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Abstract
This paper examines the value-at-risk (VaR) implications of mean-variance hedging. We derive an equivalence
between the VaR-based hedge and the mean-variance hedging. This method transfers the investor’s subjective risk-
aversion coefficient into the estimated VaR measure. As a result, we characterize the collapse probability bounds
under which the VaR-based hedge could be insignificantly different from the minimum-variance hedge in the
presence of estimation risk. The results indicate that the squared information ratio of futures returns is the primary
factor determining the difference between the minimum-variance and VaR-based hedges.

1. Introduction

The expected utility framework is widely used in futures hedging (see [9,17]). Specifically, mean-
variance hedging (MVH) with a single risk attitude parameter offers an equivalent to exponential utility
hedging under the normality assumption. The MVH investor aims to maximize the hedged return minus
the risk in terms of the variance multiplied by a positive risk-aversion coefficient (𝛾) that measures the
degree of risk aversion. The larger the value of 𝛾, the more risk-averse the investor is. Hence, the MVH
decision focuses on the tradeoff between a higher return, which is desirable, and a higher variance,
which is undesirable for investors with greater risk aversion. Thus, higher hedged risk should be offset
by a higher return. The tradeoff depends on the degree of risk aversion.

Let us examine different index-futures combinations, assuming all the hedge ratios. We graph the
VaR-based hedged boundary as the best possible portfolios on the return-variance plane. The vertex of
the hedged boundary is the minimum-variance (MV) hedge with an infinite 𝛾. Note that 𝛾 reflects the
slope of the secant line (the sharpness) between a particular MVH and the MV hedge.

Classifying futures contracts as financial derivatives does not inherently make them more or less
risky than other financial instruments. Indeed, futures hedging is primarily used to reduce traders’
overall exposure to risk. Although the MV hedge is popular in reality, futures can be very risky since
investors take speculative positions with a generous amount of leverage. For example, Aït-Sahalia and
Brandt [1] p. 1316 use 𝛾 = 1, 2, 5, 10, 20 for empirical study in which 𝛾 = 1, 2 may locate the MVH far
away from the MV hedge on the VaR-based hedged boundary. However, because MVH is sensitive to
the risk-aversion coefficient used, it is challenging for investors to precisely state their risk attitude.

One of the popular approaches to combatting risk-aversion estimation in portfolio selection is to
maximize the portfolio return subject to a value-at-risk (VaR) measure. The VaR is defined as a threshold
return with a maximum collapse probability, defined as the likelihood that the hedged return falls below
the threshold return. This method transforms the investor’s subjective risk-aversion coefficient into an
estimated VaR-based basis. For instance, Roy [22] and Telser [27] present the safety-first portfolio theory.
Shefrin and Statman [26] translate the safety-first approach into a behavioral style portfolio that is the
same as expected wealth optimization with a VaR constraint. Das et al. [10] p. 318 suggest that investors
can better express their threshold return for a portfolio and maximum collapse probability below the
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goal than state their risk-aversion coefficient. In these authors’ framework, portfolio optimization is
equivalent to the safety-first optimization in Telser [27]. Bodnar et al. [4] also show that the mean-
variance optimization with a risk-aversion coefficient coincides with the upper section of the efficient
frontier in the mean-variance space. Chiu [7] presents a closed-form solution to link the mean-variance
optimization and the VaR-based portfolio.

Another method employs the global minimum-variance portfolio (GMVP) instead of estimating the
risk attitude. For example, Bodnar and Okhrin [3] indicate that the GMVP is statistically justified for the
mean-variance portfolio with an extensive range of risk-aversion coefficients. Chiu [6] extends Bodnar
and Okhrin’s work to determine the 𝛾’s boundaries that significantly distinguish the MV hedge and the
MVH based on the statistical errors in the presence of estimation risk.

This paper integrates two approaches into a manageable VaR-based hedge. First, we extend the
VaR approach to futures hedging based on the estimated VaR constraint. This method derives the
equivalence between VaR-based and mean-variance hedging that converts an investor’s subjective 𝛾
into an estimated VaR measure. Second, we determine the boundaries of the collapse probabilities that
significantly distinguish the MV and VaR-based hedges in the presence of estimation risk. Then, we
employ the regression method to validate the significance in terms of three criteria: the hedge ratio (the
regression coefficient), the hedged variance (the error’s variance), and the hedged return (the regression
intercept).

The paper proceeds as follows. In Section 2, we review the MV hedge and MVH. In Section 3, we
present the VaR-based hedge. In Section 4, we establish the significance tests. In Section 5, we illustrate
the significance tests using S&P500 futures hedging. The conclusions follow in Section 6.

2. Futures hedge

This section reviews two major methods for obtaining the futures hedge ratio. We first assume that the
hedged portfolio is composed of 𝐶S units long spot position and 𝐶F units of the short futures position.
Let 𝑆𝑡 and 𝐹𝑡 denote the spot and futures prices at time 𝑡, respectively. In this paper, the hedge ratio is
the comparative value of futures positions (𝐶F𝐹𝑡 ) to the cash positions (𝐶S𝑆𝑡 ). Thus, the hedged return
with the hedge ratio 𝑏 is given as:

𝑟 =
𝐶S𝑆𝑡𝑟S,𝑡 − 𝐶F𝐹𝑡𝑟F,𝑡

𝐶S𝑆𝑡
= 𝑟S,𝑡 − 𝑏𝑟F,𝑡 , (1)

where 𝑟S,𝑡 = (𝑆𝑡+1 − 𝑆𝑡 )/𝑆𝑡 and 𝑟F,𝑡 = (𝐹𝑡+1 − 𝐹𝑡 )/𝐹𝑡 are one-period returns on the spot and futures
positions with the expected returns vector (𝜇S, 𝜇F) at date 𝑡. Using the realized returns (𝑟S,𝑡 , 𝑟F,𝑡 ) at
date 𝑡 = 1, 2, . . . , 𝑛, we define the sample means (�̂�S, �̂�F), variances (�̂�2

S , �̂�2
F ), and covariance (�̂�SF) as

follows:

( �̂�S, �̂�F) =
(∑𝑛

𝑡=1 𝑟S,𝑡

𝑛
,

∑𝑛
𝑡=1 𝑟F,𝑡

𝑛

)
,

(�̂�2
S , �̂�

2
F ) =

(∑𝑛
𝑡=1(𝑟S,𝑡 − �̂�S)2

𝑛
,

∑𝑛
𝑡=1(𝑟F,𝑡 − �̂�F)2

𝑛

)
,

�̂�SF =

∑𝑛
𝑡=1(𝑟S,𝑡 − �̂�S)(𝑟F,𝑡 − �̂�F)

𝑛
.

