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Abstract
We revisit Haiman’s conjecture on the relations between characters of Kazdhan–Lusztig basis elements of the
Hecke algebra over 𝑆𝑛. The conjecture asserts that, for purposes of character evaluation, any Kazhdan–Lusztig
basis element is reducible to a sum of the simplest possible ones (those associated to so-called codominant
permutations). When the basis element is associated to a smooth permutation, we are able to give a geometric proof
of this conjecture. On the other hand, if the permutation is singular, we provide a counterexample.

1. Introduction

The group algebra C[𝑆𝑛] admits a q-deformation called the Hecke algebra 𝐻𝑛, constructed as follows.
Since every 𝑤 ∈ 𝑆𝑛 can be written as a product of simple transpositions (𝑖, 𝑖+1), the group algebraC[𝑆𝑛]

can be described as the C-algebra generated by {𝑇𝑠}, where s runs through all simple transpositions,
with the relations

𝑇2
𝑠 =1 for every simple transposition 𝑠,

𝑇𝑠𝑇𝑠′ =𝑇𝑠′𝑇𝑠 for every 𝑠 = (𝑖, 𝑖 + 1) and 𝑠′ = ( 𝑗 , 𝑗 + 1) such that
|𝑖 − 𝑗 | > 1,

𝑇𝑠𝑇𝑠′𝑇𝑠 =𝑇𝑠′𝑇𝑠𝑇𝑠′ for every 𝑠 = (𝑖, 𝑖 + 1) and 𝑠′ = ( 𝑗 , 𝑗 + 1) such that
|𝑖 − 𝑗 | = 1.

The algebra 𝐻𝑛 has the same generators as C[𝑆𝑛] but with slightly different relations, although we
abuse the notation and still write 𝑇𝑠 for these generators. Namely, 𝐻𝑛 is the C(𝑞 1

2 )-algebra1 generated
by {𝑇𝑠}, with the relations

𝑇2
𝑠 =(𝑞 − 1)𝑇𝑠 + 𝑞 for every simple transposition 𝑠,

𝑇𝑠𝑇𝑠′ =𝑇𝑠′𝑇𝑠 for every 𝑠 = (𝑖, 𝑖 + 1) and 𝑠′ = ( 𝑗 , 𝑗 + 1) such
that |𝑖 − 𝑗 | > 1,

𝑇𝑠𝑇𝑠′𝑇𝑠 =𝑇𝑠′𝑇𝑠𝑇𝑠′ for every 𝑠 = (𝑖, 𝑖 + 1) and 𝑠′ = ( 𝑗 , 𝑗 + 1) such
that |𝑖 − 𝑗 | = 1.

1Usually, the definition is over Z[𝑞
1
2 , 𝑞− 1

2 ].
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2 A. C. Abreu and A. Nigro

When 𝑞 = 1, we recover the group algebra C[𝑆𝑛]. Since each 𝑤 ∈ 𝑆𝑛 has a (nonunique) reduced
expression 𝑤 = 𝑠1𝑠2 . . . 𝑠ℓ (𝑤) in terms of simple transpositions, the product

𝑇𝑤 := 𝑇𝑠1𝑇𝑠2 . . . 𝑇𝑠ℓ (𝑤 )
,

is well defined, independent of the choice of reduced expression for w. Then as a C(𝑞 1
2 )-vector space,

{𝑇𝑤 }𝑤 ∈𝑆𝑛 is a basis of 𝐻𝑛.
To introduce the Kazhdan–Lusztig basis, we first define the Bruhat order of 𝑆𝑛: The length ℓ(𝑤) of

w is the number of inversions of w and given 𝑧, 𝑤 ∈ 𝑆𝑛, we say that 𝑧 ≤ 𝑤 if for some (equivalently,
for every) reduced expression 𝑤 = 𝑠1 . . . 𝑠ℓ (𝑤) there exist 1 ≤ 𝑖1 < 𝑖2 < . . . < 𝑖𝑘 ≤ ℓ(𝑤) such that
𝑧 = 𝑠𝑖1 . . . 𝑠𝑖𝑘 . Then letting 𝜄 denote the involution of 𝐻𝑛 given by

𝜄 : 𝐻𝑛 → 𝐻𝑛

𝑞
1
2 ↦→ 𝑞− 1

2

𝑇𝑤 ↦→ 𝑇−1
𝑤−1 ,

the Kazhdan–Lusztig basis {𝐶 ′
𝑤 }𝑤 ∈𝑆𝑛 of 𝐻𝑛 is defined by the following properties:

𝜄(𝐶 ′
𝑤 ) = 𝐶 ′

𝑤 ,

𝑞
ℓ (𝑤 )

2 𝐶 ′
𝑤 =

∑

𝑧≤𝑤

𝑃𝑧,𝑤 (𝑞)𝑇𝑧 ,
(1.1)

where 𝑃𝑧,𝑤 (𝑞) ∈ Z[𝑞], 𝑃𝑤,𝑤 (𝑞) = 1 and deg(𝑃𝑧,𝑤 ) < ℓ (𝑤)−ℓ (𝑧)
2 for every 𝑧 ≠ 𝑤. The existence of

such a basis is proved in [KL79] and the polynomials 𝑃𝑧,𝑤 (𝑞) are called Kazhdan–Lusztig polynomials.
The Kazdhan–Lusztig elements and polynomials are closely related to the geometry of Schubert

varieties in the flag variety. The flag variety B is the projective variety parametrizing flags of vector
subspaces of C𝑛, that is,

B = {𝑉1 ⊂ 𝑉2 ⊂ . . . ⊂ 𝑉𝑛 = C𝑛; dimC(𝑉𝑖) = 𝑖}.

We often abbreviate and write 𝑉• to denote 𝑉1 ⊂ . . . ⊂ 𝑉𝑛. For each permutation w, the relative Schubert
variety Ω𝑤 and its open cell Ω◦

𝑤 are defined as

Ω𝑤 := {(𝐹•, 𝑉•); dim𝑉𝑖 ∩ 𝐹𝑗 ≥ 𝑟𝑖, 𝑗 (𝑤) for 𝑖, 𝑗 = 1, . . . , 𝑛} ⊂ B × B,

Ω◦
𝑤 := {(𝐹•, 𝑉•); dim𝑉𝑖 ∩ 𝐹𝑗 = 𝑟𝑖, 𝑗 (𝑤) for 𝑖, 𝑗 = 1, . . . , 𝑛} ⊂ B × B,

(1.2)

where

𝑟𝑖, 𝑗 (𝑤). := |{𝑘; 𝑘 ≤ 𝑖, 𝑤(𝑘) ≤ 𝑗}|.

Then Ω𝑤 =
⊔

𝑧≤𝑤 Ω◦
𝑧 , where the disjoint union is taken over all permutations smaller than w in the

Bruhat order of 𝑆𝑛.
The Kazdhan–Lusztig polynomial 𝑃𝑧,𝑤 (𝑞) measures the singularity of Ω𝑤 at Ω◦

𝑧 , in the sense that
𝑃𝑧,𝑤 (𝑞) =

∑
𝑖 dim 𝐻𝑖 ((𝐼𝐶Ω𝑤 )𝑝)𝑞

𝑖
2 , where 𝐼𝐶Ω𝑤 is the intersection homology complex of Ω𝑤 and p is

a point in Ω◦
𝑧 .

Note that not all conditions in Equation (1.2) definingΩ𝑤 are necessary: The coessential set Coess(𝑤)

of w is the smallest set of pairs (𝑖, 𝑗) such that

Ω𝑤 = {(𝐹•, 𝑉•); dim𝑉𝑖 ∩ 𝐹𝑗 ≥ 𝑟𝑖, 𝑗 (𝑤)}.
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Figure 1. The graphical representation of the Dyck path associated to the Hessenberg function m =
(2, 4, 5, 5, 6, 6) and of the codominant permutation 𝑤m = 245361. To find the coessential set of w, we
remove every square that is below or to the left of a dot (greyed out in the picture). The coessential set is
then the set of squares that are in the upper-right corner of the connected components of the remaining
figure, the squares marked with a circle, Coess(𝑤) = {(1, 2), (2, 4), (4, 5), (6, 6)}.

Equivalently, we have

Coess(𝑤) := {(𝑖, 𝑗); 𝑤(𝑖) ≤ 𝑗 < 𝑤(𝑖 + 1), 𝑤−1 ( 𝑗) ≤ 𝑖 < 𝑤−1 ( 𝑗 + 1)}.

See [Ful92] for more details, specially [Ful92, Equation 3.8]. Also, note there is a slight duality between
the essential set and the coessential set.

