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Abstract
We study the asymptotic limit of random pure dimer coverings on rail yard graphs when the mesh sizes of the
graphs go to 0. Each pure dimer covering corresponds to a sequence of interlacing partitions starting with an empty
partition and ending in an empty partition. Under the assumption that the probability of each dimer covering is
proportional to the product of weights of present edges, we obtain the limit shape (law of large numbers) of the
rescaled height functions and the convergence of the unrescaled height fluctuations to a diffeomorphic image of the
Gaussian free field (Central Limit Theorem), answering a question in [7]. Applications include the limit shape and
height fluctuations for pure steep tilings [9] and pyramid partitions [20; 36; 39; 38]. The technique to obtain these
results is to analyze a class of Macdonald processes which involve dual partitions as well.
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1. Introduction

A dimer cover, or perfect matching on a graph, is a subset of edges such that each vertex is incident to
exactly one edge in the subset. A dimer model is a probability measure on the set of perfect matchings
(see [21]). The dimer model is a natural mathematical model for the structures of matter; for example,
each perfect matching on a hexagonal lattice corresponds to a double-bond configuration of a graphite
molecule. The dimer model on a Fisher graph has a measure-preserving correspondence with the 2D
Ising model (see [15; 32; 25]).

Just as in the structures of matter, different molecule configurations have certain probabilities to
occur depending on the underlying energy. Mathematically, we define a probability measure on the set
of all perfect matchings of a graph depending on the energy of the dimer configuration, quantified as
the product of weights of present edges in the configuration. The phase transitions and asymptotical
behaviors of the dimer model have been an interesting topic for mathematicians and physicists for a
long time. A combinatorial argument shows that the total number of perfect matchings on any finite
planar graph can be computed by the Pfaffian of the corresponding weighted adjacency matrix [18;
37]. The local statistics can be computed by the inverse of the weighted adjacency matrix [19]; a
complete picture of phase transitions was obtained in [23]. Empirical results show that in large graphs,
there are certain regions where the configurations are almost deterministic (i.e., one type of edges
have very high probability to occur in the dimer configuration). These are called ‘frozen regions’, and
their boundaries are called ‘frozen boundaries’. When the mesh size of the graph goes to 0 such that
the graph approximates a simply-connected region in the plane, the limit shape of the random perfect
matchings can be obtained by a variational principle [11], and the frozen boundaries are proved to be
algebraic curves of a specific type called the cloud curves [22]. It is also known that the fluctuations of
(unrescaled) dimer heights converge to the Gaussian free field (GFF) in distribution when the boundary
satisfies certain conditions [19; 26].

In this paper, we investigate perfect matchings on a general class of bipartite graphs called rail yard
graphs. The major goal of the paper is to understand the asymptotic behavior of the model, in particular,
the limit shape and height fluctuations.

We start with pyramid partitions as an example of rail yard graphs. They are shown in Figure 1. These
are pyramid shaped objects built out of square bricks. The fundamental pyramid partition is shown on
the left and extends infinitely down. Any other pyramid partition is obtained by removing finitely many
bricks, where we can only remove fully exposed bricks at any given time. In the figure on the right, three
bricks have been removed. If one looks from above, then the domino tilings as illustrated in Figure 2
will be observed.

In Figure 2, an edge was drawn for each domino. Now it is possible to slice the tilings diagonally
(along dashed lines) and insert new vertices to obtain the two perfect matchings on the rail yard graph;
see Figures 3 and 4.

The one corresponding to the other pyramid partitions where three bricks were removed is given
below.

This construction is due to [7]. We leave the explanation to the picture. Note that the green curve
bounds the region that corresponds to the tiling of the square domain shown in Figure 2 and that edges

Figure 1. Pyramid partitions.
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Figure 2. Domino tilings corresponding to pyramid partitions.

Figure 3. Dimer covering on a rail yard graph corresponding to the pyramid partition in the left graph
of Figure 1.

Figure 4. Dimer covering on a rail yard graph corresponding to the pyramid partition in the right
graph of Figure 1.

shown in double-bold correspond to dominoes within the square region corresponding to the pyramid
partition. The edges shown in bold correspond to dominoes outside the square region corresponding
to the pyramid partition. Note also that to represent an arbitrary pyramid partition, we might need to
enlarge the graph to the left and right if the bricks that were removed fall out of this square domain.
This means that if the graph is fixed, then only a subset of all pyramid partitions can be represented by
its perfect matchings.

The graph in Figures 3 and 4 is an example of a rail yard graph. It is a rail yard graph given by the word
{𝐿+, 𝑅+, . . . , 𝐿+, 𝑅−, 𝐿−, . . . , 𝑅−}; see Section 2.1 for a precise definition. In general, a rail yard graph
is characterized by a word from the four-letter alphabet {𝐿+, 𝐿−, 𝑅+, 𝑅−}. Each letter corresponds to a
building block – a column consisting of horizontal and diagonal edges. Building blocks differ among
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themselves in the location of diagonal edges only. For example, for the 𝑅+ block, diagonal edges are on
the right of the column and going up (from left to right).

Rail yard graphs were defined in [7], and the formulas to compute the partition functions of pure
dimer coverings on such graphs were also proved in [7]. Special cases of rail yard graphs include the
Aztec diamond [13; 14; 17; 10], pyramid partition [20; 36; 39; 38], steep tiling [9], tower graph [6],
contracting square-hexagon lattice [8; 28; 27; 24] and contracting bipartite graph [29; 30].

Pure dimer coverings on rail yard graphs are in one-to-one correspondence with sequences of
partitions. To establish the correspondence, one recognizes each of the red dots in the graph above as
either a particle or hole. Red dots that are the left-end points of a present edge in the dimer covering are
holes, and the right-end points are particles. That way, on each vertical line we obtain a Maya diagram
of a partition. The fundamental pyramid partition corresponds to the sequence of empty partitions, and
the pyramid partition with three bricks removed shown above to ∅, ∅, ∅, (1), (1), (1), ∅, . . .

Furthermore, using the correspondence, certain random dimer models on rail yard graphs can be
seen as the probability distribution on sequences of partitions known as the Macdonald process. To
study dimer configurations on the rail yard graphs, we need to use dual partitions, and we will be
dealing with a generalized Macdonald process that allow dual interalacing. Such a Macdonald process
can also be obtained from the Macdonald processes defined in [4; 5] by certain specializations, which
are homomorphisms from the algebra of symmetric polynomials to C, but not function evaluations. In
this paper, our asymptotics is concerned only with measures that belong to the subclass of Macdonald
processes known as Schur processes. Therefore, we shall specialize certain parameters in Macdonald
processes to be equal in later sections.

Paper [30] also studies asymptotics of dimer coverings on rail yard graphs. The major differences
between this paper and [30] are the following:

◦ Paper [30] studies dimer configurations on rail yard graphs with the left boundary condition given
by a fixed but arbitrary partition, whereas this paper studies pure dimer coverings on rail yard graphs
(i.e., both the left and right boundary conditions are given by the empty partition).

◦ The rail yard graphs studied in [30] correspond to words from a three-letter alphabet given by either
{𝐿+, 𝐿−, 𝑅+} or {𝐿+, 𝑅−, 𝑅+}, whereas the rail yard graphs studied in this paper correspond to words
from a four-letter alphabet {𝐿+, 𝐿−, 𝑅+, 𝑅−}.

◦ The edge weights of the rail yard graphs studied in [30] are 1 × 𝑛 periodic, whereas the edge weights
of the rail yard graphs studied in this paper are q-volume weights of the 1 × 𝑛 periodic weights, with
𝑞 → 1 in the scaling limit.

◦ The techniques used in [30] are differential operators of Schur polynomials, whereas the techniques
used in this paper are integral operators of Macdonald polynomials. We choose to use the Macdonald
integral operator because it provides an alternative way to study limit shapes without analyzing the
asymptotics of the hook Schur functions.

Our main technical result which allows us to later perform the asymptotic analysis is done in Section 4.
The height function of a pyramid partition is naturally defined by its 3-D depiction, but a notion of the
height function exists for general rail yard graphs, not just pyramid partitions. It is the Thurston height
function, which is well-defined for perfect matchings of bipartite planar graphs. In Section 4, our main
result is the formula for the expectation of the moments for quantities associated with the height function.
We refer to these quantities as Macdonald observables, as they can be computed within the framework
of Macdonald processes. This kind of approach in studying random models using Macdonald processes
was pioneered in [4; 5] and applied to study the asymptotics of lozenge tilings in [12; 1]. Our method
is very similar to [12; 1] and makes use of Negut operators.

In Section 5, we study the asymptotics of the moments of the observables in the appropriate scaling
limit. The general result is given in Theorem 5.4. We also show the Gaussian fluctuations in Theorem 5.5.
In Section 6, we prove an integral formula for the Laplace transform of the rescaled height function (see
Theorem 6.1), which turns out to be asymptotically deterministic, as a 2D analog of the law of large
numbers. Before we state the result for pyramid partitions here, we explain the limiting regime.
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We take a sequence of pyramid partitions and scale them so that their corresponding rail yard graphs
have a fixed set of transition points 𝑉0 < 𝑉1 < 𝑉2, representing the abscissas of the vertical lines of the
left, mid (transition from +s to −s) and right boundary. For example, if 𝑉0 = −2, 𝑉1 = 0, and 𝑉2 = 1,
then rail yard graphs associated with (𝐿+, 𝑅+)2𝑛 (𝐿−, 𝑅−)𝑛 have transition points at −8𝑛, 0, 4𝑛 which
can be after scaling by 𝜖 = 1/(4𝑛) brought to 𝑉0, 𝑉1, 𝑉2. The random model we study is what we refer
to as the periodic q-volume model, which in the 2-periodic case, such as pyramid partitions, depends
on parameters 𝜏1 and 𝜏2 and 𝑞 = 𝑒−𝜖 , where 𝜖 → 0. The weights of diagonal edges are products of
weights each depending on one on these parameters. The weight coming from q is the q-volume which
is the q analog of the uniform measure on plane partitions or, more generally, sequences of interlacing
partitions. Weights coming from 𝜏s are periodic weights which give different weight to diagonal edges
in columns associated with L from those associated with R. For general rail yard graphs, the precise
conditions on the periodicity of the graph and weights are given in Assumptions 5.1. The asymptotics
of the pyramid partitions for uniform weights (i.e., when 𝜏1 = 𝜏2) was studied in [3]. Theorem 6.1 in the
case of pyramid partitions says the following:

Theorem 1.1. The rescaled random height function of pyramid partitions 𝜖ℎ
( 𝜒
𝜖 ,

𝜅
𝜖

)
converges, as

𝜖 → 0, to a non-random function H(𝜒, 𝜅) such that the Laplace transform of H(𝜒, ·) is given by∫ ∞

−∞

𝑒−2𝛼𝜅H(𝜒, 𝜅)𝑑𝜅 =
1

4𝛼2𝜋i

∮
C

[
G𝜒 (𝑤)

] 𝛼 𝑑𝑤
𝑤

,

G𝜒 (𝑤) =
(1 + 𝑒−𝜒𝑤𝜏2)

(
1 − 𝑒−𝑉0𝑤𝜏1

) (
1 + 𝑒−𝑉1𝑤𝜏2

) (
1 − 𝑒−𝑉2𝑤𝜏1

)
(1 − 𝑒−𝜒𝑤𝜏1)

(
1 + 𝑒−𝑉0𝑤𝜏2

) (
1 − 𝑒−𝑉1𝑤𝜏1

) (
1 + 𝑒−𝑉2𝑤𝜏2

) ,
where 𝛼 is a positive real number and C is a positively oriented contour that encloses −𝑒−𝑉0𝜏2, 0 and
𝑒−𝑉1𝜏1, but no other poles or zeros of G𝜒.

The limit shape of pyramid partitions is described as a solution of the parametric equation
(parametrized by w): {

G𝜒 (𝑤) = 𝑒−2𝜅

G ′
𝜒 (𝑤) = 0.

The limit shape for pyramid partitions is shown in Figure 5. The figure on the left corresponds to the
uniform case and coincides to one obtained by [3], and the one on the right corresponds to a non-uniform
case.

In Section 7, we show that the fluctuations of unrescaled height functions converge to the pull-back
Gaussian free field (GFF) in the upper half plane under a diffeomorphism from the liquid region to the
upper half plane. This result is given in Theorem 7.7, and we state the result for pyramid partitions here.
Let w+ : L → H be the diffeomorphism which maps each point (𝜒, 𝜅) in the liquid region L to the
unique root of G𝜒 (𝑤) = 𝑒−2𝜅 in the upper half plane H. We discuss in Section 7 conditions that need
to be satisfied so that such a map is well-defined. Let Ξ be the Gaussian free field (GFF) on H with the
zero boundary condition. Then Theorem 7.7 for pyramid partitions says the following:

Theorem 1.2. As 𝜖 → 0, the height function of pyramid partitions converges to the w+-pullback of GFF
in the sense that for any (𝜒, 𝜅) ∈ L, 𝜒 ∉ {𝑉0, 𝑉1, 𝑉2} and positive real number 𝛼,∫ ∞

−∞

(
ℎ
( 𝜒
𝜖
,
𝜅

𝜖

)
− E

[
ℎ
( 𝜒
𝜖
,
𝜅

𝜖

)] )
𝑒−𝛼𝜅𝑑𝜅 −→

∫
(𝜒,𝜅) ∈L

𝑒−𝛼𝜅Ξ(w+(𝜒, 𝜅))𝑑𝜅

in distribution.

The organization of the paper is as follows. In Section 2, we define the rail yard graph, the perfect
matching and the height function, and review related technical facts. In Section 3, we discuss a class of
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Figure 5. Frozen boundary of pyramid partitions with transition points𝑉0 = −1,𝑉1 = 0,𝑉2 = 1. The left
graph has 𝜏1 = 𝜏2 = 1, and the right graph has 𝜏1 = 10, 𝜏2 = 1/10. If we consider the frozen boundaries
as curves in the (𝜒, 𝜅) plane, in both cases, frozen boundaries have 𝜒 = 0 as an asymptotic line.

Macdonald processes related to the probability measure of perfect matchings on the rail yard graphs.
In Section 4, we compute the moments of height functions of perfect matchings on rail yard graphs
by computing the observables in the generalized Macdonald processes (see Lemma 4.8). In Section 5,
we study the asymptotics of the moments of the random height functions and prove their Gaussian
fluctuations in the scaling limit (see Theorems 5.4 and 5.5). In Section 6, we prove an integral formula
for the Laplace transform of the rescaled height function (see Theorem 6.1), which turns out to be
deterministic, as a 2D analog of the law of large numbers. We further obtain a parametric equation
for the frozen boundary in the scaling limit. In Section 7, we prove that the fluctuations of unrescaled
height functions converge to the pull-back Gaussian free field (GFF) in the upper half plane under a
diffeomorphism from the liquid region to the upper half plane (see Theorem 7.7). In Section 8, we
discuss specific examples of the rail yard graphs, where the limit shapes and height fluctuations of
perfect matchings can be obtained by the main results in the paper; these examples include the pure
steep tilings and pyramid partitions. In Appendix A, we review some facts about Macdonald polynomials
and include some known technical results.

2. Backgrounds

In this section, we define the rail yard graph, the perfect matching and the height function, and review
related technical facts.

2.1. Weighted rail yard graphs

Let 𝑙, 𝑟 ∈ Z such that 𝑙 ≤ 𝑟 . Let [𝑙..𝑟] := [𝑙, 𝑟] ∩ Z, (i.e., [𝑙..𝑟] is the set of integers between l and r).
For a positive integer m, we use [𝑚] := {1, 2, . . . , 𝑚}.
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Figure 6. A rail yard graph with LR sequence 𝑎 = {𝐿, 𝑅, 𝑅, 𝐿} and sign sequence 𝑏 = {+, +,−,−}.
Odd vertices are represented by red points, and even vertices are represented by blue points. Dark lines
represent a pure dimer covering. Assume that above the horizontal line 𝑦 = 4, only horizontal edges
with an odd vertex on the left are present in the dimer configuration, and below the horizontal line
𝑦 = −4, only horizontal edges with an even vertex on the left are present in the dimer configuration.
The corresponding sequence of partitions (from the left to the right) is given by ∅ ≺ (2, 0, . . .) ≺′

(3, 1, 1, . . .) 
′ (2, 0, . . .) 
 ∅.

Consider two binary sequences indexed by integers in [𝑙..𝑟]:

◦ the 𝐿𝑅 sequence 𝑎 = {𝑎𝑙 , 𝑎𝑙+1, . . . , 𝑎𝑟 } ∈ {𝐿, 𝑅}[𝑙..𝑟 ] ;
◦ the sign sequence 𝑏 = (𝑏𝑙 , 𝑏𝑙+1, . . . , 𝑏𝑟 ) ∈ {+,−}[𝑙..𝑟 ] .

The rail yard graph 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) with respect to integers l and r, the 𝐿𝑅 sequence 𝑎 and the sign
sequence 𝑏 is the bipartite graph with vertex set [2𝑙 − 1..2𝑟 + 1] ×

{
Z + 1

2
}
. A vertex is called even

(resp. odd) if its abscissa is an even (resp. odd) integer. Each even vertex (2𝑚, 𝑦), 𝑚 ∈ [𝑙..𝑟] is incident
to three edges: two horizontal edges joining it to the odd vertices (2𝑚 − 1, 𝑦) and (2𝑚 + 1, 𝑦) and one
diagonal edge joining it to

◦ the odd vertex (2𝑚 − 1, 𝑦 + 1) if (𝑎𝑚, 𝑏𝑚) = (𝐿, +);
◦ the odd vertex (2𝑚 − 1, 𝑦 − 1) if (𝑎𝑚, 𝑏𝑚) = (𝐿,−);
◦ the odd vertex (2𝑚 + 1, 𝑦 + 1) if (𝑎𝑚, 𝑏𝑚) = (𝑅, +);
◦ the odd vertex (2𝑚 + 1, 𝑦 − 1) if (𝑎𝑚, 𝑏𝑚) = (𝑅,−).

See Figure 6 for an example of a rail yard graph.
The left boundary (resp. right boundary) of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) consists of all odd vertices with abscissa

2𝑙 − 1 (resp. 2𝑟 + 1). Vertices which do not belong to the boundaries are called inner. A face of
𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) is called an inner face if it contains only inner vertices.

We assign edge weights to a rail yard graph 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) as follows:

◦ a horizontal edge has weight 1, and
◦ a diagonal edge adjacent to a vertex with abscissa 2𝑖 has weight 𝑥𝑖 .
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2.2. Dimer coverings and pure dimer coverings

Definition 2.1. A dimer covering is a subset of edges of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) such that

1. each inner vertex of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) is incident to exactly one edge in the subset;
2. each left boundary vertex or right boundary vertex is incident to at most one edge in the subset;
3. only a finite number of diagonal edges are present in the subset.

A pure dimer covering of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) is a dimer covering of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) satisfying the following
two additional conditions:

◦ each left boundary vertex (2𝑙 − 1, 𝑦) is incident to exactly one edge (resp. no edges) in the subset if
𝑦 > 0 (resp. 𝑦 < 0).

◦ each right boundary vertex (2𝑟 + 1, 𝑦) is incident to exactly one edge (resp. no edges) in the subset if
𝑦 < 0 (resp. 𝑦 > 0).

See Figure 6 for an example of pure dimer coverings on a rail yard graph.
For a dimer covering M on the rail yard graph 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏), define the associated height function

ℎ𝑀 on points (𝑥, 𝑦) ∈ 1
2Z × Z in the interior of faces of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) as follows. We first define a

preliminary height function ℎ𝑀 on points (𝑥, 𝑦) ∈ 1
2Z× Z in the interior of faces of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏). As

we shall see, ℎ𝑀 and ℎ𝑀 satisfy the condition that for any two points (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈
1
2Z × Z in the

same face f of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏), ℎ𝑀 (𝑥1, 𝑦1) = ℎ𝑀 (𝑥2, 𝑦2) and ℎ𝑀 (𝑥1, 𝑦1) = ℎ𝑀 (𝑥2, 𝑦2). Hence, we also
write

ℎ𝑀 ( 𝑓 ) := ℎ𝑀 (𝑥1, 𝑦1) = ℎ𝑀 (𝑥2, 𝑦2); ℎ𝑀 ( 𝑓 ) := ℎ𝑀 (𝑥1, 𝑦1) = ℎ𝑀 (𝑥2, 𝑦2).

Note that there exists a positive integer 𝑁 > 0 such that when 𝑦 < −𝑁 , only horizontal edges with
even vertices on the left are present. Fix a face 𝑓0 of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) such that the midpoint of 𝑓0 is on
the horizontal line 𝑦 = −𝑁 , and define ℎ𝑀 ( 𝑓0) = 0.

For any two adjacent faces 𝑓1 and 𝑓2 sharing at least one edge,

◦ If moving from 𝑓1 to 𝑓2 crosses a present (resp. absent) horizontal edge in M with odd vertex on the
left, then ℎ𝑀 ( 𝑓2) − ℎ𝑀 ( 𝑓1) = 1 (resp. ℎ𝑀 ( 𝑓2) − ℎ𝑀 ( 𝑓1) = −1).

◦ If moving from 𝑓1 to 𝑓2 crosses a present (resp. absent) diagonal edge in M with odd vertex on the
left, then ℎ𝑀 ( 𝑓2) − ℎ𝑀 ( 𝑓1) = 2 (resp. ℎ𝑀 ( 𝑓2) − ℎ𝑀 ( 𝑓1) = 0).

Let ℎ0 be the preliminary height function associated to the dimer configuration 𝑀0 satisfying

◦ no diagonal edge is present, and
◦ each present edge is horizontal with an even vertex on the left.

Note that 𝑀0 is not a pure dimer covering.
The height function ℎ𝑀 associated to M is then defined by

ℎ𝑀 = ℎ𝑀 − ℎ0. (2.1)

Let 𝑚 ∈ [𝑙..𝑟]. Let 𝑥 = 2𝑚− 1
2 be a vertical line such that all the horizontal edges and diagonal edges

of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) crossed by 𝑥 = 2𝑚 − 1
2 have odd vertices on the left. Let 𝑦 ∈ Z. Then for each point(

2𝑚 − 1
2 , 𝑦

)
in a face of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏), we have

ℎ𝑀

(
2𝑚 −

1
2
, 𝑦

)
= 2

[
𝑁−
ℎ,𝑀

(
2𝑚 −

1
2
, 𝑦

)
+ 𝑁−

𝑑,𝑀

(
2𝑚 −

1
2
, 𝑦

)]
, (2.2)

where 𝑁−
ℎ,𝑀

(
2𝑚 − 1

2 , 𝑦
)

is the total number of present horizontal edges in M crossed by 𝑥 = 2𝑚 − 1
2

below y, and 𝑁−
𝑑,𝑀

(
2𝑚 − 1

2 , 𝑦
)

is the total number of present diagonal edges in M crossed by 𝑥 = 2𝑚− 1
2
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below y. From the definition of a pure dimer covering, we can see that both 𝑁−
ℎ,𝑀

(
2𝑚 − 1

2 , 𝑦
)

and

𝑁−
𝑑,𝑀

(
2𝑚 − 1

2 , 𝑦
)

are finite for each finite y.
Note also that 𝑥 = 2𝑚 + 1

2 is a vertical line such that all the horizontal edges and diagonal edges of
𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) crossed by 𝑥 = 2𝑚 + 1

2 have even vertices on the left. Then for each point
(
2𝑚 + 1

2 , 𝑦
)

in a face of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏), we have

ℎ𝑀

(
2𝑚 +

1
2
, 𝑦

)
= 2

[
𝐽−ℎ,𝑀

(
2𝑚 +

1
2
, 𝑦

)
− 𝑁−

𝑑,𝑀

(
2𝑚 +

1
2
, 𝑦

)]
; (2.3)

where 𝐽−ℎ,𝑀

(
2𝑚 + 1

2 , 𝑦
)

is the total number of absent horizontal edges in M crossed by 𝑥 = 2𝑚 + 1
2

below y, and 𝑁−
𝑑,𝑀

(
2𝑚 + 1

2 , 𝑦
)

is the total number of present diagonal edges in M crossed by 𝑥 = 2𝑚+ 1
2

below y. From the definition of a pure dimer covering we can also see that both 𝐽−ℎ,𝑀

(
2𝑚 + 1

2 , 𝑦
)

and

𝑁−
𝑑,𝑀

(
2𝑚 + 1

2 , 𝑦
)

are finite for each finite y.
One may construct a graph 𝑅+ whose vertices are all the points (𝑥, 𝑦) ∈ 1

2Z × Z in the interior of
faces of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏), and two vertices u and v of 𝑅+ are joined by an edge if and only if one of the
following two conditions holds:

◦ u and v are two nearest vertices along the same horizontal line; or
◦ u and v are two nearest vertices along the same vertical line.

Then one can define a continuous function ℎ𝑀 on the whole plane by first doing linear interpolations
on the edges of 𝑅+ and then doing linear interpolations on a triangulation of 𝑅+, where a triangulation
of 𝑅+ is obtained by dividing each face of 𝑅+ into two triangles.

2.3. Partitions

A partition is a non-increasing sequence 𝜆 = (𝜆𝑖)𝑖≥0 of non-negative integers which vanish eventually.
Let Y be the set of all the partitions. The size of a partition is defined by |𝜆 | =

∑
𝑖≥1 𝜆𝑖 . Two partitions

𝜆 and 𝜇 are called interlaced, and written by 𝜆 
 𝜇 or 𝜇 ≺ 𝜆 if 𝜆1 ≥ 𝜇1 ≥ 𝜆2 ≥ 𝜇2 ≥ 𝜆3 · · · . When
representing partitions by Young diagrams, this means 𝜆/𝜇 is a horizontal strip. The conjugate partition
𝜆′ of 𝜆 is a partition whose Young diagram 𝑌𝜆′ is the image of the Young diagram 𝑌𝜆 of 𝜆 by the
reflection along the main diagonal. More precisely,

𝜆′𝑖 :=
��{ 𝑗 ≥ 0 : 𝜆 𝑗 ≥ 𝑖}

��, ∀𝑖 ≥ 1.

Let 𝑙𝑒𝑛(𝜆) be the total number of nonzero parts in the partition 𝜆.
The skew Schur functions are defined in Section I.5 of [31].

Definition 2.2. Let 𝜆, 𝜇 be partitions. Define the skew Schur functions as

𝑠𝜆/𝜇 = det
(
ℎ𝜆𝑖−𝜇 𝑗−𝑖+ 𝑗

) 𝑙𝑒𝑛(𝜆)
𝑖, 𝑗=1

,

where for 𝑟 < 0, ℎ𝑟 = 0 and for 𝑟 ≥ 0, ℎ𝑟 is the rth complete symmetric function defined by the sum of
all monomials of total degree r in the variables 𝑥1, 𝑥2, . . .. More precisely,

ℎ𝑟 =
∑

1≤𝑖1≤𝑖2≤...≤𝑖𝑟

𝑥𝑖1𝑥𝑖2 · · · 𝑥𝑖𝑟

Define the Schur function as 𝑠𝜆 = 𝑠𝜆/∅ .
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For a dimer covering M of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏), we associate a particle-hole configuration to each odd
vertex of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) as follows. Let 𝑚 ∈ [𝑙..(𝑟 +1)] and 𝑘 ∈ Z. If the odd endpoint

(
2𝑚 − 1, 𝑘 + 1

2

)
is incident to a present edge in M on its right (resp. left), then associate a hole (resp. particle) to the
odd endpoint

(
2𝑚 − 1, 𝑘 + 1

2

)
. When M is a pure dimer covering, it is not hard to check that there exists

𝑁 > 0, such that when 𝑦 > 𝑁 , only holes exist and when 𝑦 < −𝑁 , only particles exist.
We associate a partition 𝜆 (𝑀,𝑚) to the column indexed by m of particle-hole configurations, which

corresponds to a pure dimer covering M adjacent to odd vertices with abscissa (2𝑚 − 1) as follows.
Assume

𝜆 (𝑀,𝑚) = (𝜆 (𝑀,𝑚)
1 , 𝜆 (𝑀,𝑚)

2 , . . .).

Then for 𝑖 ≥ 1, 𝜆 (𝑀,𝑚)
𝑖 is the total number of holes in M along the vertical line 𝑥 = 2𝑚 − 1 below the

ith highest particles.
We define the charge 𝑐 (𝑀,𝑚) on column (2𝑚 − 1) for the configuration M as follows:

𝑐 (𝑀,𝑚) = number of particles on column (2𝑚 − 1) in the upper half plane
−number of holes on column (2𝑚 − 1) in the lower half plane (2.4)

The weight of a dimer covering M of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) is defined as follows:

𝑤(𝑀) :=
𝑟∏
𝑖=𝑙

𝑥𝑑𝑖 (𝑀 )
𝑖 ,

where 𝑑𝑖 (𝑀) is the total number of present diagonal edges of M incident to an even vertex with
abscissa 2𝑖.

Let 𝜆 (𝑙) , 𝜆 (𝑟+1) be two partitions. The partition function 𝑍𝜆(𝑙) ,𝜆(𝑟+1) (𝐺, 𝑥) of dimer coverings on
𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) whose configurations on the left (resp. right) boundary correspond to partition 𝜆 (𝑙) (resp.
𝜆 (𝑟+1) ) is the sum of weights of all such dimer coverings on the graph. Given the left and right boundary
conditions 𝜆 (𝑙) and 𝜆 (𝑟+1) , respectively, the probability of a dimer covering M is then defined by

Pr(𝑀 |𝜆 (𝑙) , 𝜆 (𝑟+1) ) :=
𝑤(𝑀)

𝑍𝜆(𝑙) ,𝜆(𝑟+1) (𝐺, 𝑥)
. (2.5)

Note that pure dimer coverings have left and right boundary conditions given by

𝜆 (𝑙) = 𝜆 (𝑟+1) = ∅. (2.6)

Let f be an inner face of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏). Let M be a dimer covering of C. If exactly half of the edges
bordering f are present in M, we can obtain another dimer covering 𝑀 ′ from M, such that 𝑀 ′ and M
coincide on each edge not bordering f, whereas for an edge bordering f, it is present in 𝑀 ′ if and only
if it is absent in M. In particular, M and 𝑀 ′ have the same configuration on the left and right boundary.
The operation of replacing M by 𝑀 ′ is called a flip of f ; see Figure 7, where odd vertices are represented
by red dots, and even vertices are represented by blue dots.

Then we have the following lemma.
Lemma 2.3. Let M be a pure dimer covering on the rail yard graph 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏). Then

𝑐 (𝑀,𝑚) = 0, ∀𝑚 ∈ [𝑙..(𝑟 + 1)] .

Proof. Let 𝑀0 be the pure dimer covering on 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) such that
◦ all the present edges in the upper half plane are horizontal with odd vertex on the left, and
◦ all the present edges in the lower half plane are horizontal with even vertex on the left.
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Figure 7. Flip of dimer configurations on a face between two columns. Left: (𝐿−, 𝐿−), (𝐿−, 𝑅−),
(𝐿−, 𝐿+),(𝐿−, 𝑅+)(𝑅+, 𝐿+), (𝑅+, 𝐿−), (𝑅+, 𝑅−), (𝑅+, 𝑅+). Right: (𝐿+, 𝐿−), (𝐿+, 𝐿+), (𝐿+, 𝑅+),
(𝐿+, 𝑅−), (𝑅−, 𝐿+), (𝑅−, 𝐿−), (𝑅−, 𝑅+), (𝑅−, 𝑅−).

It is straightforward to check that in the particle-whole representation for any column in 𝑀0, the upper
half plane only has holes, whereas the lower half plane only has particles. By (2.4), we obtain

𝑐 (𝑀0 ,𝑚) = 0, ∀𝑚 ∈ [𝑙..(𝑟 + 1)] .

By Section 2.3 of [7] (see also [34]), any pure dimer covering M of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) can be obtained
from 𝑀0 by finitely many flips. The particle-hole configuration is associated to each odd vertex. The
particle-hole configuration for each type of a flip is shown in Figure 7, where particles are represented by
hatched circles and holes are represented by non-hatched circles. Each local particle-hole configuration
is lying in two adjacent rows. The following cases might occur:

◦ both rows are in the upper half plane, or
◦ both rows are in the lower half plane or
◦ the top row is in the upper half plane, and the bottom row is in the lower half plane.

It is straightforward to check that for each one of the three cases above, and each type particle-hole
configuration, the charge 𝑐𝑀,𝑚 for all 𝑚 ∈ [𝑙..𝑟 + 1] remains unchanged. Then for any pure dimer
covering M, 𝑐 (𝑀,𝑚) = 𝑐 (𝑀0 ,𝑚) = 0. Then the lemma follows. �

2.4. Asymptotic height function

Let M be a dimer covering of 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏). Let 𝑌 (𝑖,𝑀 ,𝑚) be the ordinate of the ith highest particle
along the line 𝑥 = 2𝑚 − 1 for the pure dimer covering M. Then by (2.4), we obtain
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𝜆 (𝑀,𝑚)
𝑖 = 𝑌 (𝑖,𝑀 ,𝑚) − 𝑐 (𝑀,𝑚) + 𝑖 −

1
2
. (2.7)

Assume 𝑘 log 𝑡 < 0. We have∫ ∞

−∞

ℎ𝑀 (𝑥, 𝑦)𝑡𝑘𝑦𝑑𝑦 =
1

𝑘 log 𝑡

∫ ∞

−∞

ℎ𝑀 (𝑥, 𝑦)
𝑑𝑒𝑘𝑦 log 𝑡

𝑑𝑦
𝑑𝑦 (2.8)

= −
1

𝑘 log 𝑡

∫ ∞

−∞

𝑒𝑘𝑦 log 𝑡 𝑑ℎ𝑀 (𝑥, 𝑦)

𝑑𝑦
𝑑𝑦.

Let 𝑥 = 2𝑚 − 1
2 and 𝑦 ∉ Z such that (2𝑚 − 1

2 , 𝑦) is in a face. From (2.2), we obtain

𝑑ℎ𝑀 (2𝑚 − 1
2 , 𝑦)

𝑑𝑦
= 2���1 −

𝑙𝑒𝑛(𝜆(𝑀,𝑚) )∑
𝑖=1

1[𝑌 (𝑖,𝑀,𝑚) − 1
2 ,𝑌

(𝑖,𝑀,𝑚) + 1
2 ]
(𝑦)

���. (2.9)

Here, for 𝐴 ⊆ R, 1𝐴(𝑦) : R→ {0, 1} is the indicator function for the set A (i.e., 1𝐴(𝑦) = 1 if 𝑦 ∈ 𝐴 and
0 otherwise).

By (2.7), we obtain for 1 ≤ 𝑖 ≤ 𝑙𝑒𝑛(𝜆 (𝑀,𝑚) )

𝑌 (𝑖,𝑀 ,𝑚) =
1
2
+ 𝜆 (𝑀,𝑚)

𝑖 − 𝑖 + 𝑐 (𝑀,𝑚) . (2.10)

Let

𝐵𝑀 (𝑚) := 𝑌 (𝑙𝑒𝑛(𝜆(𝑀,𝑚) )+1,𝑀 ,𝑚) +
1
2
.

Note that below 𝐵𝑀 (𝑚), only particles are present along the vertical line 𝑦 = 2𝑚 − 1. Hence, we have

𝑑ℎ𝑀 (2𝑚 − 1
2 , 𝑦)

𝑑𝑦
= 0, ∀𝑦 < 𝐵𝑀 (𝑚).

Moreover, since the charge 𝑐 (𝑀,𝑚) = 0, there are exactly the same number of particles on the upper half
plane and holes in the lower half plane along the line 𝑥 = 2𝑚 − 1. We obtain

−𝐵𝑀 (𝑚) = number of particles at (2𝑚 − 1, 𝑦) with 𝐵𝑀 (𝑚) < 𝑦 < 0
+ number of holes at (2𝑚 − 1, 𝑦) with 𝐵𝑀 (𝑚) < 𝑦 < 0

= number of particles at (2𝑚 − 1, 𝑦) with 𝐵𝑀 (𝑚) < 𝑦 < 0
+ number of particles at (2𝑚 − 1, 𝑦) with 𝑦 > 0

= 𝑙𝑒𝑛(𝜆 (𝑀,𝑚) ). (2.11)

Then from (2.8) and (2.9), we obtain∫ ∞

−∞

ℎ𝑀 (𝑥, 𝑦)𝑡𝑘𝑦𝑑𝑦 =

=
2

𝑘 log 𝑡

⎡⎢⎢⎢⎢⎣−
∫ ∞

𝐵𝑀 (𝑚)

𝑒𝑘𝑦 log 𝑡𝑑𝑦 +

∫ ∞

𝐵𝑀 (𝑚)

𝑙𝑒𝑛(𝜆(𝑀,𝑚) )∑
𝑖=1

1[𝑌 (𝑖,𝑀,𝑚) − 1
2 ,𝑌

(𝑖,𝑀,𝑚) + 1
2 ]
(𝑦)𝑒𝑘𝑦 log 𝑡𝑑𝑦

⎤⎥⎥⎥⎥⎦
=

2𝑡𝑘𝐵𝑀 (𝑚)

(𝑘 log 𝑡)2 +
2

(𝑘 log 𝑡)2

𝑙𝑒𝑛(𝜆(𝑀,𝑚) )∑
𝑖=1

(
𝑒𝑘 (𝑌

(𝑖,𝑀,𝑚) + 1
2 ) log 𝑡 − 𝑒𝑘 (𝑌

(𝑖,𝑀,𝑚) − 1
2 ) log 𝑡

)
.
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By (2.10), we obtain∫ ∞

−∞

ℎ𝑀 (𝑥, 𝑦)𝑡𝑘𝑦𝑑𝑦 =

=
2𝑡𝑘 (𝐵𝑀 (𝑚)+𝑙𝑒𝑛(𝜆(𝑀,𝑚) ))

(𝑘 log 𝑡)2

⎡⎢⎢⎢⎢⎣𝑡−𝑘𝑙𝑒𝑛(𝜆
(𝑀,𝑚) ) + (1 − 𝑡−𝑘 )

𝑙𝑒𝑛(𝜆(𝑀,𝑚) )∑
𝑖=1

𝑡𝑘 (𝜆
(𝑀,𝑚)
𝑖 +𝑐 (𝑀,𝑚) −𝑖+1)

⎤⎥⎥⎥⎥⎦
=

2
(𝑘 log 𝑡)2

⎡⎢⎢⎢⎢⎣𝑡−𝑘𝑙𝑒𝑛(𝜆
(𝑀,𝑚) ) + (1 − 𝑡−𝑘 )

𝑙𝑒𝑛(𝜆(𝑀,𝑚) )∑
𝑖=1

𝑡𝑘 (𝜆
(𝑀,𝑚)
𝑖 +𝑐 (𝑀,𝑚) −𝑖+1)

⎤⎥⎥⎥⎥⎦ , (2.12)

where the last identity follows from (2.11). In particular, if M is a pure dimer covering, we have∫ ∞

−∞

ℎ𝑀 (𝑥, 𝑦)𝑡𝑘𝑦𝑑𝑦 =
2

(𝑘 log 𝑡)2

⎡⎢⎢⎢⎢⎣𝑡−𝑘𝑙𝑒𝑛(𝜆
(𝑀,𝑚) ) + (1 − 𝑡−𝑘 )

𝑙𝑒𝑛(𝜆(𝑀,𝑚) )∑
𝑖=1

𝑡𝑘 (𝜆
(𝑀,𝑚)
𝑖 −𝑖+1)

⎤⎥⎥⎥⎥⎦ .
The bosonic Fock space B is the infinite dimensional Hilbert space spanned by the orthonormal basis

vectors |𝜆〉, where 𝜆 runs over all the partitions. Let 〈𝜆 | denote the dual basis vector. Let x be a formal
or a complex variable. Introduce the operators Γ𝐿+(𝑥), Γ𝐿−(𝑥), Γ𝑅+(𝑥), Γ𝑅−(𝑥) from B to B as follows:

Γ𝐿+(𝑥) |𝜆〉 =
∑
𝜇≺𝜆

𝑥 |𝜆 |− |𝜇 | |𝜇〉; Γ𝑅+(𝑥) |𝜆〉 =
∑
𝜇′≺𝜆′

𝑥 |𝜆 |− |𝜇 | |𝜇〉;

Γ𝐿−(𝑥) |𝜆〉 =
∑
𝜇
𝜆

𝑥 |𝜇 |− |𝜆 | |𝜇〉; Γ𝑅−(𝑥) |𝜆〉 =
∑
𝜇′
𝜆′

𝑥 |𝜇 |− |𝜆 | |𝜇〉.

These operators were first introduced by the Kyoto school and used to study random partitions in [33].

Lemma 2.4. Let 𝑎1, 𝑎2 ∈ {𝐿, 𝑅}. We have the following commutation relations for the operators Γ𝑎1 ,±,
Γ𝑎2 ,±:

Γ𝑎1 ,+(𝑥1)Γ𝑎2 ,−(𝑥2) =

{
Γ𝑎2 ,− (𝑥2)Γ𝑎1 ,+ (𝑥1)

1−𝑥1𝑥2
if 𝑎1 = 𝑎2

(1 + 𝑥1𝑥2)Γ𝑎2 ,−(𝑥2)Γ𝑎1 ,+(𝑥1) if 𝑎1 ≠ 𝑎2
.

Moreover,

Γ𝑎1 ,𝑏 (𝑥1)Γ𝑎2 ,𝑏 (𝑥2) = Γ𝑎2 ,𝑏 (𝑥2)Γ𝑎1 ,𝑏 (𝑥1)

for all 𝑎1, 𝑎2 ∈ {𝐿, 𝑅} and 𝑏 ∈ {+,−}.

Proof. See Proposition 7 of [7]; see also [38; 2]. �

Given the definitions of the operators Γ𝑎,𝑏 (𝑥) with 𝑎 ∈ {𝐿, 𝑅}, 𝑏 ∈ {+,−}, it is straightforward to
check the following lemma.

Lemma 2.5. The partition function of dimer coverings on a rail yard graph 𝐺 = 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) with
left and right boundary conditions given by 𝜆 (𝑙) , 𝜆 (𝑟+1) , respectively, is

𝑍𝜆(𝑙) ,𝜆(𝑟+1) (𝐺; 𝑥) = 〈𝜆 (𝑙) |Γ𝑎𝑙𝑏𝑙 (𝑥𝑙)Γ𝑎𝑙+1𝑏𝑙+1 (𝑥𝑙+1) · · · Γ𝑎𝑟𝑏𝑟 (𝑥𝑟 ) |𝜆
(𝑟+1) 〉. (2.13)

Corollary 2.6. The partition function of pure dimer coverings can be computed as follows:

𝑍∅,∅ (𝐺; 𝑥) =
∏

𝑙≤𝑖< 𝑗≤𝑟 ;𝑏𝑖=+,𝑏 𝑗=−
𝑧𝑖, 𝑗 , (2.14)
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where

𝑧𝑖 𝑗 =

{
1 + 𝑥𝑖𝑥 𝑗 if 𝑎𝑖 ≠ 𝑎 𝑗

1
1−𝑥𝑖 𝑥 𝑗 if 𝑎𝑖 = 𝑎 𝑗

. (2.15)

Proof. The corollary follows from Lemma 2.5 by letting 𝜆 (𝑙) = 𝜆 (𝑟+1) = ∅; it also appears in Proposition
8 of [7] for (2.13) and Theorem 1 of [7] for (2.14). �

Remark. The partition function 𝑍 (𝐺; 𝑥) is always well-defined as a power series in 𝑥. When we
consider the edge weights 𝑥𝑖’s to be positive numbers, to make sure the convergence of the power series
representing the partition function, we need to assume that for any 𝑖, 𝑗 ∈ [𝑙..𝑟], 𝑖 < 𝑗 , 𝑎𝑖 = 𝑎 𝑗 and
𝑏𝑖 = +, 𝑏 𝑗 = −, we have 𝑥𝑖𝑥 𝑗 < 1. However, when considering the corresponding probability measure,
we do not necessarily need this assumption.

3. Macdonald Processes

In this section, we discuss a class of Macdonald processes related to the probability measure of perfect
matchings on the rail yard graphs. The major characteristic of the processes defined here is that the
processes involve dual partitions as well, which, as we will see, can also be obtained from certain non-
function-evaluation specializations of the Macdonald processes defined without dual partitions (see
[4]), when the parameters satisfy 𝑞 = 𝑡.

Let 𝐺 = 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) be a rail yard graph. Let (𝜆 (𝑀,𝑙) , 𝜆 (𝑀,𝑙+1) , . . . , 𝜆 (𝑀,𝑟+1) ) be the sequence of
partitions corresponding to a dimer covering M on G. By Lemmas 2.4 and 2.5, we obtain for 𝑖 ∈ [𝑙..𝑟]

1. If (𝑎𝑖 , 𝑏𝑖) = (𝐿,−), 𝜆 (𝑀,𝑖+1) ≺ 𝜆 (𝑀,𝑖) ;
2. If (𝑎𝑖 , 𝑏𝑖) = (𝐿, +), 𝜆 (𝑀,𝑖+1) 
 𝜆 (𝑀,𝑖) ;
3. If (𝑎𝑖 , 𝑏𝑖) = (𝑅,−), [𝜆 (𝑀,𝑖+1) ] ′ ≺ [𝜆 (𝑀,𝑖) ] ′;
4. If (𝑎𝑖 , 𝑏𝑖) = (𝑅, +), [𝜆 (𝑀,𝑖+1) ] ′ 
 [𝜆 (𝑀,𝑖) ] ′.

Given Definition 2.2, we can express the probability of a pure dimer covering M conditional on the
left and right boundary conditions 𝜆 (𝑙) = ∅ and 𝜆 (𝑟+1) = ∅, respectively, as defined by (2.5), as follows:

Pr(𝑀 |𝜆 (𝑙) = ∅, 𝜆 (𝑟+1) = ∅) :=
1

𝑍∅,∅ (𝐺, 𝑥)∏
𝑖∈[𝑙..𝑟 ]

(𝑎𝑖 ,𝑏𝑖 )=(𝐿,−)

𝑠𝜆(𝑀,𝑖) /𝜆(𝑀,𝑖+1) (𝑥𝑖)
∏

𝑗∈[𝑙..𝑟 ]
(𝑎𝑖 ,𝑏𝑖)=(𝐿,+)

𝑠𝜆(𝑀, 𝑗+1) /𝜆(𝑀, 𝑗) (𝑥 𝑗 )

∏
𝑖∈[𝑙..𝑟 ]

(𝑎𝑖 ,𝑏𝑖 )=(𝑅,−)

𝑠 [𝜆(𝑀,𝑖) ]′/[𝜆(𝑀,𝑖+1) ]′ (𝑥𝑖)
∏

𝑗∈[𝑙..𝑟 ]
(𝑎𝑖 ,𝑏𝑖 )=(𝑅,+)

𝑠 [𝜆(𝑀, 𝑗+1) ]′/[𝜆(𝑀, 𝑗) ]′ (𝑥 𝑗 ). (3.1)

Now we define a generalized Macdonald process, which is a formal probability measure on sequences
of partitions such that the probability of each sequence of partitions is proportional to a sum of products
of skew Macdonald polynomials. See Section A for definitions of Macdonald polynomials 𝑃𝜆, 𝑄𝜆,
𝑃𝜆/𝜇, 𝑄𝜆/𝜇.

Definition 3.1. Let A = (𝐴(𝑙) , . . . , 𝐴(𝑟+1) ) and B = (𝐵 (𝑙+1) , . . . , 𝐵 (𝑟+1) ) be 2(𝑟 − 𝑙 + 1) set of variables,
in which each 𝐴(𝑖) or 𝐵 ( 𝑗) consists of countably many variables. Let P = {L,R} be a partition of the
set [𝑙..𝑟] (i.e., L ∪R = [𝑙..𝑟] and L ∩R = ∅).

Define a formal probability measure on the set of sequences of (𝑟 − 𝑙 + 2) partitions
(𝜆 (𝑙) , 𝜆 (𝑙+1) , . . . , 𝜆 (𝑟+1) ) with respect to P , A and B and parameters 𝑞, 𝑡 ∈ (0, 1) by
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MPA,B,P ,𝑞,𝑡 (𝜆
(𝑙) , . . . , 𝜆 (𝑟+1) ) ∝

[∏
𝑖∈L

Ψ𝜆(𝑖) ,𝜆(𝑖+1) (𝐴(𝑖) , 𝐵 (𝑖+1) ; 𝑞, 𝑡)

]
×

[∏
𝑗∈R

Φ[𝜆( 𝑗) ]′, [𝜆( 𝑗+1) ]′ (𝐴
( 𝑗) , 𝐵 ( 𝑗+1) ; 𝑞, 𝑡)

]
, (3.2)

where for two partitions 𝜆, 𝜇 ∈ Y, and two countable set of variables A, B,

Ψ𝜆,𝜇 (𝐴, 𝐵; 𝑞, 𝑡) =
∑
𝜈∈Y

𝑃𝜆/𝜈 (𝐴; 𝑞, 𝑡)𝑄𝜇/𝜈 (𝐵; 𝑞, 𝑡),

Φ𝜆,𝜇 (𝐴, 𝐵; 𝑞, 𝑡) =
∑
𝜈∈Y

𝑄𝜆/𝜈 (𝐴; 𝑡, 𝑞)𝑃𝜇/𝜈 (𝐵; 𝑡, 𝑞).

Remark 3.2. In terms of the scalar product as defined in (A.1),

Ψ𝜆,𝜇 (𝐴, 𝐵; 𝑞, 𝑡) = 〈𝑃𝜆 (𝐴,𝑌 ; 𝑞, 𝑡), 𝑄𝜇 (𝑌, 𝐵; 𝑞, 𝑡)〉𝑌 ,
Φ𝜆,𝜇 (𝐴, 𝐵) = 〈𝑃𝜇 (𝑌, 𝐵; 𝑡, 𝑞), 𝑄𝜆 (𝐴,𝑌 ; 𝑡, 𝑞)〉𝑌 ,

where Y is a countable set of variables.

Lemma 3.3. Consider dimer coverings on the rail-yard graph with probability measure conditional on
left and right boundary conditions 𝜆 (𝑙) and 𝜆 (𝑟+1) , respectively, given by (3.1). Then the corresponding
sequences of partitions form a generalized Macdonald process as in Definition 3.1 with
1. L = {𝑖 ∈ [𝑙..𝑟] : 𝑎𝑖 = 𝐿} and R = { 𝑗 ∈ [𝑙..𝑟] : 𝑎 𝑗 = 𝑅}; and
2. For 𝑖 ∈ [𝑙..𝑟],

(a) if 𝑏𝑖 = −, then 𝐴(𝑖) = {𝑥𝑖}, 𝐵
(𝑖+1) = {0};

(b) if 𝑏𝑖 = +, then 𝐴(𝑖) = {0}, 𝐵 (𝑖+1) = {𝑥𝑖};
3. 𝑞 = 𝑡,
conditional on fixed 𝜆 (𝑙) and 𝜆 (𝑟+1) on the left and right boundaries, respectively.
Proof. Note that 𝑞 = 𝑡 implies Ψ = Φ and

Ψ𝜆(𝑖) ,𝜆(𝑖+1) (𝐴(𝑖) , 𝐵 (𝑖+1) ; 𝑡, 𝑡) =
∑
𝜈∈Y

𝑠𝜆(𝑖) /𝜈 (𝐴
(𝑖) )𝑠𝜆(𝑖+1) /𝜈 (𝐵

(𝑖+1) ).

When 𝑏𝑖 = −,

𝑠𝜆(𝑖+1) /𝜈 (0) =

{
1 if 𝜈 = 𝜆 (𝑖+1)

0 otherwise
,

and therefore,

Ψ𝜆(𝑖) ,𝜆(𝑖+1) (𝑥𝑖 , 0; 𝑡, 𝑡) = 𝑠𝜆(𝑖) /𝜆(𝑖+1) (𝑥𝑖) = Φ𝜆(𝑖) ,𝜆(𝑖+1) (𝑥𝑖 , 0; 𝑡, 𝑡).

Similarly, when 𝑏𝑖 = +,

Ψ𝜆(𝑖) ,𝜆(𝑖+1) (𝑥𝑖 , 0; 𝑡, 𝑡) = 𝑠𝜆(𝑖+1) /𝜆(𝑖) (𝑥𝑖) = Φ𝜆(𝑖) ,𝜆(𝑖+1) (𝑥𝑖 , 0; 𝑡, 𝑡). �

4. Moments of random height functions

In this section, we compute the moments of height functions of perfect matchings on rail yard graphs
by computing the observables in the generalized Macdonald processes. The main result is Lemma 4.2,
which implies the formula for the moments given in Lemma 4.8.
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Let 𝜆 ∈ Y be a partition and 𝑞, 𝑡 ∈ (0, 1) be parameters. Let

𝛾𝑘 (𝜆; 𝑞, 𝑡) = (1 − 𝑡−𝑘 )

𝑙𝑒𝑛(𝜆)∑
𝑖=1

𝑞𝑘𝜆𝑖 𝑡𝑘 (−𝑖+1) + 𝑡−𝑘 ·𝑙𝑒𝑛(𝜆) . (4.1)

Lemma 4.1. For 𝜆 ∈ Y and 𝑞, 𝑡 ∈ (0, 1),

𝛾𝑘 (𝜆
′; 𝑡, 𝑞) = 𝛾𝑘

(
𝜆;

1
𝑞
,

1
𝑡

)
.

Proof. Let 𝑓𝜆 (𝑞, 𝑡) := (1 − 𝑡)
∑

𝑖≥1(𝑞
𝜆𝑖 − 1)𝑡𝑖−1. Then 𝑓𝜆 (𝑞, 𝑡) = 𝑓𝜆′ (𝑡, 𝑞) (see Example 1 in Sect. VI 5

of [31]). Also, note that 𝑓 (𝑞, 𝑡) = 𝛾1 (𝜆; 𝑞, 1
𝑡 ) − 1. Finally,

𝛾𝑘 (𝜆
′; 𝑡, 𝑞) = 1 + 𝑓𝜆′

(
𝑡𝑘 ,

1
𝑞𝑘

)
= 1 + 𝑓𝜆

(
1
𝑞𝑘

, 𝑡𝑘
)
= 𝛾𝑘

(
𝜆;

1
𝑞
,

1
𝑡

)
.

Then the lemma follows. �

Let

𝐻 (𝑊, 𝑋; 𝑞, 𝑡) =
𝑘∏
𝑖=1

∏
𝑥 𝑗 ∈𝑋

𝑤𝑖 −
𝑞𝑥 𝑗
𝑡

𝑤𝑖 − 𝑞𝑥 𝑗
(4.2)

and

Π𝐿,𝐿 (𝑋,𝑌 ) = Π(𝑋,𝑌 ; 𝑞, 𝑡)
Π𝑅,𝑅 (𝑋,𝑌 ) = Π(𝑋,𝑌 ; 𝑡, 𝑞) (4.3)
Π𝐿,𝑅 (𝑋,𝑌 ) = Π𝑅,𝐿 (𝑋,𝑌 ) = Π′(𝑋,𝑌 ),

where Π and Π′ are defined by (A.5). Although both Π𝐿,𝐿 and Π𝑅,𝑅 depend on q and t, when 𝑞 = 𝑡, we
have

Π𝐿,𝐿 (𝑋,𝑌 )
��
𝑞=𝑡 = Π𝑅,𝑅 (𝑋,𝑌 )

��
𝑞=𝑡 =

∏
𝑥𝑖 ∈𝑋

∏
𝑦 𝑗 ∈𝑌

1
1 − 𝑥𝑖𝑦 𝑗

,

which is independent of t.

Lemma 4.2. Let Pr be the probability measure on pure dimer coverings of the rail yard graph
𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) as defined by (2.5) and (2.6), and let

Λ = {𝜆 (𝑖) }𝑖∈[𝑙+1..𝑟 ]

be the corresponding sequence of partitions. Let 𝑙𝑖 be non-negative integers for 𝑖 ∈ [𝑙 + 1..𝑟]. Then

EPr

⎡⎢⎢⎢⎢⎣
∏

𝑖∈[𝑙+1..𝑟 ]
𝛾𝑙𝑖 (𝜆

(𝑖) ; 𝑡, 𝑡)
⎤⎥⎥⎥⎥⎦ =

∮
. . .

∮ ∏
𝑖=[𝑙+1..𝑟 ]

𝐷 (𝑊 (𝑖) ;𝜔(𝑡, 𝑡, 𝑎𝑖))

×
∏

𝑖≤ 𝑗;𝑖, 𝑗∈[𝑙+1..𝑟 ]

(
𝐻 (𝑊 (𝑖) , (−1) 𝛿𝑎𝑖 ,𝑎 𝑗−1𝐴( 𝑗) ;𝜔(𝑡, 𝑡, 𝑎𝑖))

) (−1) 𝛿𝑎𝑖 ,𝑎 𝑗 −1

×
∏

𝑖< 𝑗;𝑖, 𝑗∈[𝑙..𝑟 ]

Π𝑎𝑖 ,𝑎 𝑗 (𝐵
(𝑖+1) ,𝑊 ( 𝑗) )

Π𝑎𝑖 ,𝑎 𝑗 (𝐵
(𝑖+1) , 𝜉 (𝑡, 𝑡, 𝑎 𝑗 )𝑊 ( 𝑗) )

×
∏

𝑖< 𝑗;𝑖, 𝑗∈[𝑙+1..𝑟 ]
𝑇𝑎𝑖 ,𝑎 𝑗 (𝑊

(𝑖) ,𝑊 ( 𝑗) ),
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where

𝜔(𝑞, 𝑡, 𝑎𝑖) =

{
(𝑞, 𝑡) if 𝑎𝑖 = 𝐿(

1
𝑡 ,

1
𝑞

)
if 𝑎𝑖 = 𝑅

, 𝜉 (𝑞, 𝑡, 𝑎 𝑗 ) =

{
𝑞−1 If 𝑎 𝑗 = 𝐿

𝑡 If 𝑎 𝑗 = 𝑅
, (4.4)

𝐷 (𝑊 ; 𝑞, 𝑡), 𝐻 (𝑊, 𝑋; 𝑞, 𝑡) and Π𝑐,𝑑 (𝑋,𝑌 ) are given by (A.3), (4.2) and, (4.3) and

𝑇𝑐,𝑑 (𝑍,𝑊) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∏

𝑧𝑖 ∈𝑍

∏
𝑤𝑗 ∈𝑊

(1−𝑤𝑗 𝑧−1
𝑖 )2

(1−𝑡−1𝑤𝑗 𝑧
−1
𝑖 ) (1−𝑡𝑤𝑗 𝑧−1

𝑖 )
if 𝑐 = 𝑑∏

𝑧𝑖 ∈𝑍

∏
𝑤𝑗 ∈𝑊

(1+𝑡𝑤𝑗 𝑧−1
𝑖 )2

(1+𝑡2𝑤𝑗 𝑧
−1
𝑖 ) (1+𝑤𝑗 𝑧−1

𝑖 )
if 𝑐 = 𝐿 and 𝑑 = 𝑅∏

𝑧𝑖 ∈𝑍

∏
𝑤𝑗 ∈𝑊

(1+𝑡−1𝑤𝑗 𝑧
−1
𝑖 )2

(1+𝑡−2𝑤𝑗 𝑧
−1
𝑖 ) (1+𝑤𝑗 𝑧−1

𝑖 )
if 𝑐 = 𝑅 and 𝑑 = 𝐿

.

Note that 𝐴(𝑖) and 𝐵 ( 𝑗) are specialized as in Lemma 3.3, and𝑊 (𝑖) are integration variables. Furthermore,
|𝑊 (𝑖) | = 𝑙𝑖 and the integral contours are given by {C𝑖, 𝑗 }𝑖∈[𝑙+1..𝑟 ],𝑠∈[𝑙𝑖 ] such that

1. C𝑖,𝑠 is the integral contour for the variable 𝑤 (𝑖)
𝑠 ∈ 𝑊 (𝑖) ;

2. C𝑖,𝑠 encloses 0 and every singular point of

∏
𝑗∈[𝑖..𝑟 ]

(
𝐻 (𝑊 (𝑖) , (−1) 𝛿𝑎𝑖 ,𝑎 𝑗−1𝐴( 𝑗) ;𝜔(𝑡, 𝑡, 𝑎𝑖)

) (−1) 𝛿𝑎𝑖 ,𝑎 𝑗 −1

,

but no other singular points of the integrand;
3. the contour C𝑖, 𝑗 is contained in the domain bounded by 𝑡C𝑖′, 𝑗′ whenever (𝑖, 𝑗) < (𝑖′, 𝑗 ′) in lexico-

graphical ordering.

Proof. By Lemma 4.1, we obtain

EPr

⎡⎢⎢⎢⎢⎣
∏

𝑖∈[𝑙+1..𝑟 ]
𝛾𝑙𝑖 (𝜆

(𝑖) ; 𝑞, 𝑡)
⎤⎥⎥⎥⎥⎦
������𝑞=𝑡

= EPr

⎡⎢⎢⎢⎢⎣
∏

𝑖∈[𝑙+1..𝑟 ]∩L
𝛾𝑙𝑖 (𝜆

(𝑖) ; 𝑞, 𝑡)
⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

∏
𝑖∈[𝑙+1..𝑟 ]∩R

𝛾𝑙𝑖

( [
𝜆 (𝑖)

] ′
;

1
𝑡
,

1
𝑞

)⎤⎥⎥⎥⎥⎦
������𝑞=𝑡 .

Recall that the Macdonald polynomials satisfy (See Page 324 of [31])

𝑃𝜆 (𝑋; 𝑞, 𝑡) = 𝑃𝜆

(
𝑋;

1
𝑞
,

1
𝑡

)
; 𝑄𝜆 (𝑋; 𝑞, 𝑡) =

(
𝑡

𝑞

) |𝜆 |
𝑄𝜆

(
𝑋;

1
𝑞
,

1
𝑡

)
. (4.5)

We obtain

EPr

⎡⎢⎢⎢⎢⎣
∏

𝑖=[𝑙+1..𝑟 ]∩L
𝛾𝑙𝑖 (𝜆

(𝑖) ; 𝑞, 𝑡)
⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

∏
𝑖=[𝑙+1..𝑟 ]∩R

𝛾𝑙𝑖

( [
𝜆 (𝑖)

] ′
;

1
𝑡
,

1
𝑞

)⎤⎥⎥⎥⎥⎦
������𝑞=𝑡

=
∑

𝜆(𝑙) ,...,𝜆(𝑟+1) ∈Y

⎡⎢⎢⎢⎢⎣
∏

𝑖=[𝑙+1..𝑟 ]∩L
𝛾𝑙𝑖 (𝜆

(𝑖) ; 𝑞, 𝑡)
⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

∏
𝑖=[𝑙+1..𝑟 ]∩R

𝛾𝑙𝑖

( [
𝜆 (𝑖)

] ′
;

1
𝑡
,

1
𝑞

)⎤⎥⎥⎥⎥⎦
× Pr(𝜆 (𝑙) , . . . , 𝜆 (𝑟+1) |𝜆 (𝑙) = 𝜆 (𝑟+1) = ∅)

���𝑞=𝑡
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=
1
Z

∑
𝜆(𝑙+1) ,...,𝜆(𝑟 ) ∈Y

⎡⎢⎢⎢⎢⎣
∏

𝑖=[𝑙+1..𝑟 ]∩L
𝛾𝑙𝑖 (𝜆

(𝑖) ; 𝑞, 𝑡)
⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

∏
𝑖=[𝑙+1..𝑟 ]∩R

𝛾𝑙𝑖

( [
𝜆 (𝑖)

] ′
;

1
𝑡
,

1
𝑞

)⎤⎥⎥⎥⎥⎦
×

[∏
𝑖∈L

〈𝑃𝜆(𝑖) (𝐴(𝑖) , 𝑌 (𝑖) ; 𝑞, 𝑡), 𝑄𝜆(𝑖+1) (𝑌 (𝑖) , 𝐵 (𝑖+1) ; 𝑞, 𝑡)〉𝑌 (𝑖)

]
[∏
𝑖∈R

〈𝑄 [𝜆(𝑖) ]′

(
𝐴(𝑖) , 𝑌 (𝑖) ; 𝑡, 𝑞

)
, 𝑃 [𝜆(𝑖+1) ]′

(
𝑌 (𝑖) , 𝐵 (𝑖+1) ; 𝑡, 𝑞

)
〉𝑌 (𝑖)

] �����𝑞=𝑡 ,𝜆(𝑙)=𝜆(𝑟+1)=∅,

where for each i, 𝑌 (𝑖) is a countable collection of variables, and

Z =
∑

𝜆(𝑙+1) ,...,𝜆(𝑟 ) ∈Y

[∏
𝑖∈L

〈𝑃𝜆(𝑖) (𝐴(𝑖) , 𝑌 (𝑖) ; 𝑞, 𝑡), 𝑄𝜆(𝑖+1) (𝑌 (𝑖) , 𝐵 (𝑖+1) ; 𝑞, 𝑡)〉𝑌 (𝑖)

]
[∏
𝑖∈R

〈𝑄 [𝜆(𝑖) ]′ (𝐴
(𝑖) , 𝑌 (𝑖) ; 𝑡, 𝑞), 𝑃 [𝜆(𝑖+1) ]′ (𝑌

(𝑖) , 𝐵 (𝑖+1) ; 𝑡, 𝑞)〉𝑌 (𝑖)

] �����𝑞=𝑡 ,𝜆(𝑙)=𝜆(𝑟+1)=∅ .

For 𝑖 ∈ [𝑙 + 1..𝑟], let

E𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
𝜆(𝑖) ∈Y

𝛾𝑙𝑖 (𝜆
(𝑖) ; 𝑞, 𝑡)𝑃𝜆(𝑖) (𝐴(𝑖) , 𝑌 (𝑖) ; 𝑞, 𝑡)𝑄𝜆(𝑖) (𝑌 (𝑖−1) , 𝐵 (𝑖) ; 𝑞, 𝑡) (𝑖−1,𝑖)

∈L×L∑
𝜆(𝑖) ∈Y

𝛾𝑙𝑖 ([𝜆
(𝑖) ] ′;

1
𝑡
,

1
𝑞
)𝑄𝜆(𝑖) (𝑌 (𝑖−1) , 𝐵 (𝑖) ; 𝑞, 𝑡)𝑄 [𝜆(𝑖) ]′ (𝐴

(𝑖) , 𝑌 (𝑖) ; 𝑡, 𝑞) (𝑖−1,𝑖)
∈L×R∑

𝜆(𝑖) ∈Y

𝛾𝑙𝑖 (𝜆
(𝑖) ; 𝑞, 𝑡)𝑃 [𝜆(𝑖) ]′ (𝑌

(𝑖−1) , 𝐵 (𝑖) ; 𝑡, 𝑞)𝑃𝜆(𝑖) (𝐴(𝑖) , 𝑌 (𝑖) ; 𝑞, 𝑡) (𝑖−1,𝑖)
∈R×L∑

𝜆(𝑖) ∈Y

𝛾𝑙𝑖 ([𝜆
(𝑖) ] ′;

1
𝑡
,

1
𝑞
)𝑃 [𝜆(𝑖) ]′ (𝑌

(𝑖−1) , 𝐵 (𝑖) ; 𝑡, 𝑞)𝑄 [𝜆(𝑖) ]′ (𝐴
(𝑖) , 𝑌 (𝑖) ; 𝑡, 𝑞) (𝑖−1,𝑖)

∈R×L

and

E𝑙 =

{
𝑃𝜆(𝑙) (𝐴(𝑙) , 𝑌 (𝑙) ; 𝑞, 𝑡) 𝑙 ∈ L
𝑄 [𝜆(𝑙) ]′ (𝐴

(𝑙) , 𝑌 (𝑙) ; 𝑡, 𝑞) 𝑙 ∈ R

E𝑟+1 =

{
𝑃 [𝜆(𝑟+1) ]′ (𝑌

(𝑟 ) , 𝐵 (𝑟+1) ; 𝑡, 𝑞) 𝑟 ∈ R
𝑄𝜆(𝑟+1) (𝑌 (𝑟 ) , 𝐵 (𝑟+1) ; 𝑞, 𝑡) 𝑟 ∈ L

.

When 𝜆 (𝑙) = 𝜆 (𝑟+1) = ∅ and 𝑞 = 𝑡, we have E𝑙 = E𝑟+1 = 1. Then

EPr

⎡⎢⎢⎢⎢⎣
∏

𝑖=[𝑙+1..𝑟 ]∩L
𝛾𝑙𝑖 (𝜆

(𝑖) ; 𝑞, 𝑡)
⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

∏
𝑖=[𝑙+1..𝑟 ]∩R

𝛾𝑙𝑖

( [
𝜆 (𝑖)

] ′
; 𝑡, 𝑞

)⎤⎥⎥⎥⎥⎦
������𝑞=𝑡

=
1
Z 〈E𝑙 〈E𝑙+1 . . . 〈E𝑟 ,E𝑟+1〉𝑌 ( (𝑟 ) ) . . .〉𝑌 (𝑙+1) 〉𝑌 (𝑙)

����𝑞=𝑡 , 𝜆(𝑙)=𝜆(𝑟+1)=∅ .

Observe that for 𝑖 ∈ [𝑙 + 1..𝑟],

E𝑖 =

{
𝐷−𝑙𝑖 , (𝐴(𝑖) ,𝑌 (𝑖) );𝑞,𝑡Π𝑎𝑖−1 ,𝑎𝑖 ((𝐴

(𝑖) , 𝑌 (𝑖) ), (𝑌 (𝑖−1) , 𝐵 (𝑖) )) If 𝑎𝑖 = 𝐿

𝐷−𝑙𝑖 , (𝐴(𝑖) ,𝑌 (𝑖) ); 1
𝑡 ,

1
𝑞
Π𝑎𝑖−1 ,𝑎𝑖 ((𝐴

(𝑖) , 𝑌 (𝑖) ), (𝑌 (𝑖−1) , 𝐵 (𝑖) )) If 𝑎𝑖 = 𝑅
,

where 𝐷−𝑙𝑖 , (𝐴(𝑖) ,𝑌 (𝑖) );𝑞,𝑡 is the operator defined as in (A.2).
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By Proposition A.2, we obtain for 𝑖 ∈ [𝑙 + 1..𝑟] and 𝑞 = 𝑡,

◦ If 𝑎𝑖 = 𝐿,

E𝑖 = Π𝑎𝑖−1 ,𝑎𝑖 ((𝐴
(𝑖) , 𝑌 (𝑖) ), (𝑌 (𝑖−1) , 𝐵 (𝑖) ))∮

· · ·

∮
𝐷 (𝑊 (𝑖) ; 𝑞, 𝑡)𝐻 (𝑊 (𝑖) , (𝐴(𝑖) , 𝑌 (𝑖) ); 𝑞, 𝑡)

Π𝑎𝑖−1 ,𝑎𝑖 ((𝑌
(𝑖−1) , 𝐵 (𝑖) ),𝑊 (𝑖) )

Π𝑎𝑖−1 ,𝑎𝑖 ((𝑌
(𝑖−1) , 𝐵 (𝑖) ), 𝑞−1𝑊 (𝑖) )

;

◦ If 𝑎𝑖 = 𝑅,

E𝑖 = Π𝑎𝑖−1 ,𝑎𝑖 ((𝐴
(𝑖) , 𝑌 (𝑖) ), (𝑌 (𝑖−1) , 𝐵 (𝑖) ))∮

· · ·

∮
𝐷

(
𝑊 (𝑖) ;

1
𝑡
,

1
𝑞

)
𝐻

(
𝑊 (𝑖) , (𝐴(𝑖) , 𝑌 (𝑖) );

1
𝑡
,

1
𝑞

)
Π𝑎𝑖−1 ,𝑎𝑖 ((𝑌

(𝑖−1) , 𝐵 (𝑖) ),𝑊 (𝑖) )

Π𝑎𝑖−1 ,𝑎𝑖 ((𝑌
(𝑖−1) , 𝐵 (𝑖) ), 𝑡𝑊 (𝑖) )

,

where each integral contour encloses 0 and all poles of 𝐻 (𝑊 (𝑖) , (𝐴(𝑖) , 𝑌 (𝑖) );𝜔(𝑞, 𝑡; 𝑎𝑖)); moreover,
if 𝑊 (𝑖) = (𝑤 (𝑖)

1 , 𝑤 (𝑖)
2 , . . . , 𝑤 (𝑖)

𝑙𝑖
), then along the integral contours |𝑤 (𝑖)

𝑗 | ≤ | min{𝑞, 𝑡}𝑤 (𝑖)
𝑗+1 | for each

𝑖 ∈ [𝑙𝑖 − 1].
Since the integrand in each E𝑖 is Λ𝑌 (𝑖) -projective, by Lemma A.11, we can interchange the order of

the residue and Macdonald scalar product and obtain

EPr

⎡⎢⎢⎢⎢⎣
∏

𝑖=[𝑙+1..𝑟 ]
𝛾𝑙𝑖 (𝜆

(𝑖) ; 𝑞, 𝑡)
⎤⎥⎥⎥⎥⎦
������𝑞=𝑡

=
1
Z

(
𝑟∏

𝑖=𝑙+1
Π𝑎𝑖−1 ,𝑎𝑖 (𝐴

(𝑖) , 𝐵 (𝑖) )

)
·

∮
〈𝐹𝑙 〈𝐹𝑙+1 . . . 〈𝐹𝑟 , 𝐹𝑟+1〉𝑌 (𝑟 ) 〉𝑌 (𝑙+1) 〉𝑌 (𝑙)

×
���

∏
𝑖=[𝑙+1..𝑟 ]∩L

𝐷 (𝑊 (𝑖) ; 𝑞, 𝑡)𝐻 (𝑊 (𝑖) , 𝐴(𝑖) ; 𝑞, 𝑡)
Π𝑎𝑖−1 ,𝑎𝑖 (𝐵

(𝑖) ,𝑊 (𝑖) )

Π𝑎𝑖−1 ,𝑎𝑖 (𝐵
(𝑖) , 𝑞−1𝑊 (𝑖) )

���
×

���
∏

𝑖=[𝑙+1..𝑟 ]∩R
𝐷

(
𝑊 (𝑖) ;

1
𝑡
,

1
𝑞

)
𝐻

(
𝑊 (𝑖) , 𝐴(𝑖) ;

1
𝑡
,

1
𝑞

)
Π𝑎𝑖−1 ,𝑎𝑖 (𝐵

(𝑖) ,𝑊 (𝑖) )

Π𝑎𝑖−1 ,𝑎𝑖 (𝐵
(𝑖) , 𝑡𝑊 (𝑖) )

���
������𝑞=𝑡 .

Moreover, for 𝑖 ∈ [𝑙 + 1..𝑟],

◦ If 𝑎𝑖 = 𝐿,

𝐹𝑖 = Π𝑎𝑖−1 ,𝑎𝑖 (𝐴
(𝑖) , 𝑌 (𝑖−1) ) · Π𝑎𝑖−1 ,𝑎𝑖 (𝑌

(𝑖−1) , 𝑌 (𝑖) ) · Π𝑎𝑖−1 ,𝑎𝑖 (𝑌
(𝑖) , 𝐵 (𝑖) )

× 𝐻 (𝑊 (𝑖) , 𝑌 (𝑖) ; 𝑞, 𝑡)
Π𝑎𝑖−1 ,𝑎𝑖 (𝑌

(𝑖−1) ,𝑊 (𝑖) )

Π𝑎𝑖−1 ,𝑎𝑖 (𝑌
(𝑖−1) , 𝑞−1𝑊 (𝑖) )

;

◦ If 𝑎𝑖 = 𝑅,

𝐹𝑖 = Π𝑎𝑖−1 ,𝑎𝑖 (𝐴
(𝑖) , 𝑌 (𝑖−1) ) · Π𝑎𝑖−1 ,𝑎𝑖 (𝑌

(𝑖−1) , 𝑌 (𝑖) ) · Π𝑎𝑖−1 ,𝑎𝑖 (𝑌
(𝑖) , 𝐵 (𝑖) )

× 𝐻

(
𝑊 (𝑖) , 𝑌 (𝑖) ;

1
𝑡
,

1
𝑞

)
Π𝑎𝑖−1 ,𝑎𝑖 (𝑌

(𝑖−1) ,𝑊 (𝑖) )

Π𝑎𝑖−1 ,𝑎𝑖 (𝑌
(𝑖−1) , 𝑡𝑊 (𝑖) )

;

and 𝐹𝑙 = 𝐹𝑟+1 = 1.
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By Lemmas A.6 and A.4, we obtain

F𝑟 := 〈𝐹𝑟 , 𝐹𝑟+1〉𝑌 (𝑟 ) =

⎧⎪⎪⎨⎪⎪⎩
Π𝑎𝑟−1 ,𝑎𝑟 ( (𝐴

(𝑟 ) ,𝑊 (𝑟 ) ) ,𝑌 (𝑟−1) )

Π𝑎𝑟−1 ,𝑎𝑟 (𝑞
−1𝑊 (𝑟 ) ,𝑌 (𝑟−1) )

If 𝑎𝑟 = 𝐿

Π𝑎𝑟−1 ,𝑎𝑟 ( (𝐴
(𝑟 ) ,𝑊 (𝑟 ) ) ,𝑌 (𝑟−1) )

Π𝑎𝑟−1 ,𝑎𝑟 (𝑡𝑊
(𝑟 ) ,𝑌 (𝑟−1) )

If 𝑎𝑟 = 𝑅
.

Then the lemma follows by inductively computing the scalar product

〈𝐹𝑙 〈𝐹𝑙+1 . . . 〈𝐹𝑟 , 𝐹𝑟+1〉𝑌 (𝑟 ) 〉𝑌 (𝑙+1) 〉𝑌 (𝑙)

and applying Lemmas 4.4 and 4.5. Note that factors Π𝑎𝑖 ,𝑎 𝑗 (𝐵
(𝑖+1) , 𝐴( 𝑗) ) cancel out with 1/Z since the

partition function for the Macdonald process with empty partitions on both ends is∏
𝑖< 𝑗;𝑖, 𝑗∈[𝑙,..,𝑟 ]

Π𝑎𝑖 ,𝑎 𝑗 (𝐵
(𝑖+1) , 𝐴( 𝑗) ). �

Remark 4.3. Using similar arguments, we can also obtain the following formula.

EPr

⎡⎢⎢⎢⎢⎣
∏

𝑖∈[𝑙+1..𝑟 ]∩L
𝛾𝑙𝑖 (𝜆

(𝑖) ; 𝑡, 𝑡)
∏

𝑖∈[𝑙+1..𝑟 ]∩R
𝛾𝑙𝑖

(
[𝜆 (𝑖) ] ′; 𝑡, 𝑡

)⎤⎥⎥⎥⎥⎦
=

∮
. . .

∮ ∏
𝑖∈[𝑙+1..𝑟 ]

𝐷 (𝑊 (𝑖) ; 𝑡, 𝑡)

×
∏

𝑖≤ 𝑗;𝑖, 𝑗∈[𝑙+1..𝑟 ]

(
𝐻 (𝑊 (𝑖) , (−1) 𝛿𝑎𝑖 ,𝑎 𝑗−1𝐴( 𝑗) ; 𝑡, 𝑡)

) (−1) 𝛿𝑎𝑖 ,𝑎 𝑗 −1

×
∏

𝑖< 𝑗;𝑖, 𝑗∈[𝑙..𝑟 ]

Π𝑎𝑖 ,𝑎 𝑗 (𝐵
(𝑖+1) ,𝑊 ( 𝑗) )

Π𝑎𝑖 ,𝑎 𝑗 (𝐵
(𝑖+1) , 𝑡−1𝑊 ( 𝑗) )

×
∏

𝑖< 𝑗;𝑖, 𝑗∈[𝑙+1..𝑟 ]
𝑆𝑎𝑖 ,𝑎 𝑗 (𝑊

(𝑖) ,𝑊 ( 𝑗) ),

where 𝐷 (𝑊 ; 𝑞, 𝑡), 𝐻 (𝑊, 𝑋; 𝑞, 𝑡) and Π𝑐,𝑑 (𝑋,𝑌 ) are given by (A.3), (4.2) and (4.3), and

𝑆𝑐,𝑑 (𝑍,𝑊) :=
⎡⎢⎢⎢⎢⎣
∏
𝑧𝑖 ∈𝑍

∏
𝑤𝑗 ∈𝑊

(1 + (−1) 𝛿𝑐,𝑑 𝑡−1𝑤 𝑗 𝑧
−1
𝑖 ) (1 + (−1) 𝛿𝑐,𝑑 𝑡𝑤 𝑗 𝑧

−1
𝑖 )

(1 + (−1) 𝛿𝑐,𝑑𝑤 𝑗 𝑧
−1
𝑖 )2

⎤⎥⎥⎥⎥⎦
(−1) 𝛿𝑐,𝑑

.

Furthermore, |𝑊 (𝑖) | = 𝑙𝑖 and the integral contours are given by {C𝑖, 𝑗 }𝑖∈[𝑙+1..𝑟 ],𝑠∈[𝑙𝑖 ] such that

1. C𝑖,𝑠 is the integral contour for the variable 𝑤 (𝑖)
𝑠 ∈ 𝑊 (𝑖) ;

2. C𝑖,𝑠 encloses 0 and every singular point of∏
𝑗∈[𝑖..𝑟 ]

(
𝐻 (𝑊 (𝑖) , (−1) 𝛿𝑎𝑖 ,𝑎 𝑗−1𝐴( 𝑗) ; 𝑡, 𝑡)

) (−1) 𝛿𝑎𝑖 ,𝑎 𝑗 −1

,

but no other singular points of the integrand;
3. the contour C𝑖, 𝑗 is contained in the domain bounded by 𝑡C𝑖′, 𝑗′ whenever (𝑖, 𝑗) < (𝑖′, 𝑗 ′) in lexico-

graphical ordering.
Lemma 4.4. Let 𝑐1, 𝑐2, 𝑐3 ∈ {𝐿, 𝑅}. Let 𝐴, 𝐵,𝑌 be three collections of countably many variables. Then
we have

〈Π𝑐1 ,𝑐2 (𝐴,𝑌 ),Π𝑐2 ,𝑐3 (𝑌, 𝐵)〉𝑌 = Π𝑐1 ,𝑐3 (𝐴, 𝐵),

where if 𝑐2 = 𝐿 (resp. 𝑐2 = 𝑅), the scalar product 〈·, ·〉 is with respect to (𝑞, 𝑡) (resp. (𝑡, 𝑞)).
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Proof. The Lemma follows from Lemmas A.4 and A.6. �

Lemma 4.5. For 𝑖 ∈ [𝑙 + 2..𝑟], and 𝑗 ∈ [𝑖..𝑟], let

G : =
〈
Π𝑎𝑖−2 ,𝑎𝑖−1

((
𝑌 (𝑖−2) , 𝐵 (𝑖−1)

)
, 𝑌 (𝑖−1)

)
𝐻

(
𝑊 (𝑖−1) , 𝑌 (𝑖−1) ;𝜔(𝑞, 𝑡; 𝑎𝑖−1)

)
,

Π𝑎𝑖−1 ,𝑎 𝑗 ((𝐴
( 𝑗) ,𝑊 ( 𝑗) ), 𝑌 (𝑖−1) )

Π𝑎𝑖−1 ,𝑎 𝑗 (𝜉 (𝑞, 𝑡, 𝑎 𝑗 )𝑊 ( 𝑗) , 𝑌 (𝑖−1) )

〉
𝑌 (𝑖−1)

,

where in G, the scalar product 〈·, ·〉 is with respect to (𝑞, 𝑡) if 𝑎𝑖−1 = 𝐿 and with respect to (𝑡, 𝑞) if
𝑎𝑖−1 = 𝑅; and 𝜔, 𝜉 are defined as in (4.4). Assume 𝑞 = 𝑡. Then G is equal to

G =
Π𝑎𝑖−2 ,𝑎 𝑗 ((𝑌

(𝑖−2) , 𝐵 (𝑖−1) ), (𝐴( 𝑗) ,𝑊 ( 𝑗) ))

Π𝑎𝑖−2 ,𝑎 𝑗 (𝑌
(𝑖−2) , 𝐵 (𝑖−1) ), 𝜉 (𝑡, 𝑡, 𝑎 𝑗 )𝑊 ( 𝑗) )

×

[
𝐻 (𝑊 (𝑖−1) , (𝐴( 𝑗) ,𝑊 ( 𝑗) ), 𝜔(𝑡, 𝑡; 𝑎𝑖−1))

𝐻 (𝑊 (𝑖−1) , (−1) 𝛿𝑎𝑖−1 ,𝑎 𝑗−1𝜉 (𝑡, 𝑡, 𝑎 𝑗 )𝑊 ( 𝑗) , 𝜔(𝑡, 𝑡; 𝑎𝑖−1))

] (−1) 𝛿𝑎𝑖−1 ,𝑎 𝑗 −1

.

Proof. The lemma follows from Lemma A.6 with

𝑑𝑛 =

{
(−1) (𝑛+1) (𝛿𝑎𝑖−2 ,𝑎𝑖−1−1) 𝑝𝑛 (𝑌

(𝑖−2) , 𝐵 (𝑖−1) ) + (1 − 𝑡−𝑛)𝑝𝑛 (
𝑞

𝑊 (𝑖−1) ), 𝑎𝑖−1 = 𝐿

(−1) (𝑛+1) (𝛿𝑎𝑖−2 ,𝑎𝑖−1−1) 𝑝𝑛 (𝑌
(𝑖−2) , 𝐵 (𝑖−1) ) + (1 − 𝑞𝑛)𝑝𝑛 (

1
𝑡𝑊 (𝑖−1) ), 𝑎𝑖−1 = 𝑅

𝑢𝑛 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1) (𝑛+1) [𝑝𝑛 (𝐴( 𝑗) ,𝑊 ( 𝑗) ) − 𝑝𝑛

(
𝑊 ( 𝑗)𝜉 (𝑎 𝑗 )

) ]
If 𝑎𝑖−1 ≠ 𝑎 𝑗

1−𝑡𝑛
1−𝑞𝑛

[
𝑝𝑛 (𝐴

( 𝑗) ,𝑊 ( 𝑗) ) − 𝑝𝑛
(
𝑊 ( 𝑗)𝜉 (𝑎 𝑗 )

) ]
If 𝑎𝑖−1 = 𝑎 𝑗 = 𝐿

1−𝑞−𝑛

1−𝑡−𝑛
[
𝑝𝑛 (𝐴

( 𝑗) ,𝑊 ( 𝑗) ) − 𝑝𝑛
(
𝑊 ( 𝑗)𝜉 (𝑎 𝑗 )

) ]
If 𝑎𝑖−1 = 𝑎 𝑗 = 𝑅

.

�

Lemma 4.6. Let Pr be the probability measure on pure dimer coverings of the rail yard graph
𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) as defined by (2.5) and (2.6), and let

Λ = {𝜆 (𝑖) }𝑖∈[𝑙+1..𝑟 ]

be the corresponding sequence of partitions. Let 𝑙𝑖 be non-negative integers for 𝑖 ∈ [𝑙 + 1..𝑟]. Then

EPr

⎡⎢⎢⎢⎢⎣
∏

𝑖∈[𝑙+1..𝑟 ]
𝛾𝑙𝑖 (𝜆

(𝑖) ; 𝑡, 𝑡)
⎤⎥⎥⎥⎥⎦ =

∮
. . .

∮ ∏
𝑖=[𝑙+1..𝑟 ]

𝐷 (𝑊 (𝑖) ;𝜔(𝑡, 𝑡; 𝑎𝑖))

×
∏

𝑖, 𝑗∈[𝑙+1..𝑟 ]
𝑖≤ 𝑗 ,𝑏 𝑗=−

(
𝐻 (𝑊 (𝑖) , (−1) 𝛿𝑎𝑖 ,𝑎 𝑗−1

{𝑥 𝑗 };𝜔(𝑡, 𝑡; 𝑎𝑖))
) (−1) 𝛿𝑎𝑖 ,𝑎 𝑗 −1

×
∏

𝑖, 𝑗∈[𝑙..𝑟 ]
𝑖< 𝑗,𝑏𝑖=+

Π𝑎𝑖 ,𝑎 𝑗 ({𝑥𝑖},𝑊
( 𝑗) )

Π𝑎𝑖 ,𝑎 𝑗 ({𝑥𝑖}, 𝜉 (𝑡, 𝑡; 𝑎 𝑗 )𝑊 ( 𝑗) )
×

∏
𝑖, 𝑗∈[𝑙+1..𝑟 ]

𝑖< 𝑗

𝑇𝑎𝑖 ,𝑎 𝑗 (𝑊
(𝑖) ,𝑊 ( 𝑗) ),

where |𝑊 (𝑖) | = 𝑙𝑖 , and the integral contours are given by {C𝑖, 𝑗 }𝑖∈[𝑙+1..𝑟 ],𝑠∈[𝑙𝑖 ] , satisfying the condition
as described in Lemma 4.2.

Proof. This proof follows from Lemmas 4.2 and 3.3(2) and 𝐻 (𝑋, {0}; 𝑞, 𝑡) = 1 and Π𝑎,𝑏 (𝑋, {0}) =
Π𝑎,𝑏 ({0}, 𝑋) = 1. �
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To compute the moments of 𝛾s, we need to generalize Lemma 4.6 and find expectation of powers of
𝛾s. We use the following auxiliary lemma, which is straightforward from the properties of Macdonald
functions.

Lemma 4.7. Let A, B be defined as in Definition 3.1. For each 𝑖 ∈ [𝑙..𝑟], let Λ𝐴(𝑖) , (resp. Λ𝐵 (𝑖+1) ) be the
algebra of symmetric functions on 𝐴(𝑖) (resp. 𝐵 (𝑖+1) ) over C. Define a map

𝜙 (𝑖)
0 : Λ𝐴(𝑖) ⊗ Λ𝐵 (𝑖+1) → C

by

𝜙 (𝑖)
0 ( 𝑓 ⊗ 𝑔) = 𝑓 (0)𝑔(0).

Define a formal measure

𝑀 (𝑖) := 𝜙 (𝑖)
0

(
MPA,B,P ,𝑞,𝑡

)
.

Then for any sequence of partitions (𝜆 (𝑙) , 𝜆 (𝑙+1) , . . . , 𝜆 (𝑟+1) ) ∈ Y𝑟−𝑙+2 in the support of 𝑀 (𝑖) , we have
𝜆 (𝑖) = 𝜆 (𝑖+1) . Moreover, for all 𝑖 ∈ [𝑙..𝑟], let

Â(𝑖) = A \ {𝐴(𝑖) }, B̂(𝑖+1) = B \ {𝐵 (𝑖+1) },

and

L̂(𝑖) = L \ {𝑖}, R̂(𝑖) = R \ {𝑖},

so that {L̂(𝑖) , R̂(𝑖) } form a partition P ′ of [𝑙..𝑟] \ {𝑖}. Then the restriction of 𝑀 (𝑖) to

(𝜆 (𝑙) , . . . , 𝜆 (𝑖−1) , 𝜆 (𝑖+1) , . . . , 𝜆 (𝑟+1) ) ∈ Y(𝑟−𝑙+1)

is the formal Macdonald processMP𝐴(𝑖) ,𝐵 (𝑖) ,P′,𝑞,𝑡 .

Lemma 4.8. Let 𝑖1 ≤ 𝑖2 ≤ . . . ≤ 𝑖𝑚 ∈ [𝑙 + 1..𝑟], and let 𝑙1, . . . , 𝑙𝑚 > 0 be integers. Let 𝐼 :=
{𝑖1, 𝑖2, . . . , 𝑖𝑚}. Then

EPr

⎡⎢⎢⎢⎢⎣
∏
𝑗∈[𝑚]

𝛾𝑙 𝑗 (𝜆
(𝑖 𝑗 ) ; 𝑡, 𝑡)

⎤⎥⎥⎥⎥⎦ =
∮

. . .

∮ ∏
𝑖∈𝐼

𝐷 (𝑊 (𝑖) ;𝜔(𝑡, 𝑡; 𝑎𝑖))

×
∏

𝑖∈𝐼 , 𝑗∈[𝑙+1..𝑟 ]
𝑖≤ 𝑗 ,𝑏 𝑗=−.

(
𝐻 (𝑊 (𝑖) , (−1) 𝛿𝑎𝑖 ,𝑎 𝑗−1

{𝑥 𝑗 };𝜔(𝑡, 𝑡; 𝑎𝑖))
) (−1) 𝛿𝑎𝑖 ,𝑎 𝑗 −1

×
∏

𝑗∈𝐼 ,𝑖∈[𝑙..𝑟 ]
𝑖< 𝑗,𝑏𝑖=+

Π𝑎𝑖 ,𝑎 𝑗 ({𝑥𝑖},𝑊
( 𝑗) )

Π𝑎𝑖 ,𝑎 𝑗 ({𝑥𝑖}, 𝜉 (𝑡, 𝑡; 𝑎 𝑗 )𝑊 ( 𝑗) )
×

∏
1≤𝑠< 𝑗≤𝑚

𝑇𝑎𝑖𝑠 ,𝑎𝑖 𝑗

(
𝑊 (𝑖𝑠) ,𝑊 (𝑖 𝑗 )

)
,

where |𝑊 (𝑖) | = 𝑙𝑖 , and the integral contours are given by {C𝑖, 𝑗 }𝑖∈𝐼 ,𝑠∈[𝑙𝑖 ] , satisfying the condition as
described in Lemma 4.2.

Proof. The proof is the same as in [5], where Corollary 3.11 is derived from Theorem 3.10. The idea is
to apply Lemma 4.2 to an auxiliary Macdonald process MPC,D,P∗ ,𝑞,𝑡

��
𝜇 (0)=𝜇 (𝑟−𝑙+𝑚+1)=∅, where parameters

C and D consist of 𝑟 − 𝑙 +𝑚 variables and the additional indices correspond to copies of 𝑖 𝑗 for 𝑗 ∈ [𝑚].
The expectation formula from Lemma 4.2 restricted to the original process, as in Lemma 4.7, gives the
desired formula. For details, see the proof of Corollary 3.11 in [5]. �

https://doi.org/10.1017/fms.2023.90 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.90


Forum of Mathematics, Sigma 23

5. Asymptotics

In this section, we study the asymptotics of the moments of the random height functions and prove
its Gaussian fluctuation in the scaling limit. More precisely, we study the limit of the moments of the
observables obtained in the previous section. The main results are given in Theorem 5.4 and Theorem 5.5.
We first specify the conditions under which the limit is taken.

We consider a sequence of rail yard graphs that depend on 𝜖 and study the limit when 𝜖 → 0. The
conditions can be split in three groups: an assumption on piecewise periodicity of the graphs, which are
described by the sequences 𝑎 and 𝑏, assumption on periodicity of weights, which allows for periodic
non-uniform weights on diagonal edges in the q-volume analog of the uniform model, and the limit
regime, which contains further assumptions under which the limit is taken.

Assumption 5.1. Let {𝑅𝑌𝐺 (𝑙 (𝜖 ) , 𝑟 (𝜖 ) , 𝑎 (𝜖 ) , 𝑏 (𝜖 ) )}𝜖 >0 be a sequence of rail yard graphs with the
weights of diagonal edges incident with 𝑥 = 2𝑖 given with 𝑥 (𝜖 )𝑖 .

1. Piecewise periodicity of the graph. For a positive integer n and real numbers 𝑉0 < 𝑉1 < . . . < 𝑉𝑚,
we say that a given sequence of rail yard graphs is n-periodic with transition points 𝑉0, 𝑉1, . . . , 𝑉𝑚
as 𝜖 → 0 if
(a) For each 𝜖 > 0, there exist integer multiples of n

𝑙 (𝜖 ) = 𝑣 (𝜖 )0 < 𝑣 (𝜖 )1 < . . . < 𝑣 (𝜖 )𝑚 = 𝑟 (𝜖 ) ,

such that lim𝜖→0 𝜖𝑣
(𝜖 )
𝑝 = 𝑉𝑝 , ∀𝑝 ∈ {0} ∪ [𝑚] .

(b) The sequence 𝑎 (𝜖 ) is n-periodic on
[
𝑙 (𝜖 ) , 𝑟 (𝜖 )

]
and does not depend on 𝜖 . More precisely, there

exist 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ {𝐿, 𝑅} such that

𝑎 (𝜖 )
𝑖 = 𝑎𝑖≡𝑛 ,

where 𝑖≡𝑛 ∈ [𝑛] is in the same congruence class modulo n as i.
(c) For each 𝑝 ∈ [𝑚], the sequence 𝑏 (𝜖 ) is n-periodic on (𝑣 (𝜖 )𝑝−1, 𝑣

(𝜖 )
𝑝 ) and does not depend on 𝜖 ,

but it may depend on p. More precisely, there exist 𝑏𝑝,1, 𝑏𝑝,2, . . . , 𝑏𝑝,𝑛 ∈ {+,−} such that for
𝑖 ∈ (𝑣 (𝜖 )𝑝−1, 𝑣

(𝜖 )
𝑝 ),

𝑏 (𝜖 )
𝑖 = 𝑏𝑝,𝑖≡𝑛 .

2. Periodicity of weights. The weights 𝑥 (𝜖 )𝑖 are periodic q-volume weights. Precisely, let 𝑘 ∈ [𝑛] such
that

𝑘 := 𝑖≡𝑛 .

Then 𝑥 (𝜖 )𝑖 are given with

𝑥 (𝜖 )𝑖 =

{
𝑒−𝜖 (𝑖−𝑘)𝜏𝑘 , 𝑏 (𝜖 )

𝑖 = +

𝑒𝜖 (𝑖−𝑘)𝜏−1
𝑘 , 𝑏 (𝜖 )

𝑖 = −
.

3. Limit regime.
(a) Assume that lim𝜖→0 𝑡 = 1 in a such a way that

lim
𝜖→0

−
log 𝑡
𝑛𝜖

= 𝛽,

where 𝛽 is a positive real number independent of 𝜖 .
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(b) Let s be a positive integer and assume that for 𝑑 ∈ [𝑠], the sequence 𝑖 (𝜖 )𝑑 ∈ [𝑙 (𝜖 ) ..𝑟 (𝜖 ) ] satisfies

lim
𝜖→0

𝜖𝑖 (𝜖 )𝑑 = 𝜒𝑑 ,

for 𝜒1 ≤ 𝜒2 ≤ . . . ≤ 𝜒𝑠 and that 𝑖 (𝜖 )𝑑 mod 𝑛 does not depend on 𝜖 – that there exist 𝑖∗1, 𝑖
∗
2, . . . , 𝑖

∗
𝑠 ∈

[𝑛] such that

(𝑖 (𝜖 )𝑑 )≡𝑛 = 𝑖∗𝑑 .

If 𝑠 = 1, we drop the index (i.e., we assume that lim𝜖→0 𝜖𝑖
(𝜖 ) = 𝜒 and (𝑖 (𝜖 ) )≡𝑛 = 𝑖∗).

Lemma 5.2. Under the same conditions as in Lemma 4.8 and assuming the index set I is a subset of L,

EPr

⎡⎢⎢⎢⎢⎣
∏
𝑗∈[𝑚]

𝛾𝑙 𝑗 (𝜆
(𝑖 𝑗 ) ; 𝑡, 𝑡)

⎤⎥⎥⎥⎥⎦ =
∮

. . .