(2)

2.1. Minimum-variance hedge

The objective of the MV hedge is to minimize risk in terms of portfolio variance in Eq. (1):

min
𝑏
𝜎2 = min

𝑏
(𝜎2

S − 2𝑏𝜎SF + 𝑏2𝜎2
F ), (3)
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where 𝜎2
S , 𝜎2

F , and 𝜎SF are the variances of 𝑟S and 𝑟F as well as the covariance between 𝑟S and 𝑟F.
Alternatively, Ederington’s [15] regression is the most practical approach employed to test the MV
hedge:

𝑟S,𝑡 = 𝑎 + 𝑏𝑟F,𝑡 + 𝜖𝑡 , 𝜖𝑡 ∼ 𝑁 (0, 𝜎2). (4)

The ordinary least squares method estimates the MV hedge ratio, hedged variance, and hedged return:

�̂�𝐿 = �̂�M =
�̂�SF

�̂�2
F
,

�̂�𝐿 = �̂�M =
�̂�S�̂�

2
F − �̂�F�̂�SF

�̂�2
F

,

�̂�2
𝐿 =

∑𝑛
𝑡=1 [𝑟S,𝑡 − �̂�𝐿 − �̂�𝐿𝑟F,𝑡 ]2

𝑛 − 2
=

𝑛

𝑛 − 2

(
�̂�2

S �̂�
2
F − �̂�2

SF

�̂�2
F

)
=
𝑛�̂�2

M
𝑛 − 2

.

(5)

Under the returns’ normality assumption, the simple regression approach also provides the sampling
distributions of Eq. (5).

2.2. Mean-variance hedging

Previous studies also use intuitive expected utility maximization to determine the hedging policy based
on either the quadratic utility function or the jointly normal return distribution. For example, Khoury
and Martel [17] maximize the expected exponential utility to determine the hedge ratio:

max
𝑏

[
1
𝛾
(1 − 𝐸 (𝑒−𝛾 (𝑟S−𝑏𝑟F) ))

]
. (6)

Assuming that the hedged return is normally distributed, this optimization is equivalent to maximizing
MVH with a parameter 𝛾 (see [16])1

max
𝑏
𝑄 = max

𝑏

[
𝜇S − 𝑏𝜇F − 𝛾

2
(𝜎2

S − 2𝑏𝜎SF + 𝑏2𝜎2
F )

]
. (7)

In the MVH framework, investors consider the risk-aversion coefficient as the essential component
while associating high levels of uncertainty with a greater probability of higher returns. The following
results outline several well-known MVH properties for comparison with the VaR-based hedge.

Lemma 1. Assume that the MVH investor has a risk-aversion 𝛾. The optimal MVH hedge ratio and the
parametric system (𝜎2

𝑈 , 𝜇𝑈 ) are given by:

𝑏𝑈 = 𝑏M − 𝜇F

𝛾𝜎2
F
, 𝜎2

𝑈 = 𝜎2
M + 𝜇2

F

𝛾2𝜎2
F
, 𝜇𝑈 = 𝜇M + 𝜇2

F

𝛾𝜎2
F
. (8)

Moreover, the slope of the secant line reflects the steepness between the MVH and MV hedges

𝜇M + 𝜇2
F/𝛾𝜎2

F − 𝜇M

𝜎2
M + 𝜇2

F/𝛾2𝜎2
F − 𝜎2

M
= 𝛾. (9)

1Another approach treats MVH as the general continuous time semimartingale model based on the minimum mean squared error. For instance,
Duffie and Richardson [13] provide closed-form solutions under the mean-variance and quadratic objectives. Schweizer [23,24] extends the MVH
problem using the continuous-time martingale and proposes the variance-optimal probability measure. Pham [20] develops the semimartingale
price process for continuous risk minimization and MVH. Černý and Kallsen [5] present a general semimartingale structure for the discontinuous
stochastic MVH. The comprehensive reviews see Cont [8] pp. 1177–1181 and Eberlein and Kellsen [14] pp. 595–615.
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As a result, the secant line between the MVH and MV hedges has an intercept in the mean-variance
plane:

�̃� = 𝜇M − 𝛾𝜎2
M. (10)

Equation (8) shows that the larger the 𝛾, the closer the MVH hedge is to the MV hedge, and vice
versa. The MVH investor chooses the MV hedge as 𝛾 approaches infinity.

Note that the application of the MVH requires knowledge of assigning the risk-aversion coefficient.
However, it is difficult to state how the investor’s risk attitude should be in practice. Previous studies
usually attribute 𝛾 between 1 (the lowest 𝛾) and 20 (the highest 𝛾) to an investor. For example, Pindyck
[21] p. 183 highlights that an investor’s reasonable estimate of 𝛾 should range from 3 to 4. Aït-Sahalia
and Brandt [1] p. 1316 use 𝛾 = 2, 5, 10, 20 for empirical study. DeMiguel et al. [11] p. 1944 employ
𝛾 = 1, 2, 3, 4, 5, 10 to examine asset pricing robustness.

On the other hand, different studies could present divergent 𝛾 estimates for the same portfolio. For
example, an often-quoted estimate of S&P500 risk-aversion is Bliss and Panigirtzoglou’s [2] p. 429
option-implied 𝛾. Their estimates are 4.36 for the 6-week horizon and 5.22 for the 5-week horizon.
Das et al. [10] also suggest a VaR-constraint approach instead of using vague risk-aversion coefficients
to combat the risk-aversion estimation in portfolio selection. They suggest that investors are better at
expressing their threshold return for a portfolio and maximum collapse probability below the goal than
stating their risk-aversion coefficient.

3. Futures hedge based on the VaR criterion

This section presents the first main result and employs the VaR-constraint approach to solve the futures
hedging problem.

3.1. VaR-based futures hedge

Roy’s [22] safety-first rule minimizes the collapse probability with a threshold return “ℎ”. Equivalently,
the VaR-constraint optimization maximizes the threshold return given a collapse probability “𝛼” in
Telser [27]. The objective value function of the futures hedge is given as:

𝑃(𝑟S − 𝑏𝑟F ≤ ℎ) ≤ 𝛼. (11)

The feasible set of Eq. (11) must satisfy the following inequality:

𝑃
���
𝑟S − 𝑏𝑟F − (𝜇S − 𝑏𝜇F)√
𝜎2

S − 2𝑏𝜎SF + 𝑏2𝜎2
F

≤ ℎ − (𝜇S − 𝑏𝜇F)√
𝜎2

S − 2𝑏𝜎SF + 𝑏2𝜎2
F

���� ≤ 𝛼. (12)

We apply the inverse of the cumulative normal function to Eq. (12) based on the return’s normality
assumption:

ℎ ≤ (𝜇S − 𝑏𝜇F) +Φ−1(𝛼)
√
𝜎2

S − 2𝑏𝜎SF + 𝑏2𝜎2
F , (13)

where Φ(·) denotes the cumulative standard normal distribution function. To obtain a feasible solution
for Eq. (13), we formulate the objective function of the short hedge as follows:

max
𝑏
ℎ = max

𝑏
(𝜇S − 𝑏𝜇F +Φ−1(𝛼)

√
𝜎2

S − 2𝑏𝜎SF + 𝑏2𝜎2
F ). (14)

The following result presents the main result of the VaR-based hedge.
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Theorem 1. The necessary and sufficient conditions (NSC) for the VaR hedge are as follows:⎧⎪⎪⎨⎪⎪⎩
Φ−1(𝛼) < − 𝜇F

𝜎F
< 0, if the futures’ return is positive ( �̂�F > 0),

Φ−1(𝛼) < 𝜇F

𝜎F
< 0, if the futures’ return is negative ( �̂�F < 0).

(15)

Under the NSC, the optimal VaR-based hedge ratio is given by:

𝑏V = 𝑏M −
√

𝜎2
M

[Φ−1(𝛼)]2 − (𝜇2
F/𝜎2

F )
× 𝜇F

𝜎2
F
, (16)

where the hedged return and variance are given by:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜇V = 𝜇M +

√
𝜎2

M

[Φ−1(𝛼)]2 − (𝜇2
F/𝜎2

F )
× 𝜇2

F

𝜎2
F
,

𝜎2
V =

𝜎2
M [Φ−1(𝛼)]2

[Φ−1(𝛼)]2 − (𝜇2
F/𝜎2

F )
.

(17)

Proof. The first-order condition of the VaR-based optimization (14) is equivalent to solving the following
identity:

−𝜇F

√
𝜎2

S − 2𝑏𝜎SF + 𝑏2𝜎2
F +Φ−1(𝛼)(−𝜎SF + 𝑏𝜎2

F ) = 0.

Denoting the variance relative to 𝑏V as 𝜎2
V = 𝜎2

S − 2𝑏V𝜎SF + 𝑏2
V𝜎

2
F , this implies that the optimal

hedge ratio is an implicit function of the hedged variance:

𝑏V =
Φ−1(𝛼)𝜎SF + 𝜇F𝜎V

Φ−1(𝛼)𝜎2
F

= 𝑏M + 𝜇F𝜎V

Φ−1(𝛼)𝜎2
F
.

To obtain the optimal hedge ratio, we first need to solve the hedged variance relative to 𝑏V:

𝜎2
V = 𝜎2

S − 2𝜎SF

(
Φ−1(𝛼)𝜎SF + 𝜇F𝜎V

Φ−1(𝛼)𝜎2
F

)
+

(
Φ−1(𝛼)𝜎SF + 𝜇F𝜎V

Φ−1(𝛼)𝜎2
F

)2

𝜎2
F

=
𝜎2

S𝜎
2
F − 𝜎2

SF

𝜎2
F

+ 𝜇2
F𝜎

2
V

[Φ−1(𝛼)]2𝜎2
F

= 𝜎2
M + 𝜇2

F𝜎
2
V

[Φ−1(𝛼)]2𝜎2
F
.

Solving the above equation, we obtain:

𝜎2
V =

𝜎2
M [Φ−1(𝛼)]2

[Φ−1(𝛼)]2 − (𝜇2
F/𝜎2

F )
.

Under the NSC, there are two possibilities of the optimal VaR-based hedge. For case (A) with
Φ−1(𝛼) < −𝜇F/𝜎F < 0 or Φ−1(𝛼) < 𝜇F/𝜎F < 0, the VaR-based hedge ratio and the hedged return are
reduced to:

𝑏V = 𝑏M −
√

𝜎2
M

[Φ−1(𝛼)]2 − (𝜇2
F/𝜎2

F )
× 𝜇F

𝜎2
F
,
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and

𝜇V = 𝜇S − 𝑏V𝜇F = 𝜇M +
√

𝜎2
M

[Φ−1(𝛼)]2 − (𝜇2
F/𝜎2

F )
× 𝜇2

F

𝜎2
F
.

Additionally, the second-order condition confirms the optimality since:

𝜕2ℎ

𝜕𝑏2 =
Φ−1(𝛼)
𝜎3

V

[
𝜎2

V𝜎
2
F −

(
𝜇F𝜎V

Φ−1(𝛼)

)2
]
=
𝜎2

F [Φ−1(𝛼)]2 − 𝜇2
F

Φ−1(𝛼)𝜎V
< 0.

For case (B) with Φ−1(𝛼) > 𝜇F/𝜎F > 0 or Φ−1(𝛼) > −𝜇F/𝜎F > 0, then the hedge ratio is:

𝑏V = 𝑏M +
√

𝜎2
M

[Φ−1(𝛼)]2 − (𝜇2
F/𝜎2

F )
× 𝜇F

𝜎2
F
.

However, the second-order condition is not met since:

𝜕2ℎ

𝜕𝑏2 =
Φ−1(𝛼)
𝜎3

V

[
𝜎2

V𝜎
2
F −

(
𝜇F𝜎V

Φ−1(𝛼)

)2
]
=
𝜎2

F [Φ−1(𝛼)]2 − 𝜇2
F

Φ−1(𝛼)𝜎V
> 0.

This completes the proof. �

Comparing the MVH variance in Eqs. (8) to (17), we observe the equivalence between the VaR-based
and MVH hedges:

𝜎2
M

[Φ−1(𝛼)]2 − (𝜇2
F/𝜎2

F )
=

1
𝛾2 .

Solving this identity, we obtain the inverse relation between 𝛼 and 𝛾:

𝛾 =

√
[Φ−1(𝛼)]2 − (𝜇2

F/𝜎2
F )

𝜎2
M

. (18)

More importantly, the threshold return ℎ relative to 𝑏V is linked to the intercept of the line passing
through the MV and VaR-based hedges.

ℎ = (𝜇S − 𝑏V𝜇F +Φ−1(𝛼)
√
𝜎2

S − 2𝑏V𝜎SF + 𝑏2
V𝜎

2
F )

= 𝜇M +
√

𝜎2
M

[Φ−1(𝛼)]2 − (𝜇2
F/𝜎2

F )
× 𝜇2

F

𝜎2
F
+Φ−1(𝛼)

√
𝜎2

M [Φ−1(𝛼)]2

[Φ−1(𝛼)]2 − (𝜇2
F/𝜎2

F )

= 𝜇M +
√

𝜎2
M

[Φ−1(𝛼)]2 − (𝜇2
F/𝜎2

F )
× (𝜇2

F/𝜎2
F − [Φ−1(𝛼)]2)

= 𝜇M −
√

[Φ−1(𝛼)]2 − (𝜇2
F/𝜎2

F )
𝜎2

M
× 𝜎2

M

= 𝜇M − 𝛾𝜎2
M

= �̃�. (19)

To understand the VaR-based hedge more fully, we now graph the VaR-based hedge geometry.
Substituting different values of 𝛼 into a parametric system (17) is equivalent to incorporating 𝛾 into a
parametric system (8), and Figure 1 shows the VaR-based hedge boundary. Note that the curve’s vertex is
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Figure 1. The VaR-based hedge boundary. This figure depicts the equivalence between the VaR-based
hedge and the MVH. The MV hedge with infinite risk-aversion localizes at the curve vertex. The MVH
hedge (𝛾0) and the MVH hedge (𝛾1) denote the hedges in which the investor establishes the futures
hedges using 𝛾0 and 𝛾1, respectively. The slope of the line connecting the MV hedge and the MVH hedge
(𝛾0) equals the risk-aversion coefficient 𝛾0 with a threshold return ℎ0. Similarly, the slope of the line
connecting the MV hedge and the MVH hedge (𝛾1) is equal to the risk-aversion coefficient 𝛾1 with a
threshold return ℎ1. It is evident that the smoother the line connecting the MV and MVH hedges is, the
lower the risk-aversion coefficient associated with the investor, the higher the risk tolerance, and the
farther away the MVH hedge from the MV hedge, and vice versa.

the MV hedge with infinite risk-aversion. There are several implications about the hedge boundary. First,
there are two possibilities for the futures positions. For the case of positive (negative) futures returns, it
is intuitive that the VaR-based investor will short fewer (more) futures hedges than the MV hedge. On
the other hand, Eq. (17) indicates that a higher reward (in terms of 𝜇2

F/𝜎2
F ) leads the VaR-based hedge

away from the MV hedge but also increases the portfolio’s risk (𝜇2
F/𝛾2𝜎2

F ).
Second, as mentioned earlier, VaR-based (MVH) investors may take a significant non-MV hedge

with speculative positions. However, it is well known that transaction costs always impact hedging
effectiveness. Because a particular VaR-based (MVH) hedge corresponds to one unique hedge ratio, for
simplicity, we consider its location on the hedged boundary as the representative hedged cost. Following
the usual analysis of the hedged boundary, we employ the comparative risk-return approach to analyze
the hedged impact. In this vein, Eqs. (18) and (19) show the inverse relation between 𝛼 and 𝛾. Figure 1
shows that the more aggressive VaR-based hedge (𝛼1) is equivalent to an MVH hedge (𝛾1), in which the
slope of the secant line between the MVH and MV hedges equals the risk-aversion coefficient (𝛾1). The
value of 𝛾 also reflects the relative risk-return hedging performance: the steeper the secant line, the more
efficient the VaR-based (MVH) hedge is. Likewise, compared to the aggressive VaR-based hedge (𝛼1),
the MVH hedge (𝛾0) has a higher risk-aversion coefficient (𝛾0 > 𝛾1). In this situation, the conservative
investor would build the VaR-based hedge (𝛼0) with the lower risk tolerance parameter (𝛼0 < 𝛼1) and
the lower threshold return (ℎ0 < ℎ1) since:

𝛼0 = 𝑃(𝑟S − 𝑏𝑟F ≤ 𝜇M − 𝛾0𝜎
2
M)

= 𝑃(𝑟S − 𝑏𝑟F ≤ ℎ0)
≤ 𝑃(𝑟S − 𝑏𝑟F ≤ ℎ1)
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= 𝑃(𝑟S − 𝑏𝑟F ≤ 𝜇M − 𝛾1𝜎
2
M)

= 𝛼1. (20)

Although the MV hedge is popular in reality from the perspective of risk reduction, futures also
allow investors to take a riskier position for speculative purposes. Equation (20) indicates that the
greater the risk-aversion coefficient, the more conservative the VaR-based (MVH) investor is, and the
lower the collapse probability given a lower threshold return. In other words, both the return of the
VaR-based hedge (𝛾1) and its overall exposure to risk increase when the investor takes a speculative
non-MV position with a generous amount of leverage. Nevertheless, its corresponding return would not
offset the higher hedged risk such that the hedged boundary presents the concave-down property. Using
the speculative hedge leads to a relatively inefficient risk-return performance, and the tradeoff depends
on the investor’s degree of risk aversion. This paper transfers the subjective 𝛾’s determination into the
estimated VaR-based judgment.

4. Significance tests for 𝜶

The collapse probability plays an important role in determining the VaR-based hedge. This section
presents the second main result. According to Eq. (16), the VaR-based hedge is approximately equal to
the MV hedge when the collapse probability is very low. Thus, we are interested in testing the following
null hypothesis:

𝐻0 : The MV hedge equals to the VaR-based hedge with a lower 𝛼. (21)

To determine a bound of 𝛼 in which the VaR-based hedge is statistically equivalent to the MV hedge,
we perform the null hypothesis (21) in terms of: (A) the hedge ratio (the regression coefficient), (B) the
hedged variance (the error’s variance), and (C) the hedged return (the regression intercept).

4.1. The hedge ratio test

The hedge ratio represents the hedged cost that also measures hedged effectiveness.2 Thus, we are first
concerned about the equality test of hedge ratios over different collapse probabilities. Note that the
VaR-based hedge ratio in Eq. (16) could be more or less than the MV hedge ratio. If futures returns are
positive, we could possibly build a VaR-based hedge that uses a lower hedge ratio but is statistically
equivalent to the MV hedge. In this case, the hedges other than the MV hedge always have smaller
estimates of the hedge ratio. Thus, hypothesis (21) is given by:

𝐻𝐴0 : 𝑏 = 𝑏0 versus 𝐻𝐴1 : 𝑏 > 𝑏0, if �̂�F > 0. (22)

In another circumstance, the return is negative, and we build a VaR-based hedge that costs more but
is statistically equivalent to the MV hedge. The hypothesis (21) is rewritten as:

𝐻𝐴0 : 𝑏 = 𝑏0 versus 𝐻𝐴1 : 𝑏 < 𝑏0, if �̂�F < 0. (23)

The following result summarizes the significance test based on the hedge ratio.

2The Edertington effectiveness and its corresponding test statistic are defined as follows:

�̂� = 1 − �̂�2

�̂�2
S

and
�̂�
√
𝑛 − 2√

1 − �̂�2
∼ 𝑡𝑛−2.
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Theorem 2. To test the VaR-based hedge ratio in (22)–(23), the insignificant boundary of 𝛼 is given as:

𝛼 ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
𝛼∗ ≡ Φ

��−
√√√
𝑛 − 2 + 𝑡2

𝑛−2;𝛿/2
𝑡2
𝑛−2;𝛿/2

× �̂�F

�̂�F

��� , if �̂�F > 0,

𝛼∗ ≡ Φ
��
√√√
𝑛 − 2 + 𝑡2

𝑛−2;𝛿/2
𝑡2
𝑛−2;𝛿/2

× �̂�F

�̂�F

��� , if �̂�F < 0.

(24)

Proof. The standard regression theory (see [12]) provides the general sampling distribution for
characterizing the regression coefficient’s 𝑡-statistic with 𝑛 − 2 degrees of freedom:

𝑡 =
�̂�𝐿 − 𝑏0√

�̂�2
𝐿/

∑𝑛
𝑡=1(𝑟F,𝑡 − �̂�F)2

∼ 𝑡 (𝑛 − 2).

Thus, the endpoints of the (1 − 𝛿) × 100% confidence interval for the hedge ratio are:

�̂�𝐿 ± 𝑡𝑛−2;𝛿/2

√
�̂�2
𝐿∑𝑛

𝑡=1(𝑟F,𝑡 − �̂�F)2 = �̂�𝐿 ± 𝑡𝑛−2;𝛿/2

√
�̂�2

M

(𝑛 − 2)�̂�2
F
.

Setting the VaR-based hedge ratio to be less than the confidence endpoint:√
�̂�2

M(𝜇2
F/𝜎4

F )
[Φ−1(𝛼)]2 − (𝜇2

F/𝜎2
F )

≤ 𝑡𝑛−2;𝛿/2

√
�̂�2

M

(𝑛 − 2)�̂�2
F
.

Straightforward rearrangement of this inequality yields a range of 𝛼 in Eq. (24) over which the
VaR-based hedge ratio is significantly different from the MV hedge ratio. �

4.2. The hedged variance test

We next focus on the equality test from the risk-reduction view. Because the hedges other than the
MV hedge always have a larger hedged variance, we assess whether the VaR-based hedge significantly
increases the amount of variance compared with the MV hedge. In this case, the null hypothesis (14) is
reduced to:

𝐻𝐵0 : 𝜎2 = 𝜎2
0 versus 𝐻𝐵1 : 𝜎2 < 𝜎2

0 . (25)

The following result summarizes the significance test based on the hedged variance.

Theorem 3. To test the VaR-based hedged variance (16), the insignificant boundary of 𝛼 relative to the
(1 − 𝛿) × 100% confidence level is given as:

𝛼 ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
𝛼∗∗ ≡ Φ

��− �̂�F

�̂�F

√
𝑛

𝑛 − 𝜒2
𝑛−2;(1−𝛿/2)

��� , if �̂�F > 0,

𝛼∗∗ ≡ Φ
�� �̂�F

�̂�F

√
𝑛

𝑛 − 𝜒2
𝑛−2;(1−𝛿/2)

��� , if �̂�F < 0.

(26)

Proof. Seber [25] p. 97 indicates that the sampling distribution of �̂�2
𝐿 is of the form:

(𝑛 − 2)�̂�2
𝐿

𝜎2 =
𝑛�̂�2

M
𝜎2 ∼ 𝜒2

𝑛−2.
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Thus, the (1 − 𝛿) × 100% confidence interval for the hedged variance is:[
𝑛�̂�2

M

𝜒2
𝑛−2;𝛿/2

,
𝑛�̂�2

M

𝜒2
𝑛−2;(1−𝛿/2)

]
.

The VaR-based hedged variance varies according to the value of 𝛼. We evaluate the statistical
insignificance using the 𝜒2 statistic, which tests the equality of the MV and VaR-based hedge variances.
Assume that the VaR-based hedge’s variance �̂�2

V must be less than the upper bound of the confidence
interval:

�̂�2
M [Φ−1(𝛼)]2

[Φ−1(𝛼)]2 − ( �̂�2
F/�̂�2

F )
≤ 𝑛�̂�2

M

𝜒2
𝑛−2;(1−𝛿/2)

.

Solving this inequality, we obtain a range of 𝛼 in Eq. (26) over which the VaR-based hedged variance
is significantly different from the MV hedged variance. �

4.3. The hedged return test

Additionally, we intuitively test the equivalence based on the hedged returns. Because the MVH is
located at the upper hedge boundary, we assess whether the MVH will significantly increase the return
compared to the MV hedge. In this case, hypothesis (14) is reduced to:

𝐻𝐵0 : 𝜇 = 𝜇0 versus 𝐻𝐵1 : 𝜇 < 𝜇0. (27)

The following result summarizes the significance test based on the hedged return.

Theorem 4. To test the VaR-based hedged variance (27), the insignificant boundary of 𝛼 is given as:

𝛼 ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
𝛼∗∗∗ ≡ Φ

��−
√√√
𝑡2
𝑛−2;𝛿/2 (1 + 𝜇2

F/𝜎2
F ) + (𝑛 − 2)(𝜇2

F/𝜎2
F )

𝑡2
𝑛−2;𝛿/2 (1 + 𝜇2

F/𝜎2
F )

× �̂�F

�̂�F

��� , if �̂�F > 0,

𝛼∗∗∗ ≡ Φ
��
√√√
𝑡2
𝑛−2;𝛿/2 (1 + 𝜇2

F/𝜎2
F ) + (𝑛 − 2)(𝜇2

F/𝜎2
F )

𝑡2
𝑛−2;𝛿/2 (1 + 𝜇2

F/𝜎2
F )

× �̂�F

�̂�F

��� , if �̂�F > 0.

(28)

Proof. The simple regression theory (see [12] p. 27) characterizes that the regression coefficient is
t-distributed with 𝑛 − 2 degrees of freedom:

�̂�𝐿 − 𝑎√
�̂�2
𝐿 [(1/𝑛) + ( �̂�2

F/
∑𝑛
𝑡=1(𝑟F,𝑡 − �̂�F)2)]

∼ 𝑡 (𝑛 − 2).

Thus, the endpoints of the (1 − 𝛿) × 100% confidence interval for the hedged return are given by:

�̂�𝐿 ± 𝑡𝑛−2;𝛿/2

√√√
�̂�2
𝐿

[
1
𝑛
+ �̂�2

F∑𝑛
𝑡=1(𝑟F,𝑡 − �̂�F)2

]
= �̂�M ± 𝑡𝑛−2;𝛿/2

√√√
�̂�2

M
𝑛 − 2

(
1 + �̂�2

F

�̂�2
F

)
.

Setting the VaR-based hedge’s return to be less than the confidence endpoint:√
�̂�2

M

[Φ−1(𝛼)]2 − (𝜇2
F/𝜎2

F )
× 𝜇2

F

𝜎2
F
≤ 𝑡𝑛−2;𝛿/2

√√√
�̂�2

M
𝑛 − 2

(
1 + �̂�2

F

�̂�2
F

)
and solving, we obtain a range of 𝛼 in Eq. (28). �
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Table 1. Summary statistics.

Stock index Futures Other parameters

Number Return Variance Return Variance Covariance IR

2000–2009 522 −0.0143% 7.5948% −0.0154% 7.9215% 7.6260% −0.0055
2010–2019 522 0.2229% 3.7290% 0.2240% 3.7959% 3.7109% 0.1150
2000–2019 1044 0.1043% 5.6706% 0.1043% 5.8674% 5.6772% 0.0431

This table reports the key statistics for the S&P500 stock index and the corresponding index futures. It
decomposes the estimation period into two subsamples. Specifically, both stock index and index futures
increase from negative weekly returns during the 2000–2009 subperiod to positive weekly returns during
the 2010–2019 subperiod. All the sample data are downloaded from the website, https://investing.com/
indices/indices-futures.

5. Illustration

Stock index futures are usually considered leading indicators to determine market sentiment. In this
section, we employ the S&P500 stock index and the corresponding index futures to illustrate the
safety-first hedge.

5.1. Estimation

We begin by providing an overall view of the estimated parameters. The full estimation period 2000–2019
is decomposed into two subperiods. The subperiods 2000–2009 and 2010–2019 have a total of 522
weekly returns for each index and index futures. All of the historical returns are downloaded from
the website, https://investing.com/indices/indices-futures. Table 1 reports the summary statistics. The
results show that both stock index and index futures increase from negative weekly returns during
the 2000–2009 subperiod to positive weekly returns during the 2010–2019 subperiod. In particular,
the 2000–2009 subperiod has a relatively small squared IR (−0.0055)2 compared to the 2010–2019
subperiod’s squared IR (0.11502).

To investigate the impact of futures’ IR, Table 2 illustrates the safety-first hedge ratio, return, variance,
and risk-aversion coefficient at 5%, 10%, 20%, and 30% collapse probability. Panel A shows that the
safety-first hedge ratio is an increasing function of 𝛼when the 2000–2009 subperiod has negative futures
returns. In this case, the safety-first hedge has more spot positions since the futures return brings an
inverse effect to the hedged portfolio. On the other hand, Panel B indicates that the safety-first hedge
ratio is a decreasing function of 𝛼 when the 2010–2019 subperiod has positive futures returns. Panel C
has a similar result as Panel B. In addition, Panel B shows that the 𝛾 at the 5%, 10% collapse probability
is close to Bliss and Panigirtzoglou’s estimates of 4.36 and 5.22.

5.2. Significant test between the MV and safety-first hedges

To compute the bound of 𝛼 in which the safety-first hedges are statistically equivalent to the MV hedge,
this section performs significance tests. Table 3 reports the estimated collapse probability bounds at
the 5% significance level. The corresponding threshold returns (ℎ) and risk-aversion coefficients (𝛾)
are reported in parentheses and brackets, respectively. For the case of the 2000–2009 sample, column
2 reports the results using the hedge ratio 𝑃(𝑟𝑝 ≤ −0.0314) = 47.464% and 𝛾 = 0.1259; column 3
reports the results using the hedged variance 𝑃(𝑟𝑝 ≤ −0.0069) = 49.375% and 𝛾 = 0.0292; column 4
reports the results based on the hedged return 𝑃(𝑟𝑝 ≤ −0.0003) = 49.782% and 𝛾 = 0.0007. In this
subsample, there are wide regions in which the 𝛼 bounds (and 𝛾 bounds) of the safety-first hedge could
be insignificantly different from the MV hedge.
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Table 2. Estimated safety-first hedges at different collapse probabilities.

Collapse probability Hedge ratio Hedged return Hedged variance Threshold Risk-aversion

Panel A: 2000–2009
MV hedge 0.962697 0.000461 0.253303
5% Safety-first hedge 0.963291 0.000470 0.253306 −0.827376 3.268172
10% Safety-first hedge 0.963459 0.000473 0.253307 −0.644527 2.546315
15% Safety-first hedge 0.963639 0.000476 0.253310 −0.521160 2.059280
20% Safety-first hedge 0.963857 0.000479 0.253313 −0.423111 1.672197
25% Safety-first hedge 0.964144 0.000484 0.253319 −0.338993 1.340112
30% Safety-first hedge 0.964559 0.000490 0.253330 −0.263451 1.041884

Panel B: 2010–2019
MV hedge 0.977618 0.003902 0.101162
5% Safety-first hedge 0.966180 0.006464 0.101659 −0.517982 5.158864
10% Safety-first hedge 0.962914 0.007196 0.101983 −0.402065 4.013024
15% Safety-first hedge 0.959398 0.007983 0.102423 −0.323712 3.238496
20% Safety-first hedge 0.955108 0.008944 0.103086 −0.261275 2.621301
25% Safety-first hedge 0.949380 0.010227 0.104189 −0.207487 2.089602
30% Safety-first hedge 0.940937 0.012118 0.106270 −0.158832 1.608636

Panel C: 2000–2019
MV hedge 0.967588 0.003343 0.177356
5% Safety-first hedge 0.963035 0.003818 0.177478 −0.689128 3.904410
10% Safety-first hedge 0.961743 0.003952 0.177557 −0.536061 3.041360
15% Safety-first hedge 0.960358 0.004097 0.177663 −0.432761 2.458913
20% Safety-first hedge 0.958681 0.004272 0.177822 −0.350631 1.995834
25% Safety-first hedge 0.956465 0.004503 0.178082 −0.280130 1.598326
30% Safety-first hedge 0.953263 0.004837 0.178560 −0.216756 1.240997

This table illustrates the S&P500 safety-first hedge for distinct collapse probabilities. Panel A shows
that the safety-first hedge ratio is an increasing (decreasing) function of 𝛼 (𝛾) when the futures return is
negative. Panel B indicates that the safety-first hedge ratio is a decreasing (increasing) function of 𝛼 (𝛾)
when the futures return is positive. Panel C reports the full sample results that are similar to Panel B.

For the case of the 2010–2019 subsample, column 2 reports the results using the hedge ratio
𝑃(𝑟𝑝 ≤ −0.4205) = 9.022% and 𝛾 = 4.1945; column 3 reports the results using the hedged variance
𝑃(𝑟𝑝 ≤ −0.0945) = 37.064% and 𝛾 = 0.9731; column 4 reports the results based on the hedged return
𝑃(𝑟𝑝 ≤ −0.0456) = 42.331% and 𝛾 = 0.4891. In this subsample, there are large differences in the three
insignificant 𝛼 bounds (and 𝛾 bounds). Note that the results also depend on the sample size, and the
results of the full period 2000–2019 are between two subsamples.

To deliver the results visually in the return-variance space, Figure 2 plots the sample hedged boundary
and compares the insignificant hedged boundary from the hedge ratio test with boundaries from the
hedged variance as well as return tests. We also add the conventional 5% significance level lines in
Figure 2, in which the lower parts of the sample hedged boundary below the 5% significance line
represent the statistical equivalence between MV and safety-first hedges corresponding to different
tests. Figure 2(A) plots the hedged return in the 10−3 scale that indicates the small differences of the
5% significance lines between tests. Thus, there are wide regions such that the 𝛼 bounds (ranging from
47.464% to 49.782%) of the safety-first hedge could be statistically equivalent to the MV hedge. In
Figure 2(B), the return magnitude has been transformed to 10−2. This straightens out the graph and
yields 𝛼 bounds ranging between 9.022% and 42.331%. There are large differences in the three upper
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Table 3. Upper bounds of insignificant collapse probability.

Period Number Hedge ratio test Hedged variance test Hedged return test

2000–2009 522 47.464% 49.375% 49.782%
(−0.0314) (−0.0069) (−0.0003)
[0.1259] [0.0292] [0.0007]

2010–2019 522 9.022% 37.064% 42.331%
(−0.4205) (−0.0945) (−0.0456)
[4.1956] [0.9731] [0.4891]

2000–2019 1044 23.894% 44.156% 47.892%
(−0.2950) (−0.0559) (−0.0096)
[1.6821] [0.3338] [0.0728]

This table estimates the parameters given the 95% confidence level (𝛿 = 5%). The upper bound of
the collapse probability using the hedge ratio, hedged variance, and hedged return tests are computed
according to Eqs. (24), (26), and (28). The corresponding threshold returns and risk-aversion coefficients
are reported in parentheses and brackets, respectively. Taking the 2000–2009 hedge ratio test as an
example, column 2 reports that 𝑃(𝑟𝑝 ≤ −0.0314) = 47.464% with a risk-aversion coefficient 𝛾 =
0.1259. In all cases, the hedge ratio test yields the narrowest region in which the safety-first is statistically
equivalent to the MV hedge. Then, the hedged variance test gives a wider region, and the hedged return
test produces the widest insignificant region.

Figure 2. Insignificant 𝛼 bounds of safety-first hedges. This figure depicts the VaR-based hedges that
are statistically equivalent to the MV hedge based on various significance tests. The 5% significance
level lines indicate that the lower parts of the sample hedged boundary below the line represent
the statistical equivalence between the MV and VaR-based hedges. (A) reports the small differences of
the 5% significance lines ranging from 𝛼∗ = 47.464% to 𝛼∗∗∗ = 49.782%. In (B), the return magnitude
has been transformed to 10−2. This yields 𝛼 bounds ranging between 𝛼∗ = 9.022% and 𝛼∗∗∗ = 42.331%.
Note that the difference is primarily driven by the squared information ratio of the futures return.

bounds of 𝛼 and 𝛾. Note that the upper bounds of 𝛼 and 𝛾 using the hedge ratio test change drastically.
This difference is primarily driven by the squared information ratio of the futures return.

In sum, we have two observations. First, the hedge ratio test yields the narrowest region in which
the safety-first hedge is statistically equivalent to the MV hedge among all the cases. Then, the hedged
variance test gives a wider region and the hedged return test produces the widest insignificant region of
𝛼. Second, we observe that the upper bounds of insignificant collapse probabilities depend critically on
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the squared information ratio of the futures return. All the tests indicate that the safety-first hedge with
a broad range of collapse probabilities could be insignificantly different from the MV hedge.

Remark 1. We also use the world’s major indices to examine the consistency of the significance tests
proposed. These market indices with different monthly data (from January 2014 to December 2018)
contain France, Germany, Japan, and the UK from the G7 and Brazil, China, India, and Russia from
the BRICS. The empirical results present similar representativeness. For brevity, these results are not
reported here but are available on request.

6. Conclusion

Mean-variance hedging (MVH) with a single risk-aversion coefficient has long been of interest to traders
and researchers. While it is acknowledged that the application of MVH requires an accurate risk-aversion
coefficient, these limitations make MV hedges popular in reality. An equivalence is constructed between
the VaR-based hedge and the MVH hedge. In the VaR-based hedge, the MVH investor’s subjective risk-
aversion coefficient is replaced with the estimated and manageable VaR measure. In other words, we
show that the higher the investor’s risk-aversion coefficient, the lower is the collapse probability given
a threshold return, or the lower is the threshold return given a collapse probability.

Because the MVH hedge with a large risk-aversion coefficient is approximately equal to the MV
hedge, we construct the collapse probability intervals to identify the insignificant safety-first hedges
at various significance levels. The simulated evidence shows that the range of the collapse probability
interval is positively related to the squared information ratio of futures. Overall, the hedge ratio test is
more significant at rejecting the equivalence between hedges than the hedged variance. Our results are
similar to Bodnar and Okhrin’s conclusion that the MV hedge is statistically justified for the safety-first
hedge with an extensive range of collapse probabilities.

Acknowledgments. The author is grateful to the Editor and Reviewer for their helpful suggestions, which improved the presen-
tation of the paper. The author also would like to thank Investing.com for providing data on its website for our simulations. This
work is partially supported by the National United University (111-NUUPRJ-01).

References
[1] Aït-Sahalia, Y. & Brandt, M.W. (2001). Variable selection for portfolio choice. Journal of Finance 56: 1297–1351.
[2] Bliss, R.R. & Panigirtzoglou, N. (2004). Option-implied risk aversion estiamtes. Journal of Finance 68: 407–446.
[3] Bodnar, T. & Okhrin, Y. (2013). Boundaries of the risk-aversion coefficient: Should we invest in the global minimum

variance portfolio? Applied Mathematics and Computation 219: 5440–5448.
[4] Bodnar, T., Parolya, N., & Schmid, W. (2013). On the equivalence of quadratic optimization problems commonly used in

portfolio theory. European Journal of Operational Research 229: 637–644.
[5] Černý, A. & Kallsen, J. (2007). On the structure of general mean-variance hedging strategies. Annals of Probability 35:

1479–1531.
[6] Chiu, W.Y. (2021). Mean-variance hedging in the presence of estimation risk. Review of Derivatives Research 24: 221–241.
[7] Chiu, