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Abstract
We generalize Illusie’s definition of the Atiyah class to complexes with quasi-coherent cohomology on arbitrary
algebraic stacks. We show that this gives a global obstruction theory for moduli stacks of complexes in algebraic
geometry without derived methods. We give a similar generalization of the reduced Atiyah class, and we show
various useful properties for working with Atiyah classes, such as compatibilities between the reduced and ordinary
Atiyah class, and compatibility with tensor products and determinants.

It is a classical fact that the deformation-obstruction theory of a coherent sheaf E on a projective
variety X is governed by the groups Ext𝑖𝑋 (𝐸, 𝐸) for 𝑖 = 1, 2 [5, Section 7]. The Atiyah class, as defined
in [7] in the algebraic setting, globalizes and generalizes this correspondence – roughly speaking, it
measures how much a family of sheaves varies over a base. When working over a moduli space, these
self-Ext groups often give an important extra structure in the form of an obstruction theory (often with
additional properties), which is the foundational ingredient in enumerative sheaf theories. Examples
are the famous Donaldson–Thomas theory [23], PT-theory [18], [6], moduli spaces of stable sheaves
on surfaces [14] and, more recently, CY4 theory [15]. In each of these cases, the technical tool used to
obtain the obstruction theory is the Atiyah class.

In many cases, particularly for wall-crossing arguments as in [14], [8], [9], it is necessary to consider
moduli stacks that include properly semi-stable objects which may have positive-dimensional stabilizers.
To work with these, one would like an obstruction theory on the stack. This is constructed in [14] for
moduli stacks of objects with a two-term resolution, and in [8] by using derived moduli stacks of perfect
complexes.

The main result of this paper is to generalize Illusie’s construction of the Atiyah class to algebraic
stacks, using Olsson’s definition of the cotangent complex [16]. We also treat some variants, such as
Gillam’s reduced Atiyah class [3], and a version of the Atiyah class for exact sequences. We then show
various compatibility properties for the Atiyah class and its variants.

As a second main result, we show that the Atiyah class indeed gives an obstruction theory for moduli
stacks of perfect complexes (Theorem 1.4). The main new part here is that it captures the infinitesimal
automorphisms. For simplicity, we only treat the absolute case of a proper scheme over a field, although
the relative case follows along the same lines.

Roughly, our construction of the Atiyah class proceeds by presenting a given algebraic stack X as a
groupoid 𝑊 ⇒ 𝑋 in algebraic spaces.

Then, up to descent, the Atiyah class of a sheaf E on X should morally be obtained by taking
mapping cones of a commutative square involving the Atiyah classes of the pullback of E to X and W,
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2 N. Kuhn

respectively. Since taking mapping cones in the derived category is not functorial, some work is needed
to make this into a definition. For this purpose, in §2.3, we introduce a topos 𝑊‖ associated to the
groupoid 𝑊 ⇒ 𝑋 , whose objects are certain diagrams involving sheaves of W and X. Then the desired
mapping cone operation can be encoded as a functor that takes a complex of sheaves of modules on 𝑊‖
and yields a complex on W. With this technical tool, the strategy to define the Atiyah class goes through.
(From a higher categorical viewpoint, the use of 𝑊‖ allows us to keep track of the necessary coherence
data used in the pushout operation.)

Relation to existing work
Throughout, we build on the constructions and results of [6], [7] and [3], which we generalize to
algebraic stacks. Our construction also recovers the G-equivariant Atiyah class considered by Ricolfi
[20]. Throughout, we use Olsson’s definition of the quasi-coherent derived category and the cotangent
complex for algebraic stacks developed in [16] and [10]; see also the excellent discussion in [4, §1].

Generalizations of the Atiyah class to the theory of algebraic stacks have appeared before in different
contexts: In the setting of derived algebraic geometry of Schürg, Toën and Vezzosi [21], a perfect
complex E on a derived geometry stack Y with a perfect cotangent complex gives rise to a map from Y
to the (derived) moduli stack of perfect complexes. In ([21], Appendix A), they define the Atiyah class
as the induced pullback map on cotangent complexes and argue that it recovers Illusie’s definition in the
case of schemes. Moreover, Lurie has constructed the Atiyah class in the context of spectral algebraic
geometry [12, §19.2.2]. In the purely classical setting, our definition goes beyond these, as we do not
require the perfectness assumptions made in [21], and since the current version of [12] presently only
deals with Deligne–Mumford stacks.1

Finally, the paper [1] shows how to construct virtual cycles from perfect obstruction theories on
algebraic stacks and thus fits in neatly with the viewpoint taken here, that it is often advantageous to
consider fundamental constructions directly on the moduli stack.

Notations and conventions
For a Grothendieck topos T and a ring R in T, we let Mod(𝑅) denote the category of R-modules and
𝐷 (𝑅) its derived category. We identify Mod(𝑅) with the subcategory of 𝐷 (𝑅) generated by complexes
concentrated in degree zero.

For any abelian category A, write𝐶 (A) for the category of complexes of objects in A. Write𝐶≤0 (A)
and 𝐶 [−1,0] (A) for the full sub-category of complexes bounded in degrees ≤ 0 and in degrees −1, 0,
respectively. When A = Mod(𝑅), we simply write 𝐶 (𝑅) and 𝐶≤0 (𝑅), 𝐶 [−1,0] (𝑅), respectively.

We will use the following convention regarding shift functors: For any complex E of R-modules, we
have a natural isomorphism

𝐸 [1] = Z[1] ⊗Z 𝐸.

If 𝐸, 𝐹 are complexes, then by 𝐸 ⊗ 𝐹 [1] we mean (𝐸 ⊗ 𝐹) [1] rather than 𝐸 ⊗ (𝐹 [1]).
All tensor products, pullbacks and duals of objects in a derived category be in the derived sense. For

modules and complexes, we will consider the underived tensor products and pullbacks but will point
out when these do not necessarily compute the derived operation.

We use the definition of algebraic stacks as in the Stacks project [22, Tag 026N].

1. Statements of results

In this section, we introduce the Atiyah class on an algebraic stack and several variants, and we state
their basic properties and mutual relations. The proofs will be given in the following sections.

1We thank the referee for explaining these results in derived geometry.
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1.1. The Atiyah class

The Atiyah class of a vector bundle E on a smooth scheme X is a linear map that turns a vector field v on
X into a class 𝛼𝑣 ∈ Ext1 (𝐸, 𝐸) that measures how E varies in the directions of v and is compatible with
any pullbacks of schemes. Via the cup product, it also gives rise to a map 𝐻1(𝑇𝑋 ) → Ext2(𝐸, 𝐸) – here,
the source is naturally identified with the collection of infinitesimal deformations of X via the Kodaira–
Spencer map. This provides an obstruction class to extending E over infinitesimal deformations 𝑋 ′ of
X: One can extend E to a vector bundle on 𝑋 ′ if and only if the class in Ext2(𝐸, 𝐸) obtained from 𝑋 ′ is
zero. An appropriate way to write the Atiyah class that generalizes beyond the case of smooth schemes
is as a map

𝐸 → 𝐿𝑋 ⊗ 𝐸 [1]

in the derived category of X, where 𝐿𝑋 denotes the cotangent complex of X as defined by Illusie [7].2 If
one further replaces X by an algebraic stack X , one would like that the Atiyah class also captures how
the (infinitesimal) stabilizer groups of X act on E. This is where we pick up.

Let 𝑓 : X → Y be a morphism of algebraic stacks and let 𝐸 ∈ 𝐷−𝑞𝑐𝑜ℎ (X ). In §4.1, we define the
Atiyah class of E over Y , which is a natural map

at𝐸 : 𝐸 → 𝐿X /Y ⊗ 𝐸 [1] .

Here, 𝐿X /Y denotes Olsson’s generalization of the relative cotangent complex to algebraic stacks [16],
which we review in §2.1. We also use the notation at𝐸,X /Y when we want to emphasize the dependence
on f. If E is dualizable in the derived category (equivalently, a perfect complex; see [4, Lemma 4.3]),
then the data of at𝐸 is equivalent to that of a map

at′𝐸 : 𝐸 ⊗ 𝐸∨[−1] → 𝐿X /Y ,

which we also call the Atiyah class.
We now list a series of fundamental properties of the Atiyah class. The proofs will be given in §5:

Let 𝐹, 𝐸 be objects of 𝐷−𝑞𝑐𝑜ℎ (X ).

Functoriality
Given a map 𝐹 → 𝐸 in 𝐷−𝑞𝑐𝑜ℎ (X ), the induced diagram

𝐹 𝐿X /Y ⊗ 𝐹 [1]

𝐸 𝐿X /Y ⊗ 𝐸 [1]

at𝐹

at𝐸

commutes.

Pullback
Given another morphism 𝑓 ′ : X ′ → Y ′ together with maps 𝐴 : X ′ → X and 𝐵 : Y ′ → Y , and a
2-isomorphism 𝐵 ◦ 𝑓 ′ ⇒ 𝑓 ◦ 𝐴, the induced diagram

𝐴∗𝐸 𝐴∗𝐿X /Y ⊗ 𝐴∗𝐸 [1]

𝐴∗𝐸 𝐿X ′/Y′ ⊗ 𝐴∗𝐸 [1] .

𝐴∗ at𝐸

at𝐴∗𝐸

2If X is smooth, this is just the dual of the tangent bundle (i.e., the sheaf of differentials on X). In general, it is a somewhat
complicated object in the derived category of X that retains the good properties of differentials from the smooth case (e.g., the
exact sequence of relative differentials).
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4 N. Kuhn

commutes. If E is perfect, then equivalently, the diagram

𝐴∗𝐸 ⊗ 𝐴∗𝐸∨[−1] 𝐴∗𝐿X /Y

𝐿X ′/Y′

𝐴∗ at′𝐸

at′
𝐴∗𝐸

commutes.

Tensor products
Identify 𝐸 ⊗ 𝐿X /Y [1] ⊗𝐹 � 𝐿X /Y [1] ⊗𝐸 ⊗𝐹 using the standard symmetry isomorphism of the derived
tensor product. Then, up to this identification, we have an equality

at𝐸⊗𝐹 = at𝐸 ⊗𝐹 + 𝐸 ⊗ at𝐹 .

As a special case of this, if E and F are perfect and at𝐹 is trivial (e.g., if F is pulled back from Y), then
the following diagram commutes:

𝐸 ⊗ 𝐸∨[−1] 𝐿X /Y

𝐸 ⊗ 𝐹 ⊗ 𝐸∨ ⊗ 𝐹∨[−1] 𝐿X /Y .

at′𝐸

at′𝐸⊗𝐹

Here, the left vertical map is induced by the diagonal mapO𝑋 → 𝐹⊗𝐹∨and the symmetry isomorphisms
of the tensor product.

Determinants
Suppose that E is perfect and consider the natural trace map tr : Hom(𝐸, 𝐿X /Y [1] ⊗ 𝐸) →
Hom(OX , 𝐿X /Y [1]). Then we have atdet(𝐸) = tr(at𝐸 )⊗det(𝐸) as morphisms det 𝐸 → 𝐿X /Y⊗det 𝐸 [1],
at least when E has a global finite length resolution by locally free sheaves. In particular, if the latter
condition holds, the following diagram commutes

O𝑋 [−1]

𝐸 ⊗ 𝐸∨[−1] 𝐿X /Y ,

at′det 𝐸

at′𝐸

where the left vertical map is induced by the natural diagonal map O𝑋 → 𝐸 ⊗ 𝐸∨.

Pushforward
Consider a cartesian diagram

X ′ Y ′

X Y

𝑝

and suppose that X ′ → X is concentrated [4, Definition 2.4]. Let 𝐸 ∈ 𝐷−𝑞𝑐𝑜ℎ (X ′). Then we have a
commutative diagram
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𝑅𝑝∗𝐸 𝐿X /Y [1] ⊗ 𝑅𝑝∗𝐸

𝑅𝑝∗𝐸 𝑅𝑝∗(𝐿X ′/Y′ [1] ⊗ 𝐸).

at𝑅𝑝∗𝐸

𝑅𝑝∗ (at𝐸 )

(1.1)

Suppose that, moreover, the diagram is Cartesian and that the morphisms X → Y and Y ′ → X are Tor-
independent, and that E is a perfect complex. Then the right vertical morphism in (1.1) is an isomorphism,
and this gives a natural identification 𝑅𝑝∗(at𝐸 ) = at𝑅𝑝∗𝐸 as morphisms 𝑅𝑝∗𝐸 → 𝐿X /Y [1] ⊗ 𝑅𝑝∗𝐸 . If,
moreover, 𝑅𝑝∗𝐸 is perfect, this can be restated as commutativity of the following diagram:

𝑅𝑝∗𝐸 ⊗ (𝑅𝑝∗𝐸)
∨[−1]

(𝑅𝑝∗(𝐸 ⊗ 𝐸∨))∨[−1] 𝐿X /Y .

1.2. The reduced Atiyah class

Let 𝑓 : X → Y be a map of algebraic stacks and let 𝐸 ∈ 𝐷−𝑞𝑐𝑜ℎ (Y). Let

𝐹 → 𝑓 ∗𝐸 → 𝐺
+1
−−→

be an exact triangle in 𝐷−𝑞𝑐𝑜ℎ (X ) such that 𝑅 Hom−1(𝐹, 𝐺) = 0. For example, this applies if E is a
sheaf and G is a quotient of the ordinary pullback of E as a quasi-coherent sheaf.

Then the reduced Atiyah class associated to this data is a natural map

at𝐸,X /Y ,𝐺 : 𝐹 → 𝐿X /Y ⊗ 𝐺.

If G is dualizable, this corresponds to a map

at′𝐸,X /Y ,𝐺 : 𝐹 ⊗ 𝐺∨ → 𝐿X /Y .

We also write at𝐸 and at′𝐸 if the rest of the data is understood.

Proposition 1.1. Assume that 𝐸, 𝐹 and G are dualizable. We have the following compatibility between
the reduced Atiyah class and the ordinary Atiyah class of 𝑓 ∗𝐸: The diagram

𝐹 ⊗ 𝐺∨ 𝑓 ∗𝐸 ⊗ 𝑓 ∗𝐸∨

𝐿𝑋/𝑌 𝑓 ∗𝐿𝑌 [1]

anti-commutes.

1.3. Atiyah class of an exact sequence

Let X → Y be a map of algebraic stacks and let

𝐸 := [0→ 𝐹 → 𝐸 → 𝐺 → 0]

be an exact sequence of bounded above complexes of OX modules with quasi-coherent cohomology
sheaves. Assume that the images of 𝐹, 𝐸, 𝐺 in 𝐷−𝑞𝑐𝑜ℎ (X ) are perfect complexes and that their duals
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6 N. Kuhn

lie again in 𝐷−𝑞𝑐𝑜ℎ (X ) (the latter is automatic if, for example, X is quasi-compact). Then there is a
canonical way to complete the natural map 𝐹 ⊗ 𝐺∨ → 𝐸 ⊗ 𝐸∨ in 𝐷−𝑞𝑐𝑜ℎ (X ) to a triangle

𝐹 ⊗ 𝐺∨ → 𝐸 ⊗ 𝐸∨ → 𝐸 ⊗ 𝐸∨/𝐹 ⊗ 𝐺∨
+1
−−→ . (1.2)

Moreover, there exists a natural mophism

at𝐸 :
𝐸 ⊗ 𝐸∨

𝐹 ⊗ 𝐺∨
[−1] → 𝐿X /Y ,

which we call the Atiyah class of the exact sequence 𝐸 .

Proposition 1.2. We have a natural commutative diagram

𝐹 ⊗ 𝐹∨[−1] 𝐸⊗𝐸∨

𝐹 ⊗𝐺∨ [−1]

𝐿X /Y

at𝐹
at𝐸

where the horizontal map is the shift of the morphism

𝐹 ⊗ 𝐹∨ �
𝐹 ⊗ 𝐸∨

𝐹 ⊗ 𝐺∨
↩→

𝐸 ⊗ 𝐸∨

𝐹 ⊗ 𝐺∨
.

Proposition 1.3. Let X 𝑓
−→ Y → Z be maps of algebraic stacks with f flat and let E be a bounded above

complex of OY -modules with quasi-coherent cohomology. Let 𝐸X := 𝑓 ∗𝐸 and suppose we are given an
exact sequence 𝐸X of the form

0→ 𝐹 → 𝐸𝑋 → 𝐺 → 0.

Then we have a natural morphism of distinguished triangles

𝐸𝑋 ⊗ 𝐸∨𝑋 [−1] 𝐸𝑋 ⊗𝐸
∨
𝑋

𝐹 ⊗𝐺∨ [−1] 𝐹 ⊗ 𝐺∨

𝑓 ∗𝐿𝑌 /𝑍 𝐿𝑋/𝑍 𝐿𝑋/𝑌 .

+1

+1

Here, the morphisms in the upper row are shifts of the ones in (1.2), except for the last one which is
minus the map 𝐹 ⊗ 𝐺∨ → 𝐸𝑋 ⊗ 𝐸∨𝑋 provided there.3

1.4. Deformation theoretic properties

We present two important examples of how the Atiyah class can be used to construct obstruction theories.
For simplicity, we work over a base field k and let X be a smooth and proper scheme of dimension d
over k.

Obstruction theory on moduli spaces of sheaves
Let M be a stack over Spec 𝑘 and let 𝐸 ∈ 𝐷−𝑞𝑐𝑜ℎ (𝑋 ×M) be perfect. Consider the Atiyah class map of
E relative to X:

3In the usual conventions (e.g., [22, Tag 0145]), the upper row is obtained by rotating (1.2) to the right twice and then flipping
all signs.
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at𝐸 : 𝐸 → 𝐿𝑋×M/𝑋 ⊗ 𝐸 [1] � 𝜋∗M𝐿M ⊗ 𝐸 [1] .

Since E is dualizable, and by the projection formula, this data is equivalent to a map

OM → 𝑅𝜋∗(𝜋
∗
M𝐿M ⊗ (𝐸 ⊗ 𝐸∨)) [1] � 𝐿M ⊗ 𝑅𝜋∗(𝐸 ⊗ 𝐸∨)[1] .

Using dualizability again, we obtain a morphism

At𝐸 : 𝑅𝜋M∗(𝐸 ⊗ 𝐸∨)∨[−1] → 𝐿M. (1.3)

Theorem 1.4. Suppose that M is an open substack of the moduli stack of coherent sheaves on X. Then
At𝐸 is an obstruction theory. More generally, this holds when M is an open substack of a moduli space
of universally gluable perfect complexes on X.

This is proven in §§6.3–6.5 for moduli of sheaves. The statement for complexes is addressed in
Remark 6.16. Recall that an obstruction theory on an algebraic stack Y consists of a map 𝑔 : E→ 𝐿Y
in 𝐷𝑞𝑐𝑜ℎ (Y), so that ℎ𝑖 (𝑔) is an isomorphism for 𝑖 ≥ 0, and so that ℎ−1 (𝑔) is surjective [14, Definition
2.4.1].

Obstruction theory on Quot-schemes
Let Y be an algebraic stack and let E be a Y-flat coherent sheaf on 𝑋 × Y . Let 𝑓 : Q→ Y be an open
substack of the relative Quot-scheme of E over Y and let

0→ 𝐹 → 𝐸Q → 𝐺 → 0

be the universal exact sequence on 𝑋 × Q. We consider the associated reduced Atiyah class
at𝐸 := at𝐸,𝑉×X /𝑉×Y ,𝐺 as a map at𝐸 : 𝐹 → 𝜋∗X 𝐿X /Y ⊗ 𝐺 in the derived category. As before, this
data is equivalent to a morphism

At𝐸 : 𝑅 𝑓∗(𝐺 ⊗ 𝐹∨)∨ → 𝐿Q/Y .

Proposition 1.5. The map At𝐸 is a relative obstruction theory for 𝑓 : Q→ Y .

2. Preliminaries

2.1. Derived category and cotangent complex of an algebraic stack

Let X be an algebraic stack and let OX denote its structure sheaf in the lisse-étale topos on X . Given
a smooth cover 𝑋 → X , where X is an algebraic space, one can form the strictly simplicial algebraic
space 𝑋• = 𝑋•,et, which we consider as a strictly simplicial topos with respect to the étale topology on
every component. We write 𝑋•,lis-et for the strictly simplicial topos obtained by taking the corresponding
lisse-étale topos in place of each 𝑋𝑛. It is shown in [16, 4.6] that we have flat morphisms of topoi

𝑋•,et
𝜖
←− 𝑋•,lis-et

𝜋
−→ Xlis-et.

Moreover, the functor 𝜖∗ is exact and preserves flatness. We define 𝜂∗𝑋 to be the composition 𝜖∗ ◦ 𝜋
∗ :

Mod(OX ) → Mod(O𝑋• ). It defines a functor on the categories of chain complexes and due to exactness
also on the derived categories, both of which we also denote by 𝜂∗𝑋 . Let 𝜂𝑋∗ := 𝑅𝜋∗ ◦ 𝜖

∗ : 𝐷 (O𝑋• ) →

𝐷 (OX ). By ([10], Example 2.2.5), the functors 𝜂∗𝑋 and 𝜂𝑋∗ restrict to mutually inverse equivalences on
the derived categories with quasi-coherent cohomology sheaves

𝜂∗𝑋 : 𝐷𝑞𝑐𝑜ℎ (OX ) → 𝐷𝑞𝑐𝑜ℎ (O𝑋• ), (2.1)

𝜂𝑋∗ : 𝐷𝑞𝑐𝑜ℎ (O𝑋• ) → 𝐷𝑞𝑐𝑜ℎ (OX ). (2.2)
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Given a smooth surjective map of algebraic spaces 𝑔 : 𝑊 → 𝑋 over X , let 𝑊• be the induced
hypercover for the map 𝑊 → X and let 𝑔• : 𝑊• → 𝑋• be the map induced by g. Then there is a
canonical natural isomorphism between the functors 𝑔∗𝜂∗𝑋 and 𝜂∗𝑊 on the levels of sheaves, which
induces isomorphisms between the induced functors on complexes and derived categories, respectively.
We recall the notion of the cotangent complex of algebraic stacks as given in [16, §8]: Given a morphism
of algebraic stacks 𝑓 : X → Y , choose a 2-commutative diagram

𝑋 X

𝑌 Y ,

(2.3)

where 𝑋,𝑌 are algebraic spaces and where the maps 𝑌 → Y and 𝑋 → X𝑌 := 𝑌 ×Y X are smooth and
surjective. Let 𝑋• and 𝑌• be the strictly simplicial algebraic spaces associated to 𝑋 → X and 𝑌 → Y ,
respectively. One defines a complex 𝐿X /Y ,𝑋/𝑌 on 𝑋• whose restriction to 𝑋𝑛 is given by the complex

𝐿𝑋𝑛/𝑌𝑛 → Ω𝑋𝑛/X𝑌𝑛
,

where Ω𝑋𝑛/X𝑌𝑛
is placed in degree one, and the map is induced from the natural map of differentials

ℎ0 (𝐿𝑋𝑛/𝑌𝑛 ) � Ω𝑋𝑛/𝑌𝑛 → Ω𝑋𝑛/X𝑌𝑛
. It is shown in [16] that this defines an element of 𝐷≤1

𝑞𝑐𝑜ℎ (𝑋•)

and that the element 𝜂∗𝐿X /Y ,𝑋/𝑌 ∈ 𝐷≤1
𝑞𝑐𝑜ℎ (X ) is independent of the choice of diagram (2.3) up

to canonical isomorphisms. This is used to define 𝐿X /Y , so that one has a canonical isomorphism
𝜂∗𝐿X /Y � 𝐿X /Y ,𝑋/𝑌 for any choice of diagram (2.3).

Remark 2.1. Define Ω𝑋•/X𝑌•
to be the O𝑋• -module which on 𝑋𝑛 is given by Ω𝑋𝑛/X𝑌𝑛

with the obvious
pullback maps. Then we may restate

𝐿X /Y ,𝑋/𝑌 = Cone
(
𝐿𝑋•/𝑌•

−
−→ Ω𝑋•/X𝑌•

)
[−1] .

Here, 𝐿𝑋•/𝑌• is the usual cotangent complex for the map of topoi 𝑋• → 𝑌•, and the map indicated by
‘−’ is minus the natural map whose restriction to the n-th simplicial degree is given by the composition
𝐿𝑋𝑛/𝑌𝑛

𝜏≥0
−−→ Ω𝑋𝑛/𝑌𝑛 → Ω𝑋𝑛/X𝑌𝑛

.

2.2. Simplicial methods

We recall some notation and basic facts about simplicial rings and simplicial sheaves of modules in
general topoi. For a general reference, see Illusie’s book [7]. Throughout this subsection, let T denote a
topos.

