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Abstract. The recent numerical simulations of Tit tern ore and Wisdom (1988,1989,1990) and 
Dermott et al. (1988), Malhotra and Dermott (1990) concerning the tidal evolution through reso-
nances of some pairs of Uranian satellites have revealed interesting dynamical phenomena related 
to the interactions between close-by resonances. These interactions produce chaotic layers and 
strong secondary resonances. The slow evolution of the satellite orbits in this dynamical lanscape 
is responsible for temporary capture into resonance, enhancement of eccentricity or inclination 
and subsequent escape from resonance. The present contribution aims at developing analytical 
tools for predicting the location and size of chaotic layers and secondary resonances. The problem 
of the 1:3 inclination resonance between Miranda and Umbriel is analysed. 
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1. Introduction 

Dissipation of energy in the tides raised by satellites on the planet causes the 

orbits of satellites to expand at different rates, thus changing the ratios of their 

mean motions. Occasionally the mean motions of two of them approach a low order 

ρ : q commensurability (with p} q small integers). Goldreich (1965) has shown that 

such a commensurability can be maintained during further tidal evolution of the 

satellites orbits, thus providing an explanation of the frequent occurence of such 

commensurabilities in the Solar System. 

The mechanism is as follows. The perturbing potential of the two satellite in-

teraction contains the following angular variables: 

0 i j i j M = pX' -qX + ΐΩ' + jü + ku' + ίω , (1) 

where λ',λ are the mean longitudes, Ω',Ω the longitudes of the ascending nodes 

and ω', ω the arguments of pericenter of the two satellites. Each of these angular 

variables can excite a resonance, i.e. can enter into libration about some constant 

value. 

In the single resonance approximation used in the studies of resonances amongst 

the Jovian and Saturnian satellites (e.g. Goldreich 1965, Yoder 1973, Peale 1986) 

only one of these angular variables is retained in the analysis. Indeed, due to the 

differential precession of nodes and pericenters imposed by the oblateness of the 

planet, when one of these angular variables is very slow the other ones are not. 

Therefore, they can be averaged out of the potential. This single resonance ap-

proximation lends itself to a simple and almost intuitive treatment which allows an 

analytical derivation of the conditions for - and the probability of - capture into 

resonance and also describes the subsequent orbital evolution (Yoder 1979, Henrard 

1982, Henrard and Lemaître 1983). 

In the case of the satellites of Uranus this single resonance approximation may 

not be good enough even for a purely qualitative analysis. Indeed, as pointed out by 

Dermott (1984), the oblateness of Uranus is significantly smaller than the oblateness 

of Jupiter and Saturn and thus the differential precession of nodes and pericenters 
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does not separate very well the various resonances. This was not analysed further for 

lack of motivation because the satellites of Uranus are not presently in resonance. 

But, more recently, it has been suggested by Peale (1988) that temporary cap-

ture into resonance could have played a role in the history of these satellites. The 

unexpected thermal history of some of them, revealed by the cameras of Voyager 

II, could have been caused by a temporary increase in their eccentricity due to a 

temporary capture into resonance. Also the anomalous high inclination of Miranda 

could be a remnant of such a temporary capture. 

The numerical experimentations by Tittemore and Wisdom (1988, 1989, 1990) 

and by Dermott et al. (1988) and Malhotra and Dermott (1990) have shown indeed 

that temporary capture in resonance is a likely outcome of the tidal expansion of the 

orbits in the case of the satellites of Uranus. For the 1:3 resonance in inclination 

of Miranda and Umbriel (which has been the most thoroughly investigated) the 

mechanism is as follows: first Miranda is captured into the so called i^-resonance 

with a small inclination. At this stage the single resonance approximation is still 

valid. Later on, as the inclination of Miranda grows as predicted by the single 

resonance theory, the interaction between the i^-resonance and the other nearby 

resonances produces secondary commensurabilities between the libration frequency 

and the other slow frequencies. This is a new phenomenon which does not appear in 

the resonances amongst the satellites of Jupiter and Saturn (but does appear in the 

asteroidal resonances as pointed out by Henrard and Lemaître 1986). If Miranda is 

captured into one of these secondary resonances, it is dragged into the chaotic layer 

which marks the boundary of the primary i2

M-resonance, whereupon it can escape 

from the commensurability. 