If a permutation w satisfies 𝑟𝑖, 𝑗 (𝑤) = min(𝑖, 𝑗) for every (𝑖, 𝑗) ∈ Coess(𝑤), we say that Ω𝑤 is defined
by inclusions. Indeed, the condition dim𝑉𝑖 ∩ 𝐹𝑗 = 𝑟𝑖, 𝑗 (𝑤) is equivalent to either 𝑉𝑖 ⊂ 𝐹𝑗 or 𝐹𝑗 ⊂ 𝑉𝑖 . If
Ω𝑤 is defined by inclusions and for every (𝑖0, 𝑗0), (𝑖1, 𝑗1) ∈ Coess(𝑤) with 𝑖0 ≤ 𝑗0 and 𝑗1 ≤ 𝑖1 we have
that either 𝑗0 ≤ 𝑗1 or 𝑖1 ≤ 𝑖0, then we say that Ω𝑤 is defined by noncrossing inclusions.

Given 𝑤 ∈ 𝑆𝑛, the following conditions are equivalent (see [GR02, Theorem 1.1]):

1. 𝑃𝑒,𝑤 (𝑞) = 1,
2. Ω𝑤 is smooth,
3. Ω𝑤 is defined by noncrossing inclusions,
4. w avoids the patterns 3412 and 4231.

Definition 1.1. A permutation satisfying any of the conditions above is called smooth, otherwise it is
called singular.

If the inclusions defining Ω𝑤 are all of the form 𝑉𝑖 ⊂ 𝐹𝑗 , that is, if 𝑖 ≤ 𝑗 for every (𝑖, 𝑗) ∈ Coess(𝑤),
we say that w is codominant. Codominant permutations are precisely the 312-avoiding permutations, and
there is a natural bijection between codominant permutations and Hessenberg functions (or Dyck paths),
that is, nondecreasing functions m : [𝑛] → [𝑛] satisfying m(𝑖) ≥ 𝑖 for 𝑖 = 1, . . . , 𝑛. The codominant
permutation 𝑤m associated to m is the lexicographically greatest permutation satisfying 𝑤m (𝑖) ≤ m(𝑖)
for all 𝑖 ∈ [𝑛] (see Figure 1).

For codominant permutations 𝑤m, the Schubert varieties are characterized by

Ω𝑤m = {(𝑉•, 𝐹•);𝑉𝑖 ⊂ 𝐹m(𝑖) }.

The bijection between codominant permutations and Hessenberg functions can be extended to map
from the set of smooth permutations to the set of Hessenberg functions. Indeed, for every smooth
permutation w, we can define a Hessenberg function m𝑤 as follows. Let 𝐼 ⊂ [𝑛] be the subset of indices
i such that there exists 𝑗 ≥ 𝑖 with either (𝑖, 𝑗) ∈ Coess(𝑤) or ( 𝑗 , 𝑖) ∈ Coess(𝑤). We define m𝑤 by the
conditions m𝑤 (𝑖) = m𝑤 (𝑖 + 1) if 𝑖 ∉ 𝐼 and m𝑤 (𝑖) = 𝑗 if 𝑖 ∈ 𝐼 and j is such that either (𝑖, 𝑗) or ( 𝑗 , 𝑖) is
in Coess(𝑤). The noncrossing condition implies that m𝑤 is indeed an Hessenberg function and, if we
enrich the set of Hessenberg functions with some extra datum (the datum where the inclusions change
from 𝑉𝑖 ⊂ 𝐹𝑗 to 𝐹𝑖 ⊂ 𝑉 𝑗 ) we can achieve a bijection; see [GL20].

We now turn our attention to characters of the Hecke algebra. Each irreducible C-representation
of 𝑆𝑛 lifts to an irreducible C(𝑞 1

2 )-representation of 𝐻𝑛 (see [GP00, Theorem 8.1.7]). Hence, if 𝜒𝜆

is the irreducible character of 𝑆𝑛 associated to the partition 𝜆 � 𝑛 and, abusing notation, 𝜒𝜆 is the
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corresponding character of 𝐻𝑛, we can define the (dual) Frobenius character of an element 𝑎 ∈ 𝐻𝑛 by

ch(𝑎) :=
∑

𝜆�𝑛

𝜒𝜆 (𝑎)𝑠𝜆(𝑥) ∈ C(𝑞
1
2 ) ⊗ Λ,

where Λ is the algebra of symmetric functions in the variables

𝑥 = (𝑥1, . . . , 𝑥𝑚, . . .)

and 𝑠𝜆(𝑥) is the Schur symmetric function associated to the partition 𝜆. For a graded 𝑆𝑛-module L, we
also write ch(𝐿) for its (graded) Frobenius character.

In [Hai93, Lemma 1.1], Haiman proved that 𝜒𝜆 (𝑞
ℓ (𝑤 )

2 𝐶 ′
𝑤 ) is a symmetric unimodal polynomial in

q with nonnegative integer coefficients. We note that [Hai93, Lemma 1.1] implies that ch(𝑞
ℓ (𝑤 )

2 𝐶 ′
𝑤 ) is

Schur-positive, in the sense that its coefficients in the Schur-basis are polynomials in q with nonnegative
integer coefficients.

Haiman also made some conjectures regarding positivity of the characters ch(𝑞
ℓ (𝑤 )

2 𝐶 ′
𝑤 ) and relations

between them. A symmetric function in C(𝑞 1
2 ) ⊗Λ is called h-positive if its coefficients in the complete

homogeneous basis {ℎ𝜆} are polynomials in q with nonnegative coefficients.

Conjecture 1.2 (Haiman). For any 𝑤 ∈ 𝑆𝑛, the (dual Frobenius) character ch(𝑞
ℓ (𝑤 )

2 𝐶 ′
𝑤 ) of the

Kazhdan–Lusztig element 𝐶 ′
𝑤 is h-positive.

For a Hessenberg funtion m : [𝑛] → [𝑛], there is an associated graph 𝐺m, called an indifference
graph. It is constructed as follows, its set of vertices is [𝑛] and there is an edge between i and j if
𝑖 < 𝑗 ≤ m(𝑖). These graphs are precisely the unit interval order graphs, also the incomparability graphs
of 3+ 1 and 2+ 2 free (finite) posets. There is a close relation between the character ch(𝑞

ℓ (𝑤m )
2 𝐶 ′

𝑤m ) and
the indifference graph 𝐺m, which we now make explicit.

The chromatic quasisymmetric function of a graph with vertex set [𝑛], as introduced by Shareshian–
Wachs in [SW16], is defined as follows

csf𝑞 (𝐺) :=
∑

𝜅 : [𝑛]→Z≥0

𝑞asc𝐺 (𝜅)
∏

𝑣 ∈[𝑛]

𝑥𝜅 (𝑣) ,

where the sum runs through all proper colorings 𝜅 (that is, 𝜅(𝑖) ≠ 𝜅( 𝑗) if {𝑖, 𝑗} is an edge of G) and

ascm (𝜅) := |{{𝑖, 𝑗}; 𝑖 < 𝑗 , 𝜅(𝑖) < 𝜅( 𝑗), {𝑖, 𝑗} is a an edge of 𝐺}|.

For indifference graphs, the chromatic quasisymmetric function is actually a symmetric function, and
we write csf𝑞 (m) := csf𝑞 (𝐺).

By [CHSS16] (see also Corollary 3.6 below), we have that the character ch(𝑞
ℓ (𝑤m )

2 𝐶 ′
𝑤m ) is the

omega-dual of the chromatic quasisymmetric function of 𝐺m. That is:

ch(𝑞
ℓ (𝑤m )

2 𝐶 ′
𝑤m ) = 𝜔(csf𝑞 (m)). (1.3)

In particular, Conjecture 1.2 implies the Stanley–Stembridge conjecture on e-positivity of the chro-
matic symmetric function of indifference graphs of 3+1 free posets (via results of Guay–Paquet, [GP13])
and the Shareshian–Wachs generalization of the Stanley–Stembridge conjecture on e-positivity of the
chromatic quasisymmetric function of indifference graphs.

Haiman also made a conjecture about the relations between the characters ch(𝐶 ′
𝑤 ), namely, that every

character ch(𝐶 ′
𝑤 ) is a sum of characters of Kazdhan–Lusztig elements of codominant permutations.
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Conjecture 1.3 [Hai93, Conjecture 3.1]. For any 𝑤 ∈ 𝑆𝑛, there exist codominant permutations
𝑤1, . . . , 𝑤𝑘 such that

ch(𝐶 ′
𝑤 ) = ch(𝐶 ′

𝑤1 ) + ch(𝐶 ′
𝑤2 ) + · · · + ch(𝐶 ′

𝑤𝑘
)

and2

𝑃𝑒,𝑤 (𝑞) =
∑

1≤𝑖≤𝑘
𝑞

ℓ (𝑤 )−ℓ (𝑤𝑖 )
2 .

Conjecture 1.3 restricts to the following statement when w is smooth.
Conjecture 1.4. If w is a smooth permutation, there exists a single codominant permutation 𝑤′ such that

ch(𝐶 ′
𝑤 ) = ch(𝐶 ′

𝑤′ ).