Simplicial modules
For a simplicial ring A in T, we denote by 𝐴−Mods the category of A-modules. When A is an ordinary,
we regard it as a constant simplicial ring, so that 𝐴−Mods denotes the category of simplicial A-modules.
In either case, we denote by 𝐷Δ (𝐴) the derived category obtained by localizing 𝐴 −Mods at the class
of quasi-isomorphisms.

Dold–Kan correspondence
Let A be an ordinary ring in T. The normalized chain functor induces an equivalence of abelian
categories 𝑁 : 𝐴 − Mods → 𝐶≤0(𝐴); see [7, I 1.3]. It sends homotopic maps to homotopic maps
and there are natural identifications 𝜋𝑖 (𝑀) � ℎ−𝑖 (𝑁𝑀) for a simplicial A-module M. In particular, N
preserves quasi-isomorphisms and induces an equivalence 𝑁 : 𝐷Δ (𝐴) → 𝐷≤0 (𝐴).
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Cones and distinguished triangles
As in [7, I 3.2.1], let 𝜎 denote the simplicial Z-module satisfying 𝑁𝜎 = Z[1] and let 𝛾 be the simplicial
Z-module such that 𝑁𝛾 is the complex Z→ Z concentrated in degrees [−1, 0]. Let A be a simplicial ring
in the topos T and let E be an A-module. We write 𝜎𝐸 := 𝜎 ⊗Z 𝐸 and 𝛾𝐸 := 𝛾 ⊗Z 𝐸 . One has canonical
isomorphisms 𝜋𝑖 (𝐸) = 𝜋𝑖+1(𝜎𝐸) for any 𝑖 ≥ 0. We have a natural exact sequence of A-modules

0→ 𝐸
𝜄
−→ 𝛾𝐸

𝑞
−→ 𝜎𝐸 → 0.

For a map 𝛼 : 𝐸 → 𝐹 of A-modules, we define

ConeΔ (𝛼) := Coker(𝐸
( 𝜄,𝛼)
−−−−→ 𝛾𝐸 ⊕ 𝐹).

We have the sequence of natural maps

𝐸
𝛼
−→ 𝐹 → ConeΔ (𝛼) → 𝜎𝐸, (2.4)

and the induced maps on homotopy groups fit into a long exact sequence. One declares a sequence
𝐸 → 𝐹 → 𝐺 → 𝜎𝐸 in 𝐷Δ (𝐴) to be a distinguished triangle if it is isomorphic in 𝐷Δ (𝐴) to a
sequence of the form (2.4); see [7, I 3.2.2]. If A is an ordinary ring in T, and E a simplicial A-module,
then in 𝐷≤0 (𝐴), we have natural isomorphisms 𝑁𝜎𝐸 � (𝑁𝐸) [1], and the Dold–Kan correspondence
preserves the notions of distinguished triangle.

Derived tensor product
Let A be a simplicial ring in T. The derived tensor product defines a functor 𝐷Δ (𝐴) × 𝐷Δ (𝐴) →
𝐷Δ (𝐴), (𝐸, 𝐹) ↦→ 𝐸 ⊗𝐴 𝐹, which can be computed as follows: For any quasi-isomorphism 𝐿 → 𝐸
where L is a flat (i.e., degreewise flat) A-module, the derived tensor product is computed by the (usual)
tensor product 𝐿 ⊗𝐴 𝐹 of A-modules (taken degree-wise). The analogous statement holds with a flat
replacement of F. For fixed E, the functor 𝐸 ⊗ − : 𝐷Δ (𝐴) → 𝐷Δ (𝐴) is naturally triangulated, and
similarly for − ⊗ 𝐸 . If A is an ordinary ring and E, F are simplicial A-modules, then we have canonical
natural isomorphisms 𝑁 (𝐸 ⊗ℓ 𝐹) � 𝑁𝐸 ⊗𝐿 𝑁𝐹 in 𝐷≤0 (𝐴), which are compatible with the symmetry
isomorphism of the tensor product.

Now let 𝑃 → 𝐵 be a morphism of A-algebras. Then, the derived tensor product 𝐵 ⊗𝑃 − induces a
triangulated functor 𝐷Δ (𝑃) → 𝐷Δ (𝐵), which is left-adjoint to the functor 𝐷Δ (𝐵) → 𝐷Δ (𝑃), 𝑁 ↦→ 𝑁𝑃
given by restriction of scalars.

We have the following:

Lemma 2.2. Suppose that 𝑃 → 𝐵 is a quasi-isomorphism of A-algebras. Then the derived tensor
product and restriction of scalars are mutually inverse equivalences of categories. In other words, the
natural adjunction maps 𝑀 → 𝐵 ⊗𝑃 𝑀 for M in 𝐷Δ (𝑃) and 𝐵 ⊗𝑃 𝑁𝑃 → 𝑁𝑃 for N in 𝐷Δ (𝐵) are
isomorphisms.

Proof. This is [7, I Corollaire 3.3.4.6]. �

Simplicial resolutions
Let 𝐴→ 𝐵 be a map of ordinary rings in a topos T. We denote by

𝑃𝐴(𝐵)

the standard simplicial resolution of B over A [7, I 1.5]. It is a simplicial A-algebra and flat over A in each
degree. There is a natural quasi-isomorphism 𝑃𝐴(𝐵) → 𝐵, where we regard B as a constant simplicial
A-algebra in T.

We will use the following result.
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Lemma 2.3. Let

𝑊2 𝑊1

𝑌2 𝑌1

𝑎

ℎ 𝑔

𝑏

be a commutative diagram of locally ringed topoi with enough points. Assume that a and b are flat.
Then the natural map 𝑎−1𝑃𝑔−1O𝑌1

(O𝑊1) → 𝑃ℎ−1O𝑌2
(O𝑊2) of simplicial sheaves of rings on 𝑊2 is flat

in each degree.

Proof. This can be checked on stalks of 𝑊2. Since taking the standard simplicial resolution commutes
with pullback of topoi and with filtered direct limits, we are reduced to the following setting: We have
a diagram in the category of local rings

𝐵2 𝐵1

𝐴2 𝐴1

with 𝐵2 flat over 𝐵1 and 𝐴2 flat over 𝐴1, and we need to show that the natural map 𝑃𝐴1 (𝐵1) → 𝑃𝐴2 (𝐵2)
is degreewise flat. Denote this map by 𝐹 : 𝑃 → 𝑅 with n-th part 𝐹𝑛 : 𝑃𝑛 → 𝑅𝑛 for 𝑛 ≥ 0. We
also define 𝐹−1 : 𝐵1 → 𝐵2. We show by induction on 𝑛 ≥ −1 that 𝐹𝑛 is flat and injective. The base
case follows from the fact that a flat morphism of local rings is faithfully flat and therefore injective.
By the construction of the standard simplicial resolution, we have that 𝑃𝑛+1 is the free polynomial
algebra 𝐴1 [𝑃𝑛] over the set of elements of 𝑃𝑛. The analogue is true for 𝑅𝑛+1, and the map 𝐹𝑛+1 is the
map 𝑃𝑛+1 = 𝐴1 [𝑃𝑛] → 𝐴2 [𝑅𝑛] = 𝑅𝑛+1 obtained by functoriality of this construction. The induction
step then follows from Lemma 2.4 (note that 𝐴1 → 𝐴2 is injective since it is a flat map of local
rings). �

Lemma 2.4. Consider a commutative diagram of rings

𝐵1 𝐵2

𝐴1 𝐴2

where the map 𝐴1 → 𝐴2 is flat and injective and 𝐵1 → 𝐵2 is injective. Then the induced map between
polynomial algebras 𝐴1 [𝐵1] → 𝐴2 [𝐵2] is flat and injective.

Proof. The injectivity is clear. The map 𝐴1 [𝐵1] → 𝐴2 [𝐵1] = 𝐴2 ⊗𝐴1 𝐴1 [𝐵1] is a base change of a
flat map, hence flat, and 𝐴2 [𝐵1] → 𝐴2 [𝐵2] is a free algebra by injectivity, hence also flat. Since a
composition of flat morphisms is flat, the result follows. �

Module of principal parts
Let 𝐴 → 𝐵 be a map of rings in T. The (first) module of principal parts for the ring map 𝐴 → 𝐵 is
given by 𝑃1

𝐵/𝐴
:= (𝐵 ⊗𝐴 𝐵)/𝐼2

Δ , where 𝐼Δ is the kernel of the multiplication map 𝐵 ⊗𝐴 𝐵 → 𝐵. (Here,
the tensor product is in general not a derived one). The A-module 𝑃1

𝐵/𝐴
is naturally a (𝐵, 𝐵)-bimodule.

Recall that Ω1
𝐵/𝐴

= 𝐼Δ/𝐼
2
Δ , so that we have an exact sequence of (𝐵, 𝐵)-bimodules called the exact

sequence of principal parts

0→ Ω1
𝐵/𝐴→ 𝑃1

𝐵/𝐴→ 𝐵→ 0.
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Here, for each of the outer terms, the two B-module structures agree. We will denote this sequence
by 𝑃1

𝐵/𝐴
. The map 𝑏 ↦→ 𝑏 ⊗ 1 gives a splitting of this sequence for the left B-module structures, and

𝑏 → 1 ⊗ 𝑏 gives a splitting for the right B-module structures. Now let E be a B-module. Then we set
𝑃1
𝐵/𝐴
(𝐸) := 𝑃1

𝐵/𝐴
⊗𝐵 𝐸 , where we take the tensor product with respect to the right B-module structure

on 𝑃1
𝐵/𝐴

. Equivalently, 𝑃1
𝐵/𝐴
(𝐸) = 𝐵 ⊗𝐴 𝐸/(𝐼2

Δ𝐵 ⊗𝐴 𝐸). Then the sequence of principal parts for E is
𝑃1
𝐵/𝐴
(𝐸) := 𝑃1

𝐵/𝐴
⊗𝐵 𝐸 , or explicitly,

0→ Ω𝐵/𝐴 ⊗𝐵 𝐸 → 𝑃1
𝐵/𝐴(𝐸) → 𝐸 → 0.

We usually regard this as a sequence of B-modules with respect to the left B-module structure. Note that
it is in general not split.

Illusie’s Atiyah class
With these ingredients, we recall Illusie’s definition of Atiyah class: Let 𝑓 : 𝑋 → 𝑌 be a morphism of
ringed topoi and let 𝐸 ∈ 𝐷≤0(𝑋). Let 𝑃 := 𝑃 𝑓 −1O𝑌

(O𝑋 ) be the standard simplicial resolution. By the
Dold–Kan correspondence, we may regard E as an object of 𝐷Δ (O𝑋 ) and thus of 𝐷Δ (𝑃) by restriction
of scalars. We have the exact sequence of principal parts associated to 𝐸𝑃 , which is an exact sequence
of P-modules:

𝑃1
𝑃/ 𝑓 −1O𝑌

(𝐸) : 0→ Ω1
𝑃/ 𝑓 −1O𝑌

⊗𝑃 𝐸𝑃 → 𝑃1
𝑃/ 𝑓 −1O𝑌

(𝐸𝑃) → 𝐸𝑃 → 0.

Note that the leftmost term here computes the derived tensor product since Ω𝑃/ 𝑓 −1O𝑌
is flat over P.

Moreover, it is canonically quasi-isomorphic to the restriction of scalars of 𝐿𝑋/𝑌 ⊗O𝑋 𝐸 . From the
sequence 𝑃𝑃/ 𝑓 −1O𝑌

(𝐸𝑃), we obtain a morphism 𝐸𝑃 → 𝜎(𝐿𝑋/𝑌 ⊗O𝑋 𝐸)𝑃 in 𝐷Δ (𝑃). Extending scalars
to O𝑋 , this defines a canonical morphism 𝐸 → 𝜎𝐿𝑋/𝑌 ⊗O𝑋 𝐸 in 𝐷Δ (O𝑋 ). The Atiyah class is the
corresponding morphism

𝐸 → 𝐿𝑋/𝑌 [1] ⊗ 𝐸

in 𝐷≤0 (O𝑋 ) obtained via the Dold–Kan correspondence.

2.3. The parallel arrow category.
Let

𝑊
𝑠
⇒
𝑡
𝑋

be a diagram of topoi. We obtain an induced topos 𝑊‖ whose objects are tuples (𝐴𝑋 , 𝐴𝑊 , 𝑠♯, 𝑡♯), where
𝐴𝑋 and 𝐴𝑊 are objects of X and W, respectively, and 𝑠♯ : 𝑠−1𝐴𝑋 → 𝐴𝑊 and 𝑡♯ : 𝑡−1𝐴𝑋 → 𝐴𝑊
are morphisms in W. Giving a ring 𝑅 = (𝑅𝑋 , 𝑅𝑊 , 𝑠♯, 𝑡♯) in 𝑊‖ is equivalent to giving rings on X and
W, and giving 𝑠, 𝑡 the structure of morphism of ringed topoi. Given such an R, we use the following
notation: For an 𝑅𝑋 -module 𝑀𝑋 , we write 𝑠∗𝑅𝑀𝑋 := 𝑠−1𝑀𝑋 ⊗𝑠−1𝑅𝑋

𝑅𝑊 and 𝑡∗𝑅𝑀𝑋 := 𝑡−1𝑀𝑋 ⊗𝑡−1𝑅𝑋
𝑅𝑊

for the respective (in general un-derived) base change of 𝑀𝑋 . Then an R-module is given by a tuple
𝑀 = (𝑀𝑋 , 𝑀𝑊 , 𝑠∗, 𝑡∗), where 𝑀𝑋 and 𝑀𝑊 are 𝑅𝑋 and 𝑅𝑊 -modules, respectively, and where 𝑠∗ :
𝑠∗𝑅𝑀𝑋 → 𝑀𝑊 and 𝑡∗ : 𝑡∗𝑅𝑀𝑋 → 𝑀𝑊 are morphisms of 𝑅𝑊 -modules.

We define a functor Cone𝑅 : 𝐶 (𝑅) → 𝐶 (𝑅𝑊 ) by

Cone𝑅 : (𝑀𝑋 , 𝑀𝑊 , 𝑠∗, 𝑡∗) ↦→ Cone(𝑠∗𝑅𝑀𝑋 ⊕ 𝑡∗𝑅𝑀𝑋
−𝑠∗ ⊕𝑡∗

−−−−−→ 𝑀𝑊 ).
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If R is a simplicial ring in 𝑊‖ , the analogous discussion holds for R-modules, and we get a functor

ConeΔ𝑅 : 𝑅 −Mods→ 𝑅𝑊 −Mods

(𝑀𝑋 , 𝑀𝑊 , 𝑠∗, 𝑡∗) ↦→ ConeΔ (𝑠∗𝑅𝑀𝑋 ⊕ 𝑡∗𝑅𝑀𝑋
−𝑠∗ ⊕𝑡∗

−−−−−→ 𝑀𝑊 ).

Under some natural flatness assumptions, we have induced functors on the derived categories:
Lemma 2.5.

i) Let R be a ring on 𝑊‖ with 𝑠♯ : 𝑠−1𝑅𝑋 → 𝑅𝑊 and 𝑡♯ : 𝑡−1𝑅𝑋 → 𝑅𝑊 flat. Then Cone𝑅 descends to
a triangulated functor of derived categories 𝐷 (𝑅) → 𝐷 (𝑅𝑊 ) (also denoted Cone𝑅).

ii) Let R be a simplicial ring on 𝑊‖ with 𝑠♯ : 𝑠−1𝑅𝑋 → 𝑅𝑊 and 𝑡♯ : 𝑡−1𝑅𝑋 → 𝑅𝑊 flat. Then ConeΔ𝑅
descends to a triangulated functor 𝐷Δ (𝑅) → 𝐷Δ (𝑅𝑊 ) (also denoted ConeΔ𝑅).

iii) Let R be an ordinary ring 𝑊‖ , viewed as a constant simplicial ring, and assume that 𝑠♯ and 𝑡♯ are
flat. Then the two constructions in i) and ii) are compatible with the Dold–Kan correspondence, in
the sense that the two functors obtained by traversing the outer edges of the diagram

𝐷Δ (𝑅) 𝐷Δ (𝑅𝑊 )

𝐷≤0 (𝑅) 𝐷≤0 (𝑅𝑊 )

ConeΔ𝑅

Cone𝑅

are related by a canonical natural isomorphism.
Proof. We prove 2.5. For any ring S, the abelian category of complexes 𝐶 [−1,0] (𝑆) concentrated in
degrees −1 and 0 is canonically identified with the category of maps of S-modules.

The functor Cone𝑅 : 𝐶 (𝑅) → 𝐶 (𝑅𝑊 ) factors as 𝐶 (𝑅) → 𝐶 (𝐶 [−1,0] (𝑅𝑊 )) → 𝐶 (𝑅𝑊 ), where the
first map is induced from the functor

Γ : Mod(𝑅) → 𝐶 [−1,0] (𝑅𝑊 )

(𝑀𝑋 , 𝑀𝑊 , 𝑠∗, 𝑡∗) ↦→

[
𝑠∗𝑅𝑀𝑋 ⊕ 𝑡∗𝑅𝑀𝑋

−𝑠∗ ⊕𝑡∗

−−−−−→ 𝑀𝑊

]
,

and the second map is taking the mapping cone. By the flatness assumption, Γ is exact and therefore
induces a triangulated functor 𝐷 (𝑅) → 𝐷 (𝐶 [−1,0] (𝑅𝑊 )).

Therefore, it is enough to show that for any ring S, the mapping cone functor 𝐶 (𝐶 [−1,0] (𝑆)) → 𝐶 (𝑆)
descends to a triangulated functor of derived categories. We may regard 𝐶 (𝐶 [−1,0] (𝑆)) as a category
of double complexes 𝐴𝑖, 𝑗 with nonzero entries only for 𝑖 ∈ {−1, 0}. Then the mapping cone is exactly
given by taking the associated double complex with the sign conventions of [22, Remark 0G6A]. By
[22, Remark 0G6A and Remark 0G6D], taking the total complex defines a triangulated functor of the
homotopy categories 𝐾 (𝐶 [−1,0] (𝑆)) → 𝐾 (𝑆). To see that this preserves quasi-isomorphisms, one can
use that the spectral sequence for the double complex converges; see [22, Lemma 0132]. Hence, it
descends to a functor 𝐷 (𝐶 [−1,0] (𝑆)) → 𝐷 (𝑆). This finishes the proof of 2.5.

Part ii) follows from an analogous argument with simplicial modules. Here, one uses additionally that
base change along a degree-wise flat map of simplicial rings preserves quasi-isomorphism of modules.
For S any simplicial ring, and [𝐴−1

𝛼
−→ 𝐴0] ∈ 𝐶

[−1,0] (𝑆), we describe the triangulated structure on the
mapping cone functor: We have

ConeΔ (𝜎𝛼) = Coker(𝜎𝐴−1 → 𝛾𝜎𝐴−1 ⊕ 𝜎𝐴0),

𝜎 ConeΔ (𝛼) = Coker(𝜎𝐴−1 → 𝜎𝛾𝐴−1 ⊕ 𝜎𝐴0).

We take the canonical isomorphism between them induced by the symmetry isomorphism of the tensor
product 𝛾𝜎𝐴−1 � 𝜎𝛾𝐴−1.
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The compatibility (iii) follows from the constructions by using the basic compatibilities of the Dold–
Kan correspondence, in particular, that it is compatible with the symmetry isomorphisms of tensor
products on the level of derived categories. �

Lemma 2.6. Let R be a ring in 𝑊‖ . For any complex of R-modules E, we have a natural morphism
𝑐𝐸 : Cone𝑅 (𝐸) → 𝐸𝑊 [1]. If the pullback maps 𝑠∗ : 𝑠∗𝑅𝐸𝑋 → 𝐸𝑊 and 𝑡∗ : 𝑡∗𝑅𝐸𝑋 → 𝐸𝑊 are quasi-
isomorphisms, then so is 𝑐𝐸 . The same picture holds in the category of simplicial OX modules with the
obvious modifications, and the two situations are compatible via the Dold–Kan correspondence.

Proof. We define 𝑐𝐸 as the composition

Cone𝑅 (𝐸) → 𝑠∗𝑅𝐸𝑋 [1] ⊕ 𝑡∗𝑅𝐸𝑋 [1]
𝑠∗ ⊕0
−−−−→ 𝐸𝑊 [1]

(the alternative choice of second map (0 ⊕ 𝑡∗) gives the same map up to chain-homotopy). One checks
directly that this is a quasi-isomorphism when 𝑠∗ and 𝑡∗ are quasi-isomorphisms. The proofs of the
remaining statements are left to the reader. �

We have the following result regarding tensor products:

Lemma 2.7. i) Let R be a simplicial ring on 𝑊‖ with flat pullback maps 𝑠♯, 𝑡♯ and let 𝐿, 𝐸 be R-
modules. Then there is a natural map ConeΔ𝑅 (𝐿 ⊗𝑅 𝐸) → ConeΔ𝑅 (𝐿) ⊗𝑅𝑊 𝐸𝑊 . If either of L
and E are flat and if 𝑠∗ : 𝑠∗𝑅𝐸𝑋 → 𝐸𝑊 and 𝑡∗ : 𝑡∗𝑅𝐸𝑋 → 𝐸𝑊 are quasi-isomorphisms, then
ConeΔ𝑅 (𝐿 ⊗𝑅 𝐸) → ConeΔ𝑅 (𝐿) ⊗𝑅𝑊 𝐸𝑊 is a quasi-isomorphism. In particular, for any 𝐸 ∈ 𝐷Δ (𝑅),
we have a canonical 2-morphism

𝐷Δ (𝑅) 𝐷Δ (𝑅𝑊 )

𝐷Δ (𝑅) 𝐷Δ (𝑅𝑊 ),

ConeΔ𝑅

−⊗𝑅𝐸 −⊗𝑅𝑊 𝐸𝑊

ConeΔ𝑅

which is an isomorphism if the pullback maps 𝑠∗, 𝑡∗ of E are isomorphisms in 𝐷Δ (𝑅𝑊 ).
ii) The analogous statement holds if R is an ordinary ring and 𝐿, 𝐸 are bounded above complexes of

R-modules.
iii) The natural isomorphisms in the derived category in i) and ii) are compatible via the Dold–Kan

correspondence.

Proof. We only address i). Part ii) is analogous, and iii) can be seen by tracing through the argu-
ment and using the compatibilites of the Dold–Kan correspondence. Note that for any R-module F,
we have

ConeΔ𝑅 (𝐹) = ConeΔ (𝑠∗𝑅𝐹𝑋 → ConeΔ (𝑡∗𝑅𝐹𝑋
𝑡∗

−→ 𝐹𝑍 )),

where the map in the outer cone is the composition of −𝑠∗ with the inclusion 𝐹𝑍 → ConeΔ (𝑡∗). For any
commutative triangle

𝐾

𝑀 𝑁

𝑢 𝑣𝑢

𝑣

in 𝑅𝑊 −Mods, we obtain induced maps

ConeΔ (𝑢) → ConeΔ (𝑣𝑢) 𝛼
−→ ConeΔ (𝑣),
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14 N. Kuhn

which form the first three terms of an exact triangle. In particular, if u is a quasi-isomorphism, then
ConeΔ (𝑢) is acyclic, so 𝛼 is also a quasi-isomorphism. Applying this to the triangle

𝑡∗𝑅𝐿𝑋 ⊗𝑅𝑊 𝑡∗𝑅𝐸𝑋

𝑡∗𝑅𝐿𝑋 ⊗𝑅𝑊 𝐸𝑊 𝐿𝑊 ⊗𝑅𝑊 𝐸𝑊 ,

1⊗𝑡∗
𝑡∗ ⊗𝑡∗

𝑡∗ ⊗1

we get a natural map,

𝑏 : ConeΔ (𝑡∗ ⊗ 𝑡∗) → ConeΔ (𝑡∗ ⊗ 1) = ConeΔ (𝑡∗𝑅𝐿𝑋 → 𝐿𝑊 ) ⊗ 𝐸𝑊 ,

which is a quasi-isomorphism if 𝑡∗ : 𝑡∗𝑅𝐸𝑋 → 𝐸𝑊 is one and if additionally either one of L or E is flat.
Similarly, we have the triangle

𝑠∗𝑅𝐿𝑋 ⊗𝑅𝑊 𝑠∗𝑅𝐸𝑋

𝑠∗𝑅𝐿𝑋 ⊗𝑅𝑊 𝐸𝑊 ConeΔ (𝑡∗𝑅𝐿𝑋
𝑡∗

−→ 𝐿𝑊 ) ⊗𝑅𝑊 𝐸𝑊 ,

−1⊗𝑠∗

where the horizontal map is obtained by applying − ⊗𝑅𝑊 𝐸𝑊 to the composition

𝑠∗𝑅𝐿𝑋
−𝑠∗

−−→ 𝐿𝑊 → ConeΔ (𝑡∗𝑅𝐿𝑋
𝑡∗

−→ 𝐿𝑊 ).

We get an induced morphism

𝑐 : ConeΔ
(
𝑠∗𝑅𝐿𝑋 ⊗𝑅𝑊 𝑠∗𝑅𝐸𝑋 → ConeΔ (𝑡∗𝑅𝐿𝑋 → 𝐿𝑊 ) ⊗𝑅𝑊 𝐸𝑊

)
→ ConeΔ𝑅 (𝐿) ⊗𝑅𝑊 𝐸𝑊 ,

which again is a quasi-isomorphism if 𝑠∗ : 𝑠∗𝑅𝐸𝑋 → 𝐸𝑊 is and if one of L or E is flat. Putting together
b and c, we get a natural morphism

ConeΔ𝑅 (𝐿 ⊗𝑅 𝐸) → ConeΔ𝑅 (𝐿) ⊗𝑅𝑊 𝐸𝑊 ,

which is a quasi-isomorphism if L (resp. E) is flat and that both pullback maps of E are quasi-
isomorphisms. �

Variant 2.8. Let 𝑊∧ denote the topos associated to the diagram

𝑋
𝑠
←− 𝑊

𝑡
−→ 𝑋.

Its objects are tuples (𝐴′𝑋 , 𝐴
′′
𝑋 , 𝐴𝑊 , 𝑠♯, 𝑡♯), where 𝐴′𝑋 , 𝐴

′′
𝑋 are objects of X, where 𝐴𝑊 is an object of

W and where 𝑠♯ : 𝑠−1𝐴′𝑋 → 𝐴𝑊 and 𝑡♯ : 𝑡−1𝐴′′𝑋 → 𝐴𝑊 are morphisms in W. Then everything in the
preceding subsection goes through with𝑊∧ in place of𝑊‖ and straightforward modifications. Note also
that we have an exact pullback functor Sh(𝑊‖) → Sh(𝑊∧) given on objects by

(𝐴𝑋 , 𝐴𝑊 , 𝑠♯, 𝑡♯) ↦→ (𝐴𝑋 , 𝐴𝑋 , 𝐴𝑊 , 𝑠♯, 𝑡♯).
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If 𝑅 ‖ is a ring on 𝑊‖ and 𝑅∧ its restriction to 𝑊∧, then Cone𝑅‖ factors as

𝐷 (𝑅 ‖) → 𝐷 (𝑅∧)
Cone𝑅∧
−−−−−−→ 𝐷 (𝑅𝑊 ).

The analogous picture holds for the simplicial versions.

Application to algebraic stacks
We apply the preceding discussion to the derived categories of algebraic stacks and the cotangent
complex. This lays the groundwork for our definition of the Atiyah class on a stack using the modules
of principal parts.

Situation 2.9. Consider the diagram (2.3) with the associated strictly simplicial algebraic spaces 𝑋•
and 𝑌•. Let 𝑊 := 𝑋 ×X𝑌 𝑋 , with associated projections 𝑠, 𝑡 : 𝑊 → 𝑋 on the first and second factor,
respectively, and let ℎ : 𝑊 → 𝑌 be the induced map. Let 𝑊• be the strictly simplicial algebraic space
associated to the covering 𝑊

𝑠
−→ 𝑋 → X . One has canonical isomorphisms 𝑊𝑛 � 𝑋𝑛 ×X𝑌𝑛

𝑋𝑛 and maps
ℎ𝑛 : 𝑊𝑛 → 𝑌𝑛. We denote by 𝑊‖ the topos associated to the diagram

𝑊•
𝑠•
⇒
𝑡•

𝑋•.

It has a natural structure of ringed topos with flat pullback maps 𝑠♯•, 𝑡
♯
•, and we writeO𝑊‖ for the structure

sheaf.
We denote by (𝑌‖ ,O𝑌‖ ) the ringed topos associated to the diagram

𝑌• ⇒ 𝑌•

with both arrows the identity. There is a natural map of topoi ℎ ‖ : 𝑊‖ → 𝑌‖ .
For E a complex of OX -modules, we write 𝐸𝑋• := 𝜂∗𝑋𝐸 and 𝐸𝑊• := 𝜂∗𝑊 𝐸 . We have natural

morphisms 𝑠∗•𝐸𝑋• → 𝐸𝑊• and 𝑡∗•𝐸𝑋• → 𝐸𝑊• . Thus, we get naturally a complex of O𝑊‖ -modules, which
we denote 𝐸𝑊‖ .

In Situation 2.9, we have the following properties:

Lemma 2.10. For any a complex of OX -modules E, we have a natural morphism ConeO𝑊‖
(𝐸𝑊‖ ) →

𝐸𝑊• [1]. If E has quasi-coherent (or more generally, Cartesian) cohomology sheaves, this map is a
quasi-isomorphism. The same picture holds in the category of simplicial OX modules with the obvious
modifications, and the two situations are compatible via the Dold–Kan correspondence.

Proof. This is a restatement of Lemma 2.6, using that the pullback maps 𝑠∗ and 𝑡∗ are quasi-
isomorphisms whenever E has quasi-coherent cohomology sheaves. �

Lemma 2.11. In 𝐷𝑞𝑐𝑜ℎ (𝑊•), the object 𝜂∗𝑊 𝐿X /Y is naturally isomorphic to

ConeO𝑊‖
(𝐿𝑊‖/𝑌‖ ) [−1] = Cone

(
𝑠∗•𝐿𝑋•/𝑌• ⊕ 𝑡∗•𝐿𝑋•/𝑌•

−𝑠∗•+𝑡
∗
•

−−−−−→ 𝐿𝑊•/𝑌•

)
[−1] .

This isomorphism is functorial in the diagram (2.3).

Proof. The displayed equality is immediate from the definition of 𝑊‖ and the definition of cotangent
complex for a morphism of topoi. By the construction of the cotangent complex and Remark 2.1, we
have a canonical isomorphism

𝜂∗𝑋 𝐿X /Y � 𝐿X /Y ,𝑋/𝑌 = Cone
(
𝐿𝑋•/𝑌•

−
−→ Ω𝑋•/X𝑌•

)
[−1] . (2.5)
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We pull this isomorphism back via 𝑠•. Due to the diagram

𝑊• 𝑋•

𝑋• X𝑌• 𝑌•,

𝑡•

𝑠•

we have natural quasi-isomorphisms of complexes

𝑠∗•Ω𝑋•/X𝑌•
� Ω𝑊•/𝑋• ,𝑡• ← Cone(𝑡∗•𝐿𝑋•/𝑌•

𝑡∗

−→ 𝐿𝑊•/𝑌• ).

We claim that the following diagram commutes:

𝑠∗•𝐿𝑋•/𝑌• Cone(𝑡∗•𝐿𝑋•/𝑌•
𝑡∗

−→ 𝐿𝑊•/𝑌• )

𝑠∗•Ω𝑋•/X𝑌•
Ω𝑊•/𝑋• ,𝑡• ,

𝑎

∼

where the upper horizontal map is given by the pullback 𝑠∗ : 𝑠∗•𝐿𝑋•/𝑌• → 𝐿𝑊•/𝑌• followed by the
inclusion of 𝐿𝑊•/𝑌• into the cone. Indeed, this follows from the observation that the map 𝑠∗•𝐿𝑋•/𝑌• →
Ω𝑊•/𝑋• ,𝑡• factors through 𝐿𝑊•/𝑌• . It follows from this that, after pulling back the right-hand side of (2.5)
along 𝑠•, the result is naturally quasi-isomorphic to

Cone
(
𝑠∗•𝐿𝑋•/𝑌•

−𝑎
−−→ Cone

(
𝑡∗•𝐿𝑋•/𝑌•

𝑡∗

−→ 𝐿𝑊•/𝑌•

))
[−1] .

An easy calculation shows that this iterated cone is identical to

Cone
(
𝑠∗•𝐿𝑋•/𝑌• ⊕ 𝑡∗•𝐿𝑋•/𝑌•

−𝑠∗•+𝑡
∗
•

−−−−−→ 𝐿𝑊•/𝑌•

)
[−1],

as desired. The compatibility with pullback follows from the compatibility of (2.5) and the usual pullback
compatibilities of the cotangent complex for algebraic spaces. �

Remark 2.12. In Situation 2.9, suppose that R is a simplicial ring on 𝑊‖ with a given map 𝑅 → O𝑊‖ .
Then we have the following diagram of functors, which commutes up to canonical natural isomorphisms:

𝐷Δ (𝑅) 𝐷Δ (O𝑊‖ ) 𝐷≤0 (O𝑊‖ )

𝐷Δ (𝑅𝑊 ) 𝐷Δ (O𝑊• ) 𝐷≤0 (O𝑊• ) 𝐷≤0 (X ).

O𝑊‖
⊗ℓ𝑅−

ConeΔ𝑅

𝑁

ConeΔO𝑊‖
ConeO𝑊‖

O𝑊• ⊗
ℓ
𝑅𝑊
−

𝑁 𝜂𝑊 ∗

(2.6)

For the following lemma, let 𝑊∧ be the ringed topos associated to the diagram 𝑋•
𝑠•
←− 𝑊•

𝑡•
−→ 𝑋•.

Recall that we have a natural restriction functor 𝐷 (𝑊‖) → 𝐷 (𝑊∧). The following will be used in the
proof of Lemma 4.4.

Lemma 2.13. Let 𝐸𝑊‖ = (𝐸𝑋• , 𝐸𝑊• , 𝑠∗, 𝑡∗) be a complex of O𝑊‖ -modules such that 𝐸𝑋• has quasi-
coherent cohomology sheaves and such that the pullback maps 𝑠∗ and 𝑡∗ are quasi-isomorphisms. Let
𝐹 := 𝜂𝑊 ∗𝐸𝑊• ∈ 𝐷𝑞𝑐𝑜ℎ (X ), and let 𝐹𝑊‖ = (𝜂∗𝑋𝐹, 𝜂

∗
𝑊 𝐹) denote the induced object of 𝐷 (𝑊‖). Let 𝐸𝑊∧

and 𝐹𝑊∧ denote the images of 𝐸𝑊‖ and 𝐹𝑊‖ in 𝐷 (𝑊∧), respectively. Then there is a natural isomorphism
𝐹𝑊∧ → 𝐸𝑊∧ in 𝐷 (𝑊∧).
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Proof. Let 𝑊∧,𝑙𝑖𝑠−𝑒𝑡 be the ringed topos associated to the diagram

𝑋•,𝑙𝑖𝑠−𝑒𝑡
𝑠•
←− 𝑊•,𝑙𝑖𝑠−𝑒𝑡

𝑡•
−→ 𝑋•,𝑙𝑖𝑠−𝑒𝑡 .

From the diagram of ringed topoi

𝑋• 𝑋•,𝑙𝑖𝑠−𝑒𝑡

𝑊• 𝑊•,𝑙𝑖𝑠−𝑒𝑡 X

𝑋• 𝑋•,𝑙𝑖𝑠−𝑒𝑡

𝜖

𝜋𝑋𝑠•

𝑡•

𝜖

𝑡•

𝑠•

𝜋𝑊

𝜖

𝜋𝑋

we see that there is an induced morphism 𝜖∧ : 𝑊∧,𝑙𝑖𝑠−𝑒𝑡 → 𝑊∧. Let 𝐹∧,𝑙𝑖𝑠−𝑒𝑡 = (𝜋∗𝑋𝐹, 𝜋
∗
𝑊 𝐹, 𝜋∗𝑋𝐹),

with pullback maps induced by the identifications 𝜋∗𝑊 = 𝑠∗𝜋∗𝑋 and 𝜋∗𝑊 = 𝑡∗𝜋∗𝑋 , respectively. Since the
functors 𝜖∗ are exact, we have 𝐹∧ = 𝜖∧∗𝐹∧,𝑙𝑖𝑠−𝑒𝑡 . In particular, since 𝜖∗𝜖

∗ is naturally isomorphic to the
identity, it is enough to show that there is a natural quasi-isomorphism 𝜖∗∧𝐸𝑊∧ → 𝐹∧,𝑙𝑖𝑠−𝑒𝑡 .

We are reduced to the following situation: Let 𝐺 = (𝐺𝑋 , 𝐺𝑊 , 𝐺𝑋 , 𝑠
∗, 𝑡∗) be a complex of

O𝑊∧,𝑙𝑖𝑠−𝑒𝑡 -modules such that 𝐺𝑋 has quasicoherent cohomology sheaves, and such that 𝑠∗,𝑡∗ are quasi-
isomorphisms, and suppose that 𝐹 = 𝑅(𝜋𝑊 )∗𝐺𝑊 . Then we need to show that G is naturally isomorphic
to 𝐹∧,𝑙𝑖𝑠−𝑒𝑡 . Without loss of generality, we may assume that G is K-injective. Then 𝐺𝑊 and 𝐺𝑋 are
themselves K-injective. We can therefore assume that 𝐹 = 𝜋𝑊 ∗𝐺𝑊 . Let also 𝐹 ′ := 𝜋𝑋∗𝐺𝑋 . The mor-
phism 𝑠∗ : 𝑠∗𝐺𝑋 → 𝐺𝑊 corresponds to a morphism 𝐺𝑋 → 𝑠∗𝐺𝑊 , and by applying 𝜋𝑊 ∗ we obtain a
map 𝜎 : 𝐹 ′ → 𝐹. Similarly, we obtain 𝜏 : 𝐹 ′ → 𝐹 from 𝑡∗ : 𝑡∗𝐺𝑋 → 𝐺𝑊 . The maps 𝜎 and 𝜏 are quasi-
isomorphisms, as one can check after applying 𝜋∗𝑊 , since 𝐹 ′ and F have quasi-coherent comohology.

Then we have the following commutative diagram of complexes of O𝑊•,𝑙𝑖𝑠−𝑒𝑡 -modules:

𝑠∗𝜋∗𝑋𝐹 𝑠∗𝜋∗𝑋𝐹
′ 𝑠∗𝐺𝑋

𝜋∗𝑊 𝐹 𝜋∗𝑊 𝐹 𝐺𝑊

𝑡∗𝜋∗𝑋𝐹 𝑡∗𝜋∗𝑋𝐹
′ 𝑡∗𝐺𝑋 .

𝑠∗ 𝜋∗𝑊 𝜎

𝑠∗ 𝜋∗𝑋𝜎

𝑡∗ 𝜋∗𝑊 𝜏

𝑡∗ 𝜋∗𝑋 𝜏

The horizontal maps going to the right are the quasi-isomorphisms coming from the push-pull adjunc-
tions associated to 𝜋𝑋 and 𝜋𝑊 , respectively. Setting 𝐹∧,𝑙𝑖𝑠−𝑒𝑡 = (𝜋∗𝑋𝐹

′, 𝜋∗𝑊 𝐹, 𝜋∗𝑋𝐹
′, 𝑠∗𝜋∗𝑋𝜎, 𝑡

∗𝜋∗𝑋𝜏), it
follows that we have quasi-isomorphisms

𝐹∧,𝑙𝑖𝑠−𝑒𝑡 ← 𝐹∧,𝑙𝑖𝑠−𝑒𝑡 → 𝐺,

as desired. �

2.4. Tensor triangulated categories and additivity of traces

Traces in a closed symmetric monoidal category
Let C be a symmetric closed monoidal category with product − ⊗ −, unit O, and internal Hom-functor
H𝑜𝑚(−,−). Let 𝜏 denote the symmetry morphism of the tensor product. We let 𝐸, 𝐹, 𝐺 denote arbitrary
elements of C and write 𝐸∨ := H𝑜𝑚(𝐸,O). Recall that we have an adjunction between − ⊗ 𝐸 and
H𝑜𝑚(𝐸,−). We have various natural maps in C:
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(1) Evaluation. We have a natural map 𝑒𝑣 : H𝑜𝑚(𝐸, 𝐹) ⊗ 𝐸 → 𝐹, corresponding to the identity on
H𝑜𝑚(𝐸, 𝐹) under adjunction.

(2) As a special case, we get the evaluation map 𝑒𝑣 : 𝐸∨ ⊗ 𝐸 → O.
(3) Composition. We have a natural map 𝑐𝑜𝑚𝑝 : H𝑜𝑚(𝐹, 𝐺) ⊗H𝑜𝑚(𝐸, 𝐹) → H𝑜𝑚(𝐸, 𝐺). This map

is adjoint to the map H𝑜𝑚(𝐹, 𝐺) ⊗H𝑜𝑚(𝐸, 𝐹) ⊗ 𝐸 → 𝐺 which is obtained from composing two
evaluation maps.

(4) As a special case, we get the composition map 𝑐𝑜𝑚𝑝 : 𝐹 ⊗ 𝐸∨ → H𝑜𝑚(𝐸, 𝐹), where we use the
canonical isomorphism 𝐹 � H𝑜𝑚(O, 𝐹).

(5) Diagonal. We have a diagonal map 𝑠 : O → H𝑜𝑚(𝐸, 𝐸) which corresponds to id𝐸 under
adjunction.

We recall the notion of dualizable object:

Definition 2.14. The object E is called dualizable if the composition map 𝑐𝑜𝑚𝑝 : 𝐸⊗𝐸∨ → H𝑜𝑚(𝐸, 𝐸)
is an isomorphism. See the discussion preceding Definition 2.2 in [19].

For dualizable E and arbitrary F, the canonical map 𝑐𝑜𝑚𝑝 : 𝐹 ⊗ 𝐸∨ → H𝑜𝑚(𝐸, 𝐹) is an isomor-
phism, and we will often use this isomorphism to identify the source and target.

Let E be a dualizable object of C. Then we have further natural maps

(1) Trace I. We define the trace map tr : H𝑜𝑚(𝐸, 𝐸) → O as the compositionH𝑜𝑚(𝐸, 𝐸) � 𝐸⊗𝐸∨
𝜏
−→

𝐸∨ ⊗ 𝐸
𝑒𝑣
−−→ O.

(2) Trace II. We have a map tr : H𝑜𝑚(𝐸, 𝐹 ⊗ 𝐸) → 𝐹 given by the composition H𝑜𝑚(𝐸, 𝐹 ⊗ 𝐸) �

𝐹 ⊗ 𝐸 ⊗ 𝐸∨
𝐹 ⊗𝑡𝑟
−−−−→ 𝐹. By abuse of language, we call this also the trace map.

(3) Diagonal II. We have the composition 𝜂 := 𝑐𝑜𝑚𝑝−1 ◦ 𝑠 : O → 𝐸 ⊗ 𝐸∨, which we will also call
diagonal.

A morphism 𝑓 : 𝐸 → 𝐹 ⊗ 𝐸 corresponds by adjunction to a map O → H𝑜𝑚(𝐸, 𝐹 ⊗ 𝐸). When E
is dualizable, we define tr 𝑓 as the composition O→ H𝑜𝑚(𝐸, 𝐹 ⊗ 𝐸)

tr
−→ 𝐹.

As a consequence of the definition and the naturality of adjunction, we have the following:

Lemma 2.15. For 𝑓 : 𝐸 → 𝐹 ⊗ 𝐸 , the map 𝑡𝑟 𝑓 is equal to the composition

O 𝜂
−→ 𝐸 ⊗ 𝐸∨

𝑓 ⊗id𝐸∨
−−−−−−→ 𝐹 ⊗ 𝐸 ⊗ 𝐸∨

id𝐹 ⊗𝜏
−−−−−→ 𝐹 ⊗ 𝐸∨ ⊗ 𝐸

id𝐹 ⊗𝑒𝑣
−−−−−−→ 𝐹,

where 𝜏 denotes the symmetry isomorphism of the tensor product.

Proof. The composition of the final two maps is by definition equal to id𝐹 ⊗ tr. Now consider the
following diagram:

𝐸 ⊗ 𝐸∨ 𝐹 ⊗ 𝐸 ⊗ 𝐸∨

O H𝑜𝑚(𝐸, 𝐸) H𝑜𝑚(𝐸, 𝐹 ⊗ 𝐸) 𝐹.

𝑓 ⊗id𝐸∨

𝑐𝑜𝑚𝑝 𝑐𝑜𝑚𝑝 id𝐹 ⊗ tr

𝑠

𝜂

H𝑜𝑚(𝐸, 𝑓 ) tr

The left and right triangles commute by definition, while the square commutes by naturality of the
composition map. By naturality of adjunction, the first two arrows in the lower row compose to the
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map adjoint to f. Thus, by definition, the lower row composes to tr 𝑓 , and the same must be true for the
composition along the top. �

We will need the following compatibility of traces with tensor products

Lemma 2.16. Let 𝑓 : 𝐸 → 𝐹 ⊗ 𝐸 be a morphism in C with E dualizable and let V be another dualizable
object of C. Then

tr( 𝑓 ⊗ id𝑉 ) = tr( 𝑓 ) ◦ tr(id𝑉 ).

Proof. This follows by applying Corollary 5.9 of [19]. �

Criterion for additivity of traces
We now assume that, say, C = 𝐷 (𝑅) is the derived category of a category of sheaves of modules over
a ring R in a topos T. In particular, it is closed monoidal with a compatible triangulated structure. Let
𝐹, 𝐸, 𝐺 be dualizable objects of 𝐷 (𝑅) that are part of an exact triangle

𝐹 → 𝐸 → 𝐺 → 𝐹 [1] . (2.7)

Suppose that we have a commutative diagram for some element 𝐿 ∈ 𝐷 (𝑅):

𝐹 𝐸 𝐺

𝐿 ⊗ 𝐹 𝐿 ⊗ 𝐸 𝐿 ⊗ 𝐺,

𝑔 𝑓 ℎ

where the lower row is obtained from the upper by tensoring with L. We want a criterion that allows us
to conclude that 𝑡𝑟 ( 𝑓 ) = 𝑡𝑟 (𝑔) + 𝑡𝑟 (ℎ). We follow the strategy in [13, §8].

We will make the following

Assumption 2.17. The objects 𝐹, 𝐸, 𝐺 are elements of the bounded above derived category 𝐷−(𝑅).

Situation 2.18. Suppose Assumption 2.17 holds. (This is likely unnecessary if one works with K-flat
complexes in what follows.) Choose a representation of (2.7) by a short exact sequence 0 → 𝐹 →
𝐸 → 𝐺 → 0 of bounded above complexes of flat R-modules (or suppose one is given). Further,
choose an injective resolution J of R, so that the derived dual of a complex is explicitly realized by
(−)∨ := H𝑜𝑚𝑅 (−, 𝐽). Then we have again an exact sequence 0 → 𝐺∨ → 𝐸∨ → 𝐹∨ → 0. We define
complexes W and 𝑊 via

𝑊 := 𝐸 ⊗ 𝐸∨/𝐹 ⊗ 𝐺∨

𝑊 := 𝐸∨ ⊗ 𝐸/𝐺∨ ⊗ 𝐹.

The tensor product here is the ordinary tensor product of complexes, which represents the derived
tensor product due to the choice of 𝐹 and 𝐸 . We have a natural isomorphism 𝑊 → 𝑊 coming from the
symmetry isomorphism of the tensor product. Moreover, we have natural inclusions of complexes

𝐹 ⊗ 𝐹∨ ↩→𝑊 ←↪ 𝐺 ⊗ 𝐺∨,

and

𝐹∨ ⊗ 𝐹 ↩→𝑊 ←↪ 𝐺∨ ⊗ 𝐺.
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The inclusions into W are given by

𝐹 ⊗ 𝐹∨ � 𝐹 ⊗ 𝐸∨/𝐹 ⊗ 𝐺∨ ⊂ 𝑊

and

𝐺 ⊗ 𝐺∨ � 𝐸 ⊗ 𝐺∨/𝐹 ⊗ 𝐺∨ ⊂ 𝑊,

respectively, and analogously for the inclusions into 𝑊 .

Lemma 2.19. Let the notation be as in Situation 2.18.

(i) Let 𝜂 be the composition O 𝜂
−→ 𝐸 ⊗ 𝐸∨ → 𝑊 in 𝐷 (𝑅). Then the following diagram commutes:

O

𝐸 ⊗ 𝐸∨ 𝑊 𝐹 ⊗ 𝐹∨ ⊕ 𝐺 ⊗ 𝐺∨.

