded' in the lattice rule Q if the quadrature points of Q' are
also quadrature points of Q.
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LEMMA 1 . Suppose Qr-i is a lattice rule which has rank r — 1 and invariants
p«i,...,p»-i.

(a) Let A{Qr-i) be the set of quadrature points for Qr-i, and let CT be the
set of points for a rank-1 lattice rule of order pQ r . Also let

A(Qr-i) o CT = {a o c | a e A{Qr-i) and c 6 Cr},

where o is the group operation given by (2.4). Tien a necessary and
sufficient condition for the elements of A(Qr-i)°Cr to be the quadrature
points of a lattice rule having rank r and invariants p " 1 , . . . ,pO p is that
A(Qr-i) and Cr do not have a subgroup of order p in common.

(b) There are (pr~1 — l ) / ( p — 1) distinct rank-1 lattice rules of order p em-
bedded in Qr—i •

PROOF: In [11] we see that A{Qr-i) may be written as

A(Qr-1)=C1®--@Cr-1,

where Ck is a cyclic group of order p"* , l ^ A ^ r — 1. In the terminology of the theory
of abelian groups of prime-power order, A(Qr-i) is said to be of 'type' (<*i,..., a r _ i ) .
Thus we see that the elements of A(Qr-i) ° CT are the points of a rank-r lattice rule
having invariants p a i , . . . (P01*"-1 ,p Q r if A(Qr-i)oCr is of type ( a i , . . . , a r ) . Hence we
require A(Qr-i )oCr — A(Qr-i) @Cr. It follows from the discussion in [7, pp.139-140]
that this is the case if and only if .4(Qr_i) and Cr do not have an element (except the
identity 0) in common.

Clearly if they do not have a nontrivial common element, then they cannot have a
common subgroup of order p . Also if A(Qr-i) and Cr do not have a subgroup of order
p in common, then they cannot have any nontrivial element in common. (Otherwise, if
c was such a common element, then there would exist a 7 satisfying 0 ̂  7 ^ a r — 1 for
which {p^c} would be an element of order p , and hence be a generator for a common
subgroup of order p.) Hence part (a) is proved.

To prove part (b), we firstly note that A(Qr-i) has exactly pT~1 — 1 elements
of order p [7, p.159]. Given any such element a, it follows that the elements
a , { 2 a } , . . . ,{(p — l )a} must each be of order p and in A(Qr-i)- Thus these p — 1
elements together with the identity element form a subgroup of order p . It then fol-
lows that the p r - 1 — 1 elements of order p in A(Qr-i) must form (pr~1 — l ) / (p — 1)
subgroups of order p . Since p is prime, these subgroups must be cyclic. Hence they
are distinct rank-1 lattice rules of order p which are embedded in QT-\ . D

LEMMA 2 . Each one of the v,(j>) distinct ranJc-1 lattice rules of order p is em-

bedded in exactly (p — l)p"1'~' of the v,^) rank-1 rules of order p 7 , 7 > 0.
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P R O O F : Let

be any one of the vt{p) distinct rank-1 rules of order p . Also let

z = z' + ph,

where h is an integer vector whose components satisfy

(3.1) 0 ^ hi ^ p 7 " 1 - 1, 1 sj i ^ s.

Since at least one of the components of z' is not 0, it means that at least one of the
components of z is not divisible by p . Hence

]=0

is a rank-1 rule of order p 7 . By letting j take on the values j = ftp7 1 for 0 $J k ^ p—1,
it is not hard to see that the original rank-1 rule of order p is embedded in this rank-1
rule of order p 7 . Note also that it follows from (3.1) that the components of z satisfy
0 ^ Zi ^ p 7 — 1, since the components of z' satisfy 0 ^ zj ^ p — 1, l ^ i ^ s .

The vector z' for the chosen rank-1 rule of order p may be chosen in <£(p) = p — 1
ways. Also (3.1) shows that there are p7*~" possibilities for h . Thus the rank-1 rule
of order p is embedded in at least (p — I)p7*~* of the ^ ( p 7 ) rank-1 rules of order p 7 .