The main features of the phase space which permit such a scenario are the sec-

ondary resonances and the chaotic layer bordering the primary resonance. We shall 

summarize in this report our results concerning the description of such features. A 

first order analysis with the semi-numerical method described in (Henrard 1990) 

gives a first overall view of the dynamical landscape. The location of secondary 

resonances and chaotic layers are obtained with good accuracy but the size of the 

chaotic layers is systematically underestimated. More details about this analysis 

are given in (Moons and Henrard 1992). A more refined analysis based upon the 

technique of successive eliminations developed in (Morbidelli 1992) shows that ac-

tually the size of the chaotic layers is enhanced by the overlapping of secondary 

resonances that a first order theory does not reveal. 

2 . Modelization of the 1:3 Miranda-Umbriel inclination resonance 

We modelize the interaction Umbriel-Miranda by the Hamiltonian function: 

H = C(N - S)2 + AN + 2DS cos 2σ (2) 

-h diiu\/2Scos(a — v) + diiu^/^Scos{a + v) + dz%u2 cos 2u , 
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where 

A = 5.939 ΙΟ" 4 , C = -1 .622 78 , 

D = -1 .732 ΙΟ" 6 , di = 2.884 ΙΟ" 6 , (3) 

d2 = -4 .953 ΙΟ" 6 , d3 = -1 .200 10" 6 

The angular variables are the usual resonance variables: 

σ = ( - λ Μ + 3 λ σ - 2 Ω Μ ) / 2 , ν = (λΜ - + 2üu)/2 , (4) 

where λ is the mean longitude, Ω the longitude of the node and i the inclination of 

respectively Miranda (when the subscript is M) or Umbriel (when the subscript is 

Z7) . The momenta conjugated to them are: 

S = ( l - c o s i M ) V ( l - M ) û j f , iNT = 2 v / ( W Ö ( v ^ M - - V ^ ) + 5 . (5) 

where a* = 0.48071 is the "exact resonance" value of the semi-major axis of Mi-

randa. 

This Hamiltonian based upon the restricted problem of three bodies includes 

the effects of the oblateness of Uranus and of the satellite-satellite interaction (up to 

degree 2 in the inclinations) and is averaged over the orbital frequencies, retaining 

only the secular terms and the long period terms due to the 1:3 commensurability 

between the orbital frequencies. Both satellites are assumed to be on a circular 

orbit (see Moons and Henrard 1992). 

At the zeroth order approximation (when D = di = d2 = d$ = 0) the frequencies 

of the periodic terms of (2) are: 

-4C( iV -S)-2A , 

-±C{N-S)-A , (6) 

-4C{N - S) , 

A . 

When the oblateness of the planet (i.e. the coefficient A) is large enough, these 

frequencies are well separated and when one of them is small the other ones are 

large enough. The corresponding periodic terms can be averaged out. For instance 

when the frequency of σ is close to zero (i.e. when Ν — S is close to zero) the 

Hamiltonian (2) can be simplified to: 

H0 = C{N -S)2 + AN + 2DS cos 2σ . (7) 

which is integrable. The momentum TV is a constant and the phase space of the (σ, S) 

degree of freedom is shown in cartesian coordinates y = ^2S sina, χ = \/25costf 

in Figure 1. For values of Ν larger than —D/C% the phase space shows a zone 
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in which the angle σ librates (shaded in Figure 1). We shall call such a zone the 

resonance zone. 

For smaller values of the oblateness of the planet (i.e. when A is smaller) we can 

no longer neglect the other periodic terms. The Hamiltonian Ho can still be taken 

as a first approximation of the system but the remaining terms, 

H\ — diiuΛ/25 cos (σ — ι/) + d2iuV2S cos(a + u) + d^iu2 cos 2u , (8) 

have to be taken into account as they play an essential role as seen in the following 

section. 

3 . Surfaces of section 

This section is devoted to an analytical study of the Hamiltonian (2). This Hamilto-

nian is composed of two parts: Ho, a two-degree of freedom separable Hamiltonian 

(see 7), and a perturbation which is proportional to the inclination of Umbriel 

(see 8). 