𝜂
(𝜂,𝜂)𝜂

(ii) There exists a natural map of complexes ev : 𝑊 → 𝐽 whose image in 𝐷 (𝑅) makes the following
diagram commute:

𝐸∨ ⊗ 𝐸 𝑊 (𝐹∨ ⊗ 𝐹) ⊕ (𝐺∨ ⊗ 𝐺)

O.

ev ev
ev ⊕ ev

Proof. The map in (ii) is the natural quotient map of 𝑒𝑣 : 𝐸∨ ⊗ 𝐸 → 𝐽, which vanishes on the
subcomplex 𝐺∨ ⊗ 𝐹. The commutativity of the right triangle follows by unwinding the definitions.

(i) We let 𝑉 := (𝐹 ⊗ 𝐸∨ ⊕ 𝐸 ⊗ 𝐺∨)/(𝐹 ⊗ 𝐺∨), where the quotient is with respect to the antidiagonal
inclusion. Then we have a natural exact sequence of complexes

0→ 𝑉
𝑗1
−→ 𝐸 ⊗ 𝐸∨ → 𝐺 ⊗ 𝐹∨ → 0.

Moreover, we have natural maps 𝑗2 : 𝑉 → 𝐹 ⊗ 𝐹∨ and 𝑗3 : 𝑉 → 𝐺 ⊗𝐺∨ obtained by composing
projection onto a factor with a respective quotient map. We claim that the following diagram of
complexes commutes:

𝑉

𝐸 ⊗ 𝐸∨ 𝑊 (𝐹 ⊗ 𝐹∨) ⊕ (𝐺 ⊗ 𝐺∨).

( 𝑗2 , 𝑗3)𝑗1

By precomposing with the surjection 𝐹 ⊗ 𝐸∨ ⊕ 𝐸 ⊗ 𝐺∨ → 𝑉 , this reduces to the commutativity of
the following two diagrams,

𝐹 ⊗ 𝐸∨ 𝐸 ⊗ 𝐺∨

𝐸 ⊗ 𝐸∨ 𝑊 𝐹 ⊗ 𝐹∨ 𝐸 ⊗ 𝐸∨ 𝑊 𝐺 ⊗ 𝐺∨,
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which one can see directly. Now the problem is reduced to finding a map 𝜂𝑉 : O→ 𝑉 in the derived
category such that

O

𝐸 ⊗ 𝐸∨ 𝑉 𝐹 ⊗ 𝐹∨ ⊕ 𝐺 ⊗ 𝐺∨

𝜂𝑉
(𝜂,𝜂)𝜂

commutes. After dualizing in the derived category, this follows from (ii). �

Now we have the following result:

Proposition 2.20 [13, §8]. Suppose there exists a dotted arrow making its two adjacent squares in the
following diagram commute. Then 𝑡𝑟 ( 𝑓 ) = 𝑡𝑟 (𝑔) + 𝑡𝑟 (ℎ).

O

𝐸 ⊗ 𝐸∨ 𝑊 𝐹 ⊗ 𝐹∨ ⊕ 𝐺 ⊗ 𝐺∨

𝐿 ⊗ 𝐸 ⊗ 𝐸∨ 𝐿 ⊗𝑊 (𝐿 ⊗ 𝐹 ⊗ 𝐹∨) ⊕ (𝐿 ⊗ 𝐺 ⊗ 𝐺∨)

𝐿 ⊗ 𝐸∨ ⊗ 𝐸 𝐿 ⊗𝑊 (𝐿 ⊗ 𝐹∨ ⊗ 𝐹) ⊕ (𝐿 ⊗ 𝐺∨ ⊗ 𝐺)

𝐿

𝜂
𝜂

(𝜂,𝜂)

ev
ev

ev ⊕ ev

Proof. Everything else in the diagram commutes due to Lemma 2.19 and the definitions. By Lemma
2.15, the composition along the left side equals tr( 𝑓 ), and the composition along the right side equals
tr(𝑔) + tr(ℎ). �

3. Constructions for topoi

3.1. Construction of the reduced Atiyah class

We review the construction of the reduced Atiyah class for a map of ringed topoi, following the
ideas in [3].

A diagram of exact sequences
Let A be an abelian category and consider the following diagram in A in which the solid arrows
commute:

𝐸 𝐸 ′′

𝐺 𝐺 ′′.

𝑒

𝑞 𝑞′′

𝑠

𝑓

(3.1)

Assume that s is a section of e (i.e., 𝑒 ◦ 𝑠 = id𝐸′′). Then, the composition 𝑞 ◦ 𝑠 induces a morphism
𝛿 : Ker(𝑞′′) → Ker( 𝑓 ).

Now suppose this diagram extends to a commutative diagram in which all solid rows and columns
are exact and where the dotted arrows give a spliting of the middle exact sequence
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0 0 0

0 𝐹 ′ 𝐹 𝐹 ′′ 0

0 𝐸 ′ 𝐸 𝐸 ′′ 0

0 𝐺 ′ 𝐺 𝐺 ′′ 0.

0 0 0

𝑎

𝑗′

𝑑

𝑗 𝑗′′

𝑏 𝑒

𝑞

𝑟

𝑞′′

𝑠

𝑐 𝑓

Then we have the morphism 𝛿 : 𝐹 ′′ → 𝐺 ′ as described above. From the composition 𝑟 ◦ 𝑗 : 𝐹 → 𝐸 ′,
we get an induced map Coker(𝑎) → Coker( 𝑗 ′) and thus another map 𝐹 ′′ → 𝐺 ′. By a diagram chase,
one checks this to be equal to −𝛿.

Now assume that, further, A is the category of modules over a simplicial ring A in a topos. Then, the
above morphisms fit into the following diagrams of triangles in 𝐷Δ (𝐴):

𝐹 ′ 𝐹 ′ 𝐹 ′′ 𝜎𝐹 ′ 𝐹 ′′ 𝐸 ′′ 𝐺 ′′ 𝜎𝐹 ′′

𝐹 ′ 𝐸 ′ 𝐺 ′ 𝜎𝐹 ′, 𝐺 ′ 𝐺 𝐺 ′′ 𝜎𝐺 ′.

−𝛿 𝛿 𝜎𝛿 (3.2)

This shows that composing 𝛿 with the connecting map 𝐺 ′ → 𝜎𝐹 ′ yields minus the connecting map
associated to the exact sequence of the F’s, while composing 𝜎𝛿 with the connecting map 𝐺 ′′ → 𝜎𝐹 ′′

yields the connecting map associated to the exact sequence of the G’s.

The reduced Atiyah class
Now let 𝑓 : 𝑋 → 𝑌 be a morphism of ringed topoi. Let 𝐸 ∈ 𝐶≤0(O𝑌 ) be a complex whose components
are Tor-independent to f, so that, in particular, the component-wise pullback 𝐸𝑋 := 𝑓 ∗𝐸 equals the
derived pullback. Let

0→ 𝐹 → 𝐸𝑋 → 𝐺 → 0 (3.3)

be an exact sequence in 𝐶≤0 (O𝑋 ), which we also view as a sequence of simplicial O𝑋 -modules via
the Dold–Kan correspondence. Let 𝑅 := 𝑃 𝑓 −1O𝑌

(O𝑋 ) be the standard simplicial resolution and let
𝐸𝑅 := 𝑓 −1𝐸 ⊗ 𝑓 −1O𝑌

𝑅. Denote by · |𝑅 restriction of scalars from O𝑋 to R. Since R is flat, the natural
morphism 𝐸𝑅 → 𝐸𝑋 |𝑅 is a quasi-isomorphism, and it is termwise surjective, since 𝑅 → O𝑋 is. Let
𝐺𝑅 := 𝐺 |𝑅 and let 𝐹𝑅 be the kernel of the induced map 𝐸𝑅 → 𝐺𝑅. We have an induced map of exact
sequences of R-modules, in which the vertical arrows are quasi-isomorphisms

0 𝐹𝑅 𝐸𝑅 𝐺𝑅 0

0 𝐹 |𝑅 𝐸𝑋 |𝑅 𝐺 |𝑅 0.

We now take the exact sequence of principal parts with respect to the upper row. This gives the following
commutative diagram of solid arrows with exact rows and columns:
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0 0 0

0 Ω𝑅/ 𝑓 −1O𝑌
⊗𝑅 𝐹𝑅 𝑃1

𝑅/ 𝑓 −1O𝑌
(𝐹𝑅) 𝐹𝑅 0

0 Ω𝑅/ 𝑓 −1O𝑌
⊗𝑅 𝐸𝑅 𝑃1

𝑅/ 𝑓 −1O𝑌
(𝐸𝑅) 𝐸𝑅 0

0 Ω𝑅/ 𝑓 −1O𝑌
⊗𝑅 𝐺𝑅 𝑃1

𝑅/ 𝑓 −1O𝑌
(𝐺𝑅) 𝐺𝑅 0.

0 0 0

𝑟
𝑠

(3.4)

Here, the arrows denoted by s and r come from a splitting of the middle exact sequence, which is
defined as follows: Since 𝐸𝑅 = 𝑅 ⊗ 𝑓 −1O𝑌

𝑓 −1𝐸 , we have by definition

𝑃1
𝑅/ 𝑓 −1O𝑌

(𝐸𝑅) = (𝑅 ⊗ 𝑓 −1O𝑌
𝑅/𝐼2

Δ ) ⊗𝑅 𝐸𝑅

= (𝑅 ⊗ 𝑓 −1O𝑌
𝑅 ⊗ 𝑓 −1O𝑌

𝑓 −1𝐸)/(𝐼2
Δ · 𝑅 ⊗ 𝑅 ⊗ 𝑓 −1𝐸).

Then s is given on local sections by 𝑎 ⊗ 𝑚 ↦→ 𝑎 ⊗ 1 ⊗ 𝑚, which one checks to be a morphism of left
R-modules. We see that the lower right square of (3.4) is of the form (3.1). In particular, we get the
induced morphism

𝛿 : 𝐹𝑅 → Ω𝑅/ 𝑓 −1O𝑌
⊗𝑅 𝐺𝑅 . (3.5)

By passing to derived categories, and taking extensions of scalars along 𝑅 → O𝑋 , this corresponds to
a morphism

at𝐸,𝑋/𝑌 ,𝐺 : 𝐹 → 𝐿𝑋/𝑌 ⊗ 𝐺

in 𝐷Δ (O𝑋 ), or equivalently 𝐷≤0 (O𝑋 ), which we call the reduced Atiyah class of E over Y with respect
to the sequence (3.3) on X. We also write at𝐸 if the remaining data is understood.

Remark 3.1. The morphism 𝛿 : 𝐹𝑅 → Ω𝑅/ 𝑓 −1O𝑌
⊗𝑅 𝐺𝑅 obtained by using the lower right corner of

(3.4) is explicitly given as follows: For a local section 𝑓 =
∑
𝑟𝑖 ⊗ 𝑓 −1𝑒𝑖 , where 𝑟𝑖 are sections of R and

𝑒𝑖 are sections of E (over Y), we have

𝛿 : 𝑓 ↦→
∑

𝑑𝑟𝑖 ⊗ 𝑒𝑖 .

Remark 3.2. The following triangles commute:

1)

𝐹 𝐿𝑋/𝑌 ⊗ 𝐺

𝐿𝑋/𝑌 [1] ⊗ 𝐹,

−at𝐸

at𝐹
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2)

𝐺

𝐹 [1] 𝐿𝑋/𝑌 [1] ⊗ 𝐺.

at𝐺

at𝐸 [1]

In both cases, the vertical morphisms are induced from the connecting map 𝐺 → 𝐹 [1] of the given
exact sequence. This follows from the morphisms of triangles (3.2).

Remark 3.3. In general, the reduced Atiyah class depends on slightly more than a map 𝜑 : 𝑓 ∗𝐸 → 𝐺
in the derived category 𝐷 (O𝑋 ), analogously to how cones in the derived category are unique only up
to non-unique isomorphism. However, for any given 𝜑, by a variation of the above using cocones/cones
instead of kernels/cokernels, one can define a reduced Atiyah class 𝐹 := cocone(𝜑) → 𝐿𝑋/𝑌 ⊗ 𝐺,
which is well defined up to an element of Ext−1 (𝐹, 𝐺).

Lemma 3.4 (Shift invariance). Consider the reduced Atiyah class at𝐸 [1] associated to the shift of the
sequence (3.3). Then, the following diagram commutes:

𝐹 [1] 𝐿𝑋/𝑌 ⊗ (𝐺 [1])

𝐿𝑋/𝑌 ⊗ 𝐺 [1],

at𝐸 [1]

at𝐸 [1]
𝜏

where 𝜏 denotes the compatibility morphism making the tensor product 𝐿𝑋/𝑌 ⊗ − into a triangulated
functor.

Proof. On the level of simplicial modules, the shift functor corresponds to taking a tensor product
𝜎 ⊗Z −, where 𝜎 is the simplicial Z-module defined in §2.2. The statement then follows from the fact
that for any R-module M, we have canonical isomorphisms of exact sequences, functorial in M, which
are induced by the properties of the tensor product:

0 Ω𝑅/ 𝑓 −1O𝑌
⊗𝑅 (𝜎 ⊗Z 𝑀) 𝑃1

𝑅/ 𝑓 −1O𝑌
(𝜎 ⊗Z 𝑀) 𝜎 ⊗Z 𝑀 0

0 𝜎 ⊗Z Ω𝑅/ 𝑓 −1O𝑌
⊗𝑅 𝑀 𝜎 ⊗Z 𝑃

1
𝑅/ 𝑓 −1O𝑌

(𝑀) 𝜎 ⊗Z 𝑀 0.

∼ ∼

�

We extend the definition of the reduced Atiyah class to objects in 𝐷−(𝑋) (cf. Construction 5.6 for
the analogue for the usual Atiyah class):

Construction 3.5. Let 𝑓 : 𝑋 → 𝑌 be a morphism of ringed topoi, let 𝐸 ∈ 𝐷−(𝑌 ), with 𝐸𝑋 := 𝑓 ∗𝐸 and
let

𝐹 → 𝐸𝑋 → 𝐺
+1
−−→ 𝐹 [1] (3.6)

be an exact triangle in 𝐷−(𝑋). Assume that Ext−1(𝐹, 𝐺) = 0. Choose 𝑁 > 0 so that the 𝐸 [𝑁], 𝐹 [𝑁]
and 𝐺 [𝑁] all lie in 𝐷≤0 (𝑋). By Remark 3.3, we obtain a well-defined map

at𝐸 [𝑁 ] : 𝐹 [𝑁] → 𝐿𝑋/𝑌 ⊗ (𝐺 [𝑁]).
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We define

at𝐸 := (𝜏 (𝑁 ) ◦ at𝐸 [𝑁 ] ) [−𝑁],

where 𝜏 (𝑁 ) : 𝐿𝑋/𝑌 ⊗ (𝐺 [𝑁]) → 𝐿𝑋/𝑌 ⊗ 𝐺 [𝑁] is the N-fold application of the compatibility map of
tensor product with the shift functor. This is independent of choice of N by Lemma 3.4.

3.2. The reduced Atiyah class via the graded cotangent complex

Let 𝑓 : 𝑋 → 𝑌 be a morphism of ringed topoi and let E be an O𝑌 -module, Tor-independent to f. Let
𝐸𝑋 := 𝑓 ∗𝐸 and let

0→ 𝐹 → 𝐸𝑋 → 𝐺 → 0

be an exact sequence of O𝑋 -modules. We will use the Z-graded cotangent complex as defined in
[7, IV 2]. For a Z-graded ring 𝐴 = ⊕𝐴𝑖 , we let 𝑘 𝑖 denote the functor that sends a graded A-module
𝑀 = ⊕𝑀𝑖 to the 𝐴0-module given by its i-th graded piece 𝑀𝑖 .

Let 𝑋 [𝐸𝑋 ] denote the graded ringed topos whose underlying site is the étale site of X and whose
sheaf of rings is given by O𝑋 ⊕ 𝐸 , where E is placed in degree 1, and similarly for 𝑌 [𝐸], 𝑋 [𝐺].
Let 𝑞 : 𝑋 [𝐺] → 𝑋 be the morphism induced by the inclusion O𝑋 → O𝑋 ⊕ 𝐺 and, similarly,
𝑟 : 𝑋 [𝐸𝑋 ] → 𝑋 .

Proposition 3.6. (i) We have a canonical natural isomorphism

𝑘1𝑞∗𝐿
𝑔𝑟
𝑋 [𝐸𝑋 ]/𝑋

� 𝐸𝑋

of objects of 𝐷 (O𝑋 ).
(ii) We have a canonical natural isomorphism

𝑘1𝑞∗𝐿
𝑔𝑟
𝑋 [𝐺 ]/𝑋 [𝐸𝑋 ]

� 𝐹 [1]

of objects of 𝐷 (O𝑋 ).
(iii) Up to the isomorphisms in 3.6 and 3.6, applying 𝑘1 ◦ 𝑞∗ to the connecting homomorphism of

graded cotangent complexes associated to the composition 𝑋 [𝐺] → 𝑋 [𝐸𝑋 ] → 𝑋 [𝐹] recovers
the inclusion 𝐹 → 𝐸 up to a shift.

Proof. Statement 3.6 is [7, IV (2.2.5)], the other parts can be deduced from that as in [3, §1.8]: Consider
the distinguished triangle in 𝐷𝑔𝑟 (𝑋 [𝐺])

𝐿
𝑔𝑟
𝑋 [𝐸𝑋 ]/𝑋

|𝑋 [𝐺 ]→ 𝐿
𝑔𝑟
𝑋 [𝐺 ]/𝑋

→ 𝐿
𝑔𝑟
𝑋 [𝐸𝑋 ]/𝑋 [𝐺 ]

+1
−−→ 𝐿

𝑔𝑟
𝑋 [𝐸𝑋 ]/𝑋

[1] .

Applying 𝑘1 ◦ 𝑞∗ and the isomorphisms of 3.6, we obtain a distinguished triangle in 𝐷 (𝑋):

𝐸𝑋 → 𝐺 → 𝑘1 ◦ 𝑞∗𝐿
𝑔𝑟
𝑋 [𝐸𝑋 ]/𝑋 [𝐺 ]

→ 𝐸𝑋 [1] .

It follows that there is a unique isomorphism 𝑘1 ◦ 𝑞∗𝐿
𝑔𝑟
𝑋 [𝐸𝑋 ]/𝑋 [𝐺 ]

� 𝐹 that identifies the connecting
map on cohomology sheaves with the inclusion 𝐹 → 𝐸 . �
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Consider the transitivity triangle of graded cotangent complexes associated to the morphism of
graded ringed topoi 𝑋 [𝐺] → 𝑋 [𝐸𝑋 ] → 𝑌 [𝐸] and let

𝐿
𝑔𝑟
𝑋 [𝐺 ]/𝑋 [𝐸𝑋 ]

→ 𝐿
𝑔𝑟
𝑋 [𝐸𝑋 ]/𝑌 [𝐸 ]

|𝑋 [𝐺 ] [1]

be the connecting map. Applying 𝑘1 ◦ 𝑞∗ and the isomorphisms of Proposition 3.6, we obtain a map

𝐹 [1] → (𝐿𝑋/𝑌 ⊗ 𝐺) [1] . (3.7)

Proposition 3.7. The map (3.7) agrees with the shift at𝐸,𝑋/𝑌 ,𝐺 [1] of the reduced Atiyah class.

Proof. The definition in [3, 2.3] goes through in our setting and gives the same resulting notion of
reduced Atiyah class. By Theorem 2.6 there, the map defined in this way agrees with (3.7) up to a
shift. �

Corollary 3.8. The reduced Atiyah class is preserved under Tor-independent pullback: Consider a
commutative diagram of ringed topoi

𝑋 ′ 𝑋

𝑌 ′ 𝑌

𝛼

𝛽

such that 𝛽 is Tor-independent to E and such that 𝛼 is Tor-independent to 𝐸𝑋 and G. Then the diagram

𝛼∗𝐹 𝛼∗𝐿𝑋/𝑌 ⊗ 𝛼∗𝐺

𝐿𝑋 ′/𝑌 ′ ⊗ 𝛼∗𝐺

𝛼∗at𝐸,𝑋/𝑌 ,𝐺

at𝛽∗𝐸,𝑋′/𝑌 ′,𝛼∗𝐸

commutes.

Proof. This follows directly from Proposition 3.7 and the functoriality of the transitivity triangle for
graded cotangent complexes. �

Lemma 3.9. Consider a commutative diagram of ringed topoi

𝑊 𝑋 ′ 𝑋

𝑌 ′ 𝑌 𝑍.

We assume further that X and 𝑌 ′ are Tor-independent over Y and that the induced square of rings on
𝑋 ′ obtained by pulling back the structure sheaves of 𝑌,𝑌 ′ and X is cocartesian. Then the diagram of
(shifted) connecting maps

𝐿𝑊 /𝑋 ′ 𝐿𝑋 ′/𝑌 ′ |𝑊 [1] � 𝐿𝑋/𝑌 |𝑊 [1]

𝐿𝑋 ′/𝑋 |𝑊 [1] � 𝐿𝑌 ′/𝑌 |𝑊 [1] 𝐿𝑌 /𝑍 |𝑊 [2]

on W anti-commutes. Here, · |𝑊 denotes pullback to W.
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Proof. By taking suitable simplicial resolutions, we are reduced to the setting that we have a diagram

𝐶 𝐶 ′ 𝐷

𝐴 𝐵 𝐵′

of simplicial rings in a topos T, in which the square is cocartesian and in which all maps are free in each
simplicial degree.

We then get a diagram of D-modules

0 0 0

0 Ω𝐵/𝐴 ⊗𝐵 𝐷 Ω𝐶/𝐴 ⊗𝐶 𝐷
Ω𝐶/𝐵⊗𝐶𝐷

=Ω𝐶′/𝐵′ ⊗𝐶′𝐷
0

0 Ω𝐵′/𝐴 ⊗
′
𝐵 𝐷 Ω𝐷/𝐴 Ω𝐷/𝐵′ 0

0 Ω𝐵′/𝐵⊗𝐵′𝐷
=Ω𝐶′/𝐶 ⊗𝐶′𝐷

Ω𝐷/𝐶 Ω𝐷/𝐶′ 0.

0 0 0

It is now a basic exercise in homological algebra to show that the following induced diagram of
connecting maps in 𝐷Δ (𝐷) anti-commutes:

Ω𝐷/𝐶′ 𝜎Ω𝐶′/𝐶

𝜎Ω𝐶′/𝐵′ ⊗𝐶′ 𝐷 𝜎2Ω𝐵/𝐴 ⊗𝐵 𝐷.

𝛿

𝛿 𝜎𝛿

𝜎𝛿

�

Proposition 3.10. Let 𝐸, 𝐹, 𝐺 and 𝑓 : 𝑋 → 𝑌 be as before and let 𝑌 → 𝑍 be a morphism of ringed
topoi. Then the following diagram anti-commutes:

𝐹 𝐿𝑋/𝑌 ⊗ 𝐺

𝐸 𝐿𝑌 /𝑍 [1] ⊗ 𝐸 𝐿𝑌 /𝑍 [1] ⊗ 𝐺,

at𝐸,𝑋/𝑌 ,𝐺

at𝐸,𝑌 /𝑍

where the right vertical map is obtained from the connecting homomorphism of cotangent complexes
by tensoring with G.
Proof. We apply Lemma 3.9 to the diagram of ringed topoi

𝑋 [𝐺] 𝑋 [𝐸] 𝑋

𝑌 [𝐸] 𝑌 𝑍,
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which gives the anti-commutative diagram

𝐿𝑋 [𝐺 ]/𝑋 [𝐸 ] 𝐿𝑋/𝑌 |𝑋 [𝐺 ] [1]

𝐿𝑌 [𝐸 ]/𝑌 |𝑋 [𝐺 ] [1] 𝐿𝑌 /𝑍 |𝑋 [𝐺 ] [2] .

By applying 𝑘1 ◦ 𝑞∗ and using the identifications of Proposition 3.6, the result follows. �

3.3. The Atiyah class for an exact sequence

Let 𝑓 : 𝑋 → 𝑌 be a morphism of ringed topoi and let 0→ 𝐹 → 𝐸 → 𝐺 → 0 be an exact sequence of
bounded above complexes of O𝑋 -modules, such that 𝐹, 𝐸 and G are dualizable and such that their duals
lie again in 𝐷−(𝑋). After taking appropriate resolutions and up to shifting, we may assume that 𝐸, 𝐹
and G are concentrated in degrees ≤ 0 and that they have flat components. Let O𝑋 → 𝐽 be an injective
resolution and let 𝐹∨, 𝐸∨ and 𝐺∨ be the complexes obtained by applying H𝑜𝑚𝑋 (−, 𝐽) to 𝐹, 𝐸 and G,
respectively. Let N be large enough so that 𝐸∨, 𝐹∨ and 𝐺∨ have no nonzero cohomology in degrees
≥ 𝑁 and set 𝐸 := (𝜏≤𝑁 𝐸) [𝑁], and similarly for 𝐹, 𝐺. We let 𝐽 ′ := 𝜏≤𝑁 𝐽 [𝑁]. Then the sequence
0→ 𝐺 → 𝐸 → 𝐹 → 0 is exact, and we have the natural commutative diagram of complexes

𝐺 ⊗ 𝐸 𝐺 ⊗ 𝐺

𝐸 ⊗ 𝐸 𝐽.