∮ ∏
𝑖∈𝐼

𝐷 (𝑊 (𝑖) ; 𝑡, 𝑡)

×
∏

𝑖∈𝐼 , 𝑗∈[𝑙+1..𝑟 ], 𝑗≥𝑖
𝑏 𝑗=−,𝑎 𝑗=𝑎𝑖

𝐺1,> (𝑊
(𝑖) , 𝑥 𝑗 , 𝑡)

∏
𝑖∈𝐼 , 𝑗∈[𝑙+1..𝑟 ], 𝑗≥𝑖

𝑏 𝑗=−,𝑎 𝑗≠𝑎𝑖

𝐺0,> (𝑊
(𝑖) , 𝑥 𝑗 , 𝑡)

×
∏

𝑖∈𝐼 , 𝑗∈[𝑙..𝑟 ], 𝑗<𝑖
𝑏 𝑗=+,𝑎 𝑗=𝑎𝑖

𝐺1,< (𝑊
(𝑖) , 𝑥 𝑗 , 𝑡)

∏
𝑖∈𝐼 , 𝑗∈[𝑙..𝑟 ], 𝑗<𝑖

𝑏 𝑗=+,𝑎 𝑗≠𝑎𝑖

𝐺0,< (𝑊
(𝑖) , 𝑥 𝑗 , 𝑡)

×
∏

1≤𝑠< 𝑗≤𝑚

𝑇𝐿,𝐿 (𝑊
(𝑖𝑠) ,𝑊 (𝑖 𝑗 ) ),

where |𝑊 (𝑖) | = 𝑙𝑖 , and the integral contours are given by {C𝑖, 𝑗 }𝑖∈𝐼 ,𝑠∈[𝑙𝑖 ] , satisfying the condition as
described in Lemma 4.2, where

𝐺1,> (𝑊, 𝑥, 𝑡) =
∏

𝑤𝑠 ∈𝑊

𝑤𝑠 − 𝑥 𝑗

𝑤𝑠 − 𝑡𝑥 𝑗
, 𝐺1,< (𝑊, 𝑥, 𝑡) =

∏
𝑤𝑠 ∈𝑊

𝑡 − 𝑤𝑠𝑥

𝑡 (1 − 𝑤𝑠𝑥)
, (5.1)

𝐺0,> (𝑊, 𝑥, 𝑡) =
∏

𝑤𝑠 ∈𝑊

𝑤𝑠 + 𝑡𝑥 𝑗

𝑤𝑠 + 𝑥 𝑗
, 𝐺0,< (𝑊, 𝑥, 𝑡) =

∏
𝑤𝑠 ∈𝑊

𝑡 (1 + 𝑤𝑠𝑥)

𝑡 + 𝑤𝑠𝑥
, (5.2)

𝑇𝐿,𝐿 (𝑍,𝑊) :=
∏
𝑧𝑖 ∈𝑍

∏
𝑤𝑗 ∈𝑊

(
𝑧𝑖 − 𝑤 𝑗

)2(
𝑧𝑖 − 𝑡−1𝑤 𝑗

) (
𝑧𝑖 − 𝑡𝑤 𝑗

) . (5.3)

We apply this lemma to the sequence of rail yard graphs depending on 𝜖 and consider the limit of it
under the assumption stated above. To shorten the notation, we use the following abbreviations:

𝐺 (𝜖 )
1,>𝑖 (𝑊) =

∏
𝑗∈[(𝑙+1) (𝜖 ) ..𝑟 (𝜖 ) ], 𝑗≥𝑖

𝑏
(𝜖 )
𝑗 =−,𝑎 𝑗=𝑎𝑖

𝐺1,> (𝑊, 𝑥 (𝜖 )𝑗 , 𝑡),

𝐺 (𝜖 )
1,<𝑖 (𝑊) =

∏
𝑗∈[𝑙 (𝜖 ) ..𝑟 (𝜖 ) ], 𝑗<𝑖

𝑏
(𝜖 )
𝑗 =+,𝑎 𝑗=𝑎𝑖

𝐺1,< (𝑊, 𝑥 (𝜖 )𝑗 , 𝑡),
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𝐺 (𝜖 )
0,>𝑖 (𝑊) =

∏
𝑗∈[(𝑙+1) (𝜖 ) ..𝑟 (𝜖 ) ], 𝑗≥𝑖

𝑏
(𝜖 )
𝑗 =−,𝑎 𝑗≠𝑎𝑖

𝐺0,> (𝑊, 𝑥 (𝜖 )𝑗 , 𝑡),

𝐺 (𝜖 )
0,<𝑖 (𝑊) =

∏
𝑗∈[𝑙 (𝜖 ) ..𝑟 (𝜖 ) ], 𝑗<𝑖

𝑏
(𝜖 )
𝑗 =+,𝑎 𝑗≠𝑎𝑖

𝐺0,< (𝑊, 𝑥 (𝜖 )𝑗 , 𝑡).

The limit of these functions is given by the following lemma.

Lemma 5.3. Suppose Assumption 5.1 holds. Then

lim
𝜖→0

𝐺 (𝜖 )

1,>𝑖 (𝜖 ) (𝑊) =

⎡⎢⎢⎢⎢⎣
∏

𝑤𝑔 ∈𝑊

G1,>𝜒 (𝑤𝑔)

⎤⎥⎥⎥⎥⎦
𝛽

, lim
𝜖→0

𝐺 (𝜖 )

1<𝑖 (𝜖 ) (𝑊) =

⎡⎢⎢⎢⎢⎣
∏

𝑤𝑔 ∈𝑊

G1,<𝜒 (𝑤𝑔)

⎤⎥⎥⎥⎥⎦
𝛽

,

lim
𝜖→0

𝐺 (𝜖 )

0,>𝑖 (𝜖 ) (𝑊) =

⎡⎢⎢⎢⎢⎣
∏

𝑤𝑔 ∈𝑊

G0,>𝜒 (𝑤𝑔)

⎤⎥⎥⎥⎥⎦
𝛽

, lim
𝜖→0

𝐺 (𝜖 )

0,<𝑖 (𝜖 ) (𝑊) =

⎡⎢⎢⎢⎢⎣
∏

𝑤𝑔 ∈𝑊

G0,<𝜒 (𝑤𝑔)

⎤⎥⎥⎥⎥⎦
𝛽

,

where

G1,>𝜒 (𝑤) : =
∏

(𝑝∈[𝑚],𝑉𝑝>𝜒)

∏
𝑗∈[𝑛]

𝑏𝑝, 𝑗=−,𝑎 𝑗=𝑎𝑖∗

1 −
[
𝑤𝜏𝑗

]−1
𝑒𝑉𝑝

1 − 𝑒max{𝑉𝑝−1 ,𝜒}
[
𝑤𝜏𝑗

]−1 , (5.4)

G1,<𝜒 (𝑤) : =
∏

(𝑝∈[𝑚],𝑉𝑝−1<𝜒)

∏
𝑗∈[𝑛]

𝑏𝑝, 𝑗=+,𝑎 𝑗=𝑎𝑖∗

1 − 𝑤𝑒−𝑉𝑝−1𝜏𝑗

1 − 𝑒−min{𝑉𝑝 ,𝜒}𝑤𝜏𝑗
, (5.5)

G0,>𝜒 (𝑤) : =
∏

(𝑝∈[𝑚],𝑉𝑝>𝜒)

∏
𝑗∈[𝑛]

𝑏𝑝, 𝑗=−,𝑎 𝑗≠𝑎𝑖∗

1 + 𝑒max{𝑉𝑝−1 ,𝜒}
[
𝑤𝜏𝑗

]−1

1 +
[
𝑤𝜏𝑗

]−1
𝑒𝑉𝑝

, (5.6)

G0,<𝜒 (𝑤) : =
∏

(𝑝∈[𝑚],𝑉𝑝−1<𝜒)

∏
𝑗∈[𝑛]

𝑏𝑝, 𝑗=+,𝑎 𝑗≠𝑎𝑖∗

1 + 𝑒−min{𝑉𝑝 ,𝜒}𝑤𝜏𝑗

1 + 𝑤𝑒−𝑉𝑝−1𝜏𝑗
. (5.7)

Here, the logarithmic branches for G1,>𝜒, G1,<𝜒, G0,>𝜒, G0,<𝜒 are chosen so that when z approaches
the positive real axis, the imaginary part of log 𝑧 approaches 0.

Proof. For 𝑝 ∈ [𝑚], 𝑗 ∈ [𝑛] and 𝑖 ∈ [𝑙 (𝜖 ) ..𝑟 (𝜖 ) ], let

𝐼 (𝜖 )𝑗 , 𝑝,>𝑖,1 =
{
𝑢 ∈

[
𝑣 (𝜖 )𝑝−1 + 1, 𝑣 (𝜖 )𝑝

]
∩ {𝑛Z + 𝑗} ∩ [𝑖..𝑟 (𝜖 ) ] : 𝑏 (𝜖 )

𝑢 = −, 𝑎𝑢 = 𝑎𝑖

}
,

𝐼 (𝜖 )𝑗 , 𝑝,<𝑖,1 =
{
𝑢 ∈

[
𝑣 (𝜖 )𝑝−1 + 1, 𝑣 (𝜖 )𝑝

]
∩ {𝑛Z + 𝑗} ∩ [𝑙 (𝜖 ) ..𝑖 − 1] : 𝑏 (𝜖 )

𝑢 = +, 𝑎𝑢 = 𝑎𝑖

}
,

𝐼 (𝜖 )𝑗 , 𝑝,>𝑖,0 =
{
𝑢 ∈

[
𝑣 (𝜖 )𝑝−1 + 1, 𝑣 (𝜖 )𝑝

]
∩ {𝑛Z + 𝑗} ∩ [𝑖..𝑟 (𝜖 ) ] : 𝑏 (𝜖 )

𝑢 = −, 𝑎𝑢 ≠ 𝑎𝑖

}
,

𝐼 (𝜖 )𝑗 , 𝑝,<𝑖,0 =
{
𝑢 ∈

[
𝑣 (𝜖 )𝑝−1 + 1, 𝑣 (𝜖 )𝑝

]
∩ {𝑛Z + 𝑗} ∩ [𝑙 (𝜖 ) ..𝑖 − 1] : 𝑏 (𝜖 )

𝑢 = +, 𝑎𝑢 ≠ 𝑎𝑖

}
.
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Let 𝑁 (𝜖 )
𝑗 , 𝑝,>𝑖,1, 𝑁 (𝜖 )

𝑗 , 𝑝,<𝑖,1, 𝑁 (𝜖 )
𝑗 , 𝑝,>𝑖,0 and 𝑁 (𝜖 )

𝑗 , 𝑝,<𝑖,0 be their cardinalities, respectively, and

𝑞 𝑗 , 𝑝,>𝑖,1 = max 𝐼 (𝜖 )𝑗 , 𝑝,>𝑖,1, 𝑞 𝑗 , 𝑝,<𝑖,1 = min 𝐼 (𝜖 )𝑗 , 𝑝,<𝑖,1,

𝑞 𝑗 , 𝑝,>𝑖,0 = max 𝐼 (𝜖 )𝑗 , 𝑝,>𝑖,0, 𝑞 𝑗 , 𝑝,<𝑖,0 = min 𝐼 (𝜖 )𝑗 , 𝑝,<𝑖,0,

where we take the convention that the minimum (resp. maximum) of an empty set is ∞ (resp. −∞) and
define 𝑥 (𝜖 )−∞ = 𝑥 (𝜖 )∞ := 0 for all 𝜖 ≥ 0.

Then using the above notation, we can rewrite 𝐺 (𝜖 )
1,>𝑖 (𝑊) as

𝐺 (𝜖 )
1,>𝑖 (𝑊) =

𝑚∏
𝑝=1

𝑛∏
𝑗=1

∏
𝑐∈𝐼 (𝜖 )

𝑗,𝑝,>𝑖,1

[
𝐺1,> (𝑊, 𝑒−𝑛𝜖 (𝑞 𝑗,𝑝,>𝑖,1−𝑐)𝑥 (𝜖 )𝑞 𝑗,𝑝,>𝑖,1 , 𝑡)

]
,

which can be further rewritten as

𝐺 (𝜖 )
1,>𝑖 (𝑊) =

𝑚∏
𝑝=1

𝑛∏
𝑗=1

∏
𝑤𝑔 ∈𝑊

(
𝑤−1
𝑔 𝑥 (𝜖 )𝑞 𝑗,𝑝,>𝑖,1 ; 𝑒−𝑛𝜖

)
𝑁 (𝜖 )
𝑗,𝑝,>𝑖,1(

𝑡𝑤−1
𝑔 𝑥 (𝜖 )𝑞 𝑗,𝑝,>𝑖,1 ; 𝑒−𝑛𝜖

)
𝑁

(𝜖 )
𝑗,𝑝,>𝑖,1

,

where

(𝑎; 𝑞)𝑁 =
𝑁−1∏
𝑖=0

(1 − 𝑎𝑞𝑖). (5.8)

Similarly, we have

𝐺 (𝜖 )
1,<𝑖 (𝑊) =

𝑚∏
𝑝=1

𝑛∏
𝑗=1

∏
𝑤𝑔 ∈𝑊

(
𝑡−1𝑤𝑔𝑥

(𝜖 )
𝑞 𝑗,𝑝,<𝑖,1 ; 𝑒−𝑛𝜖

)
𝑁

(𝜖 )
𝑗,𝑝,<𝑖,1(

𝑤𝑔𝑥
(𝜖 )
𝑞 𝑗,𝑝,<𝑖,1 ; 𝑒−𝑛𝜖

)
𝑁 (𝜖 )
𝑗,𝑝,<𝑖,1

,

𝐺 (𝜖 )
0,>𝑖 (𝑊) =

𝑚∏
𝑝=1

𝑛∏
𝑗=1

∏
𝑤𝑔 ∈𝑊

(
−𝑡𝑤−1

𝑔 𝑥 (𝜖 )𝑞 𝑗,𝑝,>𝑖,0 ; 𝑒−𝑛𝜖
)
𝑁 (𝜖 )
𝑗,𝑝,>𝑖,0(

−𝑤−1
𝑔 𝑥 (𝜖 )𝑞 𝑗,𝑝,>𝑖,0 ; 𝑒−𝑛𝜖

)
𝑁

(𝜖 )
𝑗,𝑝,>𝑖,0

,

𝐺 (𝜖 )
0,<𝑖 =

𝑚∏
𝑝=1

𝑛∏
𝑗=1

∏
𝑤𝑔 ∈𝑊

(
−𝑤𝑔𝑥

(𝜖 )
𝑞 𝑗,𝑝,<𝑖,0 , 𝑒

−𝑛𝜖
)
𝑁 (𝜖 )
𝑗,𝑝,<𝑖,0(

−𝑡−1𝑤𝑔𝑥
(𝜖 )
𝑞 𝑗,𝑝,<𝑖,0 , 𝑒

−𝑛𝜖
)
𝑁

(𝜖 )
𝑗,𝑝,<𝑖,0

.

Assume now that 𝑖 = 𝑖 (𝜖 ) vary with 𝜖 and satisfies the assumptions. For convenience, we continue
writing i instead of 𝑖 (𝜖 ) . By Lemma A.12, we obtain as 𝜖 → 0,

𝐺 (𝜖 )
1,>𝑖 (𝑊) ∼

𝑚∏
𝑝=1

𝑛∏
𝑗=1

∏
𝑤𝑔 ∈𝑊

���
1 − 𝑤−1

𝑔 𝑥 (𝜖 )𝑞 𝑗,𝑝,>𝑖,1

1 − 𝑒
−𝑛𝜖 𝑁 (𝜖 )

𝑗,𝑝,>𝑖,1𝑤−1
𝑔 𝑥 (𝜖 )𝑞 𝑗,𝑝,>𝑖,1

���
−

log 𝑡
𝑛𝜖

,

𝐺 (𝜖 )
1<𝑖 (𝑊) ∼

𝑚∏
𝑝=1

𝑛∏
𝑗=1

∏
𝑤𝑔 ∈𝑊

���
1 − 𝑡−1𝑤𝑔𝑥

(𝜖 )
𝑞 𝑗,𝑝,<𝑖,1

1 − 𝑒
−𝑛𝜖 𝑁

(𝜖 )
𝑗,𝑝,<𝑖,1 𝑡−1𝑤𝑔𝑥

(𝜖 )
𝑞 𝑗,𝑝,<𝑖,1

���
−

log 𝑡
𝑛𝜖

,
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𝐺 (𝜖 )
0,>𝑖 (𝑊) ∼

𝑚∏
𝑝=1

𝑛∏
𝑗=1

∏
𝑤𝑔 ∈𝑊

���
1 + 𝑤−1

𝑔 𝑥 (𝜖 )𝑞 𝑗,𝑝,>𝑖,0

1 + 𝑒
−𝑛𝜖 𝑁 (𝜖 )

𝑗,𝑝,>𝑖,0𝑤−1
𝑔 𝑥 (𝜖 )𝑞 𝑗,𝑝,>𝑖,0

���
log 𝑡
𝑛𝜖

,

𝐺 (𝜖 )
0,<𝑖 (𝑊) ∼

𝑚∏
𝑝=1

𝑛∏
𝑗=1

∏
𝑤𝑔 ∈𝑊

���
1 + 𝑡−1𝑤𝑔𝑥

(𝜖 )
𝑞 𝑗,𝑝,<𝑖,0

1 + 𝑒
−𝑛𝜖 𝑁

(𝜖 )
𝑗,𝑝,<𝑖,0𝑤𝑔𝑥

(𝜖 )
𝑞 𝑗,𝑝,<𝑖,0

���
log 𝑡
𝑛𝜖

,

where when 𝑊 ∈ C𝑘 , we choose the branch such that when a complex number approaches the positive
real line, its argument approaches 0.

Note that for nonempty 𝐼 (𝜖 )𝑗 , 𝑝,>𝑖,1, 𝐼 (𝜖 )𝑗 , 𝑝,<𝑖,1, 𝐼 (𝜖 )𝑗 , 𝑝,>𝑖,0 and 𝐼 (𝜖 )𝑗 , 𝑝,<𝑖,0, we have

lim
𝜖→0

𝑛𝜖𝑁 (𝜖 )
𝑗 , 𝑝,>𝑖,1 = 𝑉𝑝 − max{𝑉𝑝−1, 𝜒},

lim
𝜖→0

𝑛𝜖𝑁 (𝜖 )
𝑗 , 𝑝,<𝑖,1 = min{𝑉𝑝 , 𝜒} −𝑉𝑝−1,

lim
𝜖→0

𝑛𝜖𝑁 (𝜖 )
𝑗 , 𝑝,>𝑖,0 = 𝑉𝑝 − max{𝑉𝑝−1, 𝜒},

lim
𝜖→0

𝑛𝜖𝑁 (𝜖 )
𝑗 , 𝑝,<𝑖,0 = min{𝑉𝑝 , 𝜒} −𝑉𝑝−1.

Also note that

lim
𝜖→0

𝑥 (𝜖 )𝑞 𝑗,𝑝,>𝑖,1 = 𝜏−1
𝑗 𝑒−max{𝑉𝑝−1 ,𝜒}1{𝑉𝑝>𝜒,𝑏𝑝, 𝑗=−,𝑎 𝑗=𝑎𝑖∗ },

lim
𝜖→0

𝑥 (𝜖 )𝑞 𝑗,𝑝,<𝑖,1 = 𝜏𝑗𝑒
−𝑉𝑝−1 1{𝑉𝑝−1<𝜒,𝑏𝑝, 𝑗=+,𝑎 𝑗=𝑎𝑖∗ },

lim
𝜖→0

𝑥 (𝜖 )𝑞 𝑗,𝑝,>𝑖,0 = 𝜏−1
𝑗 𝑒−max{𝑉𝑝−1 ,𝜒}1{𝑉𝑝>𝜒,𝑏𝑝, 𝑗=−,𝑎 𝑗≠𝑎𝑖∗ },

lim
𝜖→0

𝑥 (𝜖 )𝑞 𝑗,𝑝,<𝑖,0 = 𝜏𝑗𝑒
−𝑉𝑝−1 1{𝑉𝑝−1<𝜒,𝑏𝑝, 𝑗=+,𝑎 𝑗≠𝑎𝑖∗ } .

This proves the lemma. �

For 𝑤 ∈ C and 𝜒 ∈ R, define

G𝜒 (𝑤) := G1,>𝜒 (𝑤) · G1,<𝜒 (𝑤) · G0,>𝜒 (𝑤) · G0,<𝜒 (𝑤). (5.9)

We shall obtain asymptotic results in Theorems 5.4 and 5.5. In Theorems 5.4 and 5.5, we consider
only the moments at points when 𝑎𝑖 (𝜖 ) = 𝐿; these moments are sufficient to prove that the fluctuations
of height functions converge to GFF in the scaling limit. The moments at points when 𝑎𝑖 (𝜖 ) = 𝑅 may be
obtained similarly.

Theorem 5.4. Suppose Assumption 5.1 holds. Assume 𝑎𝑖 (𝜖 ) = 𝐿 for all 𝜖 > 0. Let Pr(𝜖 ) be the
corresponding probability measure. Then

lim
𝜖→0
EPr(𝜖 )

[
𝛾𝑘 (𝜆

(𝑖 (𝜖 ) ) ; 𝑡, 𝑡)
]
=

1
2𝜋i

∮
C

[
G𝜒 (𝑤)

] 𝑘𝛽 𝑑𝑤
𝑤

, (5.10)

where the contour is positively oriented (which may be a union of disjoint simple closed curves),
enclosing 0 and every pole of G1,>𝜒 and G0,>𝜒, but does not enclose any other poles or zeros of G𝜒 –
the expression

𝐹𝑘𝛽 = 𝑒𝑘𝛽 log𝐹 ,

where the branch of log 𝐹 is the one which takes positive real values when F is positive and real.
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Proof. By Lemma 5.2,

EPr(𝜖 )
[
𝛾𝑘 (𝜆

(𝑖 (𝜖 ) ) ; 𝑡, 𝑡)
]
=

1
(2𝜋i)𝑘

∮
C (𝜖 )

1

. . .

∮
C (𝜖 )
𝑘

∑𝑘
𝑖=1

1
𝑤𝑖

(𝑤2 − 𝑤1) . . . (𝑤𝑘 − 𝑤𝑘−1)

𝑘∏
𝑖=1

𝑑𝑤𝑖∏
𝑗∈[(𝑙+1) (𝜖 ) ..𝑟 (𝜖 ) ], 𝑗≥𝑖 (𝜖 )

𝑏 𝑗=−,𝑎 𝑗=𝑎𝑖∗

𝐺1,>𝑖 (𝜖 ) (𝑊, 𝑥 (𝜖 )𝑗 , 𝑡)
∏

𝑗∈[(𝑙+1) (𝜖 ) ..𝑟 (𝜖 ) ], 𝑗≥𝑖 (𝜖 )

𝑏 𝑗=−,𝑎 𝑗≠𝑎𝑖∗

𝐺0,>𝑖 (𝜖 ) (𝑊, 𝑥 (𝜖 )𝑗 , 𝑡)

×
∏

𝑗∈[𝑙 (𝜖 ) ..𝑟 (𝜖 ) ], 𝑗<𝑖 (𝜖 )

𝑏 𝑗=+,𝑎 𝑗=𝑎𝑖∗

𝐺1,<𝑖 (𝜖 ) (𝑊, 𝑥 (𝜖 )𝑗 , 𝑡)
∏

𝑗∈[𝑙 (𝜖 ) ..𝑟 (𝜖 ) ], 𝑗<𝑖 (𝜖 )

𝑏 𝑗=+;𝑎 𝑗≠𝑎𝑖∗

𝐺0,<𝑖 (𝜖 ) (𝑊, 𝑥 (𝜖 )𝑗 , 𝑡),

where for 1 ≤ 𝑖 ≤ 𝑘 , C (𝜖 )
𝑖 is the integral contour for 𝑤𝑖 , and C (𝜖 )

1 , . . . , C (𝜖 )
𝑘 satisfy the conditions

as described in Lemma 4.2. As 𝜖 → 0, assume that C (𝜖 )
1 , . . . , C (𝜖 )

𝑘 converge to contours C1, . . . , C𝑘 ,
respectively, such that C1, . . . C𝑘 are separated from one another and do not cross any of the singularities
of the integrand. By Lemma 5.3, we obtain

lim
𝜖→0
EPr(𝜖 ) [𝛾𝑘 (𝜆

(𝑖 (𝜖 ) ) ; 𝑡, 𝑡)] =
1

(2𝜋i)𝑘

∮
C1

. . .

∮
C𝑘

∑𝑘
𝑖=1

1
𝑤𝑖

(𝑤2 − 𝑤1) . . . (𝑤𝑘 − 𝑤𝑘−1)

𝑘∏
𝑖=1

𝑑𝑤𝑖

×
∏

𝑤𝑠 ∈𝑊

[
G1,>𝜒(𝑤𝑥)G1,<𝜒 (𝑤𝑠)G0,>𝜒 (𝑤𝑠)G0,<𝜒 (𝑤𝑠)

]𝛽
.

Then (5.10) follows from Lemmas A.13 and 5.3. �

Theorem 5.5. Suppose Assumption 5.1 holds. Assume that

𝑎
𝑖
(𝜖 )
1

= 𝑎
𝑖
(𝜖 )
2

= . . . = 𝑎
𝑖
(𝜖 )
𝑠

= 𝐿. (5.11)

Let Pr(𝜖 ) be the corresponding probability measure and

𝑄 (𝜖 )
𝑘𝑑

(𝜖𝑖 (𝜖 )𝑑 ) :=
1
𝜖

(
𝛾𝑘𝑑 (𝜆

(𝑖
(𝜖 )
𝑑

) ; 𝑡, 𝑡) − EPr(𝜖 ) (𝛾𝑘𝑑 (𝜆
(𝑖

(𝜖 )
𝑑

) ; 𝑡, 𝑡)
)
.

Then (𝑄 (𝜖 )
𝑘1

(𝜖𝑖 (𝜖 )1 ), . . . , 𝑄 (𝜖 )
𝑘𝑠

(𝜖𝑖 (𝜖 )𝑠 )) converges in distribution to the centered Gaussian vector

(𝑄𝑘1 (𝜒1), . . . , 𝑄𝑘𝑠 (𝜒))

as 𝜖 → 0, whose covariances are

Cov
[
𝑄𝑘𝑑 (𝜒𝑑), 𝑄𝑘ℎ (𝜒ℎ)

]
=
𝑘𝑑𝑘ℎ𝑛

2𝛽2

(2𝜋i)2

∮
C𝑑

∮
Cℎ

[
G𝜒𝑑 (𝑧)

] 𝑘𝑑𝛽 [
G𝜒ℎ (𝑤)

] 𝑘ℎ𝛽
(𝑧 − 𝑤)2 𝑑𝑧𝑑𝑤,

where

◦ the z-contour C𝑑 is positively oriented enclosing 0 and every pole of G1,>𝜒𝑑 ∪ G0,>𝜒𝑑 , but does not
enclose any other poles or zeros of G𝜒𝑑 (𝑧);

◦ the w-contour Cℎ is positively oriented enclosing 0 and every pole of G1,>𝜒ℎ ∪ G0,>𝜒ℎ , but does not
enclose any other poles or zeros of G𝜒ℎ (𝑤);

◦ the z-contour C𝑑 and the w-contour Cℎ are disjoint;
◦ the branch of logarithmic function is chosen to take positive real values along the positive real axis.

To prove Theorem 5.5, we shall compute the moments of 𝑄 (𝜖 )
𝑘𝑑

(𝜖𝑖 (𝜖 )𝑑 ) and show that these moments
satisfy Wick’s formula in the limit as 𝜖 → 0. We start with the following lemma about covariance.
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Lemma 5.6. Let 𝑑, ℎ ∈ [𝑠]. Under the assumptions of Theorem 5.5, we have

lim
𝜖→0

Cov
[
𝑄 (𝜖 )

𝑘𝑑
(𝜖𝑖 (𝜖 )𝑑 ), 𝑄 (𝜖 )

𝑘ℎ
(𝜖𝑖 (𝜖 )ℎ )

]
=
𝑛2𝛽2𝑘𝑑𝑘ℎ
(2𝜋i)2

∮
C𝑑

∮
Cℎ

[
G𝜒𝑑 (𝑧)

] 𝑘𝑑𝛽 [
G𝜒ℎ (𝑤)

] 𝑘ℎ𝛽
(𝑧 − 𝑤)2 𝑑𝑧𝑑𝑤,

where the z-contour C𝑑 and the w-contour Cℎ satisfy the same conditions as in Theorem 5.5.

Proof. Note that Cov
[
𝑄 (𝜖 )

𝑘𝑑
(𝜖𝑖 (𝜖 )𝑑 )𝑄 (𝜖 )

𝑘ℎ
(𝜖𝑖 (𝜖 )ℎ )

]
is equal to

E

[
𝛾𝑘𝑑 (𝜆

(𝑖
(𝜖 )
𝑑

) ; 𝑡, 𝑡)𝛾𝑘ℎ (𝜆 (𝑖 (𝜖 )
ℎ

) ; 𝑡, 𝑡)
]
− E

[
𝛾𝑘𝑑 (𝜆

(𝑖
(𝜖 )
𝑑

) ; 𝑡, 𝑡)
]
EPr

[
𝛾𝑘ℎ (𝜆

(𝑖 (𝜖 )
ℎ

) ; 𝑡, 𝑡)
]

𝜖2 .

For 𝑊 = (𝑤1, . . . , 𝑤𝑘 ), we use abbreviation

𝐹 (𝜖 )
𝑖 (𝑊) =

∏
𝑗∈[(𝑙+1) (𝜖 ) ..𝑟 (𝜖 ) ]
𝑗≥𝑖,𝑏 𝑗=−,𝑎 𝑗=𝑎𝑖

𝐺1,> (𝑊, 𝑥 (𝜖 )𝑗 , 𝑡)
∏

𝑗∈[(𝑙+1) (𝜖 ) ..𝑟 (𝜖 ) ]
𝑗≥𝑖,𝑏 𝑗=−,𝑎 𝑗≠𝑎𝑖

𝐺0,> (𝑊, 𝑥 (𝜖 )𝑗 , 𝑡)

×
∏

𝑗∈[𝑙 (𝜖 ) ..𝑟 (𝜖 ) ]
𝑗<𝑖,𝑏 𝑗=+;𝑎𝑖=𝑎 𝑗

𝐺1,< (𝑊, 𝑥 (𝜖 )𝑗 , 𝑡)
∏

𝑗∈[𝑙 (𝜖 ) ..𝑟 (𝜖 ) ]
𝑗<𝑖,𝑏 𝑗=+;𝑎𝑖≠𝑎 𝑗

𝐺0,< (𝑊, 𝑥 (𝜖 )𝑗 , 𝑡)

×

∑𝑘
𝑗=1

1
𝑤𝑗

(𝑤2 − 𝑤1) . . . (𝑤𝑘 − 𝑤𝑘−1)

∏
1≤𝑖< 𝑗≤𝑘

(
1 − 𝑤𝑖

𝑤𝑗

)2(
1 − 𝑤𝑖

𝑡𝑤𝑗

) (
1 − 𝑡𝑤𝑖

𝑤𝑗

) .
Note that for 𝜖𝑖 (𝜖 ) → 𝜒 and 𝑡 → 1,

lim
𝜖→0

𝐹 (𝜖 )

𝑖 (𝜖 )
(𝑊) =

𝑘∏
𝑖=1

G𝜒 (𝑤𝑖)

∑𝑘
𝑗=1

1
𝑤𝑗

(𝑤2 − 𝑤1) . . . (𝑤𝑘 − 𝑤𝑘−1)
. (5.12)

By Lemma 5.2, we obtain that Cov
[
𝑄 (𝜖 )

𝑘𝑑
(𝜖𝑖 (𝜖 )𝑑 ), 𝑄 (𝜖 )

𝑘ℎ
(𝜖𝑖 (𝜖 )ℎ )

]
is equal to

1
𝜖2(2𝜋i)𝑘ℎ+𝑘𝑑

∮
C (𝜖 )

1,1

. . .

∮
C (𝜖 )

1,𝑘𝑑

∮
C (𝜖 )

2,1

. . .

∮
C (𝜖 )

2,𝑘ℎ

∏
𝜉 ∈{𝑑,ℎ}

𝑘𝜉∏
𝑖=1

𝑑𝑤
(𝑖 (𝜖 )𝜉 )

𝑖 𝐹 (𝜖 )

𝑖 (𝜖 )𝜉

(𝑊 (𝑖
(𝜖 )
𝜉 )

)

×
[
𝑇𝐿,𝐿 (𝑊

(𝑖 (𝜖 )
𝑑

) ,𝑊 (𝑖 (𝜖 )
ℎ

) ) − 1
]
,

where 𝑇𝐿,𝐿 (𝑍,𝑊) is given by (5.3), |𝑊 (𝑖 (𝜖 )
𝑑

) | = 𝑘𝑑 , |𝑊 (𝑖 (𝜖 )
ℎ | = 𝑘ℎ and for 1 ≤ 𝑖 ≤ 𝑘𝑑 (resp. 1 ≤ 𝑗 ≤ 𝑘ℎ),

C (𝜖 )
1,𝑖 (resp. C (𝜖 )

2, 𝑗 ) is the integral contour for 𝑤 (𝑖
(𝜖 )
𝑑

)

𝑖 (resp. 𝑤 (𝑖
(𝜖 )
ℎ

)

𝑗 ), and C (𝜖 )
1,1 , . . . , C

(𝜖 )
1,𝑘𝑑 , C (𝜖 )

2,1 , . . . , C
(𝜖 )
2,𝑘ℎ

satisfy the conditions as described in Lemma 4.2. As 𝜖 → 0, assume that C (𝜖 )
1 , . . . , C (𝜖 )

𝑘 converge to
contours C1, . . . , C𝑘 , respectively, such that C1, . . . C𝑘 are separated from one another and do not cross
any of the singularities of the integrand.

Note that

𝑇𝐿,𝐿 (𝑍,𝑊) − 1 =
∑
∅≠𝑆

𝑆⊂[𝑘𝑑 ]×[𝑘ℎ ]

∏
(𝑖, 𝑗) ∈𝑆

(1 − 𝑡) (𝑡−1 − 1)𝑧𝑖𝑤 𝑗(
𝑧𝑖 − 𝑡−1𝑤 𝑗

) (
𝑧𝑖 − 𝑡𝑤 𝑗

) .
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Under Assumption 5.1, we obtain

1
𝜖2 (1 − 𝑡) (𝑡−1 − 1) = 𝑛2𝛽2 +𝑂 (𝜖). (5.13)

Therefore,

1
𝜖2

[
𝑇𝐿,𝐿 (𝑊

(𝑖
(𝜖 )
𝑑

) ,𝑊 (𝑖
(𝜖 )
ℎ

) ) − 1
]

= 𝑛2𝛽2
⎡⎢⎢⎢⎢⎣

∑
(𝑢,𝑣) ∈[𝑘𝑑 ]×[𝑘ℎ ]

𝑤
(𝑖 (𝜖 )
𝑑

)
𝑢 𝑤

(𝑖
(𝜖 )
ℎ

)
𝑣

(𝑤
(𝑖

(𝜖 )
𝑑

)
𝑢 − 𝑡−1𝑤

(𝑖 (𝜖 )
ℎ

)
𝑣 ) (𝑤

(𝑖
(𝜖 )
𝑑

)
𝑢 − 𝑡𝑤

(𝑖 (𝜖 )
ℎ

)
𝑣 )

⎤⎥⎥⎥⎥⎦ + 𝑜(𝜖).

In the above formula, the main contribution comes from one-element subsets S, whereas the
others have a negligible 𝑜(𝜖) contribution. This together with (5.12) gives that the limit of
Cov

[
𝑄 (𝜖 )

𝑘𝑑
(𝜖𝑖 (𝜖 )𝑑 ), 𝑄 (𝜖 )

𝑘ℎ
(𝜖𝑖 (𝜖 )ℎ )

]
is equal to the limit of

𝑛2𝛽2

(2𝜋i)𝑘𝑑+𝑘ℎ

∮
C (𝜖 )

1,1

. . .

∮
C (𝜖 )

1,𝑘𝑑

∮
C (𝜖 )

2,1

. . .

∮
C (𝜖 )

2,𝑘ℎ

∏
𝜉 ∈{𝑑,ℎ}

𝑘𝜉∏
𝑖=1

𝑑𝑤
(𝑖 (𝜖 )𝜉 )

𝑖

×
∏

𝜉 ∈{𝑑,ℎ}

⎡⎢⎢⎢⎢⎣
𝑘𝜉∏
𝑖=1

G𝜒𝜉 (𝑤
(𝑖

(𝜖 )
𝜉 )

𝑖 )

⎤⎥⎥⎥⎥⎦
∑𝑘𝜉

𝑗=1

[
𝑤

(𝑖
(𝜖 )
𝜉 )

𝑗

]−1

(𝑤
(𝑖

(𝜖 )
𝜉 )

2 − 𝑤
(𝑖

(𝜖 )
𝜉 )

1 ) . . . (𝑤
(𝑖

(𝜖 )
𝜉 )

𝑘𝜉
− 𝑤

(𝑖
(𝜖 )
𝜉 )

𝑘𝜉−1 )

×

⎡⎢⎢⎢⎢⎣
∑

(𝑢,𝑣) ∈[𝑘𝑑 ]×[𝑘ℎ ]

𝑤
(𝑖

(𝜖 )
𝑑

)
𝑢 𝑤

(𝑖
(𝜖 )
ℎ

)
𝑣

(𝑤
(𝑖

(𝜖 )
𝑑

)
𝑢 − 𝑡−1𝑤

(𝑖
(𝜖 )
ℎ

)
𝑣 ) (𝑤

(𝑖
(𝜖 )
𝑑

)
𝑢 − 𝑡𝑤

(𝑖
(𝜖 )
ℎ

)
𝑣 )

+ 𝑜(𝜖)

⎤⎥⎥⎥⎥⎦ .
Then by Lemma A.13, we have

lim
𝜖→0

1
(2𝜋i)𝑘ℎ

∮
C (𝜖 )

2,1

. . .

∮
C (𝜖 )

2,𝑘ℎ

𝑘ℎ∏
𝑖=1

𝑑𝑤
(𝑖

(𝜖 )
ℎ

)

𝑖

×

[
𝑘ℎ∏
𝑖=1

G𝜒ℎ (𝑤
(𝑖

(𝜖 )
ℎ

)

𝑖 )

] ∑𝑘ℎ
𝑗=1

[
𝑤

(𝑖 (𝜖 )
ℎ

)

𝑗

]−1

(𝑤
(𝑖 (𝜖 )
ℎ

)

2 − 𝑤
(𝑖 (𝜖 )
ℎ

)

1 ) . . . (𝑤
(𝑖 (𝜖 )
ℎ

)

𝑘ℎ
− 𝑤

(𝑖 (𝜖 )
ℎ

)

𝑘ℎ−1 )

×

⎡⎢⎢⎢⎢⎣
∑

(𝑢,𝑣) ∈[𝑘𝑑 ]×[𝑘ℎ ]

𝑤
(𝑖 (𝜖 )
𝑑

)
𝑢 𝑤

(𝑖
(𝜖 )
ℎ

)
𝑣

(𝑤
(𝑖 (𝜖 )
𝑑

)
𝑢 − 𝑡−1𝑤

(𝑖 (𝜖 )
ℎ

)
𝑣 ) (𝑤

(𝑖 (𝜖 )
𝑑

)
𝑢 − 𝑡𝑤

(𝑖 (𝜖 )
ℎ

)
𝑣 )

+ 𝑜(𝜖)

⎤⎥⎥⎥⎥⎦
=

𝑘ℎ
2𝜋i

∮
Cℎ

[
G𝜒ℎ (𝑤)

] 𝑘ℎ𝛽 × lim
𝜖→0

⎡⎢⎢⎢⎢⎣
∑

𝑢∈[𝑘𝑑 ]

𝑤
(𝑖

(𝜖 )
𝑑

)
𝑢 𝑤

(𝑤
(𝑖 (𝜖 )
𝑑

)
𝑢 − 𝑤) (𝑤

(𝑖 (𝜖 )
𝑑

)
𝑢 − 𝑤)

⎤⎥⎥⎥⎥⎦
𝑑𝑤

𝑤
.

Applying Lemma A.13 again to integrals over C (𝜖 )
1,1 , . . . , C (𝜖 )

1,𝑘𝑑 , we obtain the result. �

Lemma 5.7. Suppose the assumptions of Theorem 5.5 hold.

1. Let 𝑠 ∈ N be odd, and 𝑠 ≥ 3. Then

lim
𝜖→0
EPr(𝜖 )

[
𝑠∏

𝑢=1
𝑄 (𝜖 )

𝑘𝑢
(𝜖𝑖 (𝜖 )𝑢 )

]
= 0.
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2. If 𝑠 ∈ N is even, then

lim
𝜖→0
EPr(𝜖 )

[
𝑠∏

𝑢=1
𝑄 (𝜖 )

𝑘𝑢
(𝜖𝑖 (𝜖 )𝑢 )

]
= lim

𝜖→0

∑
𝑃∈P2

𝑠

∏
𝑢,𝑣 ∈𝑃

EPr(𝜖 )
[
𝑄 (𝜖 )

𝑘𝑢
(𝜖𝑖 (𝜖 )𝑢 )𝑄 (𝜖 )

𝑘𝑣
(𝜖𝑖 (𝜖 )𝑣 )

]
,

where the sum runs over all pairings of [𝑠].

Proof. Note that

EPr(𝜖 )

[
𝑠∏

𝑢=1
𝑄 (𝜖 )

𝑘𝑢
(𝜖𝑖 (𝜖 )𝑢 )

]
=

1
𝜖 𝑠

∑
𝐽 ⊆[𝑠]

(−1) | [𝑠]\𝐽 |
[
EPr(𝜖 )

∏
𝑗∈𝐽

𝛾𝑘 𝑗 (𝜆
(𝑖

(𝜖 )
𝑗 )

)

] ∏
𝑢∈[𝑠]\𝐽

EPr(𝜖 ) 𝛾𝑘𝑢 (𝜆
(𝑖 (𝜖 )𝑢 ) ).

When computing E
[∏𝑠

𝑢=1 𝑄
(𝜖 )
𝑘𝑢

(𝜖𝑖 (𝜖 )𝑢 )
]

by Lemma 5.2, in the integrand there is a factor

∑
𝐽 ⊆[𝑠]

(−1) | [𝑠]\𝐽 |
∏

𝑢<𝑣;𝑢,𝑣 ∈[𝑠]\𝐽
𝑇𝐿,𝐿 (𝑊

(𝑖
(𝜖 )
𝑢 ) ,𝑊 (𝑖

(𝜖 )
𝑣 ) ), (5.14)

which is by (5.3) equal to

∑
𝐽 ⊆[𝑠]

(−1) | [𝑠]\𝐽 |
∏

𝑢,𝑣 ∈[𝑠]\𝐽
𝑢<𝑣

∏
𝑤

(𝑢)
𝑗 ∈𝑊 (𝑖

(𝜖 )
𝑢 )

𝑤
(𝑣 )
𝑓

∈𝑊 (𝑖
(𝜖 )
𝑣 )

⎡⎢⎢⎢⎢⎣1 +
(1 − 𝑡) (𝑡−1 − 1)𝑤 (𝑢)

𝑗 𝑤 (𝑣)
𝑓

(𝑤 (𝑢)
𝑗 − 𝑡−1𝑤 (𝑣)

𝑓 ) (𝑤 (𝑢)
𝑗 − 𝑡𝑤 (𝑣)

𝑓 )

⎤⎥⎥⎥⎥⎦ .

Under the assumptions, (5.13) is true. Let

1
𝜖2

(1 − 𝑡) (𝑡−1 − 1)𝑤 (𝑢)
𝑗 𝑤 (𝑣)

𝑓(
𝑤 (𝑢)

𝑗 − 𝑡−1𝑤 (𝑣)
𝑓

)
(𝑤 (𝑢)

𝑗 − 𝑡𝑤 (𝑣)
𝑓 )

= 𝐶 (𝜖 )
𝑢,𝑣, 𝑗, 𝑓 ,

where 𝐶 (𝜖 )
𝑢,𝑣, 𝑗, 𝑓 tends to a constant as 𝜖 → 0. Let

𝐾𝐽 :=
{
(𝑢, 𝑣, 𝑗 , 𝑓 ) : 𝑢 < 𝑣; 𝑢, 𝑣 ∈ [𝑠] \ 𝐽, 𝑤 (𝑢)

𝑗 ∈ 𝑊 (𝑖 (𝜖 )𝑢 ) , 𝑤 (𝑣)
𝑓 ∈ 𝑊 (𝑖 (𝜖 )𝑣 )

}
.

Then (5.14) is equal to

∑
𝐽 ⊆[𝑠]

(−1) | [𝑠]\𝐽 | +
∑
𝐽 ⊆[𝑠]

(−1) | [𝑠]\𝐽 |���
∑

∅≠𝐻 ⊆𝐾𝐽

𝜖2 |𝐻 |
∏

(𝑢,𝑣, 𝑗, 𝑓 ) ∈𝐻

𝐶 (𝜖 )
𝑢,𝑣, 𝑗, 𝑓

���. (5.15)

Note that
∑

𝐽 ⊆[𝑠] (−1) | [𝑠]\𝐽 | = 0. For each fixed 𝐻 ⊆ 𝐾∅, if 𝐻 ≠ 𝐾∅, let

𝐻0 := {𝑢 ∈ [𝑠] : ∃𝑣 ∈ [𝑠] and 𝑗 , 𝑓 , s.t.(𝑢, 𝑣, 𝑗 , 𝑓 ) ∈ 𝐻, or (𝑣, 𝑢, 𝑗 , 𝑓 ) ∈ 𝐻}.
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The sum of terms with
∏

(𝑢,𝑣, 𝑗, 𝑓 ) ∈𝐻 𝐶 (𝜖 )
𝑢,𝑣, 𝑗, 𝑓 in (5.15) is

𝜖2 |𝐻 |
∏

(𝑢,𝑣, 𝑗, 𝑓 ) ∈𝐻

𝐶 (𝜖 )
𝑢,𝑣, 𝑗, 𝑓

∑
𝐽 ∈[𝑠]:𝐽∩𝐻0=∅

(−1) | [𝑠]\𝐽 | . (5.16)

As long as 𝐻0 ≠ 𝑆, the sum of (−1) | [𝑠]\𝐽 | over all the subsets of [𝑠] \𝐻0 is 0. Therefore, (5.15) is equal to∑
∅≠𝐻 ⊆𝐾∅ ,𝐻0=[𝑠]

𝜖2 |𝐻 |
∏

(𝑢,𝑣, 𝑗, 𝑓 ) ∈𝐻

𝐶 (𝜖 )
𝑢,𝑣, 𝑗, 𝑓 .

1. If s is odd, as 𝜖 → 0, ∑
∅≠𝐻 ⊆𝐾∅ ,𝐻0=[𝑠]

𝜖2 |𝐻 |
∏

(𝑢,𝑣, 𝑗, 𝑓 ) ∈𝐻

𝐶 (𝜖 )
𝑢,𝑣, 𝑗, 𝑓 = 𝑂 (𝜖 𝑠+1);

therefore,

lim
𝜖→0

1
𝜖 𝑠

∑
𝐽 ⊆[𝑠]

(−1) | [𝑠]\𝐽 |
∏

𝑢<𝑣;𝑢,𝑣 ∈[𝑠]\𝐽
𝑇𝐿,𝐿 (𝑊

(𝑖 (𝜖 )𝑢 ) ,𝑊 (𝑖 (𝜖 )𝑣 ) ) = 0.

2. If s is even, as 𝜖 → 0,∑
∅≠𝐻 ⊆𝐾∅ ,𝐻0=[𝑠]

𝜖2 |𝐻 |
∏

(𝑢,𝑣, 𝑗, 𝑓 ) ∈𝐻

𝐶 (𝜖 )
𝑢,𝑣, 𝑗, 𝑓

= 𝜖 𝑠
∑
𝑃∈P2

𝑠

∏
(𝑢,𝑣) ∈P

∏
( 𝑗 , 𝑓 ):𝑤 (𝑢)

𝑗 ∈𝑊 (𝑖
(𝜖 )
𝑢 ) ,𝑤

(𝑣 )
𝑗 ∈𝑊 (𝑖

(𝜖 )
𝑣 )

𝐶 (𝜖 )
𝑢,𝑣, 𝑗, 𝑓 +𝑂 (𝜖 𝑠+1)

= 𝜖 𝑠
∑
𝑃∈P2

𝑠

∏
(𝑢,𝑣) ∈P

(
1
𝜖2𝑇𝐿,𝐿 (𝑊

(𝑖
(𝜖 )
𝑢 ) ,𝑊 (𝑖

(𝜖 )
𝑣 ) )

)
.

Then the lemma follows. �

Proof of Theorem 5.5. The theorem follows from Lemmas 5.6 and 5.7.

6. Frozen boundary

In this section, we prove an integral formula for the Laplace transform of the rescaled height function
(see Theorem 6.1), which turns out to be deterministic, as a 2D analog of the law of large numbers. We
further obtain an explicit formula for the frozen boundary in the scaling limit.

Theorem 6.1. Let M be a random pure dimer covering on the rail yard graph 𝑅𝑌𝐺 (𝑙, 𝑟, 𝑎, 𝑏) with
probability distribution given by (2.5) and (2.6). Let ℎ𝑀 be the height function associated to M as
defined in (2.1). Suppose Assumption 5.1 holds. Then the rescaled random height function 𝜖ℎ𝑀

( 𝜒
𝜖 ,

𝜅
𝜖

)
converges, as 𝜖 → 0, to a non-random function H(𝜒, 𝜅) such that the Laplace transform of H(𝜒, ·) is
given by ∫ ∞

−∞

𝑒−𝑛𝛼𝜅H(𝜒, 𝜅)𝑑𝜅 =
1

𝑛2𝛼2𝜋i

∮
C

[
G𝜒 (𝑤)

] 𝛼 𝑑𝑤
𝑤

, (6.1)

where 𝛼 is a positive real number and the contour C satisfies the conditions of Theorem 5.4. Here,[
G𝜒 (𝑤)

] 𝛼
= 𝑒𝛼 log[G𝜒 (𝑤) ]
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and the branch of log(𝜁) is chosen to be real positive when 𝜁 is real positive. Note that the right-hand
side is non-random.

Proof. Let 𝜅
𝜖 = 𝑦. By Theorem 5.4, (2.12) and (4.1), we obtain

lim
𝜖→0
EPr(𝜖 )

∫ ∞

−∞

𝑒−𝑛𝛽𝜅𝑘𝜖ℎ𝑀

( 𝜒
𝜖
,
𝜅

𝜖

)
𝑑𝜅 = lim

𝜖→0
𝜖2
EPr(𝜖 )

∫ ∞

−∞

ℎ𝑀

( 𝜒
𝜖
, 𝑦

)
𝑡𝑘𝑦𝑑𝑦

= lim
𝜖→0
EPr(𝜖 )

2𝜖2

(𝑘 log 𝑡)2 𝛾𝑘 (𝜆
(𝑖 (𝜖 ) ) ; 𝑡, 𝑡) =

1
𝑘2𝑛2𝛽2𝜋i

∮
C
[G𝑥 (𝑤)]

𝑘𝛽 𝑑𝑤

𝑤
.

To show that the limit, as 𝜖 → 0, of
∫ ∞

−∞
𝑒−𝑛𝛽𝜅𝑘𝜖ℎ𝑀

( 𝜒
𝜖 ,

𝜅
𝜖

)
𝑑𝜅 is non-random, it suffices to show that

the limit of its variance is 0. Note that

lim
𝜖→0
EPr(𝜖 )

[∫ ∞

−∞

𝑒−𝑛𝛽𝜅𝑘𝜖ℎ𝑀

( 𝜒
𝜖
,
𝜅

𝜖

)
𝑑𝜅 − EPr(𝜖 )

∫ ∞

−∞

𝑒−𝑛𝛽𝜅𝑘𝜖ℎ𝑀

( 𝜒
𝜖
,
𝜅

𝜖

)
𝑑𝜅

]2

= lim
𝜖→0

𝜖4
EPr(𝜖 )

[∫ ∞

−∞

𝑒−𝑛𝛽𝜅𝑘ℎ𝑀

( 𝜒
𝜖
, 𝑦

)
𝑑𝑦 − EPr(𝜖 )

∫ ∞

−∞

𝑒−𝑛𝛽𝜅𝑘𝜖ℎ𝑀

( 𝜒
𝜖
, 𝑦

)
𝑑𝑦

]2

= lim
𝜖→0

𝜖6

(𝑘 log 𝑡)4 Var
[
𝑄 (𝜖 )

𝑘 (𝜒)
]
= 0,

where the last identity follows from Lemma 5.6 and the limit regime stated in Assumption 5.1. Let
𝛼 = 𝑘𝛽 and consider analytic continuation if necessary. Then the theorem follows. �

By (6.1), for 𝛼 > 0, we obtain∫ ∞

−∞

𝑒−𝑛𝛼𝜅
𝜕H(𝜒, 𝜅)

𝜕𝜅
𝑑𝜅 = 𝑛𝛼

∫ ∞

−∞

𝑒−𝑛𝛼𝜅H(𝜒, 𝜅)𝑑𝜅 =
1

𝑛𝛼𝜋i

∮
C

[
G𝜒 (𝑤)

] 𝛼 𝑑𝑤
𝑤

. (6.2)

Let m𝜒 be the measure on (0,∞) defined by

m𝜒 (𝑑𝑠) = 𝑒−𝜅
𝜕H(𝜒, 𝜅)

𝜕𝜅
|𝑑𝜅 |

����𝜅=− ln 𝑠 .

We are particularly interested in the measure m𝜒 because its density with respect to the Lebesgue
measure on R is given by

m𝜒 (𝑑𝑠)

𝑑𝑠
=

𝜕H(𝜒, 𝜅)

𝜕𝜅

����𝜅=− ln 𝑠 , (6.3)

which is exactly the slope of the limiting rescaled height function in the 𝜅-direction when 𝑠 = 𝑒−𝜅 .
By (6.2), we deduce that for any 𝜒 ∈ (𝑙 (0) , 𝑟 (0) ),

∫ ∞

0 m𝜒 (𝑑𝑠) < ∞ (i.e., m𝜒 (𝑑𝑠) is a measure on R
with finite total mass). Note also that for any positive integer j, by (6.2), we obtain∫ ∞

0
𝑠 𝑗−1m𝜒 (𝑑𝑠) =

∫ ∞

−∞

𝑒−𝜅 𝑗
𝜕H(𝜒, 𝜅)

𝜕𝜅
𝑑𝜅 =

1
𝑗𝜋i

∮
C
[G𝜒 (𝑤)]

𝑗
𝑛
𝑑𝑤

𝑤
≤ 𝐶 𝑗 ,

where 𝐶 > 0 is a positive constant independent of j. Hence, we obtain∫ ∞

2𝐶
m𝜒 (𝑑𝑠) ≤

∫ ∞

2𝐶 𝑠 𝑗−1m𝜒 (𝑑𝑠)

(2𝐶) 𝑗−1 ≤
1

2𝐶

(
1
2

) 𝑗
−→ 0

as 𝑗 → ∞. Hence, we obtain that m𝜒 (𝑑𝑠) has compact support in (0,∞).
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We shall now compute the density of the measure m𝜒 (𝑑𝑠) with respect to the Lebesgue measure on
R. It is a classical fact about Stieltjes transform that

m𝜒 (𝑑𝑠)

𝑑𝑠
= − lim

𝜖→0+

1
𝜋
�

(
Stm𝜒 (𝑠 + i𝜖)

)
,

where � denotes the imaginary part of a complex number and Stm𝜒 is the Stieltjes transform of the
measure m𝜒, which can be computed as follows: for 𝜁 ∈ C \ supp(m𝜒),

Stm𝜒 (𝜁) =
∫ ∞

0

m𝜒 (𝑑𝑠)

𝜁 − 𝑠
=

∞∑
𝑖=0

∫ ∞

0

𝑠𝑖m𝜒 (𝑑𝑠)

𝜁 𝑖+1 =
∞∑
𝑗=1

1
𝜁 𝑗

∫ ∞

0
𝑒− 𝑗 𝜅

𝜕H(𝜒, 𝜅)

𝜕𝜅
𝑑𝜅. (6.4)

Again, by (6.2), we obtain

Stm𝜒 (𝜁) =
∞∑
𝑗=1

1
𝜁 𝑗 𝑗𝜋i

∮
C
[G𝜒 (𝑤)]

𝑗
𝑛
𝑑𝑤

𝑤
.

Let R𝜒 denote the set of all poles of G1,>𝜒 and G0,>𝜒. When the contour C satisfies the conditions given
as in Theorem 5.4, we can split C into a positively oriented simple closed curve C0 enclosing only 0,
and a union C1 of positively oriented simple closed curves enclosing every point in R𝜒. By the residue
theorem, we obtain that

∞∑
𝑗=1

1
𝜁 𝑗 𝑗𝜋i

∮
C0

[G𝜒 (𝑤)]
𝑗
𝑛
𝑑𝑤

𝑤
=

∞∑
𝑗=1

2
𝜁 𝑗 𝑗

[G𝜒 (0)]
𝑗
𝑛 = −2 log

(
1 −

[G𝜒 (0)]
1
𝑛

𝜁

)
.

Moreover,

∞∑
𝑗=1

1
𝜁 𝑗 𝑗𝜋i

∮
C1

[G𝜒 (𝑤)]
𝑗
𝑛
𝑑𝑤

𝑤
= −

1
𝜋i

∮
C1

log

(
1 −

[G𝜒 (𝑤)]
1
𝑛

𝜁

)
𝑑𝑤

𝑤
,

where
���� [G𝜒 (0) ] 1

𝑛

𝜁

���� < 1 and max𝜁 ∈C1

���� [G𝜒 (𝜁 ) ] 1
𝑛

𝜁

���� < 1 to ensure the convergence of Maclaurin series. Hence,

we have

Stm𝜒 (𝜁) = −2 log

(
1 −

[G𝜒 (0)]
1
𝑛

𝜁

)
−

1
𝜋i

∮
C1

log

(
1 −

[G𝜒 (𝑤)]
1
𝑛

𝜁

)
𝑑𝑤

𝑤
.

We would like to get rid of the fractal exponent for the simplicity of computing complex integrals.
To that end, we define another function

Θ𝜒 (𝜁) := −2 log
(
1 −

G𝜒 (0)
𝜁𝑛

)
−

1
𝜋i

∮
C1

log
(
1 −

G𝜒 (𝑤)

𝜁𝑛

)
𝑑𝑤

𝑤
. (6.5)

Let 𝜔 = 𝑒
2𝜋i
𝑛 . Then it is straightforward to check that Θ𝜒 (𝜁) =

∑𝑛−1
𝑖=0 Stm𝜒 (𝜔

−𝑖𝜁). Then we obtain

1
𝜋

lim
𝜖→0+

�Θ𝜒 (𝑠 + i𝜖) = 1
𝜋

lim
𝜖→0+

𝑛−1∑
𝑖=0

�Stm𝜒 (𝜔
−𝑖 (𝑠 + i𝜖)).

Since Stm𝜒 (𝜁) is continuous in 𝜁 when 𝜁 ∈ C \ supp(m𝜒), supp(m𝜒) ∈ (0,∞) and Stm𝜒 (𝜁) = Stm𝜒 (𝜁),
we obtain that when 𝑠 ∈ supp(m𝜒),
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1
𝜋

lim
𝜖→0+

�Θ𝜒 (𝑠 + i𝜖) = 1
𝜋

𝑛−1∑
𝑖=1

�Stm𝜒 (𝜔
−𝑖𝑠) +

1
𝜋

lim
𝜖→0+

�Stm𝜒 (𝑠 + i𝜖) (6.6)

=
1
𝜋

lim
𝜖→0+

�Stm𝜒 (𝑠 + i𝜖) = −
m𝜒 (𝑑𝑠)

𝑑𝑠
.

Hence, by (6.3), to compute the slope of the limiting rescaled height function in the 𝜅-direction, it
suffices to compute − 1

𝜋 lim𝜖→0+ �Θ𝜒 (𝑠 + i𝜖) when 𝑠 = 𝑒−𝜅 .
By (6.5), we obtain

Θ𝜒 (𝜁) : = −2 log
(
1 −

G𝜒 (0)
𝜁𝑛

)
−

1
𝜋i

∮
C1

log
(
1 −

G𝜒 (𝑤)

𝜁𝑛

)
𝑑 log𝑤 (6.7)

= −2 log
(
1 −

G𝜒 (0)
𝜁𝑛

)
−

1
𝜋i

∮
C1

𝑑

[
log

(
1 −

G𝜒 (𝑤)

𝜁𝑛

)
log𝑤

]
−

1
𝜋i

∮
C1

G ′
𝜒 (𝑤) log𝑤
𝜁𝑛 − G𝜒 (𝑤)

𝑑𝑤.

To compute the contour integral above, we need to consider the root of the following equation in w:

G𝜒 (𝑤) = 𝜁𝑛, (6.8)

and in particular, the roots of (6.8) that are enclosed by the contour C1. Recall that C1 is the union of
positively oriented simple closed curves enclosing every point in R𝜒 but no other poles or zeros G𝜒.
We may assume

C1 := ∪𝜉 ∈RC𝜉 ,

where C𝜉 is a positively oriented simple closed curve enclosing 𝜉 but no other poles or zeros of G𝜒.
When 𝜁 → ∞, zeros of (6.8) will approach poles of G𝜒. For each 𝜉 ∈ R𝜒, let 𝑤 𝜉 ,𝜒 (𝜁) be a root of

(6.8) such that lim𝜁→∞ 𝑤 𝜉 ,𝜒 (𝜁) = 𝜉.
When |𝜁 | is sufficiently large, 𝑤 𝜉 ,𝜒 (𝜁) is enclosed by C𝜉 . Enclosed by each C𝜉 , there is exactly one

zero and one pole for 1 −
G𝜒 (𝑤)

𝜁 𝑛 . Hence,

1
𝜋i

∮
C1

𝑑

[
log

(
1 −

G𝜒 (𝑤)

𝜁𝑛

)
log𝑤

]
= 0. (6.9)

By computing residues at each 𝑤 𝜉 ,𝜒 (𝜁) and 𝜉, we obtain

−
1
𝜋i

∮
C1

G ′
𝜒 (𝑤) log𝑤
𝜁𝑛 − G𝜒 (𝑤)

𝑑𝑤 = 2
∑
𝜉 ∈R𝜒

[
log𝑤 𝜉 ,𝜒 (𝜁) − log 𝜉

]
. (6.10)

We now want to establish conditions under which (6.8) has at most one pair of complex conjugate
roots. For that, we need to consider zeros and poles of G1,>𝜒 (𝑤), G1,<𝜒 (𝑤), G0,>𝜒 (𝑤) and G0,<𝜒 (𝑤).
Our goal will be to fully separate zeros and poles of each function from the zeros and poles of the others.
By this, we mean that all zeros and poles of of one function are either all to the left or all to the right of
all zeros and poles of the other. We will further require that zeros and poles for each function alternate
(i.e., that sorted from smallest to largest, we have that a zero is followed by a pole and vice versa). More
precisely, we will look for conditions so that G𝜒 has poles and zeros positioned as in Figure 8 or as in
Figure 9.
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Figure 8. Poles, represented with crosses, and zeros, represented with dots, of G𝜒. Satisfied for As-
sumption 6.2 where (6.11) holds.

Figure 9. Poles, represented with crosses, and zeros, represented with dots, of G𝜒. Satisfied for As-
sumption 6.2 where (6.12) holds.

Conditions needed to satisfy the separating property and alternating property are stated in Assump-
tion 6.2. The analysis in Remark 6.4 justifies the conditions from Assumption 6.2.

Assumption 6.2. Let 𝑖, 𝑗 ∈ [𝑛] and 𝑝1, 𝑝2 ∈ [𝑚].

1. Separating condition. For 𝑏𝑝1 ,𝑖 = −, 𝑏𝑝2 , 𝑗 = + and 𝑎 𝑗 = 𝑎𝑖 , it holds that

𝜏−1
𝑖 𝜏𝑗

{
≥ 𝑒𝑉𝑝2−𝑉𝑝1−1 , 𝑖 𝑓 𝑝1 > 𝑝2

> 1, 𝑖 𝑓 𝑝1 = 𝑝2
. (6.11)

2. Alternating condition. For 𝑏𝑝1 ,𝑖 = 𝑏𝑝2 , 𝑗 , 𝑎𝑖 = 𝑎 𝑗 , and 𝜏𝑖 > 𝜏𝑗 , it holds that

𝜏−1
𝑖 𝜏𝑗 < 𝑒𝑉𝑝2−1−𝑉𝑝1 .

3. Alternatively, we can assume that instead of (6.11), it holds that

𝜏−1
𝑖 𝜏𝑗 < 𝑒𝑉𝑝2−1−𝑉𝑝1 , 𝑖 𝑓 𝑝1 ≥ 𝑝2. (6.12)

Remark 6.3. Note that in the uniform case, Assumption 6.2 is satisfied if between any two transition
points, all Ls have the same sign and all Rs have the same sign (not necessarily the same as Ls). More
precisely, if for all 𝑖, 𝑗 ∈ [𝑛] and 𝑝 ∈ [𝑚], 𝑎𝑖 = 𝑎 𝑗 implies 𝑏𝑝,𝑖 = 𝑏𝑝, 𝑗 .

When we say Assumption 6.2 holds, we mean either Assumption 6.2(1)(2) hold, or Assumption
6.2(2)(3) hold.

In the remark below, we justify Assumption 6.2.

Remark 6.4. Let x stand for one of the following 4 cases: 1, > 𝜒; 1, < 𝜒; 0, > 𝜒; or 0, < 𝜒. We
denote the set of poles and zeros of Gx with Px and Zx, respectively. We have that Zx = Nx \ Dx and
Px = Dx \Nx, where Dx, respectively Nx, denotes the set of points where the denominator, respectively
numerator, of Gx vanishes. Further, Dx =

⋃
𝑗∈[𝑛] D 𝑗 ,x and Nx =

⋃
𝑗∈[𝑛] N 𝑗 ,x, where

D 𝑗 ,1,>𝜒 =
{
𝑒max{𝑉𝑝−1 ,𝜒}𝜏−1

𝑗 |𝑉𝑝 > 𝜒, 𝑏𝑝, 𝑗 = −, 𝑎 𝑗 = 𝑎𝑖∗
}

N 𝑗 ,1,>𝜒 =
{
𝑒𝑉𝑝𝜏−1

𝑗 |𝑉𝑝 > 𝜒, 𝑏𝑝, 𝑗 = −, 𝑎 𝑗 = 𝑎𝑖∗
}

D 𝑗 ,1,<𝜒 =
{
𝑒min{𝑉𝑝 ,𝜒}𝜏−1

𝑗 |𝑉𝑝−1 < 𝜒, 𝑏𝑝, 𝑗 = +, 𝑎 𝑗 = 𝑎𝑖∗
}

N 𝑗 ,1,<𝜒 =
{
𝑒𝑉𝑝−1𝜏−1

𝑗 |𝑉𝑝−1 < 𝜒, 𝑏𝑝, 𝑗 = +, 𝑎 𝑗 = 𝑎𝑖∗
}
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D 𝑗 ,0,>𝜒 =
{
−𝑒𝑉𝑝𝜏−1

𝑗 |𝑉𝑝 > 𝜒, 𝑏𝑝, 𝑗 = −, 𝑎 𝑗 ≠ 𝑎𝑖∗
}

N 𝑗 ,0,>𝜒 =
{
−𝑒max{𝑉𝑝−1 ,𝜒}𝜏−1

𝑗 |𝑉𝑝 > 𝜒, 𝑏𝑝, 𝑗 = −, 𝑎 𝑗 ≠ 𝑎𝑖∗
}

D 𝑗 ,0,<𝜒 =
{
−𝑒𝑉𝑝−1𝜏−1

𝑗 |𝑉𝑝−1 < 𝜒, 𝑏𝑝, 𝑗 = +, 𝑎 𝑗 ≠ 𝑎𝑖∗
}

N 𝑗 ,0,<𝜒 =
{
−𝑒min{𝑉𝑝 ,𝜒}𝜏−1

𝑗 |𝑉𝑝−1 < 𝜒, 𝑏𝑝, 𝑗 = +, 𝑎 𝑗 ≠ 𝑎𝑖∗
}
.

Note that zeros and poles of Gx are positive when x is 1, > 𝜒 or 1, < 𝜒 and they are negative when x
is 0, > 𝜒 or 0, < 𝜒.

Observe that when sorted from smallest to largest, points D 𝑗 ,1,>𝜒 \N 𝑗 ,1,>𝜒 and N 𝑗 ,1,>𝜒 \ D 𝑗 ,1,>𝜒
alternate: the smallest point is from D 𝑗 ,1,>𝜒 \N 𝑗 ,1,>𝜒 and the largest from N 𝑗 ,1,>𝜒 \ D 𝑗 ,1,>𝜒 with the
rest of the points alternating between these two sets. Now, to assure that zeros and poles of G1,>𝜒 (𝑤)
alternate, we need to make sure that as we take the union over all js, the property is maintained. If 𝜏𝑖 = 𝜏𝑗 ,
it is not hard to check that points

(
D𝑖,1,>𝜒 ∪D 𝑗 ,1,>𝜒

)
\

(
N𝑖,1,>𝜒 ∪N 𝑗 ,1,>𝜒

)
and

(
N𝑖,1,>𝜒 ∪N 𝑗 ,1,>𝜒

)
\(

D𝑖,1,>𝜒 ∪D 𝑗 ,1,>𝜒
)

alternate. In the case when 𝜏𝑖 > 𝜏𝑗 , we can choose to keep all points in D𝑖,1,>𝜒 ∪

N𝑖,1,>𝜒 to the left of all points in D 𝑗 ,1,>𝜒 ∪N 𝑗 ,1,>𝜒, which can be achieved if Assumption 6.2 (2) holds
(when we take into account the separating condition for other three cases as well).

To keep zeros and poles of G1,<𝜒 (𝑤) separated from zeros and poles of G1,>𝜒 (𝑤), we can choose

1. that all zeros and poles of G1,<𝜒 (𝑤) are to the left of all zeros and poles of G1,>𝜒, which can be
guaranteed if Assumption 6.2 (1) where (6.11) holds, or alternatively,

2. that all zeros and poles of G1,<𝜒 (𝑤) are to the right of all zeros and poles of G1,>𝜒. Then Assumption
6.2 (1) where (6.12) holds can guarantee this case.

To keep zeros and poles of G0,<𝜒 (𝑤) separated from zeros and poles of G0,>𝜒 (𝑤), we can make an
analogous argument.

Lemma 6.5. Suppose that Assumption 6.2 holds. Then for any 𝜁 ∈ R, the equation in w

G𝜒 (𝑤) = 𝜁𝑛 (6.13)

has at most one pair of complex conjugate roots.

Proof. Let

G𝜒 (𝑤) = 𝐶

∏
𝑏𝑖 ∈Z1,>𝜒∪Z0,>𝜒∪Z1,<𝜒∪Z0,<𝜒 (𝑤 − 𝑏𝑖)∏
𝑎𝑖 ∈P1,>𝜒∪P0,>𝜒∪P1,<𝜒∪P0,<𝜒 (𝑤 − 𝑎𝑖)

,

where {𝑎1 < 𝑎2 < · · · < 𝑎𝑘 }, {𝑏1 < 𝑏2 < · · · < 𝑏𝑘 }, and 𝐶 ≠ 0 is an absolute constant.
Observe that under Assumptions 6.2 in both cases (i.e., if either (6.11) or (6.12) holds), poles can be

divided in three segments: {𝑎1, . . . , 𝑎𝑘1 },{𝑎𝑘1+1, . . . , 𝑎𝑘2 } and {𝑎𝑘2+1, . . . , 𝑎𝑘 } so that for each pair of
consecutive poles 𝑎𝑖 , 𝑎𝑖+1, from one of the segments there is a unique zero 𝑏 𝑗 ∈ (𝑎𝑖 , 𝑎𝑖+1) where 𝑗 ∈ [𝑘].
For such a pair of poles 𝑎𝑖 , 𝑎𝑖+1, it is straightforward to check that one of the following two cases occurs:

◦ lim𝑤→𝑎𝑖+ G𝜒 (𝑤) = −∞ and lim𝑤→𝑎𝑖+1− G𝜒 (𝑤) = +∞; or
◦ lim𝑤→𝑎𝑖+ G𝜒 (𝑤) = +∞ and lim𝑤→𝑎𝑖+1− G𝜒 (𝑤) = −∞.

By continuity, G𝜒 (𝑤) is a surjection from (𝑎𝑖 , 𝑎𝑖+1) onto (−∞,∞). Hence, for each 𝜁 ∈ R, G𝜒 (𝑤) = 𝜁𝑛

has at least one root in (𝑎𝑖 , 𝑎𝑖+1). Since there are three segments, note that this will give us at least 𝑘 − 3
real roots of (6.13).
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The following cases might occur:

1. 𝑠𝑛 = 𝐶. In this case, the equation (6.13) in w has at most 𝑘 − 1 roots in the complex plane. But we
already have (𝑘 − 3) real roots; hence, in this case, (6.13) has at most one pair of complex conjugate
roots.

2. 𝑠𝑛 ≠ 𝐶. In this case, the equation (6.13) in w has exactly k roots in the complex plane. Again, it is
straightforward to check that one of the following two cases occurs:
◦ lim𝑤→𝑎𝑘+ G𝜒 (𝑤) = −∞ and lim𝑤→𝑎1− G𝜒 (𝑤) = +∞; or
◦ lim𝑤→𝑎𝑘+ G𝜒 (𝑤) = +∞ and lim𝑤→𝑎1− G𝜒 (𝑤) = −∞.
By continuity, G𝜒 (𝑤) is a surjection from (−∞, 𝑎1) ∪ (𝑎𝑝 ,∞) onto (−∞, 𝐶) ∪ (𝐶,∞). Hence, for
each 𝑠 ≠ 𝐶, G𝜒 (𝑤) = 𝑠 has at least one root in (−∞, 𝑎1) ∪ (𝑎𝑝 ,∞). Since (6.13) has at least (𝑘 − 2)
real roots, we deduce that it has at most one pair of complex conjugate roots. �

Lemma 6.6. Suppose Assumptions 5.1 and 6.2(2)(3) hold. Let H(𝜒, 𝜅) be the limit of the rescaled
height function of pure dimer coverings on rail yard graphs as 𝜖 → 0, as obtained in Theorem 6.1. Let

R𝜒 := P1,>𝜒 ∪ P0,>𝜒 .

Assume that the equation (6.13) in w with 𝜁 = 𝑒−𝜅 has exactly one pair of nonreal conjugate roots and
R𝜒 ≠ ∅.

1. If P1,>𝜒 = ∅, then

G𝜒 (0) < 𝑒−𝑛𝜅 .

2. If P0,>𝜒 = ∅, then

G𝜒 (0) > 𝑒−𝑛𝜅 .

Proof. We only prove part (1) here; part (2) can be proved using exactly the same technique. Assume
R𝜒 ≠ ∅ and P1,>𝜒 = ∅; then P0,>𝜒 ≠ ∅. Let

𝐵1 := maxP0,>𝜒 < 0. (6.14)

◦ If P1,<𝜒 ≠ ∅, let

𝐵2 := minP1,<𝜒 > 0. (6.15)

◦ If P1,<𝜒 = ∅, let

𝐵2 := +∞. (6.16)

Then by (5.4)–(5.7) and (5.9), we have

lim
𝑢→𝐵1+

G𝜒 (𝑢) = −∞. (6.17)

Let K be the total number of complex roots (counting multiplicities) in w of G𝜒 (𝑤) = 𝑒−𝑛𝜅 . From the
proof of Lemma 6.5, we see that there are at least𝐾−2 real roots ofG𝜒 (𝑤) = 𝑒−𝑛𝜅 in (−∞, 𝐵1)∪(𝐵2, +∞).
If G𝜒 (0) ≥ 𝑒−𝑛𝜅 , by (6.17) and the continuity of G𝜒 (𝑤) when 𝑤 ∈ (𝐵1, 𝐵2), we deduce that there is at
least one real root of G𝜒 (𝑤) = 𝑒−𝑛𝜅 in (𝐵1, 0], which contradicts the assumption that G𝜒 (𝑤) = 𝑒−𝑛𝜅 has
exactly one pair of nonreal conjugate roots. Then part (1) of the lemma follows. �
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Then we have the following proposition:

Proposition 6.7. Suppose Assumption 5.1 and 6.2 hold. Let H(𝜒, 𝜅) be the limit of the rescaled height
function of pure dimer coverings on rail yard graphs as 𝜖 → 0, as obtained in Theorem 6.1. Assume
that equation (6.13) in w with 𝜁 = 𝑒−𝜅 has exactly one pair of nonreal conjugate roots and R𝜒 ≠ ∅,
G𝜒 (0) ≠ 𝑒−𝑛𝜅 and G𝜒 (∞) ≠ 𝑒−𝑛𝜅 . Let w+ be the unique nonreal root of G𝜒 (𝑤) = 𝑒−𝑛𝜅 in the upper half
plane, and the branch of arg(·) be chosen such that arg(w+) ∈ (0, 𝜋). Then

(a) if Assumption 6.2(2)(3) hold,

𝜕H(𝜒, 𝜅)

𝜕𝜅
= 2 −

2arg(w+)

𝜋
; (6.18)

(b) if Assumption 6.2(1)(2) hold,

𝜕H(𝜒, 𝜅)

𝜕𝜅
=

{ 2arg(w+)
𝜋 if 1G𝜒 (0)>𝑒−𝑛𝜅 + 1G𝜒 (∞)>𝑒−𝑛𝜅 ∈ {0, 2};

2
[
1 −

arg(w+)
𝜋

]
otherwise.

(6.19)

Proof. We first prove (a) here. By (6.3), (6.6), we obtain

𝜕H(𝜒, 𝜅)

𝜕𝜅
= − lim

𝜖→0+

1
𝜋
�Θ𝜒 (𝜁 + i𝜖)

����𝜁=𝑒−𝜅 .
By (6.7), (6.9), (6.10), we obtain

𝜕H(𝜒, 𝜅)

𝜕𝜅
= 21G𝜒 (0)>𝑒−𝑛𝜅 −

2
𝜋

∑
𝜉 ∈R𝜒

[
arg(𝑤 𝜉 ,𝜒 (𝑒

−𝜅 )) − arg(𝜉)
]
, (6.20)

where the branch of arg is chosen to have range (−𝜋, 𝜋]. Hence, we have

arg(𝜉) =

{
0 if 𝜉 > 0;
𝜋 otherwise.

Under the assumption that R𝜒 ≠ ∅ and G𝜒 (0) ≠ 𝑒−𝑛𝜅 , the following cases might occur:

1. P0,>𝜒 ≠ ∅. In this case, the number of negative poles in R𝜒 is exactly |P0,>𝜒 |. From the proof of
Lemma 6.5, we see that there are at least |P0,>𝜒 | − 1 negative real roots in {𝑤 𝜉 ,𝜒 (𝑒

−𝜅 )}𝜉 ∈R𝜒 . Let
𝐵1 be defined as in (6.14).
(a) If P1,>𝜒 ≠ ∅, let

𝐵2 := minP1,>𝜒 > 0.

(b) If P1,>𝜒 = ∅ and if P1,<𝜒 ≠ ∅, let 𝐵2 be defined as in (6.15).
(c) If P1,>𝜒 = ∅ and if P1,<𝜒 = ∅, let 𝐵2 be defined as in (6.16).
Then by (5.4)–(5.7) and (5.9), we have (6.17). The following cases might occur:
(a) G𝜒 (0) > 𝑒−𝑛𝜅 . Then there exists a unique root in {𝑤 𝜉 ,𝜒 (𝑒

−𝜅 )}𝜉 ∈R𝜒 ∩(𝐵1, 𝐵2) which is negative;
in this case, the argument of each negative pole in R𝜒 cancels with an argument of a unique
negative root in {𝑤 𝜉 ,𝜒 (𝑒

−𝜅 )}𝜉 ∈R𝜒 ;
(b) G𝜒 (0) < 𝑒−𝑛𝜅 . Then there exists no root in {𝑤 𝜉 ,𝜒 (𝑒

−𝜅 )}𝜉 ∈R𝜒 ∩ (𝐵1, 0); in this case, there is a
unique negative pole inR𝜒 whose argument cannot cancel with an argument of a unique negative
root in {𝑤 𝜉 ,𝜒 (𝑒

−𝜅 )}𝜉 ∈R𝜒 .
In either case, we have that (6.18) holds.

2. P1,>𝜒 ≠ ∅ and P0,>𝜒 = ∅. In this case, there are neither negative poles in R𝜒 nor negative real roots
in {𝑤 𝜉 ,𝜒 (𝑒

−𝜅 )}𝜉 ∈R𝜒 . By Lemma 6.6, we have G𝜒 (0) > 0. Then (6.18) follows from (6.20).
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Now we prove (b). Following the same argument as the proof of part(a), we obtain

𝜕H(𝜒, 𝜅)

𝜕𝜅
= 2

[
1G𝜒 (0)>𝑒−𝑛𝜅 + 1G𝜒 (∞)>𝑒−𝑛𝜅 −

arg(w)

𝜋

]
,

where w is some non-real root of G𝜒 (𝑤) = 𝑒−𝑛𝜅 . Depending on the value of 1G𝜒 (0)>𝑒−𝑛𝜅 + 1G𝜒 (∞)>𝑒−𝑛𝜅 ,
w may be chosen to be the root in the upper half plane or the lower half plane with appropriate branch
of 𝑎𝑟𝑔(·) such that 𝜕H

𝜕𝜅 ∈ [0, 2], as in (2.9). Then (6.19) follows. �

As we shall see in Section 8, for pyramid partitions, G𝜒 (0) = G𝜒 (∞) = 1.

Definition 6.8. Let {𝑅𝑌𝐺 (𝑙 (𝜖 ) , 𝑟 (𝜖 ) , 𝑎 (𝜖 ) , 𝑏 (𝜖 ) )}𝜖 >0 be a collection of rail yard graphs satisfying As-
sumptions 5.1 and 6.2. Let H(𝜒, 𝜅) be the limit of the rescaled height function of pure dimer coverings
on rail yard graphs as 𝜖 → 0, as obtained in Theorem 6.1. The liquid region for the limit shape of pure
dimer coverings on these rail yard graphs as 𝜖 → 0 is defined to be

L :=
{
(𝜒, 𝜅) ∈ (𝑙 (0) , 𝑟 (0) ) × R :

𝜕H
𝜕𝜅

(𝜒, 𝜅) ∈ (0, 2)
}
,

and the frozen region is defined to be{
(𝜒, 𝜅) ∈ (𝑙 (0) , 𝑟 (0) ) × R :

𝜕H
𝜕𝜅

(𝜒, 𝜅) ∈ {0, 2}
}
.

The frozen boundary is defined to be the boundary separating the frozen region and the liquid region.

Remark 6.9. By Proposition 6.7, we see that if R𝜒 ≠ ∅ and G𝜒 (0) ≠ ∅, (𝜒, 𝜅) ∈ (𝑙 (0) , 𝑟 (0) ) × R is in
the liquid region if and only if the equation

G𝜒 (𝑤) = 𝑒−𝑛𝜅 (6.21)

in w has exactly one pair of nonreal conjugate roots in w. By Lemma 6.5, we see that the frozen boundary
is given by the condition that (6.21) has double real roots.

Next, we shall find the frozen boundary. The discussion above shows that if R𝜒 ≠ ∅ and G𝜒 (0) ≠ ∅,
(𝜒, 𝜅) ∈ (𝑙 (0) , 𝑟 (0) ) × R is on the frozen boundary if and only if (𝜒, 𝜅) satisfies the following system of
equations: {

G𝜒 (𝑤) = 𝑒−𝑛𝜅

𝑑 logG𝜒 (𝑤)

𝑑𝑤 = 0
. (6.22)

The second equation in (6.22) gives

0 =
∑

𝑝∈[𝑚],𝑉𝑝>𝜒
𝑗∈[𝑛]:𝑏𝑝, 𝑗=−,𝑎 𝑗=𝑎𝑖∗

1
𝑤 − 𝑒𝑉𝑝𝜏−1

𝑗

−
1

𝑤 − 𝑒max{𝑉𝑝−1 ,𝜒}𝜏−1
𝑗

(6.23)

+
∑

𝑝∈[𝑚],𝑉𝑝−1<𝜒
𝑗∈[𝑛]:𝑏𝑝, 𝑗=+,𝑎 𝑗=𝑎𝑖∗

1
𝑤 − 𝑒𝑉𝑝−1𝜏−1

𝑗

−
1

𝑤 − 𝑒min{𝑉𝑝 ,𝜒}𝜏−1
𝑗

(6.23)
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+
∑

𝑝∈[𝑚],𝑉𝑝>𝜒
𝑗∈[𝑛]:𝑏𝑝, 𝑗=−,𝑎 𝑗≠𝑎𝑖∗

1
𝑤 + 𝑒max{𝑉𝑝−1 ,𝜒}𝜏−1

𝑗

−
1

𝑤 + 𝑒𝑉𝑝𝜏−1
𝑗

+
∑

𝑝∈[𝑚],𝑉𝑝−1<𝜒
𝑗∈[𝑛]:𝑏𝑝, 𝑗=+,𝑎 𝑗≠𝑎𝑖∗

1
𝑤 + 𝑒min{𝑉𝑝 ,𝜒}𝜏−1

𝑗

−
1

𝑤 + 𝑒𝑉𝑝−1𝜏−1
𝑗

.

7. Height fluctuations and Gaussian free field

In this section, we prove that the fluctuations of height function converge to the pull-back Gaussian free
field (GFF) in the upper half plane under a diffeomorphism from the liquid region to the upper half
plane. The main theorem proved in this section is Theorem 7.7.

7.1. Gaussian free field

Let 𝐶∞
0 be the space of smooth real-valued functions with compact support in the upper half plane H.

The Gaussian free field (GFF) Ξ on H with the zero boundary condition is a collection of Gaussian
random variables {Ξ 𝑓 } 𝑓 ∈𝐶∞

0
indexed by functions in 𝐶∞

0 , such that the covariance of two Gaussian
random variables Ξ 𝑓1 , Ξ 𝑓2 is given by

Cov(Ξ 𝑓1 ,Ξ 𝑓2) =
∫
H

∫
H

𝑓1(𝑧) 𝑓2(𝑤)𝐺H(𝑧, 𝑤)𝑑𝑧𝑑𝑧𝑑𝑤𝑑𝑤, (7.1)

where

𝐺H(𝑧, 𝑤) := −
1

2𝜋
ln

���� 𝑧 − 𝑤

𝑧 − 𝑤

����, 𝑧, 𝑤 ∈ H

is the Green’s function of the Laplacian operator on H with the Dirichlet boundary condition. The
Gaussian free field Ξ can also be considered as a random distribution on 𝐶∞

0 , such that for any 𝑓 ∈ 𝐶∞
0 ,

we have

Ξ( 𝑓 ) =
∫
H

𝑓 (𝑧)Ξ(𝑧)𝑑𝑧 := 𝜉 𝑓 .

Here, Ξ( 𝑓 ) is the Gaussian random variable with respect to f, which has mean 0 and variance given by
(7.1) with 𝑓1 and 𝑓2 replaced by f. See [35] for more about the GFF.

7.2. w+ as a mapping from L to H

By (5.4)–(5.7) and (5.9), we may write G𝜒 (𝑤) as the quotient of two functions 𝑈𝜒 (𝑤) and 𝑅(𝑤), such
that 𝑈𝜒 (𝑤) depends on 𝜒 and 𝑅(𝑤) is independent of 𝜒. More precisely,

G𝜒 (𝑤) =
𝑈𝜒 (𝑤)

𝑅(𝑤)
,

where

𝑈𝜒 (𝑤) = 𝑒𝜙 (𝜒)
∏

𝑗∈[𝑛],𝑎 𝑗=𝑅
(
1 + 𝑒−𝜒𝑤𝜏𝑗

)∏
𝑗∈[𝑛],𝑎 𝑗=𝐿 (1 − 𝑒−𝜒𝑤𝜏𝑗 )
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and

𝜙(𝜒) =
∑

𝑝∈[𝑚],𝑉𝑝−1>𝜒

∑
𝑗∈[𝑛]

(𝑎 𝑗 ,𝑏𝑝, 𝑗 )=(𝐿,−)

(𝑉𝑝 −𝑉𝑝−1) +
∑

𝑝∈[𝑚],𝑉𝑝−1<𝜒<𝑉𝑝

∑
𝑗∈[𝑛]

(𝑎 𝑗 ,𝑏𝑝, 𝑗 )=(𝐿,−)

(𝑉𝑝 − 𝜒)

−
∑

𝑝∈[𝑚],𝑉𝑝−1>𝜒

∑
𝑗∈[𝑛]

(𝑎 𝑗 ,𝑏𝑝, 𝑗 )=(𝑅,−)

(𝑉𝑝 −𝑉𝑝−1) −
∑

𝑝∈[𝑚],𝑉𝑝−1<𝜒<𝑉𝑝

∑
𝑗∈[𝑛]

(𝑎 𝑗 ,𝑏𝑝, 𝑗 )=(𝑅,−)

(𝑉𝑝 − 𝜒)

and

𝑅(𝑤) = 𝐴1 · 𝐴2 (7.2)

𝐴1 =
𝑛∏
𝑗=1

∏
𝑝∈[𝑚],𝑉𝑝>𝜒
𝑏𝑝, 𝑗=−,𝑎 𝑗=𝑎𝑖∗

(
1 − 𝑒−𝑉𝑝𝑤𝜏𝑗

)−1 ∏
𝑝∈[𝑚],𝑉𝑝−1>𝜒
𝑏𝑝, 𝑗=−,𝑎 𝑗=𝑎𝑖∗

(
1 − 𝑒−𝑉𝑝−1𝑤𝜏𝑗

)
×

∏
𝑝∈[𝑚],𝑉𝑝−1<𝜒
𝑏𝑝, 𝑗=+,𝑎 𝑗=𝑎𝑖∗

(
1 − 𝑒−𝑉𝑝−1𝑤𝜏𝑗

)−1 ∏
𝑝∈[𝑚],𝑉𝑝<𝜒
𝑏𝑝, 𝑗=+,𝑎 𝑗=𝑎𝑖∗

(
1 − 𝑒−𝑉𝑝𝑤𝜏𝑗

)
,

𝐴2 =
𝑛∏
𝑗=1

∏
𝑝∈[𝑚],𝑉𝑝>𝜒
𝑏𝑝, 𝑗=−,𝑎 𝑗≠𝑎𝑖∗

(
1 + 𝑒−𝑉𝑝𝑤𝜏𝑗

) ∏
𝑝∈[𝑚],𝑉𝑝−1>𝜒
𝑏𝑝, 𝑗=−,𝑎 𝑗≠𝑎𝑖∗

(
1 + 𝑒−𝑉𝑝−1𝑤𝜏𝑗

)−1

×
∏

𝑝∈[𝑚],𝑉𝑝<𝜒
𝑏𝑝, 𝑗=+,𝑎 𝑗≠𝑎𝑖∗

(
1 + 𝑒−𝑉𝑝𝑤𝜏𝑗

)−1 ∏
𝑝∈[𝑚],𝑉𝑝−1<𝜒
𝑏𝑝, 𝑗=+,𝑎 𝑗≠𝑎𝑖∗

(
1 + 𝑒−𝑉𝑝−1𝑤𝜏𝑗

)
.

Observe that 𝐴1 and 𝐴2 do not depend on 𝜒; it because the first and third terms combined do not depend
on 𝜒, as well as the second and fourth combined. Now, assume that 𝑎𝑖∗ = 𝐿. Then

𝐴1 =
∏

𝑗∈[𝑛]:𝑎 𝑗=𝐿

[(
1 − 𝑒−𝑉0𝑤𝜏𝑗

)−1𝑏1, 𝑗=+
(
1 − 𝑒−𝑉𝑚𝑤𝜏𝑗

)−1𝑏𝑚, 𝑗=−
]

×

⎡⎢⎢⎢⎢⎣
𝑚−1∏
𝑝=1

(
1 − 𝑒−𝑉𝑝𝑤𝜏𝑗

)−1𝑏𝑝+1, 𝑗=++1𝑏𝑝, 𝑗=+
⎤⎥⎥⎥⎥⎦ (7.3)

and

𝐴2 =
∏

𝑗∈[𝑛]:𝑎 𝑗=𝑅

[(
1 + 𝑒−𝑉0𝑤𝜏𝑗

)1𝑏1, 𝑗=+
(
1 + 𝑒−𝑉𝑚𝑤𝜏𝑗

)1𝑏𝑚, 𝑗=−
]

×

⎡⎢⎢⎢⎢⎣
𝑚−1∏
𝑝=1

(
1 + 𝑒−𝑉𝑝𝑤𝜏𝑗

)1𝑏𝑝+1, 𝑗=+−1𝑏𝑝, 𝑗=+
⎤⎥⎥⎥⎥⎦ . (7.4)

We shall always use [·]
1
𝑛 to denote the branch which takes positive real values on the positive real

line. Define

𝑈 (𝑤∗, 𝑧∗) =

[∏
𝑗∈[𝑛],𝑎 𝑗=𝑅

(
1 + 𝑤∗𝜏𝑗

)∏
𝑗∈[𝑛],𝑎 𝑗=𝐿 (1 − 𝑤∗𝜏𝑗 )

] 1
𝑛

− 𝑧∗.
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Hence, we have

G𝜒 (𝑤) = 𝑒−𝑛𝜅 (7.5)

if and only if

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑈 (𝑤∗, 𝑧∗) = 0
[𝑅(𝑤)]

1
𝑛 = 𝑧

(𝑤∗, 𝑧∗) = (𝑒−𝜒𝑤, 𝑒−𝜅 𝑧)

.

Lemma 7.1. Let

𝑛𝑅 := |{ 𝑗 ∈ [𝑛] : 𝑎 𝑗 = 𝑅}|; 𝑛𝐿 := |{ 𝑗 ∈ [𝑛] : 𝑎 𝑗 = 𝐿}|.

For any (𝛼, 𝜃) such that

𝜃 ∈ (0, 𝜋), 𝛼 ∈

(
0,
𝑛𝐿𝜋 + (𝑛𝑅 − 𝑛𝐿)𝜃

𝑛

)
, (7.6)

there exists a unique pair (𝑤∗, 𝑧∗) such that arg 𝑧∗ = 𝛼 for some 𝑘 ∈ Z, arg𝑤∗ = 𝜃 and 𝑈 (𝑤∗, 𝑧∗) = 0.

Proof. Note that 𝑛𝑅 + 𝑛𝐿 = 𝑛. For 𝜃 ∈ (0, 𝜋), define a map 𝐵𝜃 : [0,∞) → R by

𝐵𝜃 (𝜌) :=
1
𝑛

⎡⎢⎢⎢⎢⎣
∑

𝑗∈[𝑛]:𝑎 𝑗=𝑅
arg(1 + 𝜌𝑒i𝜃𝜏𝑗 ) −

∑
𝑗∈[𝑛]:𝑎 𝑗=𝐿

arg(1 − 𝜌𝑒i𝜃𝜏𝑗 )

⎤⎥⎥⎥⎥⎦ ,
where the branch of arg(·) is chosen such that it has range (−𝜋, 𝜋]. It is straightforward to check that
𝐵𝜃 (𝜌) is strictly increasing when 𝜌 ∈ (0,∞). Moreover,

lim
𝜌→0

𝐵𝜃 (𝜌) = 0; lim
𝜌→∞

𝐵𝜃 (𝜌) =
𝑛𝐿𝜋

𝑛
+
(𝑛𝑅 − 𝑛𝐿)𝜃

𝑛
.

Since 𝐵𝜃 is a bijection from (0,∞) to
(
0, 𝑛𝐿 𝜋𝑛 +

(𝑛𝑅−𝑛𝐿 ) 𝜃
𝑛

)
, for any (𝛼, 𝜃) satisfying (7.6), we can find

a unique 𝜌 > 0, such that 𝐵𝜃 (𝜌) = 𝛼. Let

𝑤∗ := 𝜌𝑒i𝜃 and 𝑧∗ :=

[∏
𝑗∈[𝑛],𝑎 𝑗=𝑅

(
1 + 𝑤∗𝜏𝑗

)∏
𝑗∈[𝑛],𝑎 𝑗=𝐿 (1 − 𝑤∗𝜏𝑗 )

] 1
𝑛

.

Then the lemma follows. �

Proposition 7.2. For each (𝜒, 𝜅) ∈ L, let w+(𝜒, 𝜅) be the unique root of (7.5) in the upper half plane
H. Then w+ : L → H is a diffeomorphism.

Proof. We first show that w+ is a bijection. For any 𝑤 ∈ H, let 𝑧 = [𝑅(𝑤)]
1
𝑛 . Let

𝜃 := arg𝑤 ∈ (0, 𝜋); 𝛼 := arg 𝑧.
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By (7.2), (7.3), (7.4), we obtain

𝛼 =
1
𝑛

⎡⎢⎢⎢⎢⎣
∑

𝑗∈[𝑛]:𝑎 𝑗=𝐿

− arg
(
1 − 𝑒−𝑉0𝑤𝜏𝑗

)
1𝑏1, 𝑗=+ − arg

(
1 − 𝑒−𝑉𝑚𝑤𝜏𝑗

)
1𝑏𝑚, 𝑗=−

+
∑𝑚−1

𝑝=1 arg
(
1 − 𝑒−𝑉𝑝𝜏𝑗𝑤

) (
−1𝑏𝑝+1, 𝑗=+ + 1𝑏𝑝, 𝑗=+

)
+

∑
𝑗∈[𝑛]:𝑎 𝑗=𝑅

arg
(
1 + 𝑒−𝑉0𝑤𝜏𝑗

)
1𝑏1, 𝑗=+ + arg

(
1 + 𝑒−𝑉𝑚𝑤𝜏𝑗

)
1𝑏𝑚, 𝑗=−

+
∑𝑚−1

𝑝=1 arg
(
1 + 𝑒−𝑉𝑝𝑤𝜏𝑗

) (
1𝑏𝑝+1, 𝑗=+ − 1𝑏𝑝, 𝑗=+

) ⎤⎥⎥⎥⎥⎦ . (7.7)

Then we have

𝛼 =
1
𝑛

⎡⎢⎢⎢⎢⎣
∑

𝑗∈[𝑛]:𝑎 𝑗=𝐿

∑𝑚
𝑝=1

[
arg

(
1 − 𝑒−𝑉𝑝𝑤𝜏𝑗

)
− arg

(
1 − 𝑒−𝑉𝑝−1𝑤𝜏𝑗

) ]
1𝑏𝑝, 𝑗=+

− arg
(
1 − 𝑒−𝑉𝑚𝑤𝜏𝑗

)
+

∑
𝑗∈[𝑛]:𝑎 𝑗=𝑅

∑𝑚
𝑝=1

[
arg

(
1 + 𝑒−𝑉𝑝−1𝑤𝜏𝑗

)
− arg

(
1 + 𝑒−𝑉𝑝𝑤𝜏𝑗

) ]
1𝑏𝑝, 𝑗=+

+ arg
(
1 + 𝑒−𝑉𝑚𝑤𝜏𝑗

) ⎤⎥⎥⎥⎥⎦ (7.8)

and

𝛼 =
1
𝑛

⎡⎢⎢⎢⎢⎣
∑

𝑗∈[𝑛]:𝑎 𝑗=𝐿

∑𝑚
𝑝=1

[
arg

(
1 − 𝑒−𝑉𝑝−1𝑤𝜏𝑗

)
− arg

(
1 − 𝑒−𝑉𝑝𝑤𝜏𝑗

) ]
1𝑏𝑝, 𝑗=−

− arg
(
1 − 𝑒−𝑉0𝑤𝜏𝑗

)
+

∑
𝑗∈[𝑛]:𝑎 𝑗=𝑅

∑𝑚
𝑝=1

[
arg

(
1 + 𝑒−𝑉𝑝𝑤𝜏𝑗

)
− arg

(
1 + 𝑒−𝑉𝑝−1𝑤𝜏𝑗

) ]
1𝑏𝑝, 𝑗=−

+ arg
(
1 + 𝑒−𝑉0𝑤𝜏𝑗

) ⎤⎥⎥⎥⎥⎦ . (7.9)

Note that for any 𝑤 ∈ H, 𝑢, 𝑣 ∈ [0,∞] and 𝑢 < 𝑣, we have

−(𝜋 − arg𝑤) ≤ arg
(
1 − 𝑢−1𝑤

)
< arg

(
1 − 𝑣−1𝑤

)
≤ 0

and

arg𝑤 ≥ arg
(
1 + 𝑢−1𝑤

)
> arg

(
1 + 𝑣−1𝑤

)
≥ 0.

Hence, from (7.8), we obtain

𝛼 >
1
𝑛

⎧⎪⎪⎨⎪⎪⎩
∑

𝑗∈[𝑛]:𝑎 𝑗=𝐿

[
− arg

(
1 − 𝑒−𝑉𝑚𝑤𝜏𝑗

)]
+

∑
𝑗∈[𝑛]:𝑎 𝑗=𝑅

[
arg

(
1 + 𝑒−𝑉𝑚𝑤𝜏𝑗

)]⎫⎪⎪⎬⎪⎪⎭ ≥ 0.

By (7.9), we obtain

𝛼 <
1
𝑛

⎧⎪⎪⎨⎪⎪⎩
∑

𝑗∈[𝑛]:𝑎 𝑗=𝐿

[
− arg

(
1 − 𝑒−𝑉0𝑤𝜏𝑗

)]
+

∑
𝑗∈[𝑛]:𝑎 𝑗=𝑅

[
arg

(
1 + 𝑒−𝑉0𝑤𝜏𝑗

)]⎫⎪⎪⎬⎪⎪⎭
≤
𝑛𝐿𝜋 + (𝑛𝑅 − 𝑛𝐿)𝜃

𝑛
.

By Lemma 7.1, we can find a unique pair (𝑤∗, 𝑧∗) such that arg 𝑧∗ = 𝛼 for some 𝑘 ∈ Z, arg𝑤∗ = 𝜃 and
𝑈 (𝑤∗, 𝑧∗) = 0.
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𝜒 := log
(
𝑤

𝑤∗

)
, 𝜅 := log

(
𝑧

𝑧∗

)
,

where the branch of the log(·) is chosen such that it takes real values on the positive real axis. Then we
deduce that w+ is a bijection. From the process, we see that both the mapping w+ and its inverse are
differentiable. Then the proposition follows. �

7.3. Convergence of height fluctuations to GFF

Splitting the sum of the RHS of (6.23) into those depending on 𝜒 and those independent of 𝜒, we
obtain

0 = −
∑

𝑗∈[𝑛]:𝑎 𝑗=𝐿

1
𝑤 − 𝑒𝜒𝜏−1

𝑗

+
∑

𝑗∈[𝑛]:𝑎 𝑗=𝑅

1
𝑤 + 𝑒𝜒𝜏−1

𝑗

+
∑

𝑝∈[𝑚−1], 𝑗∈[𝑛]
𝑎 𝑗=𝐿

1𝑏𝑝+1, 𝑗=+ − 1𝑏𝑝, 𝑗=+
𝑤 − 𝑒𝑉𝑝𝜏−1

𝑗

+
∑
𝑗∈[𝑛]
𝑎 𝑗=𝐿

(
1𝑏𝑚, 𝑗=−

𝑤 − 𝑒𝑉𝑚𝜏−1
𝑗

+
1𝑏1, 𝑗=+

𝑤 − 𝑒𝑉0𝜏−1
𝑗

)

+
∑

𝑝∈[𝑚−1], 𝑗∈[𝑛]
𝑎 𝑗=𝑅

1𝑏𝑝, 𝑗=+ − 1𝑏𝑝+1, 𝑗=+

𝑤 + 𝑒𝑉𝑝𝜏−1
𝑗

−
∑
𝑗∈[𝑛]
𝑎 𝑗=𝑅

(
1𝑏𝑚, 𝑗=−

𝑤 + 𝑒𝑉𝑚𝜏−1
𝑗

+
1𝑏1, 𝑗=+

𝑤 + 𝑒𝑉0𝜏−1
𝑗

)
.

Let S be the set of all the zeros and poles of G𝜒 that are independent of 𝜒. Or equivalently, S is the
set of all the zeros and poles of 𝑅(𝑤). More precisely,

S =
{
𝑒𝑉𝑝𝜏−1

𝑗 : 𝑝 ∈ [𝑚 − 1], 𝑗 ∈ [𝑛], 𝑎 𝑗 = 𝐿, 𝑏𝑝, 𝑗 ≠ 𝑏𝑝+1, 𝑗

}
∪

{
−𝑒𝑉𝑝𝜏−1

𝑗 : 𝑝 ∈ [𝑚 − 1], 𝑗 ∈ [𝑛], 𝑎 𝑗 = 𝑅, 𝑏𝑝, 𝑗 ≠ 𝑏𝑝+1, 𝑗

}
∪ {𝑒𝑉0𝜏−1

𝑗 , 𝑒𝑉𝑚𝜏−1
𝑗 : 𝑗 ∈ [𝑛], 𝑎 𝑗 = 𝐿} ∪ {−𝑒𝑉0𝜏−1

𝑗 ,−𝑒𝑉𝑚𝜏−1
𝑗 : 𝑗 ∈ [𝑛], 𝑎 𝑗 = 𝑅}.

Then we have the following lemma.

Lemma 7.3. Each 𝑢 ∈ R \ S is a double root of (7.5) for a unique pair of (𝜒, 𝜅) ∈ R2.

Proof. Define

𝑓 (𝑠) =
∑

𝑗∈[𝑛]:𝑎 𝑗=𝐿

1
1 − 𝜏−1

𝑗 𝑠
−

∑
𝑗∈[𝑛]:𝑎 𝑗=𝑅

1
1 + 𝜏−1

𝑗 𝑠

and

𝑔(𝑤) =
∑

𝑝∈[𝑚−1], 𝑗∈[𝑛]
𝑎 𝑗=𝐿

1𝑏𝑝+1, 𝑗=+ − 1𝑏𝑝, 𝑗=+
𝑤 − 𝑒𝑉𝑝𝜏−1

𝑗

+
∑
𝑗∈[𝑛]
𝑎 𝑗=𝐿

(
1𝑏𝑚, 𝑗=−

𝑤 − 𝑒𝑉𝑚𝜏−1
𝑗

+
1𝑏1, 𝑗=+

𝑤 − 𝑒𝑉0𝜏−1
𝑗

)

+
∑

𝑝∈[𝑚−1], 𝑗∈[𝑛]
𝑎 𝑗=𝑅

1𝑏𝑝, 𝑗=+ − 1𝑏𝑝+1, 𝑗=+

𝑤 + 𝑒𝑉𝑝𝜏−1
𝑗

−
∑
𝑗∈[𝑛]
𝑎 𝑗=𝑅

(
1𝑏𝑚, 𝑗=−

𝑤 + 𝑒𝑉𝑚𝜏−1
𝑗

+
1𝑏1, 𝑗=+

𝑤 + 𝑒𝑉0𝜏−1
𝑗

)
.
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Then u is a double root for (6.13) for some (𝜒, 𝜅) ∈ [𝑟 (0) , 𝑙 (0) ] × R if and only if

𝑒𝜅 =

[
𝑅(𝑢)

𝑈𝜒 (𝑢)

] 1
𝑛

, (7.10)

𝑓 (𝑒𝜒𝑢−1) = 𝑢𝑔(𝑢), (7.11)

where [·]
1
𝑛 is the branch that takes positive real value on the positive real axis. The function 𝑓 (𝑠)

is defined in R \ [{−𝜏𝑗 } 𝑗∈[𝑛]:𝑎 𝑗=𝑅 ∪ {𝜏𝑗 } 𝑗∈[𝑛],𝑎 𝑗=𝐿]. Suppose that we enumerate all the points in
{−𝜏𝑗 } 𝑗∈[𝑛]:𝑎 𝑗=𝑅 ∪ {𝜏𝑗 } 𝑗∈[𝑛],𝑎 𝑗=𝐿 in the increasing order as follows:

−𝑑𝑛𝐿 < −𝑑𝑛𝐿−1 < . . . < −𝑑1 < 0 < 𝛼1 < 𝛼2 < . . . < 𝛼𝑛𝑅 .

Since for all 𝑠 ∈ R \ [{−𝜏𝑗 } 𝑗∈[𝑛]:𝑎 𝑗=𝑅 ∪ {𝜏𝑗 } 𝑗∈[𝑛],𝑎 𝑗=𝐿],

𝑓 ′(𝑠) =
∑

𝑗∈[𝑛]:𝑎 𝑗=𝐿

1
𝜏𝑗 (1 − 𝜏−1

𝑗 𝑠)2
+

∑
𝑗∈[𝑛]:𝑎 𝑗=𝑅

1
𝜏𝑗 (1 + 𝜏−1

𝑗 𝑠)2
> 0,

we obtain

1. f is strictly increasing in each interval (𝛼𝑖 , 𝛼𝑖+1), for 𝑖 ∈ [𝑛𝑅 − 1] from −∞ to ∞;
2. f is strictly increasing in each interval (−𝑑 𝑗+1,−𝑑 𝑗 ), for 𝑗 ∈ [𝑛𝐿 − 1] from −∞ to ∞;
3. f is strictly increasing in the interval (−𝑑1, 𝛼1) from −∞ to ∞;
4. f is strictly increasing in the interval (𝛼𝑛𝑅 ,∞) from −∞ to 0;
5. f is strictly increasing in the interval (−∞, 𝛼𝑛𝐿 ) from 0 to ∞.

Hence, for each 𝑢 ∈ R and for each set

Δ ∈{(−𝑑𝑛𝐿 ,−𝑑𝑛𝐿−1), . . . , (−𝑑2, 𝑑1), (𝑑1, 𝛼1), (𝛼1, 𝛼2), . . . , (7.12)
(𝛼𝑛𝑅−1, 𝛼𝑛𝑅 ), (𝛼𝑛𝑅 ,∞) ∪ (−∞,−𝑑𝑛𝐿 )},

there is a unique 𝜒 such that (7.11) holds and 𝑒𝜒𝑢−1 ∈ Δ .
For 𝑗 ∈ [𝑛], let

𝑝 𝑗 ,𝐿 = max{𝑝 ∈ [0..𝑚] : 𝑒𝑉𝑝𝜏−1
𝑗 < 𝑢, 𝑎 𝑗 = 𝐿}; (7.13)

𝑝 𝑗 ,𝑅 = max{𝑝 ∈ [0..𝑚] : 𝑢 < −𝑒𝑉𝑝𝜏−1
𝑗 , 𝑎 𝑗 = 𝑅}. (7.14)

Again, we take the convention that the minimum (resp. maximum) of an empty set is ∞ (−∞) and
assume for all 𝑗 ∈ [𝑛],

𝑏−∞, 𝑗 = −; 𝑏𝑚+1, 𝑗 = +.

From (7.7), we obtain

lim
𝜖→0+

arg[𝑅(𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛

[ ∑
𝑗∈[𝑛]
𝑎 𝑗=𝑅

1𝑏𝑝𝑗,𝑅+1, 𝑗=+ +
∑
𝑗∈[𝑛]
𝑎 𝑗=𝐿

1𝑏𝑝𝑗,𝐿+1, 𝑗=+

]
, (7.15)

https://doi.org/10.1017/fms.2023.90 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.90


Forum of Mathematics, Sigma 47

where 𝑘 ∈ Z. Moreover,

lim
𝜖→0+

arg[𝑈𝜒 (𝑢 + i𝜖)]
1
𝑛 = lim

𝜖→0+

1
𝑛

[ ∑
𝑗∈[𝑛]
𝑎 𝑗=𝑅

arg(1 + 𝑒−𝜒 (𝑢 + i𝜖)𝜏𝑗 ) −
∑
𝑗∈[𝑛]
𝑎 𝑗=𝐿

arg(1 − 𝑒−𝜒 (𝑢 + i𝜖)𝜏𝑗 )
]

=
𝜋

𝑛

[ ∑
𝑗∈[𝑛]
𝑎 𝑗=𝑅

1𝑢<−𝑒𝜒 𝜏−1
𝑗
+

∑
𝑗∈[𝑛]
𝑎 𝑗=𝐿

1𝑢>𝑒𝜒 𝜏−1
𝑗

]
. (7.16)

The following cases might occur:

1. 𝑢 < 0. Then

lim
𝜖→0+

arg[𝑅(𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛

��{ 𝑗 ∈ [𝑛] : 𝑎 𝑗 = 𝑅, 𝑏𝑝 𝑗,𝑅+1, 𝑗 = +}
�� (7.17)

and

lim
𝜖→0+

arg[𝑈𝜒 (𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛

��{ 𝑗 ∈ [𝑛] : 𝑎 𝑗 = 𝑅,−𝜏𝑗 < 𝑒𝜒𝑢−1}
��. (7.18)

It is straightforward to check that there exists a unique Δ satisfying (7.12), such that (7.17) and
(7.18) are equal when 𝑒𝜒𝑢−1 ∈ Δ .

2. 𝑢 ≥ 0. Then

lim
𝜖→0+

arg[𝑅(𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛

��{ 𝑗 ∈ [𝑛] : 𝑎 𝑗 = 𝐿, 𝑏𝑝 𝑗,𝐿+1, 𝑗 = +}
�� (7.19)

and

lim
𝜖→0+

arg[𝑈𝜒 (𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛

��{ 𝑗 ∈ [𝑛] : 𝑎 𝑗 = 𝐿, 𝑒𝜒𝑢−1 < 𝜏𝑗 }
��. (7.20)

It is straightforward to check that there exists a unique Δ satisfying (7.12), such that (7.19) and
(7.20) are equal when 𝑒𝜒𝑢−1 ∈ Δ .

Then we deduce that 𝑢 ∈ R \ S , there exists a unique 𝜒 such that (7.11) holds and (7.15) and (7.16) are
equal. The condition that (7.15) and (7.16) are equal is equivalent to saying that the right-hand side of
(7.10) is real and positive. When the right-hand side of (7.10) is positive, we obtain a unique 𝜅 ∈ R.
Then the lemma follows. �

Assumption 7.4. Let 𝑖, 𝑗 ∈ [𝑛] and 𝑝1, 𝑝2 ∈ [𝑚]. For 𝑎𝑖 = 𝑎 𝑗 and 𝜏𝑖 > 𝜏𝑗 , it holds that

𝜏−1
𝑖 𝜏𝑗 < 𝑒𝑉𝑝2−𝑉𝑝1 .

Remark 7.5. Under Assumption 7.4, if we order all the points in {−𝜏𝑗 } 𝑗∈[𝑛]:𝑎 𝑗=𝑅 ∪ {𝜏𝑗 } 𝑗∈[𝑛],𝑎 𝑗=𝐿 as
follows:

−𝑑𝑛𝑅 < −𝑑𝑛𝑅−1 < . . . < −𝑑1 < 0 < 𝛼1 < 𝛼2 < . . . < 𝛼𝑛𝐿 ,

then we can order all the points in

{𝑒𝑉𝑝𝜏−1
𝑗 }𝑝∈[0..𝑚], 𝑗∈[𝑛],𝑎 𝑗=𝐿 ∪ {−𝑒𝑉𝑝𝜏−1

𝑗 }𝑝∈[0..𝑚], 𝑗∈[𝑛],𝑎 𝑗=𝑅
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as follows:

− 𝑑−1
1 𝑒𝑉𝑚 < −𝑑−1

1 𝑒𝑉𝑚−1 < . . . < −𝑑−1
1 𝑒𝑉0 <

− 𝑑−1
2 𝑒𝑉𝑚 < −𝑑−1

2 𝑒𝑉𝑚−1 < . . . < −𝑑−1
2 𝑒𝑉0 <

. . .

− 𝑑−1
𝑛𝑅𝑒

𝑉𝑚 < −𝑑−1
𝑛𝑅𝑒

𝑉𝑚−1 < . . . < −𝑑−1
𝑛𝑅𝑒

𝑉0 <

𝛼−1
𝑛𝐿 𝑒

𝑉0 < 𝛼−1
𝑛𝐿 𝑒

𝑉1 < . . . < 𝛼−1
𝑛𝐿 𝑒

𝑉𝑚

. . .

𝛼−1
1 𝑒𝑉0 < 𝛼−1

1 𝑒𝑉1 < . . . < 𝛼−1
1 𝑒𝑉𝑚 .

Lemma 7.6. Suppose Assumption 7.4 holds. For 𝑢 ∈ H ∪ R, let (𝜒𝑢 , 𝜅𝑢) ∈ R2 such that

G𝜒𝑢 (𝑢) = 𝑒−𝑛𝜅𝑢 .

Assume one of the following two conditions holds:

1. 𝑢 → 𝑒𝑉𝑝𝜏−1
𝑗 ∈ S for some 𝑝 ∈ [0..𝑚], 𝑗 ∈ [𝑛] and 𝑎 𝑗 = 𝐿;

2. 𝑢 → −𝑒𝑉𝑝𝜏−1
𝑗 ∈ S for some 𝑝 ∈ [0..𝑚], 𝑗 ∈ [𝑛] and 𝑎 𝑗 = 𝑅;

then 𝜒𝑢 → 𝑉𝑝 .

Proof. 1. We first consider case (1).
(a) Assume that 𝑢 → 𝑒𝑉𝑝𝜏−1

𝑗 ∈ S for some 𝑝 ∈ [𝑚 − 1], 𝑗 ∈ [𝑛] and 𝑎 𝑗 = 𝐿. Let 𝛿 > 0 be positive
and small. By (7.13), under Assumption 7.4, we obtain that for 𝑖 ∈ [𝑛], 𝑎𝑖 = 𝐿,
◦ if 𝑢 = 𝑒𝑉𝑝𝜏−1

𝑗 − 𝛿,

𝑝𝑖,𝐿 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∞ If 𝜏𝑖 < 𝜏𝑗

𝑝 − 1 If 𝜏𝑖 = 𝜏𝑗

𝑚 If 𝜏𝑖 > 𝜏𝑗

◦ if 𝑢 = 𝑒𝑉𝑝𝜏−1
𝑗 + 𝛿,

𝑝𝑖,𝐿 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∞ If 𝜏𝑖 < 𝜏𝑗

𝑝 If 𝜏𝑖 = 𝜏𝑗

𝑚 If 𝜏𝑖 > 𝜏𝑗 .

By (7.19), we have

lim
[𝑢→𝑒𝑉𝑝 𝜏−1

𝑗 −]
lim
𝜖→0+

arg[𝑅(𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛

��{𝑖 ∈ [𝑛] : 𝑎𝑖 = 𝐿; 𝜏𝑖 > 𝜏𝑗 }
�� + 1𝑏𝑝,𝑖=+ (7.21)

and

lim
[𝑢→𝑒𝑉𝑝 𝜏−1

𝑗 +]
lim
𝜖→0+

arg[𝑅(𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛

��{𝑖 ∈ [𝑛] : 𝑎𝑖 = 𝐿; 𝜏𝑖 > 𝜏𝑗 }
�� + 1𝑏𝑝+1,𝑖=+. (7.22)

Note also that

lim
[𝑢→𝑒𝑉𝑝 𝜏−1

𝑗 −]
𝑢𝑔(𝑢) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+∞ if 1𝑏𝑝+1, 𝑗=+ < 1𝑏𝑝, 𝑗=+
−∞ if 1𝑏𝑝+1, 𝑗=+ > 1𝑏𝑝, 𝑗=+
a finite real number if 1𝑏𝑝+1, 𝑗=+ = 1𝑏𝑝, 𝑗=+
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and

lim
[𝑢→𝑒𝑉𝑝 𝜏−1

𝑗 +]
𝑢𝑔(𝑢) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∞ if 1𝑏𝑝+1, 𝑗=+ < 1𝑏𝑝, 𝑗=+
+∞ if 1𝑏𝑝+1, 𝑗=+ > 1𝑏𝑝, 𝑗=+
a finite real number if 1𝑏𝑝+1, 𝑗=+ = 1𝑏𝑝, 𝑗=+.

Since 𝑒𝑉𝑝𝜏−1
𝑗 ∈ S , we obtain that 𝑏𝑝, 𝑗 ≠ 𝑏𝑝+1, 𝑗 . We obtain that when 𝑢 → 𝑒𝑉𝑝𝜏−1

𝑗 + or
𝑢 → 𝑒𝑉𝑝𝜏−1

𝑗 −, by (7.11), 𝑒𝜒𝑢−1 approaches some 𝜏𝑘 for 𝑎𝑘 = 𝐿, 𝑘 ∈ [𝑛]. Moreover,
(i) If 1𝑏𝑝, 𝑗 > 1𝑏𝑝+1, 𝑗 , as 𝑢 → 𝑒𝑉𝑝𝜏−1

𝑗 −, 𝑒𝜒𝑢−1 approaches 𝜏𝑘 from the left;
(ii) If 1𝑏𝑝, 𝑗 < 1𝑏𝑝+1, 𝑗 , as 𝑢 → 𝑒𝑉𝑝𝜏−1

𝑗 −, 𝑒𝜒𝑢−1 approaches 𝜏𝑘 from the right;
(iii) If 1𝑏𝑝, 𝑗 > 1𝑏𝑝+1, 𝑗 , as 𝑢 → 𝑒𝑉𝑝𝜏−1

𝑗 +, 𝑒𝜒𝑢−1 approaches 𝜏𝑘 from the right;
(iv) If 1𝑏𝑝, 𝑗 < 1𝑏𝑝+1, 𝑗 , as 𝑢 → 𝑒𝑉𝑝𝜏−1

𝑗 +, 𝑒𝜒𝑢−1 approaches 𝜏𝑘 from the left.
By (7.20),

(i) If 1𝑏𝑝, 𝑗 > 1𝑏𝑝+1, 𝑗 ,

lim
[𝑢→𝑒𝑉𝑝 𝜏−1

𝑗 −]
lim
𝜖→0+

arg[𝑈𝜒𝑢 (𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛
|{𝑖 ∈ [𝑛] : 𝑎𝑖 = 𝐿; 𝜏𝑖 ≥ 𝜏𝑘 }| (7.23)

lim
[𝑢→𝑒𝑉𝑝 𝜏−1

𝑗 +]
lim
𝜖→0+

arg[𝑈𝜒𝑢 (𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛
|{𝑖 ∈ [𝑛] : 𝑎𝑖 = 𝐿; 𝜏𝑖 > 𝜏𝑘 }|. (7.24)

(ii) The case when 𝑢 → 𝑒𝑉0𝜏−1
𝑗 and 𝑢 → 𝑒𝑉𝑚𝜏−1

𝑗 for some 𝑗 ∈ [𝑛], 𝑎 𝑗 = 𝐿 can be proved
similarly.

lim
[𝑢→𝑒𝑉𝑝 𝜏−1

𝑗 −]
lim
𝜖→0+

arg[𝑈𝜒𝑢 (𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛
|{𝑖 ∈ [𝑛] : 𝑎𝑖 = 𝐿; 𝜏𝑖 > 𝜏𝑘 }| (7.25)

lim
[𝑢→𝑒𝑉𝑝 𝜏−1

𝑗 +]
lim
𝜖→0+

arg[𝑈𝜒𝑢 (𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛
|{𝑖 ∈ [𝑛] : 𝑎𝑖 = 𝐿; 𝜏𝑖 ≥ 𝜏𝑘 }|. (7.26)

In either case, to make (7.23)–(7.26) equal to the corresponding arguments in (7.21), (7.22),
we must have 𝜏𝑘 = 𝜏𝑗 .

(b) The case 𝑢 → 𝑒𝑉0𝜏−1
𝑗 or 𝑢 → 𝑒𝑉0𝜏−1

𝑗 for some 𝑗 ∈ [𝑛] and 𝑎 𝑗 = 𝐿 can be proved similarly.
2. Now we consider case (2).

(a) Assume that 𝑢 → −𝑒𝑉𝑝𝜏−1
𝑗 for some 𝑝 ∈ [𝑚 − 1], 𝑗 ∈ [𝑛] and 𝑎 𝑗 = 𝑅. Let 𝛿 > 0 be positive

and small. By (7.14), under Assumption 7.4, we obtain that for 𝑖 ∈ [𝑛], 𝑎𝑖 = 𝑅,
◦ if 𝑢 = −𝑒𝑉𝑝𝜏−1

𝑗 − 𝛿,

𝑝𝑖,𝑅 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∞ If 𝜏𝑖 < 𝜏𝑗

𝑝 If 𝜏𝑖 = 𝜏𝑗

𝑚 If 𝜏𝑖 > 𝜏𝑗

◦ if 𝑢 = −𝑒𝑉𝑝𝜏−1
𝑗 + 𝛿,

𝑝𝑖,𝑅 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∞ If 𝜏𝑖 < 𝜏𝑗

𝑝 − 1 If 𝜏𝑖 = 𝜏𝑗

𝑚 If 𝜏𝑖 > 𝜏𝑗 .
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By (7.17), we have

lim
[𝑢→−𝑒𝑉𝑝 𝜏−1

𝑗 −]
lim
𝜖→0+

arg[𝑅(𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛

��{𝑖 ∈ [𝑛] : 𝑎𝑖 = 𝑅; 𝜏𝑖 > 𝜏𝑗 }
�� + 1𝑏𝑝+1,𝑖=+ (7.27)

and

lim
[𝑢→−𝑒𝑉𝑝 𝜏−1

𝑗 +]
lim
𝜖→0+

arg[𝑅(𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛

��{𝑖 ∈ [𝑛] : 𝑎𝑖 = 𝑅; 𝜏𝑖 > 𝜏𝑗 }
�� + 1𝑏𝑝,𝑖=+. (7.28)

Note also that

lim
[𝑢→−𝑒𝑉𝑝 𝜏−1

𝑗 −]
𝑢𝑔(𝑢) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+∞ if 1𝑏𝑝+1, 𝑗=+ < 1𝑏𝑝, 𝑗=+
−∞ if 1𝑏𝑝+1, 𝑗=+ > 1𝑏𝑝, 𝑗=+
a finite real number if 1𝑏𝑝+1, 𝑗=+ = 1𝑏𝑝, 𝑗=+

and

lim
[𝑢→−𝑒𝑉𝑝 𝜏−1

𝑗 +]
𝑢𝑔(𝑢) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∞ if 1𝑏𝑝+1, 𝑗=+ < 1𝑏𝑝, 𝑗=+
+∞ if 1𝑏𝑝+1, 𝑗=+ > 1𝑏𝑝, 𝑗=+
a finite real number if 1𝑏𝑝+1, 𝑗=+ = 1𝑏𝑝, 𝑗=+.

Since −𝑒𝑉𝑝𝜏−1
𝑗 ∈ S , we obtain that 𝑏𝑝, 𝑗 ≠ 𝑏𝑝+1, 𝑗 . We obtain that when 𝑢 → −𝑒𝑉𝑝𝜏−1

𝑗 + or
𝑢 → −𝑒𝑉𝑝𝜏−1

𝑗 −, by (7.11), 𝑒𝜒𝑢−1 approaches some −𝜏𝑘 for 𝑎𝑘 = 𝑅, 𝑘 ∈ [𝑛]. Moreover,
(i) If 1𝑏𝑝, 𝑗 > 1𝑏𝑝+1, 𝑗 , as 𝑢 → −𝑒𝑉𝑝𝜏−1

𝑗 −, 𝑒𝜒𝑢−1 + 𝜏𝑘 approaches 0 from the left;
(ii) If 1𝑏𝑝, 𝑗 < 1𝑏𝑝+1, 𝑗 , as 𝑢 → −𝑒𝑉𝑝𝜏−1

𝑗 −, 𝑒𝜒𝑢−1 + 𝜏𝑘 approaches 0 from the right;
(iii) If 1𝑏𝑝, 𝑗 > 1𝑏𝑝+1, 𝑗 , as 𝑢 → −𝑒𝑉𝑝𝜏−1

𝑗 +, 𝑒𝜒𝑢−1 + 𝜏𝑘 approaches 0 from the right;
(iv) If 1𝑏𝑝, 𝑗 < 1𝑏𝑝+1, 𝑗 , as 𝑢 → −𝑒𝑉𝑝𝜏−1

𝑗 +, 𝑒𝜒𝑢−1 + 𝜏𝑘 approaches 0 from the left.
By (7.18),
(i) If 1𝑏𝑝, 𝑗 > 1𝑏𝑝+1, 𝑗 ,

lim
[𝑢→−𝑒𝑉𝑝 𝜏−1

𝑗 −]
lim
𝜖→0+

arg[𝑈𝜒𝑢 (𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛
|{𝑖 ∈ [𝑛] : 𝑎𝑖 = 𝑅; 𝜏𝑖 > 𝜏𝑘 }| (7.29)

lim
[𝑢→−𝑒𝑉𝑝 𝜏−1

𝑗 +]
lim
𝜖→0+

arg[𝑈𝜒𝑢 (𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛
|{𝑖 ∈ [𝑛] : 𝑎𝑖 = 𝑅; 𝜏𝑖 ≥ 𝜏𝑘 }|. (7.30)

(ii) If 1𝑏𝑝, 𝑗 < 1𝑏𝑝+1, 𝑗 ,

lim
[𝑢→−𝑒𝑉𝑝 𝜏−1

𝑗 −]
lim
𝜖→0+

arg[𝑈𝜒𝑢 (𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛
|{𝑖 ∈ [𝑛] : 𝑎𝑖 = 𝑅; 𝜏𝑖 ≥ 𝜏𝑘 }| (7.31)

lim
[𝑢→−𝑒𝑉𝑝 𝜏−1

𝑗 +]
lim
𝜖→0+

arg[𝑈𝜒𝑢 (𝑢 + i𝜖)]
1
𝑛 =

𝜋

𝑛
|{𝑖 ∈ [𝑛] : 𝑎𝑖 = 𝑅; 𝜏𝑖 > 𝜏𝑘 }|. (7.32)

In either case, to make (7.29)–(7.32) equal to the corresponding arguments in (7.27), (7.28),
we must have 𝜏𝑘 = 𝜏𝑗 .

(b) The case when 𝑢 → −𝑒𝑉0𝜏−1
𝑗 or 𝑢 → −𝑒𝑉𝑚𝜏−1

𝑗 for some 𝑗 ∈ [𝑛], 𝑎 𝑗 = 𝑅 can be proved
similarly.

�

Theorem 7.7. Let {𝑅𝑌𝐺 (𝑙 (𝜖 ) , 𝑟 (𝜖 ) , 𝑎 (𝜖 ) , 𝑏 (𝜖 ) )}𝜖 >0 be a sequence of rail-yard graphs satisfying As-
sumptions 5.1, 6.2(2)(3) and 7.4. Let w+ : L → H be the diffeomorphism from the liquid region
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to the upper half plane which maps each point (𝜒, 𝜅) in the liquid region to the unique root of
(6.13) in the upper half plane H. Then as 𝜖 → 0, the height function of pure dimer coverings on
{𝑅𝑌𝐺 (𝑙 (𝜖 ) , 𝑟 (𝜖 ) , 𝑎 (𝜖 ) , 𝑏 (𝜖 ) )}𝜖 >0 in the liquid region converges to the w+-pullback of GFF in the sense
that for any (𝜒, 𝜅) ∈ L, 𝜒 ∉ {𝑉𝑝}

𝑚
𝑝=0 and positive real number 𝛼,

∫ ∞

−∞

(
ℎ𝑀

( 𝜒
𝜖
,
𝜅

𝜖

)
− E

[
ℎ𝑀

( 𝜒
𝜖
,
𝜅

𝜖

)] )
𝑒−𝛼𝜅𝑑𝜅 −→

∫
(𝜒,𝜅) ∈L

𝑒−𝛼𝜅Ξ(w+(𝜒, 𝜅))𝑑𝜅

in distribution.

Proof. Let 𝜒 ∈ [𝑟 (0) , 𝑙 (0) ] and k be a positive integer. By (2.12) and Assumption 5.1, we have

∫ ∞

−∞

(
ℎ𝑀

( 𝜒
𝜖
,
𝜅

𝜖

)
− E

[
ℎ𝑀

( 𝜒
𝜖
,
𝜅

𝜖

)] )
𝑒−𝑛𝛽𝑘𝜅𝑑𝜅 =

2𝜖
[
𝛾𝑘 (𝜆

(𝑚) , 𝑡; 𝑡) − E𝛾𝑘 (𝜆 (𝑚) , 𝑡; 𝑡)
]

(𝑘 log 𝑡)2 ,

where 𝜒 = 2𝑚 − 1
2 . By Theorem 5.5, we obtain that for

𝑙 (0) < 𝜒1 < 𝜒2 < . . . < 𝜒𝑠 < 𝑟 (0)

and positive integers 𝑘1, . . . , 𝑘𝑠 ,{∫ ∞

−∞

(
ℎ𝑀

(
𝜒𝑖 ,

𝑦

𝜖

)
− E

[
ℎ𝑀

(
𝜒𝑖 ,

𝑦

𝜖

)] )
𝑡−𝑘𝑖 𝑦𝑑𝑦

}
𝑖∈[𝑠]

converges to the Gaussian vector with covariance

𝐼 :=
1

𝑘𝑖𝑘 𝑗𝑛2𝛽2 (𝜋i)2

∮
C𝑤

∮
C𝑧

[
G𝜒𝑖 (𝑧)

] 𝑘𝑖𝛽 [
G𝜒𝑗 (𝑤)

] 𝑘 𝑗𝛽
(𝑧 − 𝑤)2 𝑑𝑧𝑑𝑤.

Under Assumption 6.2, we deform the integral contour C𝑤 to C̃𝑤 such that

1. C̃𝑤 = 𝐶𝑤,1 ∪ 𝐶𝑤,2;
2. 𝐶𝑤,1 lies in the upper half plane except two endpoints along the real axis;
3. 𝐶𝑤,2 is the reflection of 𝐶𝑤,1 along the real axis;
4. [w+]

−1(𝐶𝑤,1) is the vertical line in L passing through (𝜒 𝑗 , 0).

Similarly, we deform the integral contour C𝑧 to C̃𝑧 such that

1. C̃𝑧 = 𝐶𝑧,1 ∪ 𝐶𝑧,2;
2. 𝐶𝑧,1 lies in the upper half plane except two endpoints along the real axis;
3. 𝐶𝑧,2 is the reflection of 𝐶𝑧,1 along the real axis;
4. [w+]

−1(𝐶𝑧,1) is the vertical line in L passing through (𝜒𝑖 , 0).

Then making a change of variables from (𝑧, 𝑤) ∈ C2 to ((𝜒1, 𝜅1), (𝜒2, 𝜅2)) ∈ L2 by [w+]
−1 × [w+]

−1

and the corresponding complex conjugates, we obtain
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𝐼 =
1

𝑘𝑖𝑘 𝑗𝑛2𝛽2 (𝜋i)2

∮
C̃𝑤

∮
C̃𝑧

[
G𝜒𝑖 (𝑧)

] 𝑘𝑖𝛽 [
G𝜒𝑗 (𝑤)

] 𝑘 𝑗𝛽
(𝑧 − 𝑤)2 𝑑𝑧𝑑𝑤 =

1
𝑘𝑖𝑘 𝑗𝑛2𝛽2 (𝜋i)2

×

[∫
(𝜒𝑗 ,𝜅 𝑗 ) ∈L

∫
(𝜒𝑖 ,𝜅𝑖) ∈L

𝑒−𝑛𝜅𝑖𝑘𝑖𝛽𝑒−𝑛𝜅 𝑗 𝑘 𝑗𝛽

(w+(𝜒𝑖 , 𝜅𝑖) − w+(𝜒 𝑗 , 𝜅 𝑗 ))2
𝜕w+(𝜒𝑖 , 𝜅𝑖)

𝜕𝜅𝑖

𝜕w+(𝜒 𝑗 , 𝜅 𝑗 )

𝜕𝜅 𝑗
𝑑𝜅𝑖𝑑𝜅 𝑗

−

∫
(𝜒𝑗 ,𝜅 𝑗 ) ∈L

∫
(𝜒𝑖 ,𝜅𝑖 ) ∈L

𝑒−𝑛𝜅𝑖𝑘𝑖𝛽𝑒−𝑛𝜅 𝑗 𝑘 𝑗𝛽

(w+(𝜒𝑖 , 𝜅𝑖) − w+(𝜒 𝑗 , 𝜅 𝑗 ))2

𝜕w+(𝜒𝑖 , 𝜅𝑖)

𝜕𝜅𝑖

𝜕w+(𝜒 𝑗 , 𝜅 𝑗 )

𝜕𝜅 𝑗
𝑑𝜅𝑖𝑑𝜅 𝑗

−

∫
(𝜒𝑗 ,𝜅 𝑗 ) ∈L

∫
(𝜒𝑖 ,𝜅𝑖 ) ∈L

𝑒−𝑛𝜅𝑖𝑘𝑖𝛽𝑒−𝑛𝜅 𝑗 𝑘 𝑗𝛽

(w+(𝜒𝑖 , 𝜅𝑖) − w+(𝜒 𝑗 , 𝜅 𝑗 ))2

𝜕w+(𝜒𝑖 , 𝜅𝑖)

𝜕𝜅𝑖

𝜕w+(𝜒 𝑗 , 𝜅 𝑗 )

𝜕𝜅 𝑗
𝑑𝜅𝑖𝑑𝜅 𝑗

+

∫
(𝜒𝑗 ,𝜅 𝑗 ) ∈L

∫
(𝜒𝑖 ,𝜅𝑖) ∈L

𝑒−𝑛𝜅𝑖𝑘𝑖𝛽𝑒−𝑛𝜅 𝑗 𝑘 𝑗𝛽

(w+(𝜒𝑖 , 𝜅𝑖) − w+(𝜒 𝑗 , 𝜅 𝑗 ))2

𝜕w+(𝜒𝑖 , 𝜅𝑖)

𝜕𝜅𝑖

𝜕w+(𝜒 𝑗 , 𝜅 𝑗 )

𝜕𝜅 𝑗
𝑑𝜅𝑖𝑑𝜅 𝑗

]
.