First of all, we shall introduce action-angle variables for Η0(σ} S, Ν) and com-

pute the unperturbed frequencies in order to locate the secondary resonances at 

work. After that, we shall take into account the perturbation # ι ( σ , S, ι/, Ν) and, 

applying a semi-numerical first order perturbation method (Henrard 1990), we shall 

draw the level curves of a quasi-integral of motion on surfaces of section in order 

to determine the regular and the chaotic zones. 

When comparing these results with those of the numerical integration, we shall 

see that the semi-numerical method accurately predicts the location and the shape 

of the secondary resonances as well as the location of the chaotic layers; the size of 

the latest, however, is systematically underestimated. 

Fig. 1. Typical phase space portraits of the Hamiltonian Ho in the plane The first 

figure is for Ν < —D/C} the second one for —D/C < Ν < D/C and the third one for 

Ν > D/C. The resonance zone is shaded. 
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3.1. A C T I O N - A N G L E VARIABLES 

The action-angle variables for the Hamiltonian Ho are defined by 

(9) 
ψ2 = ν-ρ(ί,Η0,Ν) , J2 = N 

where £(σ, HQ} N) denotes the time along the periodic trajectories (starting at σ = 

^) of the unperturbed Hamiltonian Ho considered as a one-degree of freedom 

Hamiltonian in (σ, 5) depending on a parameter N. T\ denotes the period of the 

trajectories and p(t, Ho, N) is a Τι-periodic function in t: 

<»> 

The phase space of this Hamiltonian has already been shown in Figure 1 in the 

previous section. 

The actions J{ are constant along the periodic trajectories of HQ (2πJi is the 

area of the trajectory) while the angles ψχ are linear functions of the time. 

3.2. FREQUENCIES AND SECONDARY RESONANCES 

When expressed in (V>i, J»), the Hamiltonian Ho is transformed into Ko(Ju J2). The 
explicit form of Ko, however, is not known, but the frequencies 

(H) 

" 2 - V>2 = ä j f - TT ^ -dN d t 

as well as the value of the action-angle variables at any time (at this stage, we 

don't need it) can be computed by numerically integrating the canonical equations 

associated to (7). 

Taking a set of initial conditions in semi-major axis and inclination of Miranda, 

or equivalently (see 5) in 5 and N, we can compute the corresponding values of ωχ 

and ω2 and, finally, plot the level curves ο{ω2/ωχ, which gives the location of the 

secondary resonances (see Figure 2). 

Let us remark that the transformation (9) cannot be defined for the set of 

initial conditions corresponding to the separatrix of the first degree of freedom, as 

the period becomes infinite. There is a discontinuity in the definition of the action-

angle variables when crossing the separatrix, but the transformation (9) and the 

frequencies (11) can be computed numerically with high accuracy if we except the 

separatrix and a small neighbourhood of it. 
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Fig. 2. Location of the secondary resonances in the plane (clm^ *m )· On the horizontal axis, 

we have 0.4806 < aM < 0.4809 while, on the vertical axis, we have 0. < iM < 0.1. The 

JV/1 secondary resonances ((4*2/ωι = N) are labelled N. The thick V-shaped line is the 

separatrix of the first degree of freedom. 

3.3. PERTURBATION METHOD 

The transformation (9) reduces the Hamiltonian H = Ho -f- Hi to 

K(i>u i>2, Ju h) = K0{Ju J2) + Κι(φι,ψ2, Λ , J 2 ) (12) 

with Κι of the order of %u with respect to jfifo and we may apply a perturbation 

method to eliminate the angular dépendance. While doing so, we have two problems: 

1. the form (12) is not explicitely known (this is not really a problem). 

2. we have to take care of the secondary resonances 

The semi-numerical first order perturbation method (Henrard 1990) allows us 

to compute the result of the elimination of all but one (the resonant one) angu-

lar combinations. Practically, we have to split up the phase space in zones, each 

containing only one secondary resonance 

unimodular transformation 

0i = 3Φ1 - Ψ2 

θ2 = Φι 

h = -J2 

h=Ji+ 3J2 

= j. For each zone we introduce the 

(13) 

to get new action-angle variables appropriate to the secondary resonance involved. 