Using the Alexander–Whitney map of the Dold–Kan correspondence, we get such a diagram in the
category of simplicial O𝑋 -modules.

Now let 𝑅 = 𝑃1
𝑓 −1O𝑌

(O𝑋 ). Then we have the following commutative diagram of R-modules in which
the rows are exact sequences

0 𝐺 ⊗ Ω1
𝑅/ 𝑓 −1O𝑌

⊗ 𝐹 𝐺 ⊗ 𝑃1
𝑅/ 𝑓 −1O𝑌

(𝐹) 𝐺 ⊗ 𝐹 0

0 𝐸 ⊗ Ω1
𝑅/ 𝑓 −1O𝑌

⊗ 𝐸 𝐸 ⊗ 𝑃1
𝑅/ 𝑓 −1O𝑌

(𝐸) 𝐸 ⊗ 𝐸 0

0 Ω1
𝑅/ 𝑓 −1O𝑌

⊗ 𝐽 𝛼∗(𝐸 ⊗ 𝑃1
𝑅/ 𝑓 −1O𝑌

(𝐸)) 𝐸 ⊗ 𝐸 0.

𝛽

𝛼

Here, the last row is obtained from the second by pushout along the map 𝛼, and 𝛼 is induced from the
evaluation map 𝐸 ⊗ 𝐸 → 𝐽. Abbreviate 𝑃(𝐸) := 𝑃1

𝑅/ 𝑓 −1O𝑌
. Since the composition 𝛼 ◦ 𝛽 is zero, we

can quotient out 𝐺 ⊗ Ω1
𝑅/ 𝑓 −1O𝑌

⊗ 𝐹 to obtain a diagram:

0 0 𝐺 ⊗ 𝐹 𝐺 ⊗ 𝐹 0

0 Ω1
𝑅/ 𝑓 −1O𝑌

⊗ 𝐽 𝛼∗(𝐸 ⊗ 𝑃(𝐸)) 𝐸 ⊗ 𝐸 0.

𝜄
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Here, the vertical maps are injections of R-modules, so we can take the quotient exact sequence

0→ Ω1
𝑅/ 𝑓 −1O𝑌

⊗ 𝐽 →
𝛼∗(𝐸 ⊗ 𝑃(𝐸))

𝜄(𝐺 ⊗ 𝐹)
→

𝐸 ⊗ 𝐸

𝐺 ⊗ 𝐹
→ 0.

The induced connecting map defines (after extending scalars to O𝑋 , applying the Dold–Kan corre-
spondence, and shifting) a morphism in 𝐷−(O𝑋 )

𝐸∨ ⊗ 𝐸

𝐺∨ ⊗ 𝐹
[−1] → 𝐿𝑋/𝑌 ,

which we call the Atiyah class at𝐸 = at𝐸,𝑋/𝑌 of the exact sequence 0→ 𝐹 → 𝐸 → 𝐺 → 0.

Remark 3.11. It is easy to see by standard arguments that the result of the construction is independent
of the choice of J. The dependence on N is not addressed here.

We observe the following directly from the construction.

Corollary 3.12. The morphism at𝐸 is compatible with the usual Atiyah class (i.e., the diagram

𝐸∨ ⊗ 𝐸 [−1]

𝐸∨⊗𝐸
𝐺∨⊗𝐹 [−1] 𝐿𝑋/𝑌 .

at′𝐸

at𝐸

commutes).

Corollary 3.13. The map at𝐸,𝑋/𝑌 is functorial in Y (i.e., given a map 𝑌 → 𝑌 ′, the composition

𝐸∨ ⊗ 𝐸

𝐺∨ ⊗ 𝐹
[−1]

at𝐸,𝑋/𝑌 ′

−−−−−−→ 𝐿𝑋/𝑌 ′ → 𝐿𝑋/𝑌

equals at𝐸,𝑋/𝑌 (assuming we make the same choices of N in each construction)).

Lemma 3.14. The map at𝐸,𝑋/𝑌 is functorial for morphisms 𝑎 : 𝑋 ′ → 𝑋 . More precisely, given such a
morphism, the diagram

𝑎∗
(
𝐸∨⊗𝐸
𝐺∨⊗𝐹 [−1]

)
𝑎∗𝐿𝑋/𝑌

(𝑎∗𝐸)∨ ⊗𝑎∗𝐸
(𝑎∗𝐺)∨ ⊗𝑎∗𝐹 [−1] 𝐿𝑋 ′/𝑌

at𝐸

at𝑎∗𝐸

commutes (assuming we make the same choices of N in the construction). Here, we assume that 𝐸, 𝐹, 𝐺
are already given by bounded above complexes with flat components.

Proof. The main point is that to compute the derived pullback of 𝐸 (and similarly 𝐺, 𝐹), we may use
either a flat resolution of 𝐸 – denote this 𝐿𝑎∗𝐸 by abuse of notation – or repeat the construction with
𝑎∗𝐸 in place of E, which we denote 𝑎∗𝐸 . The two are related by a natural map 𝐿𝑎∗𝐸 → 𝑎∗𝐸 , which is
a quasi-isomorphism, as can be checked locally where it follows from the assumption that E is a perfect
complex. The details are left to the reader. �

Now suppose that we have an exact sequence 0→ 𝐹 → 𝐸𝑋 → 𝐺 → 0 as in (3.3). Then the Atiyah
class for the exact sequence is related to the reduced Atiyah class.
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Proposition 3.15. We have a commutative diagram

𝐸∨⊗𝐸
𝐺∨⊗𝐹 [−1] 𝐺∨ ⊗ 𝐹

𝐿𝑋/𝑌 ,

−

at𝐸
at′𝐸

where the horizontal map is minus the natural connecting homomorphism.

Proof. We may work with the sequence

0→ 𝐹𝑅 → 𝐸𝑅 → 𝐺𝑅 → 0

instead of 𝐹, 𝐸, 𝐺 as in the construction of the reduced Atiyah class. We need to show that we have a
commutative diagram

0 𝐺 ⊗ 𝐹𝑅 𝐸 ⊗ 𝐸𝑅
𝐸⊗𝐸𝑅

𝐺⊗𝐹𝑅
0

0 𝐿𝑋/𝑌 ⊗ 𝐽 𝛼∗ (𝐸⊗𝑃 (𝐸𝑅))

𝜄 (𝐺⊗𝐹𝑅)

𝐸⊗𝐸𝑅

𝐺⊗𝐹𝑅
0,

where the left vertical arrow is obtained from the composition

𝐺 ⊗ 𝐹𝑅 → 𝐺 ⊗ Ω1
𝑅/ 𝑓 −1O𝑌

⊗ 𝐺𝑅 → 𝐺 ⊗ Ω1
𝑅/ 𝑓 −1O𝑌

⊗ 𝐺 → 𝐽

and therefore induces the reduced Atiyah class (up to a shift) when passing to 𝐷 (𝑋). The proposition
then clearly follows. To construct the diagram, let 𝑠 : 𝐸𝑅 → 𝑃(𝐸𝑅) denote the section in the construction
of the reduced Atiyah class. Then the middle vertical map is the composition

𝐸 ⊗ 𝐸𝑅
𝑠⊗id
−−−→ 𝐸 ⊗ 𝑃(𝐸) →

𝛼∗(𝐸 ⊗ 𝑃(𝐸𝑅))

𝜄(𝐺 ⊗ 𝐹𝑅)
.

Since the composition 𝐸 ⊗ 𝐸𝑅 → 𝐸 ⊗ 𝑃(𝐸𝑅) → 𝐸 ⊗ 𝐸𝑅 is the identity, we naturally obtain a
commutative diagram of the desired form, and it remains only to show that the left vertical map is as
desired. But in fact, we have a subdiagram

0 𝐺 ⊗ 𝐹𝑅 𝐺 ⊗ 𝐸𝑅
𝐺⊗𝐸𝑅

𝐺⊗𝐹𝑅
0

0 𝐿𝑋/𝑌 ⊗ 𝐽 𝛼∗ (𝐺⊗𝑃 (𝐸𝑅))

𝜄 (𝐺⊗𝐹𝑅)

𝐺⊗𝐸𝑅

𝐺⊗𝐹𝑅
0,

the lower row of which is identified with the row

0→ 𝐿𝑋/𝑌 ⊗ 𝐽 → 𝛼∗(𝐺 ⊗ 𝐺𝑅) → 𝐺 ⊗ 𝐺𝑅 → 0.

Under this identification, the middle map factors as

𝐺 ⊗ 𝐸𝑅
𝑖𝑑𝐺 ⊗𝑠
−−−−−→ 𝐺 ⊗ 𝑃(𝐺) → 𝛼∗(𝐺 ⊗ 𝑃(𝐺)),

and it follows that the left vertical map indeed factors through the reduced Atiyah class, as desired. �
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4. Definitions

We construct the Atiyah class for an algebraic stack and show that it is independent of various choices
made in the construction. We then address the case of the reduced Atiyah class and of the Atiyah class
of an exact sequence.

4.1. Construction of the Atiyah class

We define the Atiyah class for an object 𝐸 ∈ 𝐷≤0
𝑞𝑐𝑜ℎ (X ) with vanishing cohomology groups in positive

degree. In Construction 5.6, we generalize this to arbitrary bounded above complexes, which uses the
invariance of the Atiyah class under shifts (Corollary 5.5).

Construction 4.1. Let 𝑓 : X → Y be a morphism of algebraic stacks and let 𝐸 ∈ 𝐷≤0
𝑞𝑐𝑜ℎ (X ). By

truncating, we may assume that E is represented by a complex with nonzero terms only in negative
degrees. We let 𝐸𝑊‖ be the induced O𝑊‖ -module, which we also regard as a simplicial module.
Choose a diagram as in (2.3) and consider the setup of Situation 2.9. We let 𝑅 := 𝑃ℎ−1O𝑌‖

(𝑊‖) be the
free simplicial resolution. This is a simplicial ring on 𝑊‖ with components 𝑅𝑋 = 𝑃𝑔−1O𝑌•

(O𝑋• ) and
𝑅𝑊 = 𝑃ℎ−1O𝑌•

(O𝑊• ). We regard 𝐸𝑊‖ as an R-module via restriction of scalars. Consider the exact
sequence of principal parts 𝑃1

𝑅/O𝑌‖
(𝐸𝑊‖ ) associated to 𝐸𝑊‖ and the ring map ℎ−1

‖
O𝑌‖ → 𝑅.

0→ 𝐿𝑊‖/𝑌‖ ⊗O𝑊‖
𝐸𝑊‖ → 𝑃1

𝑅/ℎ−1
‖
O𝑌‖

(𝐸𝑊‖ ) → 𝐸𝑊‖ → 0.

It induces a map

𝛿𝑅/ℎ−1
‖
O𝑌‖
(𝐸𝑊‖ ) : 𝐸𝑊‖ → 𝜎𝐿𝑊‖/𝑌‖ ⊗O𝑊‖

𝐸𝑊‖ (4.1)

in 𝐷Δ (𝑅). By Lemma 2.2, this is just the restriction of a morphism in 𝐷Δ (𝑊‖) and thus corresponds to a
unique morphism 𝐸𝑊‖ → 𝐿𝑊‖/𝑌‖ ⊗O𝑊‖

𝐸𝑊‖ [1] in 𝐷 (O𝑊‖ ) by the Dold–Kan correspondence. We have
canonical natural isomorphisms ConeO𝑊‖

(𝐸)
∼
−→ 𝐸𝑊• [1] and ConeO𝑊‖

(𝐿𝑊‖/𝑌‖ )
∼
−→ 𝜂∗𝑊 𝐿X /Y [1] by

Lemmas 2.10 and 2.11, respectively. Since E has quasi-coherent cohomology sheaves, the assumptions
of Lemma 2.7 i) are satisfied, so that we obtain a morphism

𝐸𝑊• [1] → 𝜂∗𝑊 𝐿X /Y ⊗ 𝐸𝑊• [2] . (4.2)

Applying 𝜂𝑊 ∗ and the shift [−1] and multiplying by −1 (the sign is obtained from commuting two shift
functors and is needed for compatibility with the usual Atiyah class), we obtain a morphism

at𝐸,X /Y := at𝐸,X /Y ,𝑋/𝑌 : 𝐸 → 𝐿X /Y ⊗ 𝐸 [1] . (4.3)

This is the Atiyah class of E over Y . We will also write at𝐸 if the morphism 𝑓 : X → Y is understood.
In Corollary 4.6, we show that the Atiyah class is independent of choice of diagram (2.3).

As a consequence of the construction, we have the following:

Lemma 4.2. The morphism (4.3) is functorial in 𝐸 ∈ 𝐷≤0
𝑞𝑐𝑜ℎ (X ) for a fixed choice of diagram (2.3).

Remark 4.3. i) In Construction 4.1, let F be an R-module together with an isomorphism 𝐹 → 𝐸𝑊‖
in 𝐷Δ (𝑅). Then we may instead work with the exact sequence 𝑃𝑅/ℎ−1

‖
O𝑌‖
(𝐹) and define (4.1)

equivalently as the map obtained as the composition

𝐸𝑊‖
∼
−→ 𝐹 → 𝜎𝑃1

𝑅/O𝑌‖
(𝐹𝑊‖ )

∼
−→ 𝜎𝐿𝑊‖/𝑌‖ ⊗O𝑊‖

𝐸𝑊‖ .
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ii) We may also replace 𝑊‖ and 𝑌‖ by their analogues 𝑊∧ and 𝑌∧, associated to the respective diagrams

𝑋•
𝑠•
←− 𝑊•

𝑡•
−→ 𝑋•, and 𝑌•

=
←− 𝑌•

=
−→ 𝑌•

throughout Construction 4.1.

Well-definedness and compatibility with pullback
Suppose that we are given a map of diagrams (2.3) – that is, that we have a 2-commuting cube

𝑋 ′ X ′

𝑋 X

𝑌 ′ Y ′

𝑌 Y ,

𝐴

(4.4)

whose front and back faces are as in (2.3). (This means, in particular, that for any two maps 𝑋 ′ → Y
obtained by traveling along the edges of the cube, the two two-isomorphisms relating them by traversing
the faces are identical.)

Lemma 4.4. Let 𝐸 ∈ 𝐷≤0
𝑞𝑐𝑜ℎ (X ). Let

at𝐸 := at𝐸,X /Y ,𝑋/𝑌 and at𝐴∗𝐸 := at𝐴∗𝐸,X ′/Y′,𝑋 ′/𝑌 ′ .

Then the diagram

𝐴∗𝐸 𝐴∗𝐿X /Y ⊗ 𝐴∗𝐸 [1]

𝐴∗𝐸 𝐿X ′/Y′ ⊗ 𝐴∗𝐸 [1]

𝐴∗ at𝐸

at𝐴∗𝐸

commutes.

Proof. By using the setup of Situation 2.9 and Construction 4.1 for the primed objects, we obtain a
commutative cube of simplicial algebraic spaces

𝑊 ′• 𝑋 ′•

𝑋 ′• 𝑌 ′•

𝑊• 𝑋•

𝑋• 𝑌•

𝑡′•

𝑠′•

𝑎•

𝑏•

𝑡•

𝑠•

𝑏•
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as well as morphisms of topoi 𝑎 ‖ : 𝑊 ′
‖
→ 𝑊‖ and 𝑌 ′

‖
→ 𝑌‖ , which fit in a 2-commutative square

𝑊 ′
‖

𝑌 ′
‖

𝑊‖ 𝑌‖ .

By construction, the Atiyah class at𝐸 corresponds via 𝜂∗𝑊 to a map 𝛼 : 𝐸𝑊• → 𝜂∗𝑊 𝐿X /Y [1] ⊗ 𝐸𝑊• ,
obtained as the shift of the map (4.2). Since the pullback 𝐴∗ can be computed as 𝜂𝑊 ′∗𝑎∗•𝜂∗𝑊 , we have a
natural commutative diagram

𝜂∗𝑊 ′𝐴
∗𝐸 𝜂∗𝑊 ′𝐴

∗(𝐿X /Y [1] ⊗ 𝐸)

𝑎∗•𝐸𝑊 𝑎∗•(𝜂
∗
𝑊 𝐿X /Y [1] ⊗ 𝐸𝑊 ).

𝜂∗
𝑊 ′

𝐴∗ at𝐸

𝑎∗•𝛼

Let 𝐸 ′ := 𝜂𝑊 ′∗ (𝑎
∗
•𝐸𝑊 ). We apply Construction 4.1 to the primed objects (i.e., with respect to the

backside of (4.4) and 𝐸 ′). We obtain the ring 𝑅′ = 𝑃ℎ′−1
‖

O𝑌 ′
‖

(O𝑊 ′
‖
) and the map

𝛼′ : 𝐸 ′𝑊 ′• → 𝜂∗𝑊 ′𝐿X ′/Y′ [1] ⊗ 𝐸 ′𝑊 ′• ,

as the shift of the map (4.2). By functoriality of simplicial resolutions, we have a natural map 𝑎−1
‖
𝑅 → 𝑅′

of rings on 𝑊 ′
‖
. Now the statement of the lemma is equivalent to the following:

Claim 4.5. The diagram

𝑎∗•𝐸𝑊• 𝑎∗•(𝜂
∗
𝑊 𝐿X /Y [1] ⊗ 𝐸𝑊• )

𝐸 ′
𝑊 ′•

𝜂∗𝑊 ′𝐿X ′/Y′ [1] ⊗ 𝐸 ′
𝑊 ′•

𝑎∗•𝛼

𝛼′

in 𝐷 (𝑊 ′•) commutes, where the vertical maps are induced by the natural isomorphism 𝑎∗•𝐸𝑊•
∼
−→ 𝐸 ′𝑊 ′

and the pullback map on cotangent complexes.
Proof. We may assume that E is represented by a complex of flat modules concentrated in degrees ≤ 0,
so that we have an induced representative with flat terms for 𝐸𝑊‖ . Then the pullback 𝑎∗

‖
𝐸𝑊‖ = 𝑎∗

‖
𝐸𝑊‖

can be computed termwise, and its components are given by 𝑏∗•𝐸𝑋 and 𝑎∗•𝐸𝑊 , respectively.
By functoriality of the principal parts construction, we have a morphism of exact sequences of 𝑎−1

‖
𝑅-

modules 𝑎−1
‖
𝑃1
O𝑊‖

/ℎ−1
‖
O𝑌‖

(𝐸𝑊‖ ) → 𝑃1
O𝑊 ′

‖
/ℎ′−1
‖
O𝑌 ′‖

(𝑎∗
‖
𝐸𝑊‖ ). We get the induced diagram of connecting

maps in 𝐷Δ (𝑎−1
‖
𝑅)

𝑎−1
‖
𝛿𝑅/ℎ−1

‖
O𝑌‖
(𝐸𝑊‖ ) : 𝑎−1

‖
𝐸𝑊‖ 𝜎𝑎−1

‖
𝐿𝑊‖/𝑌‖ ⊗𝑎−1

‖
O𝑊‖

𝑎−1
‖
𝐸𝑊‖

𝛿𝑅′/ℎ′−1
‖

O𝑌 ′
‖

(𝑎∗
‖
𝐸𝑊‖ ) : 𝑎∗

‖
𝐸𝑊‖ 𝜎𝐿𝑊 ′

‖
/𝑌 ′‖ ⊗O𝑊 ′

‖

𝑎∗
‖
𝐸𝑊‖ .

By adjunction, this corresponds to a diagram in 𝐷Δ (𝑅′), which in turn corresponds to a diagram in
𝐷 (O𝑊‖ ):
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𝑎∗
‖
𝐸𝑊‖ 𝑎∗

‖
𝐿𝑊‖/𝑌‖ [1] ⊗ 𝑎∗

‖
𝐸𝑊‖

𝑎∗
‖
𝐸𝑊‖ 𝐿𝑊 ′

‖
/𝑌 ′
‖
[1] ⊗ 𝑎∗

‖
𝐸𝑊‖ .

After applying ConeO𝑊 ′‖
and shifting, the upper line is canonically identified with 𝑎∗•𝛼 (this uses that

we have a natural isomorphism ConeO𝑊 ′‖
◦𝑎∗
‖
� 𝑎∗• ◦ ConeO𝑊‖

, which one can check by computing
with K-flat complexes of O𝑊‖ modules). The lower line yields a map

𝛼′′ : 𝑎∗•𝐸𝑊• → 𝜂∗𝑊 ′𝐿X ′/Y′ [1] ⊗ 𝑎∗•𝐸𝑊• .

To finish the proof of the claim, we need to show that under the isomorphism 𝑎∗𝐸𝑊 → 𝐸 ′𝑊 ′ , the maps
𝛼′′ and 𝛼 get identified. This follows from Lemma 2.13 and Remark 4.3 ii). �

�

Corollary 4.6. The map at𝐸 : 𝐸 → 𝐿X /Y [1] ⊗ 𝐸 obtained from Construction 4.1 is independent of
choice of diagram (2.3).

Proof. Suppose we are given two choices

𝑋1 X

𝑌1 Y

𝑋2 X

𝑌2 Y .

We need to show that at𝐸,X /Y ,𝑋1/𝑌1 and at𝐸,X /Y ,𝑋2/𝑌2 agree. By replacing 𝑋2 → 𝑌2 with the fiber
product 𝑋1 ×X 𝑋2 → 𝑌1 ×Y 𝑌2, we may without loss of generality assume that we have a 2-commuting
diagram

𝑋2

𝑋1 X

𝑌2

𝑌1 Y .

By adding in the identity morphisms on X and Y , this gives a 2-commuting cube (4.4), and we obtain
the desired equality from Lemma 4.4. �

Corollary 4.7. The Atiyah class is compatible with pullback. More precisely, given a 2-commutative
square

X ′ X

Y ′ Y ,

𝐴
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the natural diagram

𝐴∗𝐸 𝐴∗𝐿X /Y ⊗ 𝐴∗𝐸 [1]

𝐴∗𝐸 𝐿X ′/Y′ ⊗ 𝐴∗𝐸 [1]

𝐴∗ at𝐸

at𝐴∗𝐸

commutes.

Proof. This follows immediately from Lemma 4.4, after completing the square to a cube as in (4.4). �

Compatibility with Illusie’s definition
Proposition 4.8. If X and Y are in fact algebraic spaces, then the morphism at𝐸 agrees with Illusie’s
Atiyah class for E with respect to the map of ringed étale topoi Xet → Yet.

Proof. In this case, we may choose 𝑋 = X and 𝑌 = Y in diagram (2.3), so that we get 𝑊 = 𝑋 . Then
𝑋• and 𝑊• are constant strictly simplicial algebraic spaces with value X, and 𝑌• is the constant strictly
simplicial algebraic space with value Y. In this case, we have the morphism of topoi Δ : 𝑊‖ → 𝑋•,
where Δ∗𝑀𝑋 = (𝑀𝑋 , 𝑀𝑋 , id, id). The morphism 𝑐𝐸 of Lemma 2.6 gives a natural transformation of
functors ConeO𝑊‖

◦Δ∗ ⇒ [−1], which induces to a natural isomorphism of functors from 𝐷 (O𝑋• ) to
itself. It follows from Construction 4.1 that the morphism 𝐸𝑊‖ → 𝐿𝑊‖/𝑌‖ [1] ⊗O𝑊‖

𝐸𝑊‖ obtained from
(4.1) by applying the functors 𝐷Δ (𝑅) → 𝐷Δ (O𝑊‖ ) → 𝐷 (𝑊‖) is naturally identified with the pullback
Δ∗ at𝐸𝑋• ,𝑋•/𝑌• of the Atiyah class for the map of topoi 𝑋• → 𝑌•. Thus, taking the cone, we see that (4.2)
is identified with at𝐸𝑋• ,𝑋•/𝑌• [1]. From the commutative diagram of topoi

𝑋•,lis-et 𝑋lis-et

𝑋•,et 𝑋et,

𝜋𝑋

𝜖 𝜖

we see that 𝜂𝑋∗ at𝐸𝑋• ,𝑋•/𝑌• is naturally identified with the pullback to the lisse-étale site of the usual
Atiyah class for the map 𝑋et → 𝑌et, from which the result follows. �

As a first application of our definition, we compute the Atiyah class of the universal vector bundle
on 𝐵𝐺𝐿𝑛 over a chosen base field k.

Example 4.9. Let V denote the universal rank n locally free sheaf on 𝐵𝐺𝐿𝑛, which is the sheaf of
sections of the vector bundle associated to the universal principal 𝐺𝐿𝑛-bundle. We have the 2-cartesian
diagram, where the map x from Spec 𝑘 is the one corresponding to the trivial 𝐺𝐿𝑛-torsor

𝐺𝐿𝑛 Spec 𝑘

Spec 𝑘 𝐵𝐺𝐿𝑛.

𝑡

𝑠 𝑥

𝑥

𝜌

There is a natural trivialization of the pullback VSpec 𝑘 . Then for every T-valued point 𝑔 = (𝑔𝑖, 𝑗 ) on
𝐺𝐿𝑛, the 2-morphism 𝜌 indicated in the diagram induces a natural pullback map 𝜌∗ : 𝑡∗VSpec 𝑘 |𝑇

∼
−→

𝑠∗VSpec 𝑘 |𝑇 . With respect to the given trivialization of V over Spec 𝑘 , this morphism is just given by
𝑔−1 : O⊕𝑛𝑇 → O⊕𝑛𝑇 .

We now compute the Atiyah class of V using Construction 4.1, where we chose 𝑋 = 𝑌 = Spec 𝑘 , so
that we get 𝑊 = 𝐺𝐿𝑛. More precisely, we will calculate the restriction of atV to the etale site of W, so
that we do not have to consider the associated strictly simplicial algebraic spaces. Thus, here we let 𝑊‖
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and 𝑌‖ be the topos associated to the diagrams

𝑊
𝑠
⇒
𝑡
𝑋 and 𝑌 ⇒ 𝑌,

respectively, and ℎ ‖ : 𝑊‖ → 𝑌‖ the natural map, and we let V𝑊‖ denote the locally free sheaf on 𝑊‖
obtained by pullback. First, to calculate atV𝑊‖

,𝑊‖/𝑌‖ , we do not need to take a simplicial resolution of
O𝑊‖ over ℎ−1

‖
O𝑌‖ since the map 𝑊‖ → 𝑌‖ is composed of smooth maps of algebraic spaces. Moreover,

since ConeO𝑊‖
preserves mapping cones of complexes, we may calculate ConeO𝑊‖

(atV𝑊‖
,𝑊‖/𝑌‖ ) by

first applying ConeO𝑊‖
to the sequence of principal parts 𝑃𝑊‖/𝑌‖ (V𝑊‖ ) and only then taking connecting

homomorphisms. Writing out the pullback maps in the sequence of principal parts 𝑃𝑊‖/𝑌‖ (V𝑊‖ ) gives
the following diagram on W, where we use that Ω𝑋/𝑌 = 0:

0 0 𝑠∗V𝑋 𝑠∗V𝑋 0

0 Ω𝑊 /𝑌 ⊗ V𝑊 𝑃𝑊 /𝑌 (V𝑊 ) V𝑊 0

0 0 𝑡∗V𝑋 𝑡∗V𝑋 0.

Since V𝑊 is pulled back from 𝑋 = 𝑌 = Spec 𝑘 via s, we have a natural splitting 𝑃𝑊 /𝑌 (V𝑊 ) =
Ω𝑊 /𝑌 ⊗ 𝑠∗V𝑋 ⊕ 𝑠∗V𝑋 . With respect to this splitting, one calculates that the induced pullback map along
t is given by

𝑡∗V𝑋
(𝑑𝜌,𝜌)
−−−−−→ Ω𝑊 /𝑌 ⊗ 𝑠∗V𝑋 ⊕ 𝑠∗V𝑋 .

It follows, that after applying ConeO𝑊‖
, the resulting exact sequence has the following exact subsequence,

and the termwise inclusions give quasi-isomorphisms:

0→ Ω𝑊 /𝑌 ⊗ 𝑠∗V𝑋 → Cone(𝑡∗V𝑋
𝑑𝜌
−−→ Ω𝑊 /𝑌 ⊗ 𝑠∗V𝑋 ) → 𝑡∗V𝑋 [1] → 0.

It is a general fact that for an exact sequence of this form, the connecting map is canonically quasi-
isomorphic to minus the shift of the map the cone is taken over for the middle term – that is, in our case,
this gives

𝑑𝜌[1] : 𝑡∗V𝑋 [1] → Ω𝑊 /𝑌 ⊗ 𝑠∗V𝑋 [1] .

In particular, we find that there is a natural isomorphism 𝑠∗𝑥∗𝐿𝐵𝐺𝐿𝑛 [1] � Ω𝑊 /𝑌 and that using this
identification and the trivialization of V𝑋 , we have that 𝑠∗𝑥∗ atV is given by

O⊕𝑛𝐺𝐿𝑛
𝑑 (𝑇 −1)◦𝑇
−−−−−−−−→ Ω𝐺𝐿𝑛 ⊗ O⊕𝑛𝐺𝐿𝑛 , (4.5)

where 𝑇 = (𝑇𝑖 𝑗 ) is the universal matrix on 𝐺𝐿𝑛. In particular, for 𝑛 = 1, we have the following:

Example 4.10. By taking the trace in (4.5), we obtain the section

O𝐺𝐿𝑛 → Ω𝐺𝐿𝑛

given by tr(𝑑 (𝑇−1)𝑇). This is equal to

𝑑 (det𝑇−1) det𝑇.
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In particular, for 𝑛 = 1, we have 𝑇 = (𝑡) as a 1 × 1 matrix, and the pullback of atL ⊗L−1 – with L the
universal rank 1 sheaf – to G𝑚 = 𝐺𝐿1 is given by

OG𝑚 → ΩG𝑚 ,

sending 1 to 𝑑 (1/𝑡)𝑡 = −𝑑𝑡/𝑡. We have the natural map 𝐷𝐸𝑇 : 𝐵𝐺𝐿𝑛 → 𝐵G𝑚 given by associating
to a locally free sheaf its determinant line bundle. By taking fiber products with a point, this induces a
map 𝐺𝐿𝑛 → G𝑚, (which is again just the determinant) whose pullback map on differentials is given by
𝑑𝑡 ↦→ 𝑑 (det𝑇). In particular, we have 𝑡𝑑 (1/𝑡) ↦→ det𝑇𝑑 (det𝑇−1). This shows that we have a natural
identification tr(𝑠∗𝑥∗ atV ) = 𝑠∗𝑥∗ (atdetV ⊗ detV−1). One can show that this isomorphism is part of a
descent datum, and thus we have

tr(atV ) = atdetV ⊗ det(V)−1.

4.2. Construction of the reduced Atiyah class

Construction 4.11. Let 𝑓 : X → Y be a morphism of algebraic stacks. Let 𝐸 ∈ 𝐷−𝑞𝑐𝑜ℎ (Y) and let 𝐸X :=

𝑓 ∗𝐸 . Let 𝐹 → 𝐸X → 𝐺
+1
−−→ be a distinguished triangle in 𝐷−𝑞𝑐𝑜ℎ (X ) such that 𝑅 Hom−1(𝐹, 𝐺) = 0.

We let 𝑋•, 𝑌• and 𝑊• be as in Situation 2.9 and let 𝑅 = 𝑃ℎ−1O𝑌‖
(O𝑊‖ ). Let 𝐹𝑊‖ , 𝐸𝑊‖ and 𝐺𝑊‖ denote

the O𝑊‖ -modules induced by 𝐸X and G, respectively, and let 𝐸𝑌‖ denote the O𝑌‖ -module induced by E.
From Construction 3.5, we obtain a morphism

at𝐸𝑌‖ : 𝐹𝑊‖ → 𝐿𝑊‖/𝑌‖ ⊗ 𝐺𝑊‖ .

Applying the sequence of maps of (2.6), we get

at𝐸,X /Y ,𝐺 : 𝐹 → 𝐿X /Y ⊗ 𝐺.

We also write at𝐸 if the rest of the data is clear.

Proposition 4.12. The reduced Atiyah class is independent of the choice of cover 𝑋/𝑌 .

Proof. This is similar to Lemma 4.4 and left to the reader (and slightly simpler since E and G are
assumed to be quasicoherent sheaves, rather than more general complexes). �

Proposition 4.13. If X and Y are algebraic spaces, the reduced Atiyah class of Construction 4.11
agrees with the one for ringed topoi defined in §3.1.

Proof. The proof is analogous to the proof of Proposition 4.8 and left to the reader. �

Corollary 4.14. The following triangles commute:

1)

𝐹 𝐿X /Y ⊗ 𝐺

𝐿X /Y [1] ⊗ 𝐹,

−at𝐸

at𝐹
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2)

𝐺

𝐹 [1] 𝐿X /Y [1] ⊗ 𝐺.

at𝐺

at𝐸 [1]

In both cases, the vertical morphisms are induced from the connecting map 𝐺 → 𝐹 [1] of the given
exact sequence.

Proof. From Remark 3.2, we get commutative triangles for the classical Atiyah classes at𝐸𝑊‖
,𝑊‖/𝑌‖ ,𝐺𝑊‖

and at𝐸𝑌‖ ,𝑊‖/𝑌‖ ,𝐺𝑊‖
. The result follows by passing to 𝐷 (X ). �

4.3. Construction of the Atiyah class for an exact sequence

Let 𝑓 : X → Y be a morphism of algebraic stacks and let 0→ 𝐹 → 𝐸 → 𝐺 → 0 be an exact sequence
of quasicoherent sheaves on X , which we denote by 𝐸 . Assume that 𝐹, 𝐸 and G are dualizable as objects
of the derived category of X . We let 𝑋‖ , 𝑌‖ and 𝑊‖ be as in Situation 2.9. We also let 𝑅 = 𝑃ℎ−1O𝑌‖

O𝑊‖ ,
and we let 𝐹𝑊‖ , 𝐸𝑊‖ and 𝐺𝑊‖ denote the sheaves on 𝑊‖ induced by 𝐹, 𝐸, 𝐺, respectively. Let

𝛼 :
𝐸𝑊‖ ⊗ 𝐸∨𝑊‖
𝐹𝑊‖ ⊗ 𝐺∨𝑊‖

[−1] → 𝐿𝑊‖/𝑌‖

be the Atiyah class of the exact sequence 𝐸𝑊‖ with respect to the morphism of topoi 𝑊‖ → 𝑌‖ . This is
a morphism in 𝐷 (𝑊‖). By taking cones, shifting, and applying 𝜂𝑊 ∗, we obtain a morphism

at𝐸,X /Y :
𝐸 ⊗ 𝐸∨

𝐹 ⊗ 𝐺∨
[−1] → 𝐿X /Y ,

which we call the Atiyah class of the exact sequence 𝐸 . We also write at𝐸 if the morphism 𝑓 : X → Y
is understood.

From the construction and Corollary 3.12, we conclude the following:

Corollary 4.15. The morphism at𝐸 is compatible with the usual Atiyah class (i.e., the diagram

𝐸∨ ⊗ 𝐸 [−1]

𝐸∨⊗𝐸
𝐺∨⊗𝐹 [−1] 𝐿X /Y .

at′𝐸

at𝐸

commutes).

Similarly, we conclude immediately from Proposition 3.15:

Corollary 4.16. We have a commutative diagram

𝐸∨⊗𝐸
𝐺∨⊗𝐹 [−1] 𝐺∨ ⊗ 𝐹

𝐿X /Y ,

−

at𝐸
at′𝐸

where the horizontal map is the natural connecting homomorphism.
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5. Properties

5.1. Tensor compatibility of the Atiyah class

Let A be a ring, and B an A-algebra. For a B-module M, let 𝑃1
𝐵/𝐴
(𝑀) denote the exact sequence

0→ Ω𝐵/𝐴 ⊗𝐵 𝑀 → 𝑃1
𝐵/𝐴(𝑀) → 𝑀 → 0.

We will also write 𝑃1
𝐵/𝐴
(𝑀) to denote the corresponding element of Ext1𝐵 (𝑀,Ω𝐵/𝐴 ⊗𝐵 𝑀).

Lemma 5.1. Let M and N be B-modules and suppose that M is flat. Then in Ext1𝐵 (𝑀 ⊗𝐵 𝑁,Ω𝐵/𝐴 ⊗𝐵
𝑀 ⊗𝐵 𝑁) we have the following equality:

𝑃𝐵/𝐴(𝑀) ⊗𝐵 𝑁 + 𝑀 ⊗𝐵 𝑃𝐵/𝐴(𝑁) = 𝑃𝐵/𝐴(𝑀 ⊗ 𝑁).

Here, we regard 𝑀 ⊗𝐵 𝑃𝐵/𝐴(𝑁) as an extension of 𝑀 ⊗ 𝑁 by Ω𝐵/𝐴 ⊗𝐵 𝑀 ⊗𝐵 𝑁 via the symmetry
isomorphism of the tensor product.

Proof. Recall that 𝑃1
𝐵/𝐴
(𝑀) = 𝐵 ⊗𝐴 𝑀/(𝐼2

Δ𝐵 ⊗𝐴 𝑀), where 𝐼Δ is the kernel of the map of A-algebras
𝐵 ⊗𝐴 𝐵 → 𝐵; the B-module structure on 𝑃1

𝐵/𝐴
(𝑀) is given by action on the left side of the tensor

product. Therefore, we have natural isomorphisms 𝑃𝐵/𝐴(𝑀) ⊗𝐵 𝑁 � 𝑁 ⊗𝐵 𝑃𝐵/𝐴(𝑀) � 𝑁 ⊗𝐴𝑀/𝐼𝑁 ,𝑀 ,
where 𝐼𝑁 ,𝑀 := 𝐼2

Δ (𝑁 ⊗𝐴 𝑀), and similarly with N and M reversed.
We then have that the left-hand side of the equality in the lemma is represented by the Baer sum of

the following two exact sequences:

0→ Ω𝐵/𝐴 ⊗𝐵 𝑀 ⊗𝐵 𝑁
𝑗1
−→ 𝑁 ⊗𝐴 𝑀/𝐼2

𝑁 ,𝑀

𝑝1
−−→ 𝑀 ⊗𝐵 𝑁 → 0, (5.1)

0→ Ω𝐵/𝐴 ⊗𝐵 𝑀 ⊗𝐵 𝑁
𝑗2
−→ 𝑀 ⊗𝐴 𝑁/𝐼2

𝑀,𝑁

𝑝2
−−→ 𝑀 ⊗𝐵 𝑁 → 0, (5.2)

where

𝑗1(𝑑𝑏 ⊗ 𝑚 ⊗ 𝑛) = [𝑏𝑛 ⊗ 𝑚 − 𝑛 ⊗ 𝑏𝑚],

𝑝1 ([𝑛 ⊗ 𝑚]) = 𝑚 ⊗ 𝑛, and
𝑗2(𝑑𝑏 ⊗ 𝑚 ⊗ 𝑛) = [𝑏𝑚 ⊗ 𝑛 − 𝑚 ⊗ 𝑏𝑛],

𝑝2 ([𝑚 ⊗ 𝑛]) = 𝑚 ⊗ 𝑛.

We make the definition of the Baer sum explicit: We have submodules

𝑄 ⊂ 𝑅 ⊂ 𝑁 ⊗𝐴 𝑀/𝐼2
𝑁 ,𝑀 ⊕ 𝑀 ⊗ 𝑁/𝐼2

𝑀,𝑁 ,

given by

𝑅 = {(𝑎, 𝑏) | 𝑝1 (𝑎) = 𝑝2 (𝑏)};

𝑄 = {( 𝑗1(𝑥),− 𝑗2(𝑥)) | 𝑥 ∈ Ω𝐵/𝐴 ⊗𝐵 𝑀 ⊗𝐵 𝑁}.

Then the Baer sum of (5.1) and (5.2) is given by

0→ Ω𝐵/𝐴 ⊗𝐵 𝑀 ⊗𝐵 𝑁
𝑗3
−→ 𝑅/𝑄

𝑝3
−−→ 𝑀 ⊗𝐵 𝑁 → 0,

where the maps are defined by 𝑝3 ((𝑎, 𝑏) +𝑄) = 𝑝1 (𝑎), and 𝑗3(𝑥) = ( 𝑗1 (𝑥), 0) +𝑄.
Note that we also have (by exactness of the sequences (5.1) and (5.2))

𝑄 = {(
∑
[𝑛𝑖 ⊗ 𝑚𝑖],

∑
[𝑚𝑖 ⊗ 𝑛𝑖]) |

∑
𝑚𝑖 ⊗ 𝑛𝑖 = 0 in 𝑀 ⊗𝐵 𝑁}. (5.3)
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We claim that this extension is isomorphic to 𝑃1
𝐵/𝐴
(𝑀 ⊗𝐵 𝑁). We first construct a map of B-modules

𝑃1
𝐵/𝐴
(𝑀 ⊗𝐵 𝑁) → 𝑅/𝑄. By the universal property of the module of principal parts, this is equivalent

to giving an A-linear degree one differential operator 𝑀 ⊗𝐵 𝑁 → 𝑅/𝑄. We define

𝐷 : 𝑀 ⊗𝐵 𝑁 → 𝑅/𝑄,∑
𝑚𝑖 ⊗ 𝑛𝑖 ↦→ ([

∑
𝑛𝑖 ⊗ 𝑚𝑖], [

∑
𝑚𝑖 ⊗ 𝑛𝑖]) +𝑄.

This is well defined since if
∑
𝑚𝑖 ⊗ 𝑛𝑖 =

∑
𝑚′𝑗 ⊗ 𝑛′𝑗 in 𝑀 ⊗𝐵 𝑁 , then the difference

([
∑

𝑛𝑖 ⊗ 𝑚𝑖 −
∑

𝑛′𝑗 ⊗ 𝑚′𝑗 ], [
∑

𝑚𝑖 ⊗ 𝑛𝑖 −
∑

𝑚′𝑗 ⊗ 𝑛′𝑗 ])

lies in Q due to (5.3). The map D is clearly A-linear, and a first order differential operator, since for any
𝑏 ∈ 𝐵, we have

𝐷 (𝑏(𝑚 ⊗ 𝑛)) − 𝑏𝐷 (𝑚 ⊗ 𝑛) = ([𝑛 ⊗ 𝑏𝑚 − 𝑏𝑛 ⊗ 𝑚], 0) +𝑄,

and thus, the map 𝑥 ↦→ 𝐷 (𝑏𝑥) − 𝑏𝐷 (𝑥) is B-linear. Thus, we have the corresponding map of B-modules

𝑃1
𝐵/𝐴(𝑁 ⊗𝐵 𝑀) → 𝑅/𝑄

[𝑏 ⊗ 𝑥] ↦→ 𝑏𝐷 (𝑥).

A straightforward explicit computation shows that the diagram

0 Ω𝐵/𝐴 ⊗𝐵 𝑁 ⊗𝐵 𝑀 𝑃1
𝐵/𝐴
(𝑁 ⊗𝐵 𝑀) 𝑁 ⊗𝐵 𝑀 0

0 Ω𝐵/𝐴 ⊗𝐵 𝑁 ⊗𝐵 𝑀 𝑅/𝑄 𝑁 ⊗𝐵 𝑀 0

commutes, which finishes the proof. �

Since taking tensor products, Kähler differentials, modules of principal parts and Baer sums commute
with sheafification and are suitably functorial, we have as a consequence the following:
Corollary 5.2. Lemma 5.1 holds when A and B are rings in a topos.

Using Lemma 5.1, we can prove the tensor compatibility of the Atiyah class. Regard 𝐸 ⊗ at𝐹 as a
map 𝐸 ⊗ 𝐹 → 𝐿X /Y ⊗ 𝐸 ⊗ 𝐹 [1] via the composition

𝐸 ⊗ 𝐹
𝐸⊗at𝐹
−−−−−→ 𝐸 ⊗ (𝐿X /Y ⊗ 𝐹 [1]) � 𝐸 ⊗ 𝐿X /Y ⊗ 𝐹 [1] � 𝐿X /Y ⊗ 𝐸 ⊗ 𝐹 [1] .

Here, the second map is the map defining the triangulated structure on 𝐸 ⊗ −, and the third map is the
symmetry isomorphism exchanging E and 𝐿X /Y .
Proposition 5.3. Let X → Y be a morphism of algebraic stacks, and 𝐸, 𝐹 ∈ 𝐷≤0

𝑞𝑐𝑜ℎ (OX ). Then we
have the equality

at𝐸⊗𝐹 = at𝐸 ⊗𝐹 + 𝐸 ⊗ at𝐹 .

Proof. We use the setup of Construction 4.1. Without loss of generality, we may assume that E is
represented by a complex of flat OX -modules, so in particular, we may choose 𝐸 ⊗ 𝐹 ∈ 𝐷≤0

𝑞𝑐𝑜ℎ (OX ) to
be represented by the usual tensor product of the complexes E and F. Let 𝐸𝑅 → 𝐸𝑊‖ be a flat resolution
of the R-module 𝐸𝑊‖ . By the construction of the Atiyah class in 4.1, we may use the exact sequences

𝑃1
𝑅/ℎ−1

‖
O𝑌‖

(𝐸𝑅) and 𝑃1
𝑅/ℎ−1

‖
O𝑌‖

(𝐸𝑅 ⊗𝑅 𝐹𝑊‖ )
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to compute at𝐸 and at𝐸⊗𝐹 , respectively. By Corollary 5.2, we have an equality of extensions of R-
modules

𝑃1
𝑅/ℎ−1

‖
O𝑌‖

(𝐸𝑅) ⊗𝑅 𝐹𝑊‖ + 𝐸𝑅 ⊗𝑅 𝑃1
𝑅/ℎ−1

‖
O𝑌‖

(𝐹𝑊‖ ) = 𝑃1
𝑅/ℎ−1

‖
O𝑌‖

(𝐸𝑅 ⊗𝑅 𝐹𝑊‖ ).

After taking connecting maps in 𝐷Δ (𝑅) and using that extensions of scalars and the Dold-Kan corre-
spondence are compatible with the symmetry isomorphisms of the derived tensor product, we get an
equality of maps

at𝐸𝑊‖
⊗𝐹𝑊‖

= at𝐸𝑊‖
⊗𝐹𝑊‖ + 𝐸𝑊‖ ⊗ at𝐹𝑊‖ .

By Lemma 2.7, this implies the result after passing to 𝐷≤0 (O𝑊• ) and then to 𝐷≤0 (X ). �

If we assume that one of the Atiyah classes of E or F vanish, this simplifies to the following:

Corollary 5.4. Suppose that at𝐹 = 0 (respectively that at𝐸 = 0), then we have at𝐸⊗𝐹 = at𝐸 ⊗𝐹
(respectively at𝐸⊗𝐹 = 𝐸 ⊗ at𝐹 ) after identifying the targets using symmetry of the tensor product.

Corollary 5.5 (Shift invariance). For 𝐸 ∈ 𝐷≤0
𝑞𝑐𝑜ℎ (X ), the following diagram commutes:

𝐸 [1] 𝐿X /Y [1] ⊗ (𝐸 [1])

𝐿X /Y [1] ⊗ 𝐸 [1],

at𝐸 [1]

at𝐸 [1]
𝜏

where 𝜏 is the map defining the triangulated structure on the tensor product functor 𝐿X /Y [1] ⊗ − (see
[22, Tag 0G6A and Tag 0G6E]).

Proof. This follows from Proposition 5.3 applied to 𝐹 ⊗ 𝐸 with 𝐹 = OX [1] and noting that at𝐹 = 0,
since F is pulled back from Y . �

Construction 5.6. Using Corollary 5.5, we extend the definition of at𝐸 to any 𝐸 ∈ 𝐷−𝑞𝑐𝑜ℎ (X ): Choose
some large enough integer 𝑁 ≥ 0, so that 𝐸 [𝑁] ∈ 𝐷≤0

𝑞𝑐𝑜ℎ (X ), so that at𝐸 [𝑁 ] is defined. Then define
at𝐸 via the commutative diagram

𝐸 [𝑁] 𝐿X /Y ⊗ (𝐸 [𝑁])

𝐿X /Y [1] ⊗ 𝐸 [𝑁],

at𝐸 [𝑁 ]

at𝐸 [𝑁 ] 𝜏 (𝑁 )

where we take 𝜏 (𝑁 ) := 𝜏[𝑁] ◦ · · · ◦ 𝜏. Explicitly, we have

at𝐸 := (𝜏 (𝑁 ) ◦ at𝐸 [𝑁 ] ) [−𝑁] .

Corollary 5.5 guarantees that this is independent of the choice of N.

Remark 5.7. In what follows, we will generally check properties of the Atiyah class for objects 𝐸 ∈ 𝐷≤0.
In each case, one may check that the statement is appropriately invariant under shifts.

Another consequence is the following:
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Corollary 5.8. The following diagram is a morphism of exact triangles:

𝐹 𝐸 𝐺 𝐹 [1]

𝐿X /Y [1] ⊗ 𝐹 𝐿X /Y [1] ⊗ 𝐸 𝐿X /Y [1] ⊗ 𝐺 𝐿X /Y [1] ⊗ 𝐹 [1] .

at𝐹 at𝐸 at𝐺 at𝐹 [1]

Here, the lower row is obtained by applying the triangulated functor 𝐿X /Y [1] ⊗ − to the upper row.

Proof. The commutativity of the first two squares follows from the functoriality of the Atiyah class
(Lemma 4.2), while the commutativity of the last square follows from functoriality combined with
Corollary 5.5. �

5.2. Compatibility with traces

We let 𝑓 : X → Y be a morphism of algebraic stacks and consider Atiyah classes with respect to this
morphism. In Proposition 5.9 and Corollary 5.10, we make global boundedness assumptions, but the
results likely hold for arbitrary perfect complexes; cf. [11].

Proposition 5.9. Let 𝐹 → 𝐸 → 𝐺 → 𝐹 [1] be a distinguished triangle of perfect complexes in
𝐷𝑏
𝑞𝑐𝑜ℎ (X ) and assume each of 𝐸, 𝐹, 𝐺 has finite Tor-amplitude. Then

tr(at𝐸 ) = tr(at𝐹 ) + tr(at𝐺).

Proof. By the shift invariance of the Atiyah class and Lemma 2.16, we may assume that the given
distinguished triangle is represented by a short exact sequence of complexes

0→ 𝐹 → 𝐸 → 𝐺 → 0,

where 𝐹, 𝐸, 𝐺 have flat components and lie in 𝐶≤0(X ).
We then use the setup of Situation 2.18 with 𝐿 = 𝐿X /Y [1] and 𝑅 = OX (this is justified by Corollary

5.8). Then by Proposition 2.20, we need to find a morphism

𝐸 ⊗ 𝐸∨

𝐹 ⊗ 𝐺∨
→ 𝐿X /Y ⊗

𝐸 ⊗ 𝐸∨

𝐹 ⊗ 𝐺∨

making the diagram there commute. By the assumption on Tor-dimension, each term of the sequence

0→ 𝐺∨ → 𝐸∨ → 𝐹∨ → 0

lies in 𝐷−𝑞𝑐𝑜ℎ (X ). We can therefore find an integer N, such that the natural maps from the good truncation
𝜏≤𝑁 are quasi-isomorphisms for each term. Set 𝐸 := (𝜏≤𝑁 𝐸) [𝑁] and define 𝐹, 𝐺 in the same way,
so that we obtain an exact sequence in 𝐶≤0 (OX ). We also let 𝐸𝑊‖ , 𝐹𝑊‖ and 𝐺𝑊‖ denote the induced
complexes of O𝑊‖ -modules, which we regard as simplicial modules via the Dold–Kan correspondence
and as R-modules by restriction of scalars. Choose resolutions of 𝐹𝑊‖ , 𝐸𝑊‖ and 𝐺𝑊‖ by termwise flat
R-modules, so that we have a morphism of exact sequences

0 𝐹𝑅 𝐸𝑅 𝐺𝑅 0

0 𝐹𝑊‖ 𝐸𝑊‖ 𝐺𝑊‖ 0.

https://doi.org/10.1017/fms.2024.109 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.109


Forum of Mathematics, Sigma 43

We then obtain a natural morphism of exact sequences of R-modules

𝑃1
𝑅/ℎ−1O𝑌‖

(𝐹𝑅) ⊗𝑅 𝐺𝑊‖ → 𝑃1
𝑅/ℎ−1O𝑌‖

(𝐸𝑅) ⊗𝑅 𝐸.

This is termwise an injection of complexes, so we get a quotient exact sequence 𝑆 of the form

0→ Ω1
𝑅/ℎ−1O𝑌‖

⊗𝑅
𝐸𝑅 ⊗𝑅 𝐸𝑊‖

𝐹𝑅 ⊗𝑅 𝐺𝑊‖

→ ∗ ∗ ∗ →
𝐸𝑅 ⊗ 𝐸𝑊‖

𝐹𝑅 ⊗ 𝐺𝑊‖

→ 0.

Taking the connecting map of this sequence and passing back to 𝐷 (𝑊‖), we obtain a morphism 𝛼
making the following square commute:

𝐸𝑊‖ ⊗ 𝐸𝑊‖
𝐸𝑊‖

⊗𝐸𝑊‖

𝐹𝑊‖ ⊗𝐺𝑊‖

𝐿𝑊‖/𝑌‖ [1] ⊗ 𝐸𝑊‖ ⊗ 𝐸𝑊‖ 𝐿𝑊‖/𝑌‖ [1] ⊗
𝐸𝑊‖

⊗𝐸𝑊‖

𝐹𝑊‖ ⊗𝐺𝑊‖

.

at𝐸𝑊‖
⊗𝐸𝑊‖ 𝛼

We claim that the diagram

𝐹𝑊‖ ⊗ 𝐹𝑊‖
𝐸𝑊‖

⊗𝐸𝑊‖

𝐹𝑊‖ ⊗𝐺𝑊‖

𝐿𝑊‖/𝑌‖ [1] ⊗ 𝐹𝑊‖ ⊗ 𝐹𝑊‖ 𝐿𝑊‖/𝑌‖ [1] ⊗
𝐸𝑊‖

⊗𝐸𝑊‖

𝐹𝑊‖ ⊗𝐺𝑊‖

at𝐹𝑊‖ ⊗𝐹𝑊‖ 𝛼 (5.4)

also commutes (and similarly with G in place of F in the left column). This follows from the observation
that the exact sequence 𝑃1

𝑅/ℎ−1
‖
O (𝑌‖ )

(𝐹𝑅) ⊗ 𝐹𝑊‖ is isomorphic to the termwise cokernel of the map of
exact sequences

𝑃1
𝑅/ℎ−1O𝑌‖

(𝐹𝑅) ⊗𝑅 𝐺𝑊‖ → 𝑃1
𝑅/ℎ−1O𝑌‖

(𝐹𝑅) ⊗𝑅 𝐸𝑊‖ ,

and thus includes into 𝑆. Then we get the commutativity (5.4) by taking connecting morphisms and
passing to 𝐷 (𝑊‖). The argument for G in place of F goes similarly. Taking 𝜂𝑊 ∗ ◦ ConeO𝑊‖

(𝛼) ◦ [−1]
then gives a morphism

𝐸 ⊗ 𝐸∨

𝐹 ⊗ 𝐺∨
[𝑁] → 𝐿X /Y ⊗

𝐸 ⊗ 𝐸∨

𝐹 ⊗ 𝐺∨
[𝑁] .

Shifting by −𝑁 gives the desired map in Proposition 2.20. �

Corollary 5.10. Let 𝐸 ∈ 𝐷−𝑞𝑐𝑜ℎ (OX ) be an object that can be represented by a finite length complex of
locally free sheaves. Then we have an equality of maps OX → 𝐿X /Y [1]:

tr(at𝐸 ) =
atdet𝐸
det 𝐸

.

Proof. We argue by induction on the number k of nonzero components in a resolution by locally free
sheaves. Without loss of generality, we may assume that E is given by such a resolution. If 𝑘 = 1, the
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result follows from Example 4.10. If 𝑘 > 1, we may write 𝑘 = 𝑘1 + 𝑘2 for positive integers 𝑘1, 𝑘2 and
can take bad truncations of E to get an exact sequence of complexes

0→ 𝐹 → 𝐸 → 𝐺 → 0,

where F has 𝑘1 nonzero components and G has 𝑘2, and they are all locally free. Then by Proposition 5.9
and the induction hypothesis, on one hand, we have

tr(at𝐸 ) = tr(at𝐹 ) + tr(at𝐺) =
atdet𝐹
det 𝐹

+
atdet𝐺
det𝐺

.

On the other hand, the determinant is multiplicative in exact sequences of perfect complexes, which
gives det 𝐸 = det 𝐹 ⊗ det𝐺. Using the tensor compatibility Proposition 5.3, we find

atdet𝐸
det 𝐸

=
atdet𝐹 ⊗ det𝐺 + det 𝐹 ⊗ atdet𝐺

det 𝐹 ⊗ det𝐺
=

atdet𝐹
det 𝐹

+
atdet𝐺
det𝐺

. �

5.3. Compatibility of Atiyah class and reduced Atiyah class

We prove Proposition 1.1. Consider the setup of Construction 4.11 and letY → Z be a further morphism
of algebraic stacks. Choose a diagram

𝑋 X𝑌 X𝑍 X

𝑌 Y𝑍 Y

𝑍 Z

in which all squares are cartesian, the horizontal morphisms are smooth and surjective, and 𝑋,𝑌 and
Z are algebraic spaces. We let 𝑋•, 𝑌• and 𝑍• be the strictly simplicial algebraic spaces associated to
compositions along the horizontal rows, respectively. We also let 𝑉 := 𝑌 ×Y𝑍 𝑌 with strictly simplicial
algebraic space 𝑉• associated to the morphism 𝑉 → Y , and further 𝑊 := 𝑋 ×X𝑌 𝑋 and 𝑊 := 𝑋 ×X𝑍 𝑋
with strictly simplicial algebraic spaces 𝑊• and 𝑊• associated to the morphisms to X . We have the
following natural commutative diagram:

𝑋• 𝑊• 𝑋•

𝑋• 𝑊• 𝑋•

𝑌• 𝑉• 𝑌•.

𝑠• 𝑡•

𝑡•𝑠•

𝑠• 𝑡•

Here, by abuse of notation, we use 𝑠• and 𝑡• to denote the morphisms given by (degreewise) projection
to the first and second factor, respectively. We define diagrammatic topoi 𝑊‖ , 𝑊‖ and 𝑉‖ by the rows
of this diagram and 𝑌‖ and 𝑍 ‖ associated to the constant diagram with values 𝑌• and 𝑍•, respectively.
Then we have morphisms

𝑊‖
𝑗‖
−→ 𝑊‖ → 𝑉‖ → 𝑌‖ → 𝑍 ‖ .

Denote the sheaves on either of these obtained by pulling back 𝐸, 𝐹 or G, respectively, by a corresponding
subscript. In particular, we have 𝐸𝑌‖ on Y, which is Tor-independent with the morphism 𝑊‖ → 𝑌‖ , and
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we have an exact sequence

0→ 𝐹𝑊‖ → 𝐸𝑊‖ → 𝐺𝑊‖ → 0.

By construction, the reduced Atiyah class at𝐸,X /Y ,𝐺 is obtained from at𝐸𝑌‖ ,𝑊‖/𝑌‖ ,𝐺‖ by applying
ConeO𝑊‖

and descent to 𝐷 (X ). Similarly, the Atiyah class at𝐸,Y/Z is obtained from at𝐸𝑉‖
,𝑉‖/𝑍‖ by

applying ConeO𝑉‖
and passing to 𝐷 (Y).

Let �̃� ‖ denote the morphism 𝑊‖ → 𝑉‖ . By Proposition 3.10, we have the anti-commutative diagram

𝐹𝑊‖ 𝐿𝑊‖/𝑉‖ ⊗ 𝐺𝑊‖

𝐸𝑊‖ �̃� ∗
‖
𝐿𝑉‖/𝑍‖ [1] ⊗ 𝐸𝑊‖ �̃� ∗

‖
𝐿𝑉‖/𝑍‖ [1] ⊗ 𝐺𝑊‖

.

at𝐸𝑉‖
,𝑊‖ /𝑉‖ ,𝐺𝑊‖

𝑓 ∗
‖

at𝐸𝑉‖
,𝑉‖ /𝑍‖

We also have a morphism 𝑌‖ → 𝑉‖ induced by the morphism 𝑌• → 𝑉•, given by the diagonal of
𝑌𝑛 ×Y𝑍𝑛

𝑌𝑛 in degree n. This fits into the commutative diagram

𝑊‖ 𝑊‖

𝑌‖ 𝑉‖ .

𝑗‖

Here, the horizontal maps are Tor-independent to 𝐸𝑉‖ and to 𝐸𝑊‖ and 𝐺𝑊‖
, respectively; thus, we can

apply Corollary 3.8. Moreover, the pullback 𝑗∗
‖
𝐿𝑊‖/𝑉‖ → 𝐿𝑊‖/𝑌‖ is a quasi-isomorphism (this follows,

since the morphisms 𝑌• → 𝑉• ← 𝑊• are Tor-independent, which can be checked degreewise). In
conclusion, by pulling back along 𝑗 ‖ , we obtain an anti-commutative diagram in 𝐷 (𝑊‖):

𝐹𝑊‖ 𝐿𝑊‖/𝑌‖ ⊗ 𝐺𝑊‖

𝑗∗
‖
𝐿𝑊‖/𝑉‖ ⊗ 𝐺𝑊‖

𝐸𝑊‖ 𝑓 ∗
‖
𝐿𝑉‖/𝑍‖ [1] ⊗ 𝐸𝑊‖ 𝑓 ∗

‖
𝐿𝑉‖/𝑍‖ [1] ⊗ 𝐺𝑊‖ ,

at𝐸𝑌‖ ,𝑊‖ /𝑌‖ ,𝐺𝑊‖

∼

𝑓 ∗
‖

at𝐸𝑉‖
,𝑉‖ /𝑍‖

where 𝑓 ‖ is the morphism 𝑊‖ → 𝑉‖ . By applying ConeO𝑊‖
and passing to 𝐷 (X ), we conclude the

following:

Proposition 5.11. The diagram

𝐹 𝐿X /Y ⊗ 𝐺

𝐸X 𝑓 ∗𝐿Y/Z [1] ⊗ 𝐸 𝑓 ∗𝐿Y/Z [1] ⊗ 𝐺

at𝐸,X/Y ,𝐺

𝑓 ∗ at𝐸,Y/Z

anti-commutes.

If 𝐸, 𝐹, 𝐺 are perfect complexes, this directly implies Proposition 1.1.
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5.4. Compatibilities of the Atiyah class for an exact sequence

Proposition 5.12. The map at𝐸,X /Y is functorial in Y – that is, given a map Y → Z , the composition

𝐸∨ ⊗ 𝐸

𝐺∨ ⊗ 𝐹
[−1]

at𝐸,X/Z
−−−−−−→ 𝐿X /Z → 𝐿X /Y

equals at𝐸,X /Y (at least assuming we make the same choices of N in the construction).

Proof. We use the setup of §5.3. There we had the topoi

𝑊‖ → 𝑊‖ → 𝑉‖ → 𝑌‖ → 𝑍 ‖

and the following morphisms of maps of topoi

𝑊‖/𝑌‖ → 𝑊‖/𝑉‖ → 𝑊‖/𝑍 ‖

whose cotangent complexes represent (after taking cones and shifting) 𝐿X /Y , 𝐿X /Y and 𝐿X /Z , respec-
tively. The result now follows from Corollary 3.13 and Lemma 3.14. �

Proof of Proposition 1.3. The commutativity of the first square follows from the functoriality of the
usual Atiyah class and Corollary 4.15. Commutativity of the second square follows from Proposition
5.12 and Corollary 4.16. Finally, the commutativity of the square involving connecting morphisms is
Proposition 5.11. �

6. Deformation theoretic properties

In this section, we prove Theorem 1.4. The proof of Proposition 1.5 is similar, but not addressed here.
For details see [3, §4]. In §§6.3–6.5, we use the following notation: X is a smooth projective variety
over a base field k, and M is an open substack of the moduli stack of coherent sheaves on X.4

6.1. Deformations of morphisms to algebraic stacks

Let Y be an algebraic stack over a base scheme S and let T be a scheme over S. Here, we consider the
problem of deforming maps from the scheme T to Y . As a special case of [17, Theorem 1.5], we have
the following:

Theorem 6.1. Let 𝑔 : 𝑇 → Y be a morphism and let 𝑗 : 𝑇 ↩→ 𝑇 be a square zero extension of T by a
quasicoherent sheaf I. Then,

1) there is a natural obstruction class 𝜔(𝑔, 𝑇) ∈ Ext1 (𝑔∗𝐿Y , 𝐼) which vanishes if and only if there is
an extension of g to a morphism 𝑔 : 𝑇 → Y .

2) if an extension of g to 𝑇 exists, then the set of isomorphism classes of extensions naturally forms a
torsor under Ext0(𝑔∗𝐿Y , 𝐼).

3) for a fixed extension 𝑔 of g, the set of automorphisms of 𝑔 as an extension of g is canonically
isomorphic to Ext−1 (𝑔∗𝐿Y , 𝐼).

One can describe the characterizations in Theorem 6.1 explicitly.

Remark 6.2 (Obstructions). The morphism g induces a natural map 𝑔∗𝐿Y → 𝐿𝑇 . Similarly, j induces
a natural map 𝐿𝑇 → 𝐿𝑇 /𝑇 , and 𝐿𝑇 /𝑇 is concentrated in degrees ≤ −1 with ℎ−1 (𝐿𝑇 /𝑇 ) naturally
isomorphic to I. The obstruction class 𝜔(𝑔, 𝑇) is then given by the composition

𝑔∗𝐿Y → 𝐿𝑇 /𝑇 → 𝐼 [1] .

4See, for example, [22, Theorem 08WC].
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This follows from the construction in [17, 4.8] and the construction of the obstruction class for topoi in
[7, III 2.2].

Remark 6.3 (Deformations). For a given 𝑔 : 𝑇 → Y , let 𝑇 be the trivial extension of T by I, given
by taking the structure sheaf O𝑇 ⊕ 𝐼 on T. Then there is a natural morphism 𝑇 → 𝑇 corresponding
to the inclusion O𝑇 ⊕ {0} ⊂ O𝑇 ⊕ 𝐼, giving rise to a canonical extension of g as the composition
𝑇 → 𝑇 → Y . Taking this as a base point, the torsor structure in Theorem 6.1 (2) induces a bijection
between the set of isomorphism classes of extensions of g and the group Ext0(𝑔∗𝐿Y , 𝐼). To describe this
bijection explicitly, note that we have a natural isomorphism ℎ0(𝑖∗𝐿𝑇 /𝑇 ) � 𝐼. Now, for a given extension
𝑔 : 𝑇 → Y , consider the composition 𝑔∗𝐿Y → 𝐿𝑇 → 𝐿𝑇 /𝑇 . Up to given isomorphisms, this restricts
to a map 𝛼𝑔 : 𝑔∗𝐿Y → 𝐼 on T. The association 𝑔 ↦→ 𝛼𝑔 is the bijection in question. This follows from
[17, 4.8] and the construction in [7, III 2.2].

Remark 6.4 (Automorphisms). Consider a fixed square zero extension 𝑗 : 𝑇 ↩→ 𝑇 with sheaf of ideals
I, and an extension 𝑔 : 𝑇 → Y of g. Let Aut(𝑔) denote the automorphism group of 𝑔 as an extension
of g (i.e., the group of 2-isomorphisms of 𝑔 : 𝑇 → Y that restrict to the identity 2-isomorphism when
restricted to T). Let AutY (𝑇) denote the group of automorphisms of 𝑇 as an extension of T over Y
whose elements are pairs (𝑎, 𝜙), where 𝑎 : 𝑇 → 𝑇 is an automorphism satisfying 𝑎 ◦ 𝑗 = 𝑗 , and where
𝜙 is a 2-isomorphism 𝜙 : 𝑔 ◦ 𝑎 ⇒ 𝑔. Similarly, we let Aut𝑆 (𝑇) denote the group of automorphisms of 𝑇
as an extension of T over S. Then we have a natural forgetful map AutY (𝑇) → Aut𝑆 (𝑇) whose Kernel
is Aut(𝑔). We have identifications Ext0(𝐿𝑋/Y , 𝐼) � AutY (𝑇), which are natural in Y (and, in particular,
hold for S in place of Y), and via the exact triangle 𝑔∗𝐿Y/𝑆 → 𝐿𝑇 /𝑆 → 𝐿𝑇 /Y

+1
−−→, we obtain the exact

sequence

0→ Ext−1(𝑔∗𝐿Y/𝑆 , 𝐼) → Ext0(𝐿𝑇 /Y , 𝐼) → Ext0(𝐿𝑇 /𝑆 , 𝐼).

By what is said above, this gives an identification

Ext−1(𝑔∗𝐿Y/𝑆 , 𝐼) � Aut(𝑔).

For our purposes, a different characterization of the bijection Ext−1 (𝑔∗𝐿Y/𝑆 , 𝐼) � Aut(𝑔) than the
one given in Remark 6.4 will be needed. For the rest of this subsection, we consider the case where 𝑇
is the trivial square zero extension of T by I and where 𝑔 is the trivial extension of g. Let 𝑦 : 𝑌 → Y
be a smooth cover by an algebraic space and assume that 𝑔 : 𝑇 → Y factors through Y (this can always
be arranged by passing to an étale cover of T, which is enough for our later application). We fix such a
factorization 𝑔𝑌 : 𝑇 → 𝑌 (with an implicit choice of 2-isomorphism 𝑦 ◦ 𝑔𝑌 ⇒ 𝑔). Form the Cartesian
diagram

𝑍 𝑌

𝑌 Y .

𝑡

𝑠

We observe that Y naturally has the structure of a groupoid algebraic space with the space of morphisms
given by Z and that we have a natural equivalence [𝑌/𝑍] ∼−→ Y . Moreover, by definition of the 2-cartesian
product, the set of automorphisms of the morphism 𝑔 : 𝑇 → Y is in natural bijection to the set of maps
𝑓 : 𝑇 → 𝑍 satisfying 𝑠 ◦ 𝑓 = 𝑡 ◦ 𝑓 = 𝑔𝑌 . In particular, there is a morphism 𝑒 : 𝑇 → 𝑍 corresponding
to the identity automorphism of 𝑔𝑌 .

Now let 𝑔𝑌 denote the composition𝑇 → 𝑇
𝑔𝑌
−−→ 𝑌 , which is a lift of 𝑔. Then we observe the following:

Lemma 6.5. We have a natural bijection between Aut(𝑔) and the set of morphisms 𝑓 : 𝑇 → 𝑍 satisfying
𝑠 ◦ 𝑓 = 𝑡 ◦ 𝑓 = 𝑔𝑌 and 𝑓 ◦ 𝑗 = 𝑒. In other words, the group of infinitesimal automorphisms of 𝑔 is
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in bijection with the group of deformations of e to 𝑇 that induce the trivial deformation of 𝑔𝑌 upon
composition with either s or t.

As a consequence of this Lemma, we have a canonical isomorphism

Aut(𝑔) � Ker
(
Hom(𝑒∗𝐿𝑍 , 𝐼)

(−𝑠∗ ,𝑡∗)
−−−−−−→ Hom(𝑒∗𝑠∗𝐿𝑌 , 𝐼) ⊕ Hom(𝑒∗𝑡∗𝐿𝑌 , 𝐼)

)
.

Let 𝑧 := 𝑦 ◦ 𝑠 : 𝑍 → Y . By Lemma 2.11, we have the natural isomorphism

𝑧∗𝐿Y � Cone(𝑠∗𝐿𝑌 ⊕ 𝑡∗𝐿𝑌 → 𝐿𝑍 ) [−1] .

Using this, we get an identification

Aut(𝑔) � Ext−1 (𝑒∗𝑧∗𝐿Y , 𝐼) = Ext−1 (𝑔∗𝐿Y , 𝐼)

𝜑 ↦→ 𝜏𝜑 .
(6.1)

6.2. Deformations of sheaves

Let 𝑋,𝑇 be schemes over a common base field k. Let 𝑇 ↩→ 𝑇 be a square zero extension defined by an
ideal sheaf I. Let also E be a T-flat quasicoherent sheaf on 𝑋 ×𝑇 . We consider the problem of extending
E to a 𝑇-flat coherent sheaf on 𝑋 × 𝑇 . Let 𝜋 : 𝑋 × 𝑇 → 𝑇 denote the projection. By [7, IV Proposition
3.1.8], we have the following:

Theorem 6.6. 1) There is a natural obstruction class 𝜔𝑠ℎ (𝐸,𝑇) ∈ Ext2𝑋×𝑇 (𝐸, 𝜋
∗𝐼 ⊗𝐸) which vanishes

if and only if there is an extension of E to a 𝑇-flat sheaf on 𝑋 × 𝑇 .
2) If a 𝑇-flat extension of E to 𝑋 × 𝑇 exists, then the set of isomorphism classes of such extensions

naturally forms a torsor under Ext1𝑋×𝑇 (𝐸, 𝜋
∗𝐼 ⊗ 𝐸).