To show that the number is exactly (p — l ) p 7 ' ~ J , we firstly note that one may
deduce from Lemma l(b) that any rank-1 rule of order p 7 has only one rank-1 rule of
order p embedded in it. Also Theorem 4(b) yields

».(p) x (p - l ) p 7 — = (p- - l ) p 7 ' - ' = p 7 ' - p 7 ' - ' .

However this last quantity is just V,(p'y). Hence we see that the exact number is as
given. D

The last lemma we need concerns the number of ways in which an ordered basis
for an abelian group may be chosen. The result given below is presumably well-known
though a reference does not appear to be readily available.

LEMMA 3 . Let Q be an abeiian p-group of type ( a i , . . . , a r ) with identity ele-

ment 0 . Suppose d of the a i , . . . , aP are distinct so that we have the distinct values
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a J , . . . , a£ , where a I > • • • > a£ > 0. II uk is the number of the <*i,..., ar equal to
aj£, 1 ^ k ^ d, and

} = 1 }=k+l

then an ordered basis for Q may be chosen in n(a.i,..., ar) ways, where

d

(3.2) « ( a l l . . . , o r ) = JJ

PROOF: In this proof we shall adopt the standard additive notation for abelian
groups. For any positive integer m, let Qm be the subgroup of Q given by

Also, for 1 ^ k ^ d, let rk and ek be the unique integers satisfying

and aejt ~£ a*k — \ > aej,+i

(with the convention that a r +i = 0). Then it is known (see [1, p.320] or [2, p.104])
that the orders of Qa* and Ga*-i are given by p"* and pVk respectively, where

uk = a%Tk + ai-fc+i H h « r + Or+i, and vk = {ak - l)efc + ae j t + i H h a r + «r+i-

Now any element of order p a * in ^ belongs to Qa*, but not to Qa*-\. Hence the

number of elements of order pa* in Q is given by p"* — p"* . We remark that because
any group has only one element of order 1 (namely, the identity) and ar ^ 1 > a r + i ,
then it is not hard to deduce from above that an abelian group of type ( « i , . . . , ocr) has
p r — 1 elements of order p .

k
Let tr(k) = J^ wm so that <r(d) = r. It is easily seen that Tk = tr(k). Some simple

m=l

algebra then yields uk = Sk . Also when a£+ 1 = a j — 1 we obtain ek = a{k + 1), while
in the case oik+1 < aj£ — 1 we obtain ejt = ff(A;). Then it turns out in both cases
that vk = Sk — <r(k). Thus the number of elements of order pa* in Q is given by
pSt _p«»-«K»).

The r generators required for the basis set may be chosen in d major stages. At
the fcth major stage, 1 ^ k ^ d, we need to choose w* elements of order pat. Thus
each fcth major stage may be split up into wk minor stages in which we choose one
element of order p a * for the basis set. Suppose for some j satisfying 1 ^ j ' ^ wj. we
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are currently at the start of the j th minor stage in the fcth major stage. Hence we have

chosen all the generators of order p a i , . . . ,pc'k-1 as well as j — 1 generators of order

We now have to choose a generator of order p™1 which we shall denote by gkj •
The cyclic group of order pat generated by such an gkj contains one subgroup of
order p . Since gkj is of order pafc , then clearly the element pa^~1gkj (of order p) will
be a generator for this subgroup. Arguments analogous to those used in the proof of
Lemma l(a) show that this subgroup of order p must not be in Bk,j-i, where Bk,j-i
is the group generated by gim, l ^ m ^ w / , 1 ̂  £ ̂  k -1, and gki,. • •, gk,j-i, the
<r(k — 1) + j — 1 generators already chosen. Hence gkj has to satisfy the requirement
that p^gkj&Bkj-L

Let b be any element of order p belonging to Bk,j-i • Because b is of order p and
the generators gtm, 1 ̂  £ ̂  fc, are of order pai , it follows that there exist integers £*m

such that

fc-i "i j-i

Then the element

fc-l

1=1 m=l m=l

is of order p a * and satisfies pak~1c = b. Suppose w is any element of Ga*-i> where
k

Ga"-i is the subgroup of Q given by (3.3) (with m = <x\ — 1). Then it is clear that

pa*-~x{c + w) — pak~1c — b. Also c' = c+w is an element of order p a * and the order of

Ga'-i is p**~"(*). Hence for any element b of order p belonging to Bk,j-i, it follows

that there are exactly psk-"ik) elements c' of order pa* in G such that b = p a * ~ V ,

Since Bk,j-\ is of type ( a i , . . . , a<7(t_i)+J-_1) , then it has p'7(*~1)+J-1 — 1 elements

of order p . Hence there are psk-"W^p<r{k-i)+j-i _ -^ e l e m ents in G of order pal which

may not be used as the generating element gkj • As a consequence, gkj may then be

chosen in

j-i _ A =psk _p«i-u,l+i-i

ways, where we have used the fact that <r{k) — <r{k — 1) = wj. Hence we conclude that

,"r) =
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as required. 0

We see that (3.2) gives ufa) = p°l -p^'1 as expected. If all the ak, 1 < fc ^ r,

are equal to 1 so that d = 1 and a>i = r, then this same equation yields

*= 1

This result may be found in classical texts on group theory such as Burnside [2, p.110].
With d — r, u>k = 1, a^ = a/c = r — k + 1, 1 $J fc ̂  r , we can also obtain

which agrees with the result found in [2, p.118].

We are now ready to give the proof of Theorem 5.

PROOF OF THEOREM 5: We firstly prove part (a) by using induction. For r = 1

the right hand side of (2.5) yields p " 1 ' — pai°~', which we know from Theorem 4(a) is

v. (p"1). Thus (2.5) is true for r = 1.

Let us now assume that

Suppose QT-i is any lattice rule having rank r — 1 and invariants pai,... ,patr-1 .

We see from Lemma l(a) that a rank-r rule having invariants p™1,... ,par~l ,pQp is
obtained from Qr-i by 'adding in' a rank-1 lattice rule of order par . However Lemma
1 also shows that the rank-1 rule of order p embedded in such a rule must not be one
of the ( p r - 1 — l ) / (p — 1) rank-1 lattice rules of order p that are embedded in Qr-i •

We see from Lemma 2 that each one of these rank-1 rules of order p is embedded
in (p - l)pQr '~* rank-1 lattice rules of order p"r . Thus of the v. (par) = pQr" -pa^'~'

rank-1 rules of order p"r , there are

( (p ' - 1 - l ) / ( p - 1)) x ( p - l ) p « " - = (p'"1 - l )p«"-*

which are not permissible. Hence we see that
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Thus part (a) holds by induction.

We now have the total number of lattice rules having invariants m , . . . , n r . How-
ever they cannot all be distinct (as Theorem 4 clearly shows for the case r = 1). To
obtain v, ( p Q l , . . . ,par), we need to know the number of ways in which the genera-
tors for an abelian group of type ( a j , . . . , a r ) may be chosen. This number will be
dependent on the a i , . . . , aT (and p), but independent of s. Lemma 3 shows that this
number is just n(a,..., aT), where /c(a , . . . , a r ) is given by (3.2). Hence

7*

This completes the proof of Theorem 5. U

4. T H E SMITH NORMAL FORM

In the next section we shall give some numerical results which support Theorem
5(b). These are obtained by calculating the Smith normal form of certain integer
matrices. Thus it is useful to give some background material on the Smith normal form
which in simple terms is a diagonalisation of an integer matrix using elementary row
and column operations.

In more detail, let B be an s X s integer matrix. Then there exist sxs unimodular
matrices X and Y such that D = XBY, where D, the Smith normal form, is an sxs

diagonal matrix whose entries du are such that du divides di+ij+i, 1 ^ i ^ s — 1.
An algorithm for computing the Smith normal form may be found in [4] (this paper
also contains references to several other algorithms) while a clear description of the
underlying basic procedure behind such an algorithm may be found in [10].

To see the relevance of the Smith normal form to the work here, we firstly need
the definition of the dual lattice.

DEFINITION 1. Given an integration lattice L with lattice points Xo,..., XTV_I

in U', the dual lattice L1- is defined by

L1- := {h 6 Z* : h • x,- £ Z, 0 ^ j < N - 1}.

For any dual lattice L , there exists an sxs integer matrix B with determinant
N which is a generator matrix for L1-, that is, L1- consists of all the integer linear
combinations of the rows of B. We see from [9] that for every dual lattice (and hence
every integration lattice) there exists a unique B which is upper triangular and has
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entries bij that satisfy

8

(4.1) bjj > 0 for 1 < jI ^ a, Y[ bjj = N, and 0 ^ b^ < bjj for 1 ^ i < j ^ a.

The result of Lyness and S0revik [9] given in Theorem 1 was obtained by looking at
the number of upper triangular integer matrices having entries that satisfy (4.1).

The relevance of the Smith normal form to lattice rules is the following result which
may be found in [6] (as well as in [8]).

THEOREM 6 . Let Q be an N-point lattice rule whose corresponding dual lattice
has generator matrix B. If the invariants of this lattice rule are n\,..., nr, then there
exist unimodular matrices X and Y such that XBY = D, where the a x s diagonal
matrix D has entries

(4.2) du = 1, 1 ^ i < s — r, and du — n,_i+ 1, a — r + l ^ i ^ s .

The Smith normal form is used in group theory to determine the canonical repre-
sentation of finite abelian groups so Theorem 6 should not be too unexpected in light
of the abelian group structure of lattice rules. Then given pai,... ,par , Theorem 5(b)
gives us the number of upper triangular integer matrices whose entries satisfy (4.1) and
whose Smith normal form satisfies (4.2) (with n* = pa* , 1 ^ k ^ r) .

To end this section we show how the Smith normal form may be used to derive the
relationship

(4.3) *.[p\r] = i / , _ i [ p ; r ] + p - r V , _ i [ p ; r - l ] ) 2 < r O - 1,

that was given in (2.8). As was just indicated, &",[?;»•] is the number of upper triangular
integer matrices B satisfying (4.1) which have a Smith normal form in which

(4.4) da = 1, 1 ^ i ^ a — r, and da = p, s — r + 1 ^ i ^ s.

t
It is known [12, p.25] that Y[ djj for 1 ^ t ^ s is the gcd of all the <-rowed minor

determinants of B. Thus if the Smith normal form of B satisfies (4.4), then p must be
the gcd of all (s — r + l)-rowed minor determinants of B. Two simple consequences
of this are given in the following theorem.

THEOREM 7 . Suppose B is an upper triangular integer matrix having entries
satisfying (4.1) and a Smith normal form satisfying (4.4).

(a) B has exactly a — r l's on its diagonal (and hence the other r diagonal

entries are p's).

(b) If bmm = p for some m, 1 ̂  m < a, then bm, = 0.
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PROOF: TO prove part (a), we note that if there were more than a — r l ' s on
the diagonal, then one could form an (a — r + l)-rowed minor by taking s — r + 1
rows and columns which had 1 's in the corresponding diagonal position to obtain an
(a — r + 1) x (s — r + 1) matrix which must be the identity matrix (since (4.1) shows
that if bjj = 1, then bij = 0 for i ^ j). Because this identity matrix has determinant
1, this results in a contradiction since then 1 is the gcd of all a — r + 1-rowed minor
determinants of B and not p as assumed.

To prove part (b), suppose bmm = p and bm, = u > 0. Part (a) shows that there
are a — r l ' s o n the diagonal of B. Thus we can form an a — r + 1-rowed minor by
taking the a — r rows and columns with 1 's in the corresponding diagonal position as
well as row m and column a. Let us denote this minor by 5 . If there are I values
of i such that 1 ^ i < m and bx = 1, then we see that Sjj = 1, 1 ^ j ^ t, while
Sjj-i = 1, £ + 2 ^ j ^ a — r + 1. The other entries in the first a — r columns of S are
all zero.