Haiman pointed out in [Hai93] that Conjectures 1.4 and 1.3 should ‘reflect aspects of the geometry of
the flag variety that cannot yet be understood using available geometric machinery’. Conjecture 1.4 was
first proved combinatorially by Clearman–Hyatt–Shelton–Skandera in [CHSS16]. The purpose of this
article is to provide a geometric proof of the same result, as well as a counterexample to Conjecture 1.3.

1.1. Results

Let X be an 𝑛 × 𝑛 matrix and w be a permutation. The Lusztig variety associated to X and w is the
subvariety of the flag variety defined by

Y𝑤 (𝑋) := {𝑉•; 𝑋𝑉𝑖 ∩𝑉 𝑗 ≥ 𝑟𝑖, 𝑗 (𝑤) for 𝑖, 𝑗 = 1, . . . , 𝑛}. (1.4)

When X is regular semisimple (has distinct eigenvalues), the intersection homology 𝐼𝐻∗(Y𝑤 (𝑋)) has a
natural graded 𝑆𝑛-module structure induced by the monodromy action of 𝜋1 (𝐺𝐿𝑟𝑠

𝑛 , 𝑋) on 𝐼𝐻∗(Y𝑤 (𝑋)).
For w a smooth permutation, so that Y𝑤 (𝑋) is also smooth, this action can be explicitly characterized
by a dot action on 𝐻∗(Y𝑤 (𝑋)) (as in [Tym08]). We have the following result due to Lusztig [Lus86],
(see also [AN22]).
Theorem 1.5 (Lusztig). For any 𝑤 ∈ 𝑆𝑛, we have

ch(𝑞
ℓ (𝑤 )

2 𝐶 ′
𝑤 ) = ch(𝐼𝐻∗(Y𝑤 (𝑋))).

In Section 2, we will prove the following:
Theorem 1.6. Let 𝑋 ∈ 𝑆𝐿𝑛 (C) be regular semisimple and 𝑤 ∈ 𝑆𝑛 smooth. Then there exists a
codominant permutation 𝑤′ such that 𝐻∗(Y𝑤 (𝑋)) and 𝐻∗(Y𝑤′ (𝑋)) are isomorphic as 𝑆𝑛-modules. In
particular, ch(𝐶 ′

𝑤 ) = ch(𝐶 ′
𝑤′ ).

The main idea is to see that both Y𝑤 (𝑋) and Y𝑤′ (𝑋) are smooth GKM spaces, and hence their
cohomologies are described by their moment graphs. Since the moment graph of Y𝑤 (𝑋) only depends
on the transpositions which are smaller than w in the Bruhat order, it suffices to see that there exists
a codominant permutation whose set of smaller transpositions is equal to that of w. In fact, these
transpositions are precisely the transpositions (𝑖, 𝑗) such that 𝑖 < 𝑗 ≤ m𝑤 (𝑖) (see, for example, [GL20]).

If w and 𝑤′ are Coxeter elements, a stronger result holds, and we actually have that Y𝑤 (𝑋) is
isomorphic to Y𝑤′ (𝑋) whenever X is regular semisimple (see [AN22, Example 1.23]). Although for
Coxeter elements, Conjecture 1.4 is a consequence of [Hai93, Proposition 4.2]. We note that our
proof of Theorem 1.6 only proves the isomorphisms of cohomology groups and not of varieties (see
Conjecture 3.9).

2The condition on the Kazhdan–Lusztig polynomials is a consequence of the character equality.
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Concerning singular permutations, we have the following theorems.

Theorem 1.7. Let 𝑤 ∈ 𝑆𝑛 be a singular permutation and s a simple transposition such that 𝑤𝑠 is smooth
and 𝑠𝑤𝑠 < 𝑤. Then

ch(𝐶 ′
𝑤 ) = (𝑞−1/2 + 𝑞1/2) ch(𝐶 ′

𝑤𝑠).

The analogous equality holds if 𝑠𝑤 is smooth. Geometrically, if w and s satisfy the above conditions
and X is regular semisimple, then Y𝑤 (𝑋) and Y𝑤𝑠 (𝑋) fit into the following diagram

Y𝑤𝑠 (𝑋)

Y𝑤 (𝑋) Z ,

𝑔

𝑓

where f is a P1-bundle and g is small.

Theorem 1.7 is a direct consequence of Corollary 3.2, Lemma 3.3 and Proposition 3.4. These results
also apply when w is smooth, in which case we recover the so-called modular law for the chromatic
quasisymmetric function of indifference graphs (see [AN21a]) and provide a geometric interpretation
of it in Example 3.5 (see also [DCLP88] and [PS22]). The modular law also appears in other symmetric
functions associated to indifference graphs, such as the LLT-polynomials ([Lee20]) and the symmetric
function of increasing forests ([AN21b]).

Theorem 1.8 (Counterexample to Conjecture 1.3). Let 𝑤 = 62754381 ∈ 𝑆8. Then 𝑃𝑒,𝑤 (𝑞) = 1 + 𝑞 and
there do not exist codominant permutations 𝑤0, 𝑤2 such that

ch(𝐶 ′
𝑤 ) = ch(𝐶 ′

𝑤0 ) + ch(𝐶 ′
𝑤2 ).

Proof. Set 𝑠 = (1, 2). Then 𝑠𝑤𝑠 = 16754382 < 𝑤. Moreover, 𝑤𝑠 = 26754381 = 𝑤m1 , where m1 =
(2, 6, 7, 7, 7, 7, 8, 8) is a Hessenberg function. In particular, 𝑤𝑠 is codominant, hence smooth, so that
𝑃𝑒,𝑤 (𝑞) = 1+ 𝑞. By Theorem 1.7, we have that ch(𝐶 ′

𝑤 ) = (𝑞− 1
2 + 𝑞

1
2 ) ch(𝐶 ′

𝑤𝑠). Assume that there exist
codominant permutations 𝑤0 and 𝑤2 such that

(𝑞− 1
2 + 𝑞

1
2 ) ch(𝐶 ′

𝑤𝑠) = ch(𝐶 ′
𝑤0 ) + ch(𝐶 ′

𝑤2 ).

By the equality in Conjecture 1.3, we have that ℓ(𝑤0) = 15 and ℓ(𝑤2) = 17 (note that ℓ(𝑤m1) = 16
and ℓ(𝑤) = 17). By Equation (1.3), there exist Hessenberg functions m0 and m2 such that (recalling
𝑤m1 = 𝑤𝑠)

(1 + 𝑞) csf𝑞 (𝐺m1 ) = csf𝑞 (𝐺m2) + 𝑞 csf𝑞 (𝐺𝑚0). (1.5)

There are 63 Hessenberg functions m0 with ℓ(𝑤m0) = 15 and 42 Hessenberg functions m2 with
ℓ(𝑤m2) = 17. Computing csf𝑞 (m1) and all the possible values csf𝑞 (m0) and csf𝑞 (m2) (for instance,
using the algorithm in [AN21a]), we can check that there do not exist m0 and m2 satisfying the condition,

(1 + 𝑞) csf𝑞 (𝐺m1 ) = csf𝑞 (𝐺m2) + 𝑞 csf𝑞 (𝐺𝑚0).

This finishes the proof. �

In view of Theorems 1.7 and 1.8, we propose a weaker version of Conjecture 1.3:

Conjecture 1.9. For each permutation 𝑤 ∈ 𝑆𝑛, there exists codominant permutations 𝑤1, . . . , 𝑤𝑘 ∈ 𝑆𝑛

such that ch(𝑞
ℓ (𝑤 )

2 𝐶 ′
𝑤 ) is a combination of ch(𝑞

ℓ (𝑤𝑖 )
2 𝐶 ′

𝑤𝑖
) with coefficients in N[𝑞].
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Figure 2. The graphical representation of the Dyck path associated to the Hessenberg function m1 =
(2, 4, 5, 5, 6, 6) and of the permutation 𝑤 = 62754381.

2. Proof of Theorem 1.6

We begin by recalling some properties of GKM-spaces (see [GKM98]). A GKM-space, is a smooth
projective variety X with an action of a torus T such that the number of fixed points and the number of
one-dimensional orbits are finite. The equivariant cohomology 𝐻∗

𝑇 (X ) is then encoded in a combinato-
rial object called the moment graph of X . The vertices of the moment graph are the fixed points, while
the edges are the one-dimensional orbits, each of which has exactly two fixed points on its closure. More
precisely, the moment graph describes the image of the inclusion map 𝐻∗

𝑇 (𝑋) ↩→ 𝐻∗
𝑇 (𝑋

𝑇 ).
If X is an 𝑛× 𝑛 diagonal regular semisimple matrix, the torus 𝑇 � (C∗)𝑛 of diagonal matrices acts on

the variety Y𝑤 (𝑋). When w is smooth, this variety is a GKM-space because the action is a restriction
of that of T on the whole flag variety, where the number of fixed points and one-dimensional orbits are
indeed finite.

SinceY𝑤 (𝑋) is a T-invariant subvariety ofB, we have that the moment graph ofY𝑤 (𝑋) is a subgraph
of the moment graph of the flag variety B. We briefly recall the moment graph of B (see [Car94] and
[Tym08, Proposition 2.1]). The fixed points in B are indexed by permutations 𝑤 ∈ 𝑆𝑛 (in fact, they are
equal to Y𝑒 (𝑋) for X a regular semisimple diagonal matrix). To see this, it is enough to see that a flag 𝑉•

is fixed by T if and only if each 𝑉𝑖 is generated by eigenvectors of T. However, the eigenvectors of T are
precisely the canonical basis vectors 𝑒1, . . . , 𝑒𝑛, so there exists 𝑤 ∈ 𝑆𝑛 such that𝑉𝑖 = 〈𝑒𝑤 (1) , . . . , 𝑒𝑤 (𝑛) 〉.

The one-dimensional orbits are associated to tuples (𝑤1, 𝑤2, 𝑡), where 𝑤1, 𝑤2 are permutations in 𝑆𝑛

(corresponding to fixed points) with ℓ(𝑤1) < ℓ(𝑤2) and t is a transposition satisfying 𝑤1 = 𝑤2𝑡. Then
the orbit can be described as follows: Write 𝑡 = (𝑖 𝑗) with 𝑖 < 𝑗 , and define 𝑣𝑖 = 𝑒𝑤2 (𝑖) + 𝑐𝑒 : 𝑤2 ( 𝑗) for
𝑐 ∈ C∗. When varying 𝑐 ∈ C∗, the flags 𝑉𝑐

• given by 𝑉𝑐
𝑘 = 〈𝑒𝑤2 (1) . . . 𝑒𝑤2 (𝑖−1) , 𝑣𝑖 , 𝑒𝑤2 (𝑖+1) , . . . , 𝑒𝑤2 (𝑘) 〉

determine the one-dimensional orbit given by (𝑤1, 𝑤2, 𝑡). In fact, when c goes to 0, the limit of 𝑉𝑐
• is

the flag induced by 𝑤2, while when c goes to infinity, the limit of 𝑉𝑐
• is 𝑉𝑤1 . So the one-dimensional

orbit associated to (𝑤1, 𝑤2, 𝑡) connects the fixed points corresponding to 𝑤1 and 𝑤2.
To describe the moment graph of Y𝑤 (𝑋), it is enough to see which fixed points and one-dimensional

orbits are contained in Y𝑤 (𝑋). Since Y𝑒 (𝑋) ⊂ Y𝑤 (𝑋), we have that all fixed points of B belong in
Y𝑤 (𝑋). We claim the following.

Lemma 2.1. The one-dimensional orbit associated to (𝑤1, 𝑤2, 𝑡) is contained in Y𝑤 (𝑋) if and only if
the transposition t is smaller than w in the Bruhat order of 𝑆𝑛.

Proof. Consider the flag 𝑉𝑐
• in the one-dimensional orbit (𝑤1, 𝑤2, 𝑡). An easy computation shows

that 𝑋𝑉𝑐
ℓ ∩ 𝑉𝑐

𝑘 = 𝑟ℓ,𝑘 (𝑡). In particular, 𝑉𝑐
• ∈ Y𝑡 (𝑋)

◦. Since Y𝑤 (𝑋) =
⊔

𝑧≤𝑤 Y𝑧 (𝑋)
◦, we have that

𝑉𝑐
• ∈ Y𝑤 (𝑋) if and only if 𝑡 ≤ 𝑤. �

Moreover, the moment graph also encodes the action of 𝑆𝑛 on the equivariant cohomology group
𝐻∗
𝑇 (Y𝑤 (𝑋)); see [Tym08] and [BC18, Section 9]. This follows from the fact that 𝐻∗

𝑇 (Y𝑤 (𝑋)) is
contained 𝐻∗

𝑇 (Y𝑒 (𝑋)). The latter admits a natural action of 𝑆𝑛, constructed as follows: The variety
Y𝑒 (𝑋) consists of 𝑛! points 𝑝𝑤 and 𝐻∗

𝑇 (𝑝𝑤 ) = C[𝑡1, . . . , 𝑡𝑛]. For a permutation 𝜎 ∈ 𝑆𝑛, it acts on the
tuple

( 𝑓𝑤 (𝑡1, . . . , 𝑡𝑛))𝑤 ∈𝑆𝑛 ∈
⊕

𝑤 ∈𝑆𝑛

C[𝑡1, . . . , 𝑡𝑛] = 𝐻∗
𝑇 (Y𝑒 (𝑋)),
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by

𝜎 · ( 𝑓𝑤 (𝑡1, . . . , 𝑡𝑛))𝑤 ∈𝑆𝑛 = (𝑔𝑤 (𝑡1, . . . , 𝑡𝑛))𝑤 ∈𝑆𝑛 ,

where 𝑔𝑤 = 𝑓𝜎−1𝑤 (𝑡𝜎 (1) , . . . , 𝑡𝜎 (𝑛) ). This action restricts to an action on 𝐻∗
𝑇 (Y𝑤 (𝑋)). Since the

moment graph describes the image of the inclusion 𝐻∗
𝑇 (Y𝑤 (𝑋)) ↩→ 𝐻∗

𝑇 (Y𝑒 (𝑋)), we have that it also
describes the 𝑆𝑛 action on 𝐻∗

𝑇 (Y𝑤 (𝑋)). In particular, if w and 𝑤′ are smooth permutations and Y𝑤 (𝑋)
and Y𝑤′ (𝑋) have the same moment graph, then

ch(𝐻∗(Y𝑤 (𝑋))) = ch(𝐻∗(Y𝑤′ (𝑋))).

Lemma 2.2. Let w be a smooth permutations and m its associated Hessenberg function. A transposition
𝑡 = (𝑖 𝑗) with 𝑖 < 𝑗 is smaller that or equal to w in the Bruhat order of 𝑆𝑛 if and only if 𝑗 ≤ m(𝑖).

Proof. This is contained in [GL20, Theorem 5.1]. One can see this geometrically from the characteri-
zation of smooth Schubert varieties. Consider the pair (𝑉•, 𝐹•), where 𝑉• is induced by the matrix

(𝑒1, . . . , 𝑒𝑖−1, 𝑒 𝑗 , 𝑒𝑖+1, . . . , 𝑒 𝑗−1, 𝑒𝑖 , 𝑒 𝑗+1, . . . , 𝑒𝑛)

and 𝐹• is induced by the identity matrix (𝑒1, . . . , 𝑒𝑛). Then we have 𝑉𝑖 ⊂ 𝐹𝑗 and 𝐹𝑖 ⊂ 𝑉 𝑗 , but 𝑉𝑖 ⊄ 𝐹𝑗−1
and 𝐹𝑖 ⊄ 𝑉 𝑗−1. In particular, we have that (𝑉, 𝐹) ∈ Ω𝑤 if and only if 𝑗 ≤ m(𝑖). Since (𝑉, 𝐹) ∈ Ω◦

𝑡 , the
result holds. �

Proof of Theorem 1.6. Let 𝑤′ be the codominant permutation associated to the Hessenberg function m
associated to w. By Lemmas 2.1 and 2.2, the moment graphs of Y𝑤 (𝑋) and Y𝑤′ (𝑋) are equal and since
the dot action only depends on the moment graph, ch(𝐻∗(Y𝑤 (𝑋))) = ch(𝐻∗(Y𝑤′ (𝑋))). By Theorem
1.5, we have the result. �

3. Proof of Theorem 1.7

To prove Theorem 1.7, we need a few algebraic results about Hecke algebras and singular permutations.
Let 𝑤 ∈ 𝑆𝑛 be a permutation and s a simple transposition. Assume that 𝑠𝑤 < 𝑤 < 𝑤𝑠. Then by the
multiplication rule of Kazhdan–Lusztig elements of the Hecke algebra (see [Hai93, Equation 8.8]), we
have

𝐶 ′
𝑤𝐶 ′

𝑠 =𝐶 ′
𝑤𝑠 +

∑

𝑧≤𝑤
𝑧𝑠<𝑧

𝜇(𝑧, 𝑤)𝐶 ′
𝑧 ,

𝐶 ′
𝑠𝐶

′
𝑤 =(𝑞− 1

2 + 𝑞
1
2 )𝐶 ′

𝑤 ,

where 𝜇(𝑧, 𝑤) is the coefficient of 𝑞
ℓ (𝑤 )−ℓ (𝑧)−1

2 in the Kazhdan–Lusztig polynomial 𝑃𝑧,𝑤 (𝑞). Since
𝜒𝜆 (𝐶 ′

𝑤𝐶 ′
𝑠) = 𝜒𝜆(𝐶 ′

𝑠𝐶
′
𝑤 ) for every partition 𝜆 � 𝑛, we have that

ch((𝑞− 1
2 + 𝑞

1
2 )𝐶 ′

𝑤 ) = ch(𝐶 ′
𝑤𝑠) +

∑

𝑧≤𝑤
𝑧𝑠<𝑧

𝜇(𝑧, 𝑤) ch(𝐶 ′
𝑧). (3.1)

If w is smooth, then 𝜇(𝑧, 𝑤) = 0 except for the permutations z such that 𝑧 ≤ 𝑤 and ℓ(𝑧) = ℓ(𝑤)−1, and in
this case 𝜇(𝑧, 𝑤) = 1. To simplify notation, we will write 𝑧�𝑤 to mean that 𝑧 ≤ 𝑤 and ℓ(𝑧) = ℓ(𝑤) − 1.
We will see below that if w is smooth and satisfies 𝑠𝑤 < 𝑤 < 𝑤𝑠 for some simple reflection s, then
there exists at most one permutation z satisfying 𝑧 � 𝑤 and 𝑧𝑠 < 𝑧.

Proposition 3.1. Let 𝑤 ∈ 𝑆𝑛 be a smooth permutation and s a simple reflection such that 𝑠𝑤 < 𝑤 < 𝑤𝑠.
Then one of the following holds:
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Figure 3. The relative position of 𝑤(𝑙), 𝑤(𝑖1) and 𝑤(𝑖2) given by Equation (3.2). Note that we can not
have any dots inside the box.

Figure 4. The relative position of 𝑤(𝑙 + 1), 𝑤(𝑖1) and 𝑤(𝑖2) given by Equation (3.3). Note that we can
not have any dots inside the box.

1. The permutation 𝑤𝑠 is smooth and there exists precisely one 𝑧 � 𝑤 such that 𝑧𝑠 < 𝑧. Moreover, z is
smooth.

2. The permutation 𝑤𝑠 is singular and there does not exists any 𝑧 � 𝑤 such that 𝑧𝑠 < 𝑧.

Proof. We first prove that there exists at most one 𝑧�𝑤 such that 𝑧𝑠 < 𝑧. Write 𝑠 = (𝑙, 𝑙 +1), and assume
that 𝑧 ∈ 𝑆𝑛 is a permutation satisfying 𝑧�𝑤 and 𝑧𝑠 < 𝑠. Since 𝑧�𝑤 (which means that ℓ(𝑧) = ℓ(𝑤) −1),
we have that there exist 𝑖1, 𝑖2 such that

◦ 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑛,
◦ 𝑧( 𝑗) = 𝑤( 𝑗) for every 𝑗 ∈ [𝑛] \ {𝑖1, 𝑖2},
◦ 𝑧(𝑖𝑘 ) = 𝑤(𝑖3−𝑘 ),
◦ 𝑤(𝑖1) > 𝑤(𝑖2),
◦ for every 𝑖1 < 𝑗 < 𝑖2 we have that either 𝑤( 𝑗) < 𝑤(𝑖2) or 𝑤( 𝑗) > 𝑤(𝑖1).

Since 𝑤𝑠 > 𝑤 and 𝑧𝑠 < 𝑧, we have 𝑤(𝑙) < 𝑤(𝑙 +1) and 𝑧(𝑙) > 𝑧(𝑙 +1). Hence, either 𝑖1 = 𝑙 +1 or 𝑖2 = 𝑙.
If 𝑖1 = 𝑙 + 1, we have

𝑤( 𝑗) < 𝑤(𝑖2) or 𝑤( 𝑗) > 𝑤(𝑖1) = 𝑤(𝑙 + 1) for every 𝑖1 < 𝑗 < 𝑖2,

𝑤(𝑙 + 1) = 𝑤(𝑖1) > 𝑤(𝑙) > 𝑤(𝑖2).
(3.2)

On the other hand, if 𝑖2 = 𝑙, we have

𝑤( 𝑗) < 𝑤(𝑖2) = 𝑤(𝑙) or 𝑤( 𝑗) > 𝑤(𝑖1) for every 𝑖1 < 𝑗 < 𝑖2,

𝑤(𝑖1) > 𝑤(𝑙 + 1) > 𝑤(𝑖2) = 𝑤(𝑙).
(3.3)

See Figures 3 and 4 below for a depiction of these conditions.
Assume that there exist two distinct permutations 𝑧, 𝑧′ satisfying the conditions above, and let 𝑖1, 𝑖2

and 𝑖′1, 𝑖
′
2 be as above for z and 𝑧′, respectively. We now compare the relative position of 𝑖1, 𝑖2, 𝑖

′
1, 𝑖

′
2.

◦ Case 1. Assume that 𝑖2 = 𝑖′2 = 𝑙 and 𝑖1 < 𝑖′1 (the case 𝑖1 < 𝑖′1 being analogous). By Equation (3.3), we
have that 𝑤(𝑖1) > 𝑤(𝑙 + 1) > 𝑤(𝑙), 𝑤(𝑖′1) > 𝑤(𝑙 + 1) > 𝑤(𝑙). Since 𝑖1 < 𝑖′𝑖 < 𝑖2 and 𝑤(𝑖′1) > 𝑤(𝑙),
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Figure 5. The relative position of 𝑤(𝑖1), 𝑤(𝑖′1), 𝑤(𝑖2) and 𝑤(𝑙 + 1). Note that 𝑤(𝑖′1) must be outside the
box, and hence 𝑤(𝑖′1) > 𝑤(𝑖1), we have a 3412 pattern on w.

Figure 6. The relative position of 𝑤(𝑖1), 𝑤(𝑖2), 𝑤(𝑖′1) and 𝑤(𝑖2). Note that we have a 4231 pattern on w.

we have 𝑤(𝑖′1) > 𝑤(𝑖1) (again, by Equation (3.3)). Hence, 𝑤(𝑖′1) > 𝑤(𝑖1) > 𝑤(ℓ + 1) > 𝑤(ℓ) and this
is a 3412 pattern on w, which is a contradiction with the smoothness of w. See Figure 5.

◦ Case 2. Assume that 𝑖1 = 𝑖′1 = 𝑙 + 1. This case is analogous to the previous one (just replace Equation
(3.3) with Equation (3.2)).

◦ Case 3. Assume that 𝑖2 = 𝑙 and 𝑖′1 = 𝑙 + 1. In this case, we have that 𝑖1 < 𝑖2 = 𝑙 < 𝑖′1 = 𝑙 + 1 < 𝑖′2.
By Equations (3.3) and (3.2), 𝑤(𝑙 + 1) > 𝑤(𝑙) > 𝑤(𝑖′2) and 𝑤(𝑖1) > 𝑤(𝑙 + 1) > 𝑤(𝑙), so 𝑤(𝑖1) >
𝑤(𝑙 + 1) > 𝑤(𝑙) > 𝑤(𝑖′2), which is a 4231 pattern on w, contradicting the smoothness of w. See
Figure 6.

Similar considerations also prove that if z exists, it must be smooth.
We now prove that if 𝑤𝑠 is singular, there exists no 𝑧�𝑤 with 𝑧𝑠 < 𝑧. Since 𝑤𝑠 is singular, there exist

𝑗1 < 𝑗2 < 𝑗3 < 𝑗4 forming a 4231 or 3412 pattern in 𝑤𝑠. Since w is smooth, {𝑙, 𝑙 + 1} ⊂ { 𝑗1, 𝑗2, 𝑗3, 𝑗4}.
Since 𝑤(𝑙) < 𝑤(𝑙 + 1), we have three cases.

◦ Case 1. Assume that we have a 4231 pattern in 𝑤𝑠 with 𝑗1 = 𝑙, 𝑗2 = 𝑙 + 1. Then 𝑗1, 𝑗2, 𝑗3, 𝑗4 induces
a 2431 pattern on w with 𝑗1 = 𝑙, 𝑗2 = 𝑙 + 1. Let us assume that there exists 𝑖1 < 𝑖2 := 𝑙 = 𝑗1 satisfying
Equation (3.3). Then 𝑤(𝑖1) > 𝑤(𝑙+1) and 𝑖1, 𝑗1, . . . , 𝑗4 induces a 52431 pattern on w, which contains
a 4231 pattern, and this is a contradiction. Let us assume that there exists 𝑙+1 = 𝑗2 =: 𝑖1 < 𝑖2 satisfying
Equation (3.2). Then 𝑤(𝑖2) < 𝑤(𝑙) and for every 𝑙 + 1 < 𝑘 < 𝑖2 we have either 𝑤(𝑘) > 𝑤(𝑙 + 1) or
𝑤(𝑘) < 𝑤(𝑖2). Then 𝑖2 < 𝑗3 since 𝑤(𝑖2) < 𝑤(𝑙) < 𝑤( 𝑗3) < 𝑤(𝑙 + 1). This means that w contains
either a 35241 or a 35412 pattern, but the first has a 4231 pattern, while the second has a 3412 pattern,
which again contradicts the smoothness of w.

◦ Case 2. Assume that we have a 4231 pattern in 𝑤𝑠 with 𝑗3 = 𝑙, 𝑗4 = 𝑙 + 1. Then we have a 4213
pattern on w, and the argument is similar as above.

◦ Case 3. Assume that we have a 3412 pattern in 𝑤𝑠 with 𝑗2 = 𝑙, 𝑗3 = 𝑙 + 1, so that 𝑗1, 𝑗2, 𝑗3, 𝑗4 induces
a 3142 pattern on w with 𝑗2 = ℓ, 𝑗3 = ℓ + 1. Let us assume there exists 𝑖1 < 𝑖2 := 𝑙 = 𝑗2 satisfying
Equation (3.3). Then 𝑤(𝑖1) > 𝑤(𝑙 + 1), and for every 𝑖1 < 𝑘 < 𝑙 we have either 𝑤(𝑘) > 𝑤(𝑖1)
or 𝑤(𝑘) < 𝑤(𝑙). Then 𝑖1 > 𝑗1 and we have a 35142 pattern on w, a contradiction. Let us assume
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that there exist 𝑙 + 1 = 𝑗3 =: 𝑖1 < 𝑖2 satisfying Equation (3.2). Then 𝑤(𝑖2) < 𝑤(𝑙) and for every
𝑙 + 1 < 𝑘 < 𝑖2 we have either 𝑤(𝑘) < 𝑤(𝑖2) or 𝑤(𝑘) > 𝑤(𝑙 + 1) so that 𝑖2 < 𝑗4 and we have a 42513
pattern on w, also a contradiction.

Finally, we will prove that if there is no 𝑧 � 𝑤 with 𝑧𝑠 < 𝑧, then 𝑤𝑠 is singular. First, assume that
there exists 𝑖 < 𝑙 such that 𝑤(𝑖) > 𝑤(𝑙 + 1) and consider the greatest possible such i. If 𝑧 = 𝑤 · (𝑖, 𝑙),
then 𝑧𝑠 < 𝑧 and 𝑧 < 𝑤. This means that 𝑧 << 𝑤, and that is equivalent to the existence of 𝑖 < 𝑗 < 𝑙 with
𝑤(𝑖) > 𝑤( 𝑗) > 𝑤(𝑙). Since i is the greatest 𝑖 < 𝑙 with 𝑤(𝑖) > 𝑤(𝑙 + 1), we have that 𝑤(𝑖) > 𝑤(𝑙 + 1) >
𝑤( 𝑗) > 𝑤(𝑙), which implies that 𝑖, 𝑗 , 𝑙, 𝑙 + 1 induces a 4213 pattern on w and hence a 4231 pattern on
𝑤𝑠. If there exists 𝑖 > 𝑙 + 1 with 𝑤(𝑖) < 𝑤(𝑙), the argument is the same.

Therefore, let us assume that 𝑤(𝑖) < 𝑤(𝑙 + 1) for every 𝑖 < 𝑙 and 𝑤(𝑖) > 𝑤(𝑙) for every 𝑖 > 𝑙 + 1. In
particular, we have that 𝑤−1 ( 𝑗) < 𝑙 for every 𝑗 < 𝑤(𝑙). Let k be the maximum of {𝑤(𝑖)}𝑖≤𝑙 , and note that
𝑤(𝑙) ≤ 𝑘 < 𝑤(ℓ + 1). Assume that there exists 𝑗 < 𝑘 with 𝑤−1 ( 𝑗) > 𝑙 + 1. By the argument above, we
have that 𝑗 > 𝑤(𝑙) (and hence 𝑘 > 𝑤(𝑙)), so 𝑤−1(𝑘) < 𝑙 < 𝑙+1 < 𝑤−1 ( 𝑗) and 𝑤(𝑙+1) > 𝑘 > 𝑗 > 𝑤(𝑙),
which implies that 𝑤−1(𝑘), 𝑙, 𝑙 +1, 𝑤−1 ( 𝑗) induces a 3142 pattern on w, and hence a 4231 pattern on 𝑤𝑠.
On the other hand, if 𝑤−1 ( 𝑗) ≤ 𝑙 for every 𝑗 ≤ 𝑘 , then {𝑤(1), . . . , 𝑤(𝑙)} = {1, . . . , 𝑘}, and in particular
𝑘 = 𝑙. But then (𝑙, 𝑙 +1)𝑤 > 𝑤, a contradiction since 𝑠𝑤 < 𝑤 by hypothesis. This finishes the proof. �

We have the following direct corollary.

Corollary 3.2. Let w be a smooth permutation and s a simple transposition such that 𝑤𝑠 > 𝑤 > 𝑠𝑤.

1. If 𝑤𝑠 is smooth and z is the only permutation 𝑧 � 𝑤 with 𝑧𝑠 < 𝑧, then (𝑞− 1
2 + 𝑞

1
2 ) ch(𝐶 ′

𝑤 ) =
ch(𝐶 ′

𝑤𝑠) + ch(𝐶 ′
𝑧).

2. If 𝑤𝑠 is singular, then (𝑞− 1
2 + 𝑞

1
2 ) ch(𝐶 ′

𝑤 ) = ch(𝐶 ′
𝑤𝑠).

Proof. It follows directly from Equation (3.1) and Proposition 3.1. �

Note that Corollary 3.2 proves the combinatorial statement of Theorem 1.7. We now prove the
geometric statement, which also gives an alternative proof of the combinatorial statement.

Let w and s be as in Corollary 3.2, and let P𝑠 be the partial flag variety associated to s, that is, if
𝑠 = (𝑙, 𝑙 + 1) then

P𝑠 = {𝑉1 ⊂ 𝑉2 ⊂ . . . 𝑉𝑙−1 ⊂ 𝑉𝑙+1 ⊂ . . . ⊂ 𝑉𝑛 = C𝑛; dimC(𝑉𝑖) = 𝑖}.

Using the algebraic group notation, we write 𝐺 = 𝐺𝐿𝑛 and B for the Borel subgroup of G of upper
triangular matrices. For each permutation 𝑤 ∈ 𝑆𝑛 let �𝑤 denote the associated permutation matrix �𝑤 ∈ 𝐺.
We write 𝑃𝑠 for the parabolic subgroup associated to s, that is, 𝑃𝑠 = 𝐵 � 𝐵 �𝑠𝐵 so that P𝑠 = 𝐺/𝑃𝑠 . In
this notation, the Lusztig varieties are given by Y𝑤 (𝑋)◦ = {𝑔𝐵; 𝑔−1𝑋𝑔 ∈ 𝐵 �𝑤𝐵}.

Lemma 3.3. Let 𝑤 ∈ 𝑆𝑛 be a permutation, s a simple transposition and X a regular semisimple 𝑛 × 𝑛
matrix. Then

1. If 𝑠𝑤 < 𝑤 and 𝑤𝑠 < 𝑤, then the forgetful map Y𝑤 (𝑋) → P𝑠 is a P1-bundle over its image.
2. If 𝑤𝑠 ≠ 𝑠𝑤 and either 𝑤 < 𝑤𝑠 or 𝑤 < 𝑠𝑤, then the forgetful map Y◦

𝑤 (𝑋) → P𝑠 is injective.

Proof. We begin with item (1). For 𝑠 = (𝑙, 𝑙 + 1), the hypothesis is equivalent to 𝑤(𝑙) > 𝑤(𝑙 + 1) and
𝑤−1 (𝑙) > 𝑤−1 (𝑙 + 1), and in particular, the coessential set of w

Coess(𝑤) := {(𝑎, 𝑏); 𝑤(𝑎) ≤ 𝑏 < 𝑤(𝑎 + 1), 𝑤−1 (𝑏) ≤ 𝑎 < 𝑤−1 (𝑏 + 1)}

does not contains any pair (𝑎, 𝑏) with either 𝑎 = 𝑙 or 𝑏 = 𝑙. This means that the conditions involving
dim(𝑋𝑉𝑙 ∩𝑉𝑏) and dim(𝑋𝑉𝑎 ∩𝑉𝑙) are redundant in Y𝑤 (𝑋), hence 𝑉𝑙 can be chosen arbitrarily.

Let us prove item (2). Since Y◦
𝑤 (𝑋) = {𝑔𝐵; 𝑔−1𝑋𝑔 ∈ 𝐵 �𝑤𝐵}, to prove that the map Y◦

𝑤 (𝑋) → P𝑠

is injective it suffices to prove that there do not exist 𝑔1𝐵 and 𝑔2𝐵 distinct such that 𝑔−1
1 𝑋𝑔1 ∈ 𝐵 �𝑤𝐵,

𝑔−1
2 𝑋𝑔2 ∈ 𝐵 �𝑤𝐵, and 𝑔1 ∈ 𝑔2𝑃𝑠 . Assume by way of contradiction that such a pair 𝑔1, 𝑔2 exists. Since
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𝑃𝑠 = 𝐵∪𝐵 �𝑠𝐵 and 𝑔1𝐵 ≠ 𝑔2𝐵, we have that 𝑔1 ∈ 𝑔2𝐵 �𝑠𝐵, in particular 𝑔1 = 𝑔2𝑏1 �𝑠𝑏2 for some 𝑏1, 𝑏2 ∈ 𝐵.
Therefore,

𝑔−1
2 𝑋𝑔2 ∈ 𝐵 �𝑤𝐵,

𝑏−1
2 �𝑠𝑏−1

1 𝑔−1
2 𝑋𝑔2𝑏1 �𝑠𝑏2 ∈ 𝐵 �𝑤𝐵.

Since 𝑏1, 𝑏2 ∈ 𝐵, we have

𝑏−1
1 𝑔−1

2 𝑋𝑔2𝑏1 ∈ 𝐵 �𝑤𝐵,

𝑏−1
1 𝑔−1

2 𝑋𝑔2𝑏1 ∈ �𝑠𝐵 �𝑤𝐵 �𝑠.

This means that 𝐵 �𝑤𝐵∩ �𝑠𝐵 �𝑤𝐵 �𝑠 ≠ ∅. Let us assume, without loss of generality, that 𝑠𝑤 < 𝑤 < 𝑤𝑠. Then
by [MT11, proof of Lemma 11.14]

𝐵 �𝑤𝐵 �𝑠 ⊂ 𝐵 �𝑤𝐵 · 𝐵 �𝑠𝐵 = 𝐵 �𝑤 �𝑠𝐵,

and by [MT11, Lemma 11.14]

�𝑠𝐵 �𝑤 �𝑠𝐵 ⊂ 𝐵 �𝑠𝐵 · 𝐵 �𝑤 �𝑠𝐵 ⊂ 𝐵 �𝑤 �𝑠𝐵 ∪ 𝐵 �𝑠 �𝑤 �𝑠𝐵.

Since 𝑠𝑤𝑠 ≠ 𝑤 (otherwise, 𝑤𝑠 = 𝑠𝑤), we have

𝐵 �𝑤𝐵 ∩ (𝐵 �𝑤 �𝑠𝐵 ∪ 𝐵 �𝑠 �𝑤 �𝑠𝐵) ≠ ∅,

which is a contradiction of the Bruhat decomposition of G. �

Let X be a regular matrix, 𝑤 ∈ 𝑆𝑛 an irreducible permutation, that is, a permutation that is not
contained in any proper Young subgroup, and s a simple transposition satisfying the conditions in
Corollary 3.2. Consider the forgetful map Y𝑤𝑠 (𝑋) → P𝑠 , and let Z be the image. By [AN22, Corollary
8.6], Y𝑤𝑠 (𝑋) and Y𝑤 (𝑋) are irreducible, and so Z is as well. By Lemma 3.3, the map Y𝑤𝑠 (𝑋) → Z
is a P1-bundle, while the map Y◦

𝑤 (𝑋) → P𝑠 is injective. Since Y𝑤 (𝑋) ⊂ Y𝑤𝑠 (𝑋) (𝑤 < 𝑤𝑠), the image
of Y𝑤 (𝑋) is contained in Z . Since Y◦

𝑤 (𝑋) → Z is injective and the dimensions agree, Y𝑤 (𝑋) → Z is
birational. Let 𝑧 ∈ 𝑆𝑛 be the permutation such that 𝑧 � 𝑤 and 𝑧𝑠 < 𝑧. Then we have:
Proposition 3.4. The map Y𝑤 (𝑋) → Z is semismall and the preimage of the relevant locus is precisely
Y𝑧 (𝑋) (if z exists).
Proof. The fact that Y𝑤 (𝑋) → Z is semismall follows from the fact that the map is birational and its
fibers have dimension at most one (since they are contained in those of Y𝑤𝑠 (𝑋) → Z). We have that
Y𝑤 (𝑋) = Y◦

𝑤 (𝑋) ∪
⋃

𝑧′�𝑤 Y𝑧′ (𝑋), where Y𝑧′ (𝑋) has codimension one in Y𝑤 (𝑋). We claim that the
images of Y◦

𝑤 (𝑋) and Y𝑧′ (𝑋) are disjoint. Assume for contradiction that there exist 𝑔1𝐵 and 𝑔2𝐵 such
that 𝑔−1

1 𝑋𝑔1 ∈ 𝐵 �𝑤𝐵, 𝑔−1
2 𝑋𝑔2 ∈ 𝐵 �𝑧′𝐵 and 𝑔1𝑃𝑠 = 𝑔2𝑃𝑠 . Arguing as in the proof of Lemma 3.3, we have

𝐵 �𝑧′𝐵 ∩ (𝐵 �𝑤 �𝑠𝐵 ∪ 𝐵 �𝑠 �𝑤 �𝑠𝐵) ≠ ∅. (3.4)

However, ℓ(𝑤𝑠) = ℓ(𝑤) + 1, ℓ(𝑠𝑤𝑠) = ℓ(𝑤) and ℓ(𝑧) = ℓ(𝑤) − 1, and 𝐵 �𝑧′𝐵 =
⋃

𝑧′′ ≤𝑧′ 𝐵 �𝑧′′𝐵. By the
Bruhat decomposition, Equation (3.4) is a contradiction.

Moreover, since the fibers have dimension at most one, the preimage of the relevant locus has
codimension one in Y𝑤 (𝑋). By the discussion above, this preimage must be a union of Y𝑧′ (𝑋) for some
𝑧′ � 𝑤. By the lifiting property [Bre92, Proposition 2.2.7], either 𝑠𝑧′ < 𝑧′ or 𝑧′ = 𝑠𝑤. If 𝑧′ = 𝑠𝑤, then
𝑧′ = 𝑠𝑤 < 𝑠𝑤𝑠 = 𝑧𝑠′ and 𝑧′𝑠 = 𝑠𝑤𝑠 ≠ 𝑤 = 𝑠𝑧′, so by Lemma 3.3 Y◦

𝑧′ (𝑋) → Z is injective, and hence
Y◦
𝑧′ (𝑋) is not contained in the preimage of the relevant locus. If 𝑠𝑧′ < 𝑧′ and 𝑧′ < 𝑧′𝑠, then 𝑠𝑧′ ≠ 𝑧′𝑠,

so by Lemma 3.3 Y◦
𝑧′ (𝑋) → Z is injective, and hence Y◦

𝑧′ (𝑋) is not contained in the preimage of the
relevant locus. Finally, if 𝑠𝑧′ < 𝑧′ and 𝑧′𝑠 < 𝑧′, then 𝑧′ = 𝑧, so by Lemma 3.3 Y𝑧′ (𝑋) → Z is P1-bundle
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over its image, and hence Y𝑧′ (𝑋) is contained in the preimage of the relevant locus. Since the preimage
of the relavant locus has codimension one, it is precisely Y𝑧′ (𝑋). �

By the decomposition theorem (we set Z1 as the image of Y𝑧 (𝐶) if z exsits), 𝐼𝐻∗(Y𝑤𝑠 (𝑋)) =
𝐼𝐻∗(Z) ⊗ (C ⊕C[−2]), 𝐻∗(Y𝑤 (𝑋)) = 𝐼𝐻∗(Z) ⊗ 𝐼𝐻∗(Z1) [−2] and 𝐼𝐻∗(Y𝑧 (𝑋)) = 𝐼𝐻∗(Z∞) ⊗ (C ⊕

C[−2]). Then

ch(𝐼𝐻∗(Y𝑤𝑠 (𝑋))) = (1 + 𝑞) ch(𝐼𝐻∗(Z)),

ch(𝐻∗(Y𝑤 (𝑋))) = ch(𝐼𝐻∗(Z)) + 𝑞 ch(𝐼𝐻∗(Z1)),

ch(𝐼𝐻∗(Y𝑧 (𝑋))) = (1 + 𝑞) ch(𝐼𝐻∗(Z∞)),

which implies

(1 + 𝑞) ch(𝐻∗(Y𝑤 (𝑋))) = ch(𝐼𝐻∗(Y𝑤𝑠 (𝑋))) + 𝑞 ch(𝐼𝐻∗(Y𝑧 (𝑋))).

This, in turn, is equivalent by Theorem 1.5 to

(1 + 𝑞) ch(𝑞
ℓ (𝑤 )

2 𝐶 ′
𝑤 ) = ch(𝑞

ℓ (𝑤 )+1
2 𝐶 ′

𝑤𝑠) + 𝑞 ch(𝑞
ℓ (𝑤 )−1

2 𝐶 ′
𝑧).

When w is codominant and 𝑤𝑠 is smooth, then both 𝑤𝑠 and z are codominant as well. Below, we give
an example of what happens for Hessenberg varieties.

Example 3.5 (Geometric interpretation of the modular law). Let m0, m1, m2 be Hessenberg functions
and 𝑖 ∈ [𝑛] an integer such that m0( 𝑗) = m1 ( 𝑗) = m2 ( 𝑗) for every 𝑗 ≠ 𝑖, m0(𝑖) = m1 (𝑖) −1 = m2(𝑖) −2
and m1(m1 (𝑖) + 1) = m1(m1 (𝑖)). Set 𝑙 = 𝑚1(1) and let 𝑠 = (𝑙, 𝑙 + 1) be a simple transposition.

We claim that 𝑤m1 𝑠 < 𝑤m1 < 𝑤m2 = 𝑠𝑤m1 , 𝑤m0 � 𝑤m1 and 𝑠𝑤m0 < 𝑤m0 , so we are in the
hypothesis of Corollary 3.2. Indeed, since m1(𝑖) = 𝑙 and m1(𝑖 − 1) < 𝑙, we have that 𝑤m1 (𝑖) = 𝑙, while
𝑤−1

m1 (𝑙 + 1) > 𝑖. So 𝑤m1 𝑠 < 𝑤m1 < 𝑠𝑤m1 . Since m2(𝑖) = 𝑙 + 1 and m2 agrees with m1 everywhere else,
𝑤m2 = 𝑠𝑤m1 . Finally, 𝑤m0 � 𝑤m1 , and since m0(𝑖) < 𝑙 and m0 (𝑖 + 1) > 𝑙, we have 𝑠𝑤m0 < 𝑤m0 .

Let X be a regular semisimple matrix, then the Hessenberg varieties are

Ym0 = {𝑉•; 𝑋𝑉𝑖 ⊂ 𝑉𝑙−1; 𝑋𝑉 𝑗 ⊂ 𝑉m1 ( 𝑗) for 𝑗 ∈ [𝑛] \ {𝑖}},

Ym1 = {𝑉•; 𝑋𝑉𝑖 ⊂ 𝑉𝑙; 𝑋𝑉 𝑗 ⊂ 𝑉m1 ( 𝑗) for 𝑗 ∈ [𝑛] \ {𝑖}},

Ym2 = {𝑉•; 𝑋𝑉𝑖 ⊂ 𝑉𝑙+1; 𝑋𝑉 𝑗 ⊂ 𝑉m1 ( 𝑗) for 𝑗 ∈ [𝑛] \ {𝑖}}.

Since m1 (𝑙 + 1) = m1 (𝑙), the conditions 𝑋𝑉𝑙 ⊂ 𝑉m1 (𝑙) and 𝑋𝑉𝑙+1 ⊂ 𝑉m1 (𝑙+1) = 𝑉m1 (𝑙) are redundant. In
particular, there exists no condition involving 𝑉𝑘 in Ym0 (𝑋) and Ym2 (𝑋). Then the forgetful maps

Ym0 (𝑋) → P𝑠

Ym2 (𝑋) → P𝑠

are P1-bundles over their images, which are, respectively,

Z0 = {𝑉•; 𝑋𝑉 𝑖 ⊂ 𝑉 𝑙−1, 𝑋𝑉 𝑗 ⊂ 𝑉m1 ( 𝑗) , for 𝑗 ∈ [𝑛] \ {𝑖, 𝑙}},

Z2 = {𝑉•; 𝑋𝑉 𝑖 ⊂ 𝑉 𝑙+1, 𝑋𝑉 𝑗 ⊂ 𝑉m1 ( 𝑗) , for 𝑗 ∈ [𝑛] \ {𝑖, 𝑙}},

where we write 𝑉• for a partial flag 𝑉1 ⊂ . . . ⊂ 𝑉 𝑙−1 ⊂ 𝑉 𝑙+1 ⊂ . . . ⊂ 𝑉𝑛 in P𝑠 . The fibers of the map
𝑓 : Ym1 (𝑋) → Z2 can be described as

𝑓 −1(𝑉•) = {𝑉•;𝑉 𝑗 = 𝑉 𝑗 for 𝑗 ∈ [𝑛] \ {𝑙}, 𝑉𝑙−1 + 𝑋𝑉𝑖 ⊂ 𝑉𝑙 ⊂ 𝑉𝑙+1}.
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So 𝑓 −1(𝑉•) is isomorphic to P1 if 𝑋𝑉 𝑖 ⊂ 𝑉𝑙−1, as in this case 𝑉 𝑙−1 + 𝑋𝑉 𝑖 = 𝑉 𝑙−1 or is a single point 𝑉•,
with 𝑉𝑙 = 𝑉 𝑘−1 + 𝑋𝑉 𝑖 . Note that dim𝑉 𝑙−1 + 𝑋𝑉 𝑖 ≤ 𝑙, as 𝑋𝑉 𝑖−1 ⊂ 𝑉𝑚1 (𝑖−1) ⊂ 𝑉𝑙−1. In fact, Ym1 (𝑋) is
the blowup of Z2 along Z0.

Ym0 (𝑋) Ym1 (𝑋) Ym2 (𝑋)

Z0 Z2.

P
1−bundle

Isomorphism outside
Ym0 (𝑋 )

P
1−bundle

This means that

ch(𝐻∗(Ym0 (𝑋))) = (1 + 𝑞) ch(𝐻∗(Z0))

ch(𝐻∗(Ym1 (𝑋))) = ch(𝐻∗(𝐵𝑙Z0Z2)) = ch(𝐻∗(Z2)) + 𝑞 ch(𝐻∗(Z0))

ch(𝐻∗(Ym2 (𝑋))) = (1 + 𝑞) ch(𝐻∗(Z2))

and hence we get

(1 + 𝑞) csf𝑞 (m1) = csf𝑞 (m2) + 𝑞 csf𝑞 (m1).

We refer to [AN22, Example 1.24] for an example where 𝑤𝑠 is singular.
A direct consequence of Example 3.5 is that characters of Kazhdan–Lusztig elements of codominant

permutations are omega-dual to chromatic quasisymmetric functions of indifference graphs, first proved
in [CHSS16].

Corollary 3.6. If m : [𝑛] → [𝑛] is a Hessenberg function, then

ch(𝑞
ℓ (𝑤m )

2 𝐶 ′
𝑤m ) = 𝜔(csf𝑞 (𝐺m)).

Proof. If m0, m1, and m2 are Hessenberg functions as in Example 3.5, then applying Corollary 3.2
to 𝑤m1 , we see that 𝑤m1 𝑠 = 𝑤m2 and 𝑧 = 𝑤m0 . This means that the relation in item (1) is pre-
cisely the modular law (see [GP13] and [OS14]). By [AN21a, Theorem 1.1], the modular law is suf-
ficient to characterize the values of ch(𝐶 ′

𝑤 ) for w codominant from the values ch(𝑞
ℓ (𝑤𝜆 )

2 𝐶 ′
𝑤𝜆
). Since

ch(𝑞
ℓ (𝑤𝜆 )

2 𝐶 ′
𝑤𝜆
) = 𝜆!𝑞ℎ𝜆 = 𝜔(𝐺m𝜆 ), the result follows. �

Remark 3.7. We set 𝐻𝑐𝑜𝑑
𝑛 to be the C(𝑞 1

2 )-linear subspace of 𝐻𝑛 generated by 𝐶 ′
𝑤 , for w codominant.

From [AN21a], the kernel of the linear map

ch: 𝐻𝑐𝑜𝑑
𝑛 → C(𝑞

1
2 ) ⊗ Λ

is generated by the relations in Corollary 3.2 item (1) for w codominant.

Question 3.8. Is the kernel of the linear map ch: 𝐻𝑛 → C(𝑞
1
2 ) ⊗ Λ generated by the relations in

Equation (3.1)?

3.1. The geometry of Y𝑤 (𝑋) when w is smooth

In the proof of Theorem 1.6 in Section 2, we saw that for each smooth permutation 𝑤 ∈ 𝑆𝑛 there
exists a codominant permutation 𝑤′ such that the moment graphs of Y𝑤 (𝑋) and Y𝑤′ (𝑋) are the same
and, in particular, they have isomorphic equivariant cohomology. We also saw that all the varieties
Y𝑤 (𝑋) associated to Coxeter elements w are isomorphic. We make the following conjecture which is a
strengthening of Theorem 1.6.
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Conjecture 3.9. Let 𝑋 ∈ 𝑆𝐿𝑛 (C) be regular semisimple and 𝑤 ∈ 𝑆𝑛 smooth. Then there exists a
codominant permutation 𝑤′ such that Y𝑤 (𝑋) and Y𝑤′ (𝑋) are homeomorphic.

We remark that the corresponding statement for Schubert varieties is false, for instance Ω3142,𝐹•

is not homeomorphic to Ω2341,𝐹•
(and this is the only Schubert variety associated with a codominant

permutation with the same Poincaré polynomial as of Ω3142,𝐹•
). On the other hand, both 3142 and 2341

are Coxeter elements so that Y3142(𝑋) is isomorphic to Y2341(𝑋) if X is regular semisimple.
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