3) For a fixed 𝑇-flat extension 𝐸 , the set of automorphisms of 𝐸 which restrict to the identity on E is
canonically isomorphic to Hom𝑋×𝑇 (𝐸, 𝜋

∗𝐼 ⊗ 𝐸).

We make some of the natural maps implied in this theorem explicit.

Remark 6.7 (Obstructions). For a given 𝑇 , the obstruction class 𝜔𝑠ℎ (𝐸,𝑇) is given by the composition

𝐸
at𝐸,𝑋×𝑇 /𝑆
−−−−−−−−→ 𝐿𝑋×𝑇 [1] ⊗ 𝐸 → 𝐿𝑋×𝑇 /𝑋×𝑇 [1] ⊗ 𝐸 → 𝜋∗𝐼 [2] ⊗ 𝐸.

Here, the first map is the Atiyah class, the second map is induced from the naturality of cotangent
complexes, and the last map is induced from the natural identification 𝜏≥1𝐿𝑇 /𝑇 � 𝐼 [1]. This is proven
in [7, IV Proposition 3.1.8].

Remark 6.8 (Deformations). Let 𝑇 be the trivial extension of T by I. Then there is a canonical
flat extension of E to 𝑋 × 𝑇 given by 𝐸 ⊕ 𝜋∗𝐼 ⊗ 𝐸 , with multiplication by I given by 𝑗 (𝑒, 0) =
(0, 𝑗 𝑒) for local sections. The torsor structure on the space of extensions therefore gives rise to a
bijection between Ext1𝑋×𝑇 (𝐸, 𝐼 ⊗ 𝐸) and the set of extensions of E to 𝑇 . To describe this bijection, let
𝜈 ∈ Ext1𝑋×𝑇 (𝐸, 𝜋

∗𝐼 ⊗ 𝐸), corresponding to an extension

0→ 𝐸 ⊗ 𝐼
𝜇
−→ 𝐸

𝜌
−→ 𝐸 → 0.

We make this into an O𝑋×𝑇 ⊕ 𝜋∗𝐼-module, by defining the action of I on 𝐸 on local sections as
𝑗𝑥 := 𝜇( 𝑗 ⊗ 𝜌(𝑥)). One checks that this defines a 𝑇-flat coherent sheaf on 𝑋 × 𝑇 extending E. It is
straightforward to see that this construction is invertible.

Remark 6.9 (Automorphisms). Let 𝑇 be the trivial extension of T by I and let 𝐸 = 𝐸 ⊕ 𝜋∗𝐼 ⊗ 𝐸 be the
canonical flat extension of E to 𝑇 . For an element 𝑎 ∈ Hom𝑋×𝑇 (𝐸, 𝜋

∗𝐼 ⊗ 𝐸), the map 𝜓𝑎 : 𝐸 → 𝐸
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given locally by (𝑥1, 𝑗 ⊗ 𝑥2) ↦→ (𝑥1, 𝑗 ⊗ 𝑥2 + 𝜑(𝑥1)) is an automorphism of 𝐸 which restricts to the
identity on E. This gives the claimed bijection of automorphism groups for this choice of 𝐸 .

Remark 6.10. Suppose that X is a smooth projective variety and that T is of finite type over k. Then in
particular, E has a finite length resolution by locally free sheaves. Then we have natural isomorphisms

Ext𝑖𝑋×𝑇 (𝐸, 𝜋
∗𝐼 ⊗ 𝐸) � Ext𝑖𝑋×𝑇 (O𝑋×𝑇 , 𝜋

∗𝐼 ⊗ 𝐸 ⊗ 𝐸∨)

� Ext𝑖𝑇 (O𝑇 , 𝐼 ⊗ 𝑅𝜋∗(𝐸 ⊗ 𝐸∨))

� Ext𝑖𝑇 (𝑅𝜋∗(𝐸 ⊗ 𝐸∨), 𝐼).

Here, all tensor products and duals are taken in the derived sense. The first isomorphism is due to the
fact that E is dualizable, the second one is push-pull adjunction and the projection formula, and the third
one uses that 𝑅𝜋∗(𝐸 ⊗ 𝐸∨) is dualizable.

6.3. Comparison of obstruction classes

Now let 𝑋,M be as specified in the beginning of the section with universal sheaf E on M× 𝑋 . Our goal
is to show that the map AtE : 𝑅𝜋∗(E ⊗ E∨)∨[−1] → 𝐿M is surjective on ℎ−1. By the arguments of [2,
§4],5 it is enough to show that for every map from an affine scheme 𝑔 : 𝑇 →M and any quasicoherent
sheaf I on T, the map

(𝑔∗AtE )∗ : Ext1𝑇 (𝑔
∗𝐿M, 𝐼) → Ext2𝑇 (𝑔

∗𝑅𝜋∗(E ⊗ E∨)∨, 𝐼)

given by composition with the Atiyah class is injective. In fact, it is enough to show that for any such g
and I and any square zero extension 𝑇 ↩→ 𝑇 , there exists an extension of g to 𝑇 if and only if the image
of the obstruction class 𝜔(𝑔, 𝑇) under this map vanishes. By Remark 6.2, the obstruction class 𝜔(𝑔, 𝑇)
is obtained as the composition of the natural maps

𝑔∗𝐿M → 𝐿𝑇 → 𝐿𝑇 /𝑇 → 𝐼 [1] .

However, let 𝐸 = 𝑔∗E , so that we have a commutative diagram

𝑔∗𝑅𝜋∗(E ⊗ E∨)∨[−1] 𝑔∗𝐿M

𝑅𝜋∗(𝐸 ⊗ 𝐸∨)∨[−1] 𝐿𝑇 ,

𝑔∗ AtE

∼

At𝐸

where the left vertical map is the canonical base change isomorphism. We find that the image of 𝜔(𝑔, 𝑇)
under (𝑔∗AtE )∗ is up to the given isomorphism equal to the composition

𝑅𝜋∗(𝐸 ⊗ 𝐸∨)∨[−1]
At𝐸
−−−→ 𝐿𝑇 → 𝐿𝑇 /𝑇 → 𝐼 [1] .

By the definition of At𝐸 , this corresponds to the morphism

𝐸
at𝐸
−−→ 𝐿𝑇 ×𝑋 [1] ⊗ 𝐸 → 𝐿𝑇 ×𝑋/𝑇 ×𝑋 [1] ⊗ 𝐸 → 𝜋∗𝐼 [2] ⊗ 𝐸.

By Remark 6.7, this is exactly the obstruction to the existence of a 𝑇-flat extension of E to 𝑇 × 𝑋 and
therefore an obstruction to the existence of an extension of 𝑔 by the universal property of M. This shows
what we needed.

5Or see [1, Proposition 8.4 and Corollary 8.5] for a proof using higher categorical language.
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6.4. Comparison of deformation spaces

We show that the map AtE : 𝑅𝜋∗(E ⊗ E∨)∨[−1] → 𝐿M is an isomorphism on ℎ0. By the arguments of
[2, §4], it is enough to show that for every map from an affine scheme 𝑔 : 𝑇 →M and any quasicoherent
sheaf I on T, the map

(𝑔∗AtE )∗ : Ext0𝑇 (𝑔
∗𝐿M, 𝐼) → Ext1𝑇 (𝑔

∗𝑅𝜋∗(E ⊗ E∨)∨, 𝐼)

given by composition with the Atiyah class is an isomorphism. This follows from the following stronger
statement:

Lemma 6.11. Let 𝑇 be the trivial extension of T by I and let 𝑔 : 𝑇 →M be any extension of g. Let 𝐸 be
the corresponding extension of E. Then the class 𝛼𝑔 of Remark 6.3 is mapped by (𝑔∗AtE )∗ to the class of

Ext1𝑇 (𝑔
∗𝑅𝜋∗(E ⊗ E∨)∨, 𝐼) � Ext1𝑇 (𝐸, 𝐼 ⊗ 𝐸)

corresponding to the extension 𝐸 via Remark 6.8.

Proof. By Remark 6.3, we have that (𝑔∗ AtE )∗𝛼𝑔 is equal to the composition

𝑔∗𝑅𝜋∗(E ⊗ E∨)∨[−1]
𝑔∗ AtE
−−−−−→ 𝑔∗𝐿M

𝑔∗ |𝑇
−−−→ 𝑗∗𝐿𝑇 → 𝑗∗𝐿𝑇 /𝑇 → 𝐼 .

The composition of the first two maps is just 𝑗∗At𝐸 . Therefore, by definition of At, this corresponds
under adjunction to the morphism

𝐸
𝑗∗ at𝐸
−−−−→ 𝐿𝑇 ×𝑋/𝑇×𝑋 [1] ⊗ 𝐸 → 𝜋∗𝐼 [1] ⊗ 𝐸.

Thus, we are reduced to showing that this morphism agrees with the class 𝛽𝐸 in Ext1(𝐸, 𝜋∗𝐼 ⊗ 𝐸). This
is shown in Lemma 6.12 below. �

Lemma 6.12. Let T be an affine scheme and I a quasicoherent sheaf on T and let 𝑗 : 𝑇 → 𝑇 be the
trivial square zero thickening of T with ideal sheaf I. Let E be a coherent sheaf on 𝑇 × 𝑋 and 𝐸 an
extension of E to 𝑇 such that the induced map 𝐼 ⊗𝑇 𝐸 → 𝐼𝐸 ⊂ 𝐸 is an isomorphism (see [7, IV 3.1]).
Let 𝛽 ∈ Ext1𝑇 ×𝑋 (𝐸, 𝜋

∗𝐼 ⊗ 𝐸) be the corresponding extension class. Then the composition

𝐸
𝑗∗ at𝐸
−−−−→ 𝑗∗𝐿𝑇 ×𝑋/𝑇×𝑋 [1] ⊗ 𝐸 → 𝜋∗𝐼 [1] ⊗ 𝐸

equals 𝛽.

Proof. Let 𝑟 : 𝑇 → 𝑇 be the projection coming from the inclusion O𝑇 = O𝑇 ⊕ {0} ⊂ O𝑇 ⊕ 𝐼.
Let 𝑅 = 𝑃𝑟−1O𝑇

(O𝑇 ) be the standard simplicial resolution. Then we have the following commutative
diagram of R-modules with exact rows:

0 Ω1
𝑅/𝑟−1O𝑇

⊗𝑅 𝐸 𝑃1
𝑅/𝑟−1O𝑇

(𝐸) 𝐸 0

0 Ω𝑇 /𝑇 ⊗𝑇 𝐸 𝑃1
𝑇 /𝑇
(𝐸) 𝐸 0.

The upper row is used to define the Atiyah class, so by taking connecting map in 𝐷Δ (𝑅) and passing to
𝐷 (𝑇), we get the commutative diagram
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𝐸 𝐿𝑇 /𝑇 ⊗𝑇 𝐸

Ω𝑇 /𝑇 ⊗𝑇 𝐸,

at𝐸,𝑇 /𝑇

where the diagonal map is the connecting map associated to the sequence of principal parts 𝑃𝑇 /𝑇 (𝐸).
This reduces us to showing that the restriction of 𝑃𝑇 /𝑇 (𝐸) along j is equal to the extension 𝛽 corre-
sponding to E via the identification 𝑗∗Ω1

𝑇 /𝑇
= 𝐼. This follows from a straightforward calculation using

that 𝑃1
𝑇 /𝑇
(𝐸) = (O𝑇 ⊕ 𝐼) ⊗O𝑇 𝐸 . �

6.5. Comparison of automorphism groups

We show that the map AtE : 𝑅𝜋∗(E ⊗ E∨)∨[−1] → 𝐿M induces an isomorpism on ℎ−1. It is enough to
show that for every map from an affine scheme 𝑔 : 𝑇 →M and any quasicoherent sheaf I on T, the map

(𝑔∗AtE )∗ : Ext−1
𝑇 (𝑔

∗𝐿M, 𝐼) → Ext0(𝑔∗𝑅𝜋∗(E ⊗ E∨)∨, 𝐼)

given by composition with the Atiyah class is an isomorphism. This follows from the following more
precise statement:

Lemma 6.13. Let 𝑇 be the trivial extension of T by I and let 𝑔 : 𝑇 →M be the trivial extension of g to
𝑇 . Let 𝐸 be the corresponding extension of E. Let 𝜑 be an automorphism of 𝑔 extending id𝑔, which we
view as an automorphism 𝛾𝜑 of 𝐸 via the universal property of M. Then the element 𝜏𝜑 corresponding
to 𝜑 via (6.1) is mapped to the element of Hom𝑋×𝑇 (𝐸, 𝜋

∗𝐼 ⊗ 𝐸) corresponding to 𝜑 via Remark 6.9.

Proof. We will first make two reductions: First, the statement can be checked étale locally on T;
therefore, we can choose a smooth cover Y and assume that g factors through Y, so that we are in the
situation of Lemma 6.5. Then, in particular, 𝜑 corresponds to a morphism 𝑓 : 𝑇 → 𝑍 which is the
image of 𝜏𝜑 in Hom(𝑒∗𝐿𝑍 , 𝐼) Second, the image of 𝜏𝜑 is via adjunction identified with the composition

𝐸
𝑔∗ atE
−−−−→ (𝑔 × id𝑋 )∗𝐿M×𝑋/𝑋 [1] ⊗ 𝐸

𝜋∗𝜏𝜑⊗𝐸
−−−−−−−→ 𝜋∗𝐼 ⊗ 𝐸,

where the first morphism is just At𝐸 , and the second morphism is the one induced by the infinitesimal
automorphism 𝜑 × id of the extension 𝑔 × id𝑋 of 𝑔 × id𝑋 . Since 𝜏𝜑 factors through a map 𝜏′𝜑 :
ℎ1 (𝑒∗𝐿M) → 𝐼, we can rewrite this composition as

𝐸
(𝜏≥0⊗id𝐸 )◦𝑔∗ atE
−−−−−−−−−−−−−→ ℎ0 ((𝑔 × id𝑋 )∗𝐿M×𝑋/𝑋 [1]) ⊗ 𝐸

𝑔∗𝜏′𝜑⊗id𝐸
−−−−−−−−→ 𝜋∗𝐼 ⊗ 𝐸.

This reduces the problem to understanding the maps (𝜏≥0⊗ 𝑖𝑑𝐸 ) ◦𝑔
∗ atE and 𝑔∗𝜏′𝜑⊗ id𝐸 . By Lemma 6.14

below, the former is given as follows: For a section m of 𝐸𝑍 , write 𝑚 =
∑
𝑥𝑖𝑠
∗𝑛𝑖 =

∑
𝑥 ′𝑗 𝑡
∗𝑛′𝑗 using the

isomorphisms 𝑠∗𝐸𝑌 � 𝐸𝑍 � 𝑡∗𝐸𝑌 . Then 𝑒 ↦→
∑
𝑑𝑥𝑖 ⊗ 𝑠

∗𝑒𝑖 −
∑
𝑑𝑥 ′𝑗 ⊗ 𝜑(𝑡∗𝑒′𝑗 ) in Ω𝑍 ⊗ 𝐸𝑍/(𝑠

∗(Ω𝑌 ⊗𝑌
𝐸𝑌 ) + 𝑡

∗(Ω𝑌 ⊗𝑌 𝐸𝑌 )). In particular, if 𝑚 = 𝑠∗𝑛 =
∑
𝑥 ′𝑗 𝑡
∗𝑛′𝑗 , then 𝑠∗𝑦∗ℎ0 (atE ) (𝑚) = −

∑
𝑑𝑥 ′𝑗 ⊗ 𝜑(𝑡

∗𝑛′𝑗 ).
Pulling back along g gives

𝑔∗(𝜏≥0 ⊗ id𝐸 ◦ atE ) (𝑔∗𝑚) = −
∑

𝑑𝑥 𝑗 ⊗ 𝜑(𝑔∗𝑚).

The morphism 𝜏′𝜑 : Coker(𝑠∗Ω𝑌 ⊕ 𝑡∗Ω𝑌 → Ω𝑍 ) |𝑇→ Ω𝑇 /𝑇 |𝑇 = 𝐼 sends 𝑑𝑥 to 𝑑𝑓 (𝑥), where
𝑑𝑓 : Ω𝑍 → 𝐼 is the derivation describing f as a deformation of e (s.t. 𝑓 = 𝑒 + 𝐼 ⊗ 𝑒 + 𝑑𝑓 : 𝑒−1O𝑍 →

O𝑇 ⊕ 𝐼). In conclusion, we get that the composition is given by the map 𝑔∗𝑛 ↦→
∑
−𝑑𝑓 (𝑥𝑖) ⊗ 𝑓 ∗𝜑(𝑛𝑖)
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if 𝑠∗𝑛 =
∑
𝑥𝑖𝑡
∗𝑛𝑖 . However, we have the automorphism 𝛾𝜑 of 𝐸 given by the composition 𝐸 �

𝑓 ∗𝑡∗𝐸𝑌
𝑓 ∗𝜑
−−−→ 𝑓 ∗𝑠∗𝐸𝑌 � 𝐸 . We compute

𝛾𝜑 (𝑔
∗𝑛) = 𝑓 ∗𝜑(

∑
𝑥𝑖𝑡
∗𝑛𝑖) =

∑
𝑓 ∗𝑥𝑖 𝑓

∗𝜑(𝑡∗𝑛𝑖)

whenever 𝑠∗𝑛 =
∑
𝑥𝑖𝑡
∗𝑛𝑖 . Since 𝜑 restricts to the identity automorphism on T, we know that 𝛾𝜑 is of the

form id𝐸 +𝜌, where 𝜌 : 𝐸 → 𝐼 ⊗ 𝐸 is a morphism. We claim that 𝜌(𝑔∗𝑛) = 𝑑𝑥𝑖 ⊗ 𝑓 ∗𝜑(𝑡∗𝑛𝑖) whenever
𝑠∗𝑛 =

∑
𝑥𝑖𝑡
∗𝑛𝑖 . But we have

𝜌(𝑔∗𝑛) = ( 𝑓 − 𝑒)∗𝜑(
∑

𝑥𝑖 ⊗ 𝑡∗𝑛𝑖) = (0,
∑

𝑑𝑓 𝑥𝑖 ⊗ 𝜑(𝑡∗𝑛𝑖)). �

Lemma 6.14. In the situation of Lemma 6.5, suppose that 𝐸 ∈ 𝐷≤0
𝑞𝑐𝑜ℎ (Y). Then the composition

𝑠∗𝑦∗𝐸
𝑠∗𝑦∗ at𝐸
−−−−−−→ 𝑠∗𝑦∗𝐿Y [1] ⊗ 𝑠∗𝑦∗𝐸 → 𝑠∗𝑦∗ℎ1 (𝐿Y ) ⊗ 𝑠∗𝑦∗𝐸 agrees up to natural isomorphisms with

the connecting homomorphism 𝛿, obtained by applying the Snake Lemma to the following diagram:

0 𝑠∗ (Ω1
𝑌 ⊗𝐸𝑌 ) ⊕

(𝑡∗Ω1
𝑌 ⊗𝐸𝑌 )

𝑠∗𝑃1
𝑌 (𝐸𝑌 ) ⊕ 𝑡∗𝑃1

𝑌 (𝐸𝑌 ) 𝑠∗𝐸𝑌 ⊕ 𝑡∗𝐸𝑌 0

0 Ω𝑍 ⊗ 𝐸𝑍 𝑃1
𝑍 (𝐸𝑍 ) 𝐸𝑍 0.

Proof. Let 𝑅 := 𝑃𝑘 (O𝑍 ) and 𝑄 = 𝑃𝑘 (O𝑌 ) be the standard simplicial resolutions and 𝑠∗𝑅 and 𝑡∗𝑅 the
pullback functors from Q-modules to R-modules induced by s and t, respectively. Then, we have a
commutative diagram of R-modules

0 𝑠∗𝑅 (𝐿𝑌 ⊗𝐸𝑌 ) ⊕
𝑡∗𝑅 (𝐿𝑌 ⊗𝐸𝑌 )

𝑠∗𝑅𝑃
1
𝑄 (𝐸𝑌 ) ⊕ 𝑡∗𝑅𝑃

1
𝑄 (𝐸) 𝑠∗𝐸𝑌 ⊕ 𝑡∗𝐸𝑌 0

0 𝐿𝑍 ⊗ 𝐸𝑍 𝑃1
𝑅 (𝐸𝑍 ) 𝐸𝑍 0

0 𝐶 (𝛼) 𝐶 (𝛽) 𝐶 (𝛾) 0.

𝛼 𝛽 𝛾

By the construction of the Atiyah class, we have natural isomorphisms 𝐶 (𝛼) � 𝑠∗𝑦∗𝐿Y [1] ⊗ 𝐸 and
𝐶 (𝛾) � 𝑠∗𝑦∗𝐸 [1] with respect to which the connecting map associated to the lower row is naturally
identified with 𝑠∗𝑦∗ at𝐸 [1] in 𝐷Δ (𝑅). The diagram maps to the similar diagram of O𝑍 -modules

0 𝑠∗ (Ω𝑌 ⊗𝐸𝑌 ) ⊕
𝑡∗ (Ω𝑌 ⊗𝐸𝑌 )

𝑠∗𝑃1
𝑌 (𝐸𝑌 ) ⊕ 𝑡∗𝑃1

𝑌 (𝐸𝑌 ) 𝑠∗𝐸𝑌 ⊕ 𝑡∗𝐸𝑌 0

0 Ω𝑍 ⊗ 𝐸𝑍 𝑃1
𝑍 (𝐸𝑍 ) 𝐸𝑍 0

0
Ω𝑍

𝑠∗Ω𝑌 ⊕ 𝑡∗Ω𝑌
⊗ 𝐸𝑍 ∗ 𝐶 (𝛾′) 0,

𝛼′ 𝛽′ 𝛾′

where the last row is obtained by taking cones of the vertical morphisms and then pushing out along
𝐶 (𝛼′) → Ω𝑍/(𝑠

∗Ω𝑌 ⊕ 𝑡∗Ω𝑌 ) ⊗𝐸𝑍 . The morphism𝐶 (𝛼) → Ω𝑍/(𝑠
∗Ω𝑌 ⊕ 𝑡∗Ω𝑌 ) ⊗𝐸𝑍 here is identified

with the truncation morphism 𝐿Y [1] → ℎ1(𝐿Y ) tensored with 𝐸𝑍 . By pulling back the lower row along
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the natural map 𝑠∗𝑦∗𝐸 [1] → 𝐶 (𝛾′) obtained from the diagonal map 𝑠∗𝑦∗𝐸 → 𝑠∗𝐸𝑌 ⊕ 𝑡
∗𝐸𝑌 , we get an

extension

0→
Ω𝑍

𝑠∗Ω𝑌 + 𝑡∗Ω𝑌
⊗ 𝐸𝑍 → ∗ → 𝑠∗𝑦∗𝐸 [1] → 0.

That the induced connecting homomorphism agrees with the one coming from the Snake Lemma follows
from Lemma 6.15. �

Lemma 6.15. Suppose that we have a commutative diagram in an abelian category with exact rows

0 𝐴 𝐵 𝐶 0

0 𝐷 𝐸 𝐹 0.

𝛼 𝛽 𝛾

Form the exact sequence

𝐶 : 0→ 𝐶 (𝛼) → 𝐶 (𝛽) → 𝐶 (𝛾) → 0

and let 𝑗 : 𝐶 (𝛼) → Coker(𝛼) and 𝑖 : Ker(𝛾) [1] → 𝐶 (𝛾) denote the natural maps. Then the connecting
homomorphism associated to the sequence of complexes of A-modules

𝑗∗𝑖
∗𝐶 = 𝑖∗ 𝑗∗𝐶 : 0→ Coker(𝛼) → 𝑀 → Ker(𝛾) [1] → 0

is exactly minus the shift by 1 of the connecting morphism 𝛿 : Ker(𝛾) → Coker(𝛼) in the Snake Lemma.

Proof. One checks by a direct computation that M is just the cone over 𝛿 with the two maps being the
canonical inclusion and projection. It follows by the usual considerations of mapping cones that the
connecting morphism of the sequence 𝑗∗𝑖

∗𝐶 is −𝛿. �

Remark 6.16. To conclude, we point out that the conclusions of §6.3–§6.5 still hold when M is open in
a moduli stack of perfect complexes, and E is the universal complex, using the results of [6]. We assume
here that the complexes being parametrized have vanishing negative Ext-groups universally on M.

The arguments of 6.3 and 6.4 go through with Theorem 3.3 and Corollary 3.4 of [6] in place of
Remark 6.7 and Remark 6.8, respectively. The arguments of 6.5 go through unchanged for complexes.
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