So we see that the (t + l ) th row of 5 contains all zero entries except for the entry
Si-\-it,-r+i = u. By doing a cofactor expansion along this row, one can show that the
determinant of S is (—1) * Tu. Since we must have 6,, = p and (4.1) shows that
0 < u < p, this contradicts the assumption that p is the gcd of all s — r + 1-rowed
minor determinants of B. Hence the result is proved. We remark that a similar but
more detailed argument may be used to show that if bmm = p , then this entry is the
only non-zero entry in the mth row of B. U

We want the number of upper triangular integer matrices B satisfying (4.1) for
which the Smith normal form satisfies (4.4). Then b,, is either 1 or p . Suppose firstly
that b,, = 1. Then (4.1) shows that b{, — 0 for 1 Sj i < a and the Smith normal form
of the (a — 1) X (s — 1) matrix obtained by discarding the last row and column of B
must contain r p's. There are i/,_i[p;r] of these which leads to the first term on the
right hand side of (4.3).

The other case to look at is when b,, = p. Theorem 7(b) shows that bml — 0 for
each of the r — 1 values of m for which bmm = p, 1 ^ m < s. Also we see from (4.1)
that the a — r rows with &,•; = 1 have entries 6 ,̂ taking on any value from 0 to p — 1
inclusive. Thus there are p'~T different possibilities for the sth column of B. Clearly
the Smith normal form of the (a — 1) X (a — 1) matrix obtained by discarding the last
row and column of B must have r — 1 p's. Hence the actual number of matrices B
that satisfy (4.1), have b., = p , and have a Smith normal form satisfying (4.4) is given
by p*~ri/j_i[p;r — 1]. This provides the second term on the right hand side of (4.3).

5. NUMERICAL RESULTS

By using Theorem 6, we see that Theorem 5(b) may be numerically tested by
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Diagonal Entries
of B

48, 1, 1, 1,
24, 2, 1, 1,
16, 3, 1, 1,
12, 4, 1, 1,
8, 6, 1, 1,
12, 2, 2, 1,
8, 3, 2, 1,
6, 4, 2, 1,
4, 4, 3, 1,
6, 2, 2, 2,
4, 3, 2, 2,
3, 2, 2, 2,

1
1
1
1
1
1
1
1
1
1
1
2

Column Total:
Prediction

48

5,421,361
2,655,435
3,037,144
1,146,200
928,797
425,410
965,731
388,920
256,674
28,320

108,416
1,688

15,364,096
15,364,096

24,2

2,655,435

573,100
928,797
850,820
965,731
777,840
128,337
99,120

216,832
5,908

7,201,920
7,201,920

Invariants
12,4

573,100

212,705

194,460
128,337
35,400
54,208
2,110

1,200,320
1,200,320

12, 2, 2

212,705

194,460

60,180
54,208
3,587

525,140
525,140

6,2,

3,

3,
3,

2 ,2

540

211

751
751

Row Total

5,421,361
5,310,870
3,037,144
2,292,400
1,857,594
1,701,640
1,931,462
1,555,680
513,348
226,560
433,664

13,504

24,295,227

Table 1

forming, for given N, all upper triangular integer matrices with entries satisfying (4.1),
reducing them all to Smith normal form, and then counting up how many there are
that have a given set of invariants. This idea is implemented in a computer program in
which the diagonal entries of the upper triangular matrix B are entered as input data.

The results that are given here in Table 1 are for N = 48 and 3 = 5. Thus, for
example, we see that if the diagonal entries of B are 24, 2, 1, 1, and 1, then there are
a total of 5,310,870 upper triangular integer matrices having these diagonal entries
which satisfy (4.1). On reducing all these to Smith normal form we find that 2,655,435
of them yield an invariant of 48 while the remaining 2,655,435 yield invariants 24 and
2.

Theorem 1 yields T5(48) = T5(16)r5(3) = 200787 x 121 = 24,295,227. Also
Theorem 3 shows that i/s(48) = i/5(16)i/5(3), ^s(24,2) = i/s(8,2)i/5(3), fS(12,4) =
i/5(4,4)i/s(3), «/s(12,2,2) = I/5(4,2,2)i/5(3)) and 1/5(6,2,2,2) = i/s(2,2,2,2)i/s(3). The-
orem 5(b) then leads to the predictions given in Table 1 which, as expected, agree with
the column totals.
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