With the help of the semi-numerical method, we can compute the average of 

Κ with respect to θ2 (Henrard 1990, Henrard and Moons 1992). The result we are 

interested in here, however, is the value of the quasi-integral of motion 

r r r d W 

h = Jl+jJ2 + W 2 
(14) 

and the way of computing the value of this quasi-integral on surfaces of section 

defined by ψι = 0 (or, equivalently, σ = ^ ) and H = h is also explained in (Henrard 

1990, Moons and Henrard 1992). 
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3.4. SURFACES OF SECTION 

The surfaces of section (σ H = h) are hyperboloïd-like surfaces (of one or two 

sheets according to the value of h) in the three-dimensional space (CLM , — i>M sini>, 

i M cos i/). 

We have plotted in Figure 3 the trace of these surfaces in the plane (O.M , — IM sin v) 

as well as the trace of the secondary resonances. 

We present here the results on surfaces corresponding to the values h = 1 . 5 1 0 - 6 

and h = 7.510~ 7; other results can be found in (Moons and Henrard 1992). 

As we see in figure 3, the surface corresponding to h = 1.510" 6 crosses the 0/1 

and the 1/1 secondary resonances in the internal zone (zone of clockwise circulation 

for the angle σ), crosses twice the 2/1 secondary resonance in the resonance zone and 

https://doi.org/10.1017/S0074180900091142 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900091142


1 9 6 

1 I 1 

i 
i 
ι 
I 
I 

i 
1 j 
i 

I 
j 
! ι 
i 
1 

1 

i 
i 
ι 
I 
I 

i 
1 j 
i 

I 
j 
! ι 
i 
1 

1 

! 

W' ? « ! -! 

* -) , : : 

, ί M 
<4 ' ; I ί ! 
j>4 j W i i ! 

! 

ί 

S 1 IMrJS 

l i 

S \/$ 
Ί ' & · 

'ί ,ν,.ϊ· ,-ι 

ι> r r <:;':>·'. 

; Ι '-^.··-': 
·" / » 

! /;ί | 

ΐ | ! 

ΙλΙ 

I 

j 

Ι' 
ι. 
I 

ί 
I I 

Fig. 4. Plot of the projection on the plane (CLM, — ÎAÎ sini/) of the quasi-integral I2 (top 

panel) and of the solution of the differential equations (bottom panel) evaluated for (σ = y , 

h = 1 .510 e ) . For each panel, we have, on the horizontal axis, 0.4806 < α,Μ < 0.4809 and, 

on the vertical axis —0.1 < — x'msini/ < 0.1. The thick line is the separatrix of the first 

degree of freedom. From the left to the right, we see: the 3 /1 resonance in the external 

zone, the 2/1 resonance in the resonance zone, the 1/1 and the 0 /1 resonances in the 

internal zone. 

crosses the 3/1 secondary resonance in the external zone (zone of counterclockwise 

circulation for the angle σ) . The secondary resonances encountered for h — 7 .510" 7 

are a little bit different: the 2/1 secondary resonance is now appearing (for h = 

1 . 5 1 0 - 6 it was embedded in the chaotic zone) and the secondary resonance we find 

now in the resonance zone is the 3/1 resonance. 

Let us now draw the level curves of the quasi-integral I2 (see 14) on those 

surfaces of section and compare the results with the numerical integration of the 

differential equations associated to H (see 2). 

The results are presented in Figure 4 (for h = 1.510~ 6) and figure 5 (for 
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Fig. 5. Same as figure 4, but for k — 7 .510" 7 . The resonances appearing here are, from 

the left to the right: the 3 /1 resonance in the external zone, the 3 /1 resonance in the 

resonance zone, the 2 / 1 , 1/1 and 0/1 resonances in the internal zone. 

h = 7.510~ 7 ) which are composed of two panels: the top one is the result of the 

semi-numerical method while the bottom one is the result of the numerical integra-

tion. In those figures, we have represented only one half of the hyperboloïd surface 

by projection on the plane (oaf, — %M sini/); due to the symmetry of the problem, 

however, the other half is identical to it. 

As we can see, there is a very good agreement between the top and the bottom 

panels with respect to the shape and the location of the secondary resonances. 

However, there is a problem concerning the size of the chaotic zone: in the top 

panel of figure 4, we remark that the 1/1 resonance seems well separated from the 

separatrix while, in the bottom panel,we see that it is included in the chaotic zone. 

The same phenomenon appears, but in a reduced manner, in figure 5 with the 3/1 

resonance (in the resonance zone) and the 2/1 resonance (in the internal zone). 
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This "underestimation" of the size of the chaotic zone is due to the fact that the 

semi-numerical method is only a first order method and, hence, is not appropriate 

for zones where resonances overlap; we shall see in the next section a more accurate 

(but more sophisticated) way to do it. Anyway, the method used here is very simple 

and very useful to locate and characterize roughly the secondary resonances. 

4 . Successive eliminations of perturbation harmonics 

The results illustrated in section 2, show the power of the action-angle variable 

semi-numerical perturbation method developed by J. Henrard (1990). However 

some limits are, nevertheless, evident. First of all such a method, the advantage of 

which is to take completely into account the dynamical effect of the most relevant 

degree of freedom (H0), is just a first order perturbation approach with respect to 

the additional degrees of freedom which appear in the perturbation (Hi). Moreover, 

the study of secondary resonances is made via the introduction of suitable averaged 

models, in each of which only one resonance is taken into account, neglecting the 

presence of all others. 

These two facts make the method not very suitable to study the problems, or the 

regions of the phase space, characterized by a strong coupling between the degrees 

of freedom. In section 2 we have seen, for example, how the method underestimates 

the correct size of the chaotic layers. There are many problems of interest in Ce-

lestial Mechanics characterized by a strong interaction among degrees of freedom, 

which, for this reason, lay almost completely unexplored. We quote here the dynam-

ics in mean-motion resonances at high inclination, the interaction among secular 

and mean-motion resonances, the motion of the Trojans. Therefore, it would be 

interesting to provide a practical extension of Henrard's method, to allow to go fur-

ther from first order results. We stress here that this is not straightforward. Indeed 

the construction of suitable action-angle variables, which is the base of Henrard's 

method, can not be done analytically, but must be performed with numerical tech-

niques; conversely, the application of the usual perturbation methods, such as the 

Lie's algorithm, requires explicit algebraic expressions. Therefore the extension of 

the method needs the developement of a new practical perturbation theory. 

The new method we have developed is based on the successive eliminations of 

perturbation harmonics via the introduction of a sequence of suitable action-angle 

variable canonical transformations. The practical applicability of this method is 

largely illustrated in Morbidelli (1992), and the conditions under which this method 

can be considered as a genuine perturbation theory are studied in a pure theoretical 

way in Morbidelli and Giorgilli (1992). The aim of this section is just to illustrate 

the basic ideas, skipping all technical details. 

4.1. T H E ALGORITHM 

The basic idea of our new approach is simple and dates from Delaunay. Consider, for 

example, a two degrees of freedom Hamiltonian 1Γ(/ι, φι, h , #2)· First we expand 
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it in Fourier series with respect to the angles φι and φ2ι so that we can write 

Η(Ι1,φ1,Ι2,Φ2) = Η0ρ(Ι1^2) + Υ^ΗηιΤη(Ι1^2)ϊθ5(ηφ1+™φ2) , (15) 
n, m 

where we have assumed, for simplicity, that only cos components are present in the 

expansion. Furthermore we choose one harmonic, with index n, m say, and consider 

the partial Hamiltonian 

# o , o ( / i , h) + ft»fm(Ji, h) cos(n^i + τηφ2) . (16) 

Since this Hamiltonian is integrable, new canonical action-angle variables are in-

troduced in order to take it to be independent of the new angles. 

If the phase portrait of (16) is not simple (i.e. it contains séparatrices), the 

new variables can not be introduced all over the phase space, but different sets of 

variables must be introduced in the different topological regions of the phase space of 

(16) (regions of libration and circulation of the critical angle ηφι +πϊφ2)1 separated 

by singular surfaces. In this sense, however, one can still consider as global the 

transformation to angle-action variables, since it conserve the topological structure 

of the phase space of (16). 

Furthermore, in each topological region, the remainder 

Y] hn,m{Iu h) cos(n<£i + τηφ2) , (17) 

is transformed in the new variables and expanded in Fourier series with respect to 

the new angles. In this way one gets a new Hamiltonian which has exactly the same 

form as (15). The advantage is that the relevant term Λη,πϊ(^ΐ) ^2) cos(n^i -\-τηφ2) 

is no longer present, since its dynamical effect has been taken into account in the 

definition of the new variables. This allows to perceive the possibility of iterating 

the algorithm, in order to eliminate all the principal harmonics. In the following we 

will show in an evident way on an example how all this works in practice. 

4.2. A N APPLICATION OF THE METHOD OF SUCCESSIVE ELIMINATION OF H A R -

MONICS TO THE M i R A N D A - U M B R I E L PROBLEM 

We apply in this section the method of successive elimination of perturbation har-

monics to the Hamiltonian (2), with a particular care to the region in between 

the resonance with argument 2σ and the resonance with argument σ — ν, which is 

characterized by a large chaotic layer. 

When a single harmonic is taken into account as in (16), there exists a linear 

combination of the action variables that turns out to be a constant of motion. The 

dynamical effect of the considered harmonic can be analyzed on different surfaces 

corresponding to different values of this constant. Indeed, on each surface, the 

problem is essentially mono dimensional. 

The harmonic of the original problem (2) which has the strongest dynamical 

effect is the one with argument 2σ. In Figure 6 we show the phase space of (16), 

where η = 2, m — 0, on two surfaces associated to two different values of the con-

stant of motion. The existence of three dynamical regions is evident. We concentrate 
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Fig. 6. The integrable dynamics obtained by considering only the perturbation harmonic 
with argument 2σ. 

0 100 200 300 0 100 200 300 

Fig. 7. The region of counterclockwise circulation of 2σ in the original variables 2σ, S (fig 
a, on the left) and in the new action-angle variables (fig b, on the right). 
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n= 1 m= -1 

0 100 200 300 0 100 200 300 

Fig. 8. The integrable dynamics obtained by considering only the perturbation harmonic 

with argument σ — ι/. 

in the following on the region of counterclockwise circulation of the original angle 

2σ, namely the region at the bottom of the pictures of Figure 6. This region is 

magnified, for a given value of the constant of motion, in Figure 7a. From the topo-

logical point of view, the introduction of the new action-angle variables transforms 

the dynamical tori, which are distorted in the original variables, into hyperplanes 

which, on the considered surface, look as straight lines. For example, Figure 7b is 

the same as Figure 7a, but the dynamics is represented in the new action-angle 

variables. In particular, the separatrix, which is the bold line with extremes in the 

upper corners of Figure 7a in the old variables, is the upper border of Figure 7b 

in the new variables, and bounds the new domain of work. By looking at Figure 

7a and Figure 7b, one easily understands why we speak of "elimination,, of the 

harmonic; indeed in the new variables the dynamical effect of the harmonic has 

completely disappeared, since it is taken into account in the definition of the new 

variables themselves. 

In the new domain of work, the harmonic with the most relevant dynamical effect 

turns out to be the one with argument σ — ν where, with an abuse of notation, we 

call as σ and ν the new angles introduced for the elimination of the previously 

considered harmonic. In Figure 8 we show the phase space of the new integrable 

model, obtained by taking into account only the harmonic with argument σ — ι/, on 

two surfaces associated to two different values of the existent constant of motion. 

The orbits which collide with the upper border of the domain of work are lost, 

since one can not construct new action-angle variables on them. But, as the upper 

border is the image of the separatrix of the 2σ resonance, we can expect that all 

these orbits lead to chaos, and in this way we can get an estimate of the size of the 

chaotic layer. In particular, if the separatrix of the σ — ν resonance collided against 

the upper border, we could foretell the existence of a bridge of chaos connecting 
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Fig. 9. The integrable dynamics obtained by considering only the perturbation harmonic 
with argument 3σ — v. 

the 2σ resonance and the σ — ν resonance. However, as one sees, this is never the 

case. This result has been already obtained in section 2; indeed, at this step, the 

results are completely equivalent to those obtainable by Henrard's method (1990). 

The advantage of the new method is that we are no longer compelled to stop at this 

step. We can introduce new action-angle variable in the region in between the two 

resonances, value the Hamiltonian in the new variables and expand it in Fourier 

series of the new angles, and look for the next harmonic to be eliminated. 

The new most relevant harmonic turns out to be the one with argument 3σ — ι/, 

the dynamical effect of which is shown on two surfaces in Figure 9. We remark 

that this harmonic does not exist in the Hamiltonian (15) expressed in the original 

variables, and has been created by the introduction of the new variables. The upper 

border of each picture in Figure 9 is the separatrix of the 2σ resonance, while the 

lower border is the separatrix of the σ — ν resonance. As one sees, in Figure 9b 

the separatrix of the resonance collides against the upper border of the domain 

of work, so that we can foretell the existence of a bridge of chaos between the 2σ 

resonance and the 3σ — ν resonance, at least on the surfaces above a critical one 

(i.e. for i > 0.06). However a regular region seems to exist in between the σ — ν 

resonance and the 3σ — ν resonance. In that region we introduce new action-angle 

variables and look for the next harmonic to be eliminated. This turns out to be the 

one with argument 4σ —2i/, illustrated in Figure 10. New action-angle variables are 

furthermore introduced in the region between the 3σ — ν and the 4σ — 2v resonances 

(on the surfaces where it exists), and in the region between the 4σ — 2v and the 

σ — ν resonances. 
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Fig. 10. The integrable dynamics obtained by considering only the perturbation harmonic 
with argument 4σ — 2i/. 

4.3. T H E FINAL DETERMINATION OF THE SIZE OF THE CHAOTIC LAYERS 

In the two regions where the new variables are defined, the Hamiltonian is no longer 

characterized by the presence of a "most relevant" harmonic, but by the existence 

of many resonant harmonics, all with approximately the same width. In principle, 

one could try to eliminate them, one after the other. However, this turns out to 

be impractical, from the point of view of computing time and accumulation of 

numerical errors. What we decide to do, at this step, is to plot in an action-action 

diagram (that corresponds approximately to a a, i diagram) the width of all of them 

and to see in which region the resonances overlap. This is done in Figure 11a for 

the region in between the 4σ — 2v and the σ — ν resonances, and in Figure l i b 

for the region in between the 3σ — ν and the 4σ — 2v resonances. Applying now 

Chirikov criterion, we estimate the size of chaotic layers as the size of the regions 

where overlapping of resonances occurs. The four dashed lines plotted in Figure 11a 

denote the energy levels where Moons and Henrard have computed by numerical 

integration the Poincaré sections that we report in Figure 12. On each picture of 

Figure 12 the coordinates used are the semi major axis α on the χ axis (ranging 

from 0.4806 to 0.4809) and icos(a -f v) on the y axis (ranging from -0.1 to + 0.1). 

The Poincaré sections are made at 2σ = π. On the pictures we report the critical 

arguments corresponding to each secondary resonance. The big region in between 

the two large chaotic layers, is the region of libration of the argument 2σ. Let us 

concentrate on the region in between the σ — ν resonance and the 2σ resonance. 

As one sees, in the first two Poincaré sections (corresponding to levels 1 and 2 in 

Figure l ia) a bridge of chaos connects the two resonances. This is in agreement 

with the results of Figure 11a, since the corresponding levels are in the region of 

resonance overlapping. On the contrary, in the third and fourth Poincaré sections, 

the σ — ν resonance is detached from the chaotic layer. Indeed the corresponding 

2 0 1 
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Fig. 11. The overlap of secondary resonances in the region in between the 4σ — 2i/ and the 
σ — ν resonances (fig. a on the left), and in the region between the 3σ — ν and the 4σ — 2v 
resonances 

levels 3 and 4 in Figure 11a lay in the region where the overlapping of resonances 

does not occur. Moreover in Figure 12 we recognize the islands associated with the 

4σ — 2v and the 3σ — ν resonances, thus confirming the fine structure of secondary 

resonances we have detected in section 4.2. The smaller resonances in between the 

4σ — 2v and σ — ν commensurabilities are too faint to be detected in Figure 12 

where they do not give origin to the chaotic layer. 

For what regards the region between the 3σ — ν and the 4σ — 2v resonances, we 

remark in Figure 12 that, on the third section, the chaotic layer reaches the 4σ — 2v 

resonance, while, on the fourth section, it stops at a very small island corresponding 

to the resonance with argument 7σ — 3i/. In Figure l ib we see that level 3, that 

corresponds to the third section in Figure 12, crosses the region where resonances 

overlap; conversely level 4 is at the limit of the region of resonant overlapping. 

Moreover the widest resonance at the center of Figure l ib is the one with argument 

7σ - 3i/. 