Integrating by parts, we obtain that

𝐼 =
2

(𝜋i)2

∫
(𝜒𝑗 ,𝜅 𝑗 ) ∈L

∫
(𝜒𝑖 ,𝜅𝑖) ∈L

𝑒−𝑛𝜅𝑖𝑘𝑖𝛽𝑒−𝑛𝜅 𝑗 𝑘 𝑗𝛽 log

�����w+(𝜒𝑖 , 𝜅𝑖) − w+(𝜒 𝑗 , 𝜅 𝑗 )

w+(𝜒𝑖 , 𝜅𝑖) − w+(𝜒 𝑗 , 𝜅 𝑗 )

�����𝑑𝜅𝑖𝑑𝜅 𝑗
= 4Cov

(∫
(𝜒𝑖 ,𝜅𝑖 ) ∈L

𝑒−𝑛𝜅𝑖𝑘𝑖𝛽Ξ(w+(𝜒𝑖 , 𝜅𝑖))𝑑𝜅𝑖 ,

∫
(𝜒𝑗 ,𝜅 𝑗 ) ∈L

Ξ(w+(𝜒 𝑗 , 𝜅 𝑗 ))𝑒
−𝑛𝜅 𝑗 𝑘 𝑗𝛽𝑑𝜅 𝑗

)
.

Then the proposition follows. �

8. Examples

In this section, we discuss specific examples of the rail yard graph, known as pyramid partitions and
pure steep tilings. The limit shape and height fluctuations of perfect matchings on these graphs can be
obtained by the technique developed in the paper.

8.1. Pyramid partitions

A fundamental pyramid partition is a heap of square bricks such that
◦ each square brick is of size 2 × 2 and has a central line dividing it into two equal-size rectangular

parts; hence, the direction of the central line determines the direction of the square brick,
◦ each square brick lies upon two side-by-side square bricks and is rotated 90 degrees from the bricks

immediately below it, and
◦ there is a unique brick on the top.

A pyramid partition is obtained from the fundamental pyramid partition by removing finitely many
square bricks, such that if a square brick is removed, then all the square bricks above it are also removed.
See the first figure in the Introduction.

Let s be a fixed positive integer which is odd. Let Λ𝑠 be the set of pyramid partitions that can be
obtained from the fundamental partition where the center of the square brick on the top is (0, 0) and
where we can only take off bricks that lie inside the strip −𝑠 − 1 ≤ 𝑥 − 𝑦 ≤ 𝑠 + 1.

Looking from the top, each pyramid partition corresponds to a domino tiling of the square grid. See
the second figure in the Introduction. From a pyramid partition, we can obtain a pure dimer covering on
a rail yard graph by the following steps:
1. rotate the pyramid partition clockwise by 45 degrees,
2. for each blue vertex 𝑣𝑏 , assume it has four incident edges 𝑒1, 𝑒2, 𝑒3, 𝑒4. Assume that 𝑒1 and 𝑒2 (resp.

𝑒3 and 𝑒4) are to the left (resp. right) of 𝑣𝑏 . Split each blue vertex 𝑣𝑏 of the dual graph into three
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vertices, 𝑣𝑏1 , 𝑣𝑏2 , 𝑣𝑏3 such that 𝑣𝑏1 and 𝑣𝑏3 are blue vertices, while 𝑣𝑏2 is a red vertex. The red vertex
𝑣𝑏2 has exactly two incident edges joining it to 𝑣𝑏1 and 𝑣𝑏3 , respectively. 𝑣𝑏1 has three incident edges
𝑒1𝑒2 and (𝑣𝑏1 , 𝑣𝑏2), while 𝑣𝑏3 has three incident edges 𝑒3𝑒4 and (𝑣𝑏3 , 𝑣𝑏2 ).

3. If one of 𝑒1, 𝑒2 (resp. 𝑒3, 𝑒4) is in the dimer covering, while neither 𝑒3 nor 𝑒4 (resp. neither 𝑒1 nor
𝑒2) are in the dimer covering, make (𝑣𝑏2 , 𝑣𝑏3) (resp. (𝑣𝑏1 , 𝑣𝑏2 )) present in the dimer covering and
(𝑣𝑏1 , 𝑣𝑏2) (resp. (𝑣𝑏2 , 𝑣𝑏3)) absent in the dimer covering.

See the third and fourth figures in the Introduction for the pure dimer covering on a rail yard graph
corresponding to the pyramid partitions given as the examples.

Proposition 8.1. There is a one-to-one correspondence between pyramid partitions in Λ𝑠 and pure
dimer coverings on the rail yard graph such that for 𝑖 ∈ [−𝑠..𝑠 − 1],

𝑎𝑖 =

{
𝐿 𝑖 is odd
𝑅 𝑖 is even

𝑎𝑛𝑑 𝑏𝑖 =

{
+ 𝑖 < 0
− 𝑖 ≥ 0.

Equivalently, there is a bijection between pyramid partitions in Λ𝑠 and sequences of partitions
(𝜆 (−𝑠) , 𝜆 (−𝑠+1) , . . . , 𝜆 (0) , 𝜆 (1) , . . . , 𝜆 (𝑠) ) such that

∅ = 𝜆 (−𝑠) ≺ 𝜆 (−𝑠+1) ≺′ 𝜆 (−𝑠+2) . . . ≺ 𝜆 (0) 
′ 𝜆 (1) 
 𝜆 (2) . . . 
′ 𝜆 (𝑠) = ∅.

Proof. See Lemma 5.9 of [38] and Proposition 8 of [9]. �

The formula to compute partition function of pyramid partitions was conjectured in [20; 36] and
proved in [39; 38].

Consider the pure dimer coverings on rail yard graphs corresponding to pyramid partitions. Then we
have 𝑚 = 2, 𝑉1 = 0 and 𝑉0 = −𝑉2. Assume that the model is periodic with 𝑛 = 2.

Recall that G𝜒 is defined by (5.9). Then the frozen boundary has the following parametric equation
(parametrized by w): {

𝑈𝜒 (𝑤)

𝑅 (𝑤)
= 𝑒−2𝜅

𝑓 (𝑒𝜒𝑤−1) = 𝑤𝑔(𝑤)
,

where

𝑓 (𝑠) :=
1

1 − 𝜏−1
1 𝑠

−
1

1 + 𝜏−1
2 𝑠

,

𝑔(𝑤) : = −
1

𝑤 − 𝑒𝑉1𝜏−1
1

+
1

𝑤 − 𝑒𝑉2𝜏−1
1

+
1

𝑤 − 𝑒𝑉0𝜏−1
1

+
1

𝑤 + 𝑒𝑉1𝜏−1
2

−
1

𝑤 + 𝑒𝑉2𝜏−1
2

−
1

𝑤 + 𝑒𝑉0𝜏−1
2

,

and

𝑈𝜒 (𝑤) =
(1 + 𝑒−𝜒𝑤𝜏2)

(1 − 𝑒−𝜒𝑤𝜏1)
,

𝑅(𝑤) =

(
1 + 𝑒−𝑉0𝑤𝜏2

) (
1 + 𝑒−𝑉2𝑤𝜏2

) (
1 − 𝑒−𝑉1𝜏1𝑤

)(
1 − 𝑒−𝑉0𝑤𝜏1

) (
1 − 𝑒−𝑉2𝑤𝜏1

) (
1 + 𝑒−𝑉1𝜏2𝑤

) .
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By (7.13), (7.14), we obtain

𝑝1,𝐿 = max{𝑝 ∈ {0, 1, 2} : 𝑒𝑉𝑝𝜏−1
1 < 𝑤};

𝑝2,𝑅 = max{𝑝 ∈ {0, 1, 2} : 𝑤 < −𝑒𝑉𝑝𝜏−1
2 }.

By (7.17)–(7.20), we have

◦ 𝑤 < 0. Then

lim
𝜖→0+

arg[𝑅(𝑤 + i𝜖)]
1
2 =

𝜋

2
1𝑏2 (𝑝2,𝑅 , 𝑝2,𝑅+1)=+

and

lim
𝜖→0+

arg[𝑈𝜒 (𝑤 + i𝜖)]
1
2 =

𝜋

2
1−𝜏2<𝑒𝜒𝑤−1 .

◦ 𝑤 ≥ 0. Then

lim
𝜖→0+

arg[𝑅(𝑤 + i𝜖)]
1
2 =

𝜋

2
1𝑏1 (𝑝1,𝐿 , 𝑝1,𝐿+1)=+

and

lim
𝜖→0+

arg[𝑈𝜒 (𝑤 + i𝜖)]
1
2 = 1𝑒𝜒𝑤−1<𝜏1 .

In order to make

lim
𝜖→0+

arg[𝑅(𝑤 + i𝜖)]
1
2 = lim

𝜖→0+
arg[𝑈𝜒 (𝑤 + i𝜖)]

1
2 ,

we have
1. If 𝑤 > 𝑒𝑉2𝜏−1

1 , 𝑒𝜒𝑤−1 ∈ (0, 𝜏1);
2. If 𝑤 ∈ (𝑒𝑉1𝜏−1

1 , 𝑒𝑉2𝜏−1
1 ), 𝑒𝜒𝑤−1 ∈ (𝜏1,∞);

3. If 𝑤 ∈ (𝑒𝑉0𝜏−1
1 , 𝑒𝑉1𝜏−1

1 ), 𝑒𝜒𝑤−1 ∈ (0, 𝜏1);
4. If 𝑤 ∈ (0, 𝑒𝑉0𝜏−1

1 ), 𝑒𝜒𝑤−1 ∈ (𝜏1,∞);
5. If 𝑤 < −𝑒𝑉2𝜏−1

2 , 𝑒𝜒𝑤−1 ∈ (−𝜏2, 0);
6. If 𝑤 ∈ (−𝑒𝑉2𝜏−1

2 ,−𝑒𝑉1𝜏−1
2 ), 𝑒𝜒𝑤−1 ∈ (−∞,−𝜏2);

7. If 𝑤 ∈ (−𝑒𝑉1𝜏−1
2 ,−𝑒𝑉0𝜏−1

2 ), 𝑒𝜒𝑤−1 ∈ (−𝜏2, 0);
8. If 𝑤 ∈ (−𝑒𝑉0𝜏−1

2 , 0), 𝑒𝜒𝑤−1 ∈ (−∞,−𝜏2).

Hence, for each 𝑤 ∈ R \ {±𝑒𝑉𝑝𝜏−1
𝑗 , 0}𝑝∈{0,1,2}, 𝑗∈{1,2}, we can find a unique 𝜒 satisfying (1)–(8) and

𝑓 (𝑒𝜒𝑤−1) = 𝑤𝑔(𝑤). Then knowing w and 𝜒, we can find a unique 𝜅 by 𝑈𝜒 (𝑤)

𝑅 (𝑤) = 𝑒−𝑛𝜅 . See Figure 5
from the Introduction for the frozen boundary of pyramid partitions.

8.2. Steep tilings

A domino is a 2×1 (horizontal domino) or 1×2 (vertical domino) rectangle whose corners have integer
coordinates. Let s be a fixed positive integer. An oblique strip of width 2𝑠 is the region of the Cartesian
plane between the lines 𝑦 = 𝑥 and 𝑦 = 𝑥 − 2𝑠. A tiling of an oblique strip is a set of dominoes whose
interiors are disjoint, and whose union is the tiled region R satisfying

{(𝑥, 𝑦) ∈ R2 : 𝑥 − 𝑦 ∈ [1, 2𝑠 − 1]} ⊆ 𝑅 ⊆ {(𝑥, 𝑦) ∈ R2 : 𝑥 − 𝑦 ∈ [−1, 2𝑠 + 1]}.

A horizontal (resp. vertical) domino is called north-going (resp. east-going) if the sum of the
coordinates of its top left corner is odd, and south-going (resp. west-going) otherwise. A tiling of an
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Figure 10. Frozen boundary of the Aztec diamond with q-volume weights.

oblique strip is called steep if moving towards infinity in the northeast (resp. southwest) direction.
Eventually there are only north- or east-going (resp. south- or west-going) dominoes.

For each given sequence (𝑏1, . . . , 𝑏2𝑠) ∈ {±1}2𝑠 , and each left and right boundary condition 𝜆 (0)

and 𝜆 (2𝑠+1) , there is a one-to-one correspondence between steep tilings in Λ𝑠 and pure dimer coverings
on the rail yard graph such that for 𝑖 ∈ [1..2𝑠],

1. 𝑎𝑖 = 𝐿 if i is odd, and
2. 𝑎𝑖 = 𝑅 if i is even.

The formula to compute the partition function of steep tilings was proved in [9].

Example 8.2. (Aztec diamond with q-volume weights) The Aztec diamond is a special case of the steep
tiling (hence a special case of the rail yard graph) in which the a sequence satisfies Conditions (1) and
(2), while the b sequence satisfies

◦ 𝑏𝑖 = + if i is odd, and
◦ 𝑏𝑖 = − if i is even.

In this case, we have

𝑚 = 1; 𝑛 = 2; 𝜏1 = 𝜏2 = 1; 𝑉0 = 0, 𝑉1 = 1

and

G1,>𝜒 (𝑤) = 1; G1,<𝜒 (𝑤) =
1 − 𝑤

1 − 𝑒−𝜒𝑤
;

G0,>𝜒 (𝑤) =
1 + 𝑒𝜒𝑤−1

1 + 𝑤−1𝑒
; G0,<𝜒 (𝑤) = 1.

Then

G𝜒 =
(1 − 𝑤) (𝑤 + 𝑒𝜒)

(1 − 𝑒−𝜒𝑤) (𝑤 + 𝑒)
.
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Then the frozen boundary is given by the solution of the following system of equations:{
(1−𝑤) (𝑤+𝑒𝜒)

(1−𝑒−𝜒𝑤) (𝑤+𝑒) = 𝑒−2𝜅

1
𝑤−1 + 1

𝑤+𝑒𝜒 − 1
𝑤−𝑒𝜒 − 1

𝑤+𝑒 = 0.
(8.1)

See Figure 10 for the frozen boundary of the Aztec diamond with q-volume weights.

A.

Here, we recall some facts about Macdonald polynomials and include some known technical results that
were used in this paper.

Let 𝑋 = (𝑥1, . . . , 𝑥𝑛, . . .) and 𝑌 = (𝑦1, . . . , 𝑦𝑛, . . .) be two countable sets of variables. Let Λ𝑋 be the
algebra of symmetric functions of X over C. The power symmetric functions {𝑝𝜆 (𝑋)}𝜆∈Y form a linear
basis for Λ𝑋 , where

𝑝𝜆 (𝑋) =
∏
𝑖∈N

𝑝𝜆𝑖 (𝑋) and 𝑝𝑖 (𝑋) =
∑
𝑗∈N

𝑥𝑖𝑗 , for 𝑖 ∈ N.

For each fixed pair of parameters 𝑞, 𝑡 ∈ (0, 1) and 𝜆, 𝜇 ∈ Y, define the scalar product 〈·, ·〉 :
Λ𝑋 × Λ𝑋 → R as a bilinear map such that

〈𝑝𝜆, 𝑝𝜇〉 = 𝛿𝜆𝜇

[
𝑙 (𝜆)∏
𝑖=1

1 − 𝑞𝜆𝑖

1 − 𝑡𝜆𝑖

] ⎡⎢⎢⎢⎢⎣
∞∏
𝑗=1

𝑗𝑚 𝑗 (𝜆) (𝑚 𝑗 (𝜆))!
⎤⎥⎥⎥⎥⎦ , (A.1)

where 𝛿𝜆𝜇 = 1 if and only if 𝜆 = 𝜇, and 𝑚 𝑗 (𝜆) is the number of parts in 𝜆 equal to j.
Macdonald symmetric functions 𝑃𝜆 (𝑋; 𝑞, 𝑡) and 𝑄𝜆 (𝑋; 𝑞, 𝑡) – for the definition, see (4.7) and (4.12)

in Chapter VI of [31] – form two bases (𝑃𝜆) and (𝑄𝜆), which are dual to each other with respect to the
above scalar product; that is,

〈𝑃𝜆 (𝑋; 𝑞, 𝑡), 𝑄𝜇 (𝑋; 𝑞, 𝑡)〉 = 𝛿𝜆𝜇 .

Skew Macdonald symmetric functions are defined by the branching rules

𝑃𝜆 (𝑋,𝑌 ; 𝑞, 𝑡) =
∑
𝜇∈Y

𝑃𝜆/𝜇 (𝑋; 𝑞, 𝑡)𝑃𝜇 (𝑌 ; 𝑞, 𝑡),

𝑄𝜆 (𝑋,𝑌 ; 𝑞, 𝑡) =
∑
𝜇∈Y

𝑄𝜆/𝜇 (𝑋; 𝑞, 𝑡)𝑄𝜇 (𝑌 ; 𝑞, 𝑡).

When 𝑞 = 𝑡,

𝑃𝜆 (𝑋; 𝑡, 𝑡) = 𝑄𝜆 (𝑋; 𝑡, 𝑡) = 𝑠𝜆 (𝑋),

𝑃𝜆/𝜇 (𝑋; 𝑡, 𝑡) = 𝑄𝜆/𝜇 (𝑋; 𝑡, 𝑡) = 𝑠𝜆/𝜇 (𝑋).

It is known that (see Remarks 1 on Page 346 of [31]) for a single variable x,

𝑃𝜆/𝜇 (𝑥) = 𝛿𝜇≺𝜆𝜓𝜆/𝜇 (𝑞, 𝑡)𝑥
|𝜆 |− |𝜇 | , 𝑄𝜆/𝜇 (𝑥) = 𝛿𝜇≺𝜆𝜙𝜆/𝜇 (𝑞, 𝑡)𝑥

|𝜆 |− |𝜇 | ,

where 𝜓𝜆/𝜇 (𝑞, 𝑡) and 𝜙𝜆/𝜇 (𝑞, 𝑡) are independent of x, and furthermore,

𝜓𝜆/𝜇 (𝑞, 𝑡)
��
𝑞=𝑡 = 𝜙𝜆/𝜇 (𝑞, 𝑡)

��
𝑞=𝑡 = 1.
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Definition A.1. Let 𝑘 ∈ Z+ and 𝑞, 𝑡 ∈ R+ be parameters. Let 𝐷−𝑘,𝑋 be an operator acting on symmetric
functions Λ𝑋 . For any analytic symmetric function 𝐹 (𝑋) satisfying

𝐹 (𝑋) =
∑
𝜆∈Y

𝑐𝜆𝑃𝜆 (𝑋; 𝑞, 𝑡),

where 𝑐𝜆’s are complex coefficients, define 𝐷−𝑘,𝑋 ;𝑞,𝑡𝐹 ∈ Λ𝑋 to be

𝐷−𝑘,𝑋 ;𝑞,𝑡𝐹 (𝑋) =
∑
𝜆∈Y

𝑐𝜆

{
(1 − 𝑡−𝑘 )

[
𝑙𝑒𝑛(𝜆)∑
𝑖=1

(𝑞𝜆𝑖 𝑡−𝑖+1)𝑘

]
+ 𝑡−𝑘 ·𝑙𝑒𝑛(𝜆)

}
𝑃𝜆 (𝑋; 𝑞, 𝑡). (A.2)

Let 𝑊 = (𝑤1, . . . , 𝑤𝑘 ) be an ordered set of variables. Define

𝐷 (𝑊 ; 𝑞, 𝑡) =
(−1)𝑘−1

(2𝜋i)𝑘

∑𝑘
𝑖=1

𝑤𝑘 𝑡
𝑘−𝑖

𝑤𝑖𝑞𝑘−𝑖(
1 − 𝑡𝑤2

𝑞𝑤1

)
. . .

(
1 − 𝑡𝑤𝑘

𝑞𝑤𝑘−1

) ∏
𝑖< 𝑗

(1 − 𝑤𝑖
𝑤𝑗
) (1 −

𝑞𝑤𝑖
𝑡𝑤𝑗

)(
1 − 𝑤𝑖

𝑡𝑤𝑗

) (
1 −

𝑞𝑤𝑖
𝑤𝑗

) 𝑘∏
𝑖=1

𝑑𝑤𝑖

𝑤𝑖
. (A.3)

Recall that 𝐻 (𝑊, 𝑋; 𝑞, 𝑡) was defined as in (4.2).
The following proposition is a slightly more general form of Proposition 4.10 of [16].

Proposition A.2. Assume one of the following two conditions holds:

1. 𝑞 ∈ (0, 1) and 𝑡 ∈ (0, 1), or
2. 𝑞 ∈ (1,∞) and 𝑡 ∈ (1,∞).

Let 𝑓 : C → C be a function analytic in a neighborhood of 0, and 𝑓 (0) ≠ 0. Let 𝑔 : C → C be a
function analytic in a neighborhood of 0 and

𝑔(𝑧) =
𝑓 (𝑧)

𝑓 (𝑞−1𝑧)

for z in a small neighborhood of 0. Then

𝐷−𝑘,𝑋 ;𝑞,𝑡

( ∏
𝑥𝑖 ∈𝑋

𝑓 (𝑥𝑖)

)
=

( ∏
𝑥𝑖 ∈𝑋

𝑓 (𝑥𝑖)

) ∮
· · ·

∮
𝐷 (𝑊 ; 𝑞, 𝑡)𝐻 (𝑊, 𝑋; 𝑞, 𝑡)

(
𝑘∏
𝑖=1

𝑔(𝑤𝑖)

)
, (A.4)

where the contours of the integral satisfy the following conditions:

◦ all the contours are in the neighborhood of 0 such that both f and g are analytic;
◦ each contour encloses 0 and {𝑞𝑥𝑖}𝑥𝑖 ∈𝑋 ;
◦ if case (1) holds, |𝑤𝑖 | ≤ |𝑡𝑤𝑖+1 | for all 𝑖 ∈ [𝑘 − 1];
◦ if case (2) holds, |𝑤𝑖 | ≤

��� 1
𝑞𝑤𝑖+1

��� for all 𝑖 ∈ [𝑘 − 1];

𝐻 (𝑊, 𝑋; 𝑞, 𝑡) is given by (4.2), and 𝐷 (𝑊 ; 𝑞, 𝑡) is given by (A.3).

Proof. When X consists of finitely many variables and when case (1) holds, the proposition was proved
in Proposition 4.10 of [16]. It is straightforward to check the Proposition when case (2) holds by (4.5).

When X consists of countably many variables, the identity (A.4) holds formally, since its projection
onto any finitely many variables (𝑥1, . . . , 𝑥𝑛) by letting 𝑥𝑛+1 = 𝑥𝑛+2 = . . . = 0 holds. �

Lemma A.3. Let (𝑎, 𝑞)∞ =
∏∞

𝑟=0(1 − 𝑎𝑞𝑟 ) and

Π(𝑋,𝑌 ; 𝑞, 𝑡) :=
(𝑡𝑥𝑖𝑦 𝑗 ; 𝑞)∞
(𝑥𝑖𝑦 𝑗 ; 𝑞)∞

, Π′(𝑋,𝑌 ) :=
∏
𝑖, 𝑗

(1 + 𝑥𝑖𝑦 𝑗 ). (A.5)
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Then ∑
𝜆∈Y

𝑃𝜆 (𝑋; 𝑞, 𝑡)𝑄𝜆(𝑌 ; 𝑞, 𝑡) =
∑
𝜆∈Y

𝑃𝜆′ (𝑋; 𝑞, 𝑡)𝑄𝜆′ (𝑌 ; 𝑞, 𝑡) = Π(𝑋,𝑌 ; 𝑞, 𝑡);∑
𝜆∈Y

𝑃𝜆 (𝑋; 𝑞, 𝑡)𝑃𝜆′ (𝑌 ; 𝑡, 𝑞) =
∑
𝜆∈Y

𝑄𝜆 (𝑋; 𝑞, 𝑡)𝑄𝜆′ (𝑌 ; 𝑡, 𝑞) = Π′(𝑋,𝑌 ).

In particular, when 𝑞 = 𝑡, we obtain the Cauchy identities for Schur polynomials:∑
𝜆∈Y

𝑠𝜆(𝑋)𝑠𝜆(𝑌 ) =
∏
𝑖, 𝑗

1
1 − 𝑥𝑖𝑦 𝑗

;∑
𝜆∈Y

𝑠𝜆(𝑋)𝑠𝜆′ (𝑌 ) =
∏
𝑖, 𝑗

(1 + 𝑥𝑖𝑦 𝑗 ).

Proof. See (2.5), (4.13) and (5.4) in Section VI of [31]. �

Lemma A.4. Let Π, Π′, and H be as in (A.5) and (4.2). Then

Π(𝑋,𝑌 ; 𝑞, 𝑡) = exp

(
∞∑
𝑛=1

1 − 𝑡𝑛

1 − 𝑞𝑛
1
𝑛
𝑝𝑛 (𝑋)𝑝𝑛 (𝑌 )

)
,

Π′(𝑋,𝑌 ) = exp

(
∞∑
𝑛=1

(−1)𝑛+1

𝑛
𝑝𝑛 (𝑋)𝑝𝑛 (𝑌 )

)
,

𝐻 (𝑋,𝑌 ; 𝑞, 𝑡) = exp

(
∞∑
𝑛=1

1 − 𝑡−𝑛

𝑛
𝑝𝑛 (𝑞𝑋

−1)𝑝𝑛 (𝑌 )

)
.

Proof. The first identity follows from Page 310 of [31]. The other two follow from

Π′(𝑋,𝑌 ) = [Π(−𝑋,𝑌 ; 0, 0)]−1,

𝐻 (𝑋,𝑌 ; 𝑞, 𝑡) = Π(𝑞𝑋−1, 𝑌 ; 0, 𝑡−1). �

Definition A.5. Let A be a graded algebra over a field F. For 𝑎 ∈ A, define ldeg(𝑎) to be the minimum
degree of all the homogeneous components in a.

Lemma A.6. (Proposition 2.3 pf [5]) Let {𝑑𝑘 }𝑘 {𝑢𝑘 }𝑘 be two sequences of elements of graded algebras
A and B. Assume lim𝑘→∞ ldeg(𝑑𝑘 ) = ∞ and lim𝑘→∞ ldeg(𝑢𝑘 ) = ∞. For non-negative integer k, let 𝑝𝑘
be the power sum. Then〈

exp

(
∞∑
𝑘=1

𝑑𝑘 𝑝𝑘 (𝑌 )

𝑘

)
, exp

(
∞∑
𝑘=1

𝑢𝑘 𝑝𝑘 (𝑌 )

𝑘

)〉
𝑌

= exp

(
∞∑
𝑘=1

(
1 − 𝑞𝑘

1 − 𝑡𝑘
·
𝑑𝑘𝑢𝑘
𝑘

))
,

where 𝑑𝑘 , 𝑢𝑘 are independent of the variables in Y.

Definition A.7. Let 𝐹 ⊃ C be a field. Let A be a (Z≥0-)graded algebra over F. For each non-negative
integer n, let A𝑛 denote the n-th homogeneous component of A.

The completion Â consists of formal sums
∑∞

𝑛=1 𝑎𝑛, where 𝑎𝑛 ∈ A𝑛. For two graded algebras A, A′

over F, letA⊗𝐹A′ be a graded algebra over F such that for 𝑎 ∈ A𝑚 and 𝑎′ ∈ A′
𝑛, 𝑎⊗𝑎′ ∈ (A⊗𝐹 𝐴′)𝑚+𝑛.

Let A⊗̂𝐹A′ be the completion of A ⊗𝐹 A′.
If B is a graded algebra over C, let B𝐹 be the graded algebra B ⊗C 𝐹 over F (i.e., the extension of

coefficients from C to F). Let Λ𝑋 [𝐹] denote the F-algebra of symmetric functions in 𝑋 = {𝑥1, 𝑥2, ...},
with coefficients in F.
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Definition A.8. Let A and A′ be graded algebras over C and {𝑎𝑛, 𝑗 } 𝑗 be a basis for A𝑛 for each 𝑛 ≥ 0.
We say that an element 𝑓 ∈ A⊗̂A′[𝐹] is A-projective if

𝑓 =
∑
𝑛, 𝑗

𝑎𝑛, 𝑗 ⊗ 𝛼′
𝑛, 𝑗 , 𝛼′

𝑛, 𝑗 ∈ A′(𝐹)

such that lim𝑛→∞ min 𝑗 ldeg(𝛼′
𝑛, 𝑗 ) = ∞. This property is independent of the choice of basis.

Definition A.9. Let A, B be graded algebras over C, and let 𝐹 ⊃ C be a field. Define the Macdonald
scalar product to be the bilinear map

(A ⊗ Λ𝑋 ) [𝐹] × (Λ𝑋 ⊗ B) [𝐹] → A ⊗ B[𝐹]

such that

〈𝑎 ⊗ 𝑃𝜆, 𝑄𝜇 ⊗ 𝑏〉𝑋 := 〈𝑃𝜆, 𝑄𝜇〉𝑎 ⊗ 𝑏 = 𝛿𝜆𝜇𝑎 ⊗ 𝑏.

Definition A.10. Let 𝑍 := (𝑧1, . . . , 𝑧𝑘 ), where k is a positive integer. Let L(𝑍) be the field of formal
Laurent series in the variables {

𝑧1
𝑧2
,
𝑧2
𝑧3
, . . . ,

𝑧𝑘−1
𝑧𝑘

, 𝑧𝑘

}
.

Let
∮
𝑑𝑍 : L(𝑍) → C, such that for each Laurent series 𝑓 ∈ L(𝑍),

∮
𝑓 𝑑𝑍 is the coefficient of 1

𝑧1 ·... ·𝑧𝑘
in f.

The following lemma about the commutative properties of the residue operator and the Macdonald
scalar product was proved in [1].

Lemma A.11. (Lemma 3.8 in [1]) Let A, B be graded algebras over C, and let 𝑓 ∈ A⊗̂Λ𝑋 [L(𝑍)] and
𝑔 ∈ Λ𝑋 ⊗̂B[𝐿(𝑊)]. If f is Λ𝑋 -projective, then〈∮

𝑓 𝑑𝑍, 𝑔

〉
𝑋

=
∮

〈 𝑓 , 𝑔〉𝑋𝑑𝑍;〈
𝑓 ,

∮
𝑔𝑑𝑍

〉
𝑋

=
∮

〈 𝑓 , 𝑔〉𝑋𝑑𝑍.

The following technical lemma is elementary, as proved in [1].

Lemma A.12. (Lemma 5.7 of [1]) Let 𝜃 ∈ (0, 𝜋), and 𝜉 > 0. Define

𝑅𝜖 , 𝜃 , 𝜉 := {𝑤 ∈ C : dist(𝑤, [1,∞)) ≤ 𝜉} ∩ {𝑤 ∈ C : | arg(𝑤 − (1 − 𝜖)) | ≤ 𝜃}.

Let 𝛼 > 0 and suppose 𝑁 (𝜖) ∈ Z > 0 such that lim sup𝜖→0 𝜖𝑁 (𝜖) > 0 as 𝜖 → 0. Then for any fixed
𝜃 ∈ (0, 𝜋), 𝜉 > 0, we have

(𝑧; 𝑒−𝜖 )𝑁 (𝜖 )

(𝑒−𝜖 𝛼𝑧; 𝑒−𝜖 )𝑁 (𝜖 )
=

(
1 − 𝑧

1 − 𝑒−𝜖 𝑁 (𝜖 ) 𝑧

)𝛼
exp

(
𝑂

(
𝜖 min{|𝑧 |, |𝑧 |2}

|1 − 𝑧 |

))
uniformly for 𝑧 ∈ C\𝑅𝜖 , 𝜃 , 𝜉 and 𝜖 arbitrarily small. Here, the notation (𝑧; 𝑒−𝜖 )𝑁 (𝜖 ) is defined as in (5.8).

Lemma A.13. (Corollary A.2 in [16]) Let 𝑑, ℎ, 𝑘 be positive integers. Let f, 𝑔1,. . . , 𝑔𝑑 be meromorphic
functions with possible poles at 𝑧1, ..., 𝑧ℎ . Then for 𝑘 ≥ 2,
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1
(2𝜋i)𝑘

∮
. . .

∮
1

(𝑣2 − 𝑣1) · · · . . . · (𝑣𝑘 − 𝑣𝑘−1)

𝑑∏
𝑗=1

(
𝑘∑
𝑖=1

𝑔 𝑗 (𝑣𝑖)

)
𝑘∏
𝑖=1

𝑓 (𝑣𝑖)𝑑𝑣𝑖

=
𝑘𝑑−1

2𝜋i

∮
𝑓 (𝑣)𝑘

𝑑∏
𝑗=1

𝑔 𝑗 (𝑣)𝑑𝑣,

where the contours contain {𝑧1, ..., 𝑧ℎ}, and on the left side, we require that the 𝑣𝑖-contour is contained
in the 𝑣 𝑗 -contour whenever 𝑖 < 𝑗 .
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