Such a precision in the determination of the size of the chaotic layers may be 

astonishing. Indeed it is well known that Chirikov criterion in general provides just 

rough estimates, since it does not take into account the mutual interaction among 

the resonances. However we remark that we apply here Chirikov criterion to an 

Hamiltonian that has been treated by the perturbation method of elimination of 

harmonics up to a pretty high order, so that to achieve the description of the fine 

structure of secondary resonances. Chaos is determined at this stade by the over-

lapping of many faint resonances together, so that it is intuitive that the neglected 
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Fig. 12. Poincaré sections obtained by numerical integration. 
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mutual interactions can not change the picture as much as they do when just t-

wo strong resonances are taken into account, for example working on the original 

Hamiltonian (15). In particular a well defined threshold of transition appear to ex-

ist between the region where resonances do not overlap and the region where they 

overlap. The location of this threshold seems to be very unsensitive to the numerical 

accuracy of the computations. 

4.4. T H E O R E T I C A L RESULTS ON THE SUCCESSIVE ELIMINATIONS OF HARMONICS 

In the paper by Morbidelli and Giorgilli (1992), the method of successive elimina-

tions of harmonics is analyzed from the pure theoretical point of view. In particular 

it is shown that, under suitable assumptions, the method can be considered as a 

genuine perturbation theory. Indeed, the authors prove that, if some condition of 

smallness of the original perturbation is satisfied, one could in principle perform an 

arbitrary number of steps of the algorithm of successive elimination of harmonics. 

And if this number is pushed to infinity, then the algorithm converges on the so 

called KAM-tori. This, of course, can not be done in practice. What one can do 

in practice, on the contrary, is to perform a finite number of steps. The meaning 

of this, from the theoretical point of view, is that one constructs a (open) set of 

quasi-invariant tori. The action variables which parameterize these tori are not con-

stants of motion, but have a "slow" diffusion (approximately exponentially small 

with the order of the non yet eliminated harmonics). And the further one goes in 

the application of the algorithm, the better are the action variables one constructs. 

From the point of view of the theory of general dynamical systems, this can be 

read as a Nekhoroshev like result in the neighbourhood of the KAM-tori. Indeed, 

by the successive elimination of harmonics, one can prove that Arnold diffusion is 

exponentially slow with the inverse of the distance of the starting point from the 

closest KAM-torus. 
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Discussion 

R.A.Broucke (to J.Henrard) - Can you make some comments about the importance 

of the role played by J2 (the oblateness of the central body) in your work? 

J. Henrard - The role of J2 is to separate the unperturbed frequency of the various 

periodic terms. The interaction of the various periodic terms will depend upon its 

value. 

J.Laskar (toJ.Henrard) - Can you explain further, why when trapped in the pri-

mary resonance and when the eccentricity increases, the satellite is not trapped in 

the 4/1 or 3/1 secondary resonances, but only in the 2/1 resonance? 

J.Henrard - There is a probability of capture associated with each secondary reso-

nance. Low probability for secondary resonances N/1 with large Ν and probability 

equal to one for the 2/1 secondary resonance. The particular simulation I have 

shown escape from all the N/1 (with Ν > 2) secondary resonances and ends up in 

the 2/1 secondary resonance, but other cases are posssible. 

J,Laskar (to A.Morbidelli) - In your iterative process, you start from a given res-

onance. When you define the second coordinates transformation, it should change 

the location of the first resonance. In other words, what happens if you start from 

a different resonance in your process? 

A.Morbidelli - It is true that, once a resonance has been eliminated, its location 

cannot be changed by the elimination of the successive harmonics. However, the 

elimination of a resonant harmonic defines the borders of the domain of work and, 

when new variables are defined in order to eliminate a further harmonic, a portion 

of volume, given by the tori that collide with the borders, must be eliminated. We 

believe that this volume is lost in the chaotic zone. The effect of the second harmonic 

on the first one is, then, the creation of a chaotic zone around the séparatrices. 

When a hierarchy clearly exists among resonances, the order by which the har-

monics must be eliminated is evident. When two resonances have the same strength, 

the order of elimination is arbitrary. Some tests we have performed changing the 

sequence of elimination have given the same results. From a pure theoretical point 

of view, one can show that the intersection of the regular domains obtained by 

eliminating the harmonics in different sequences, is non-empty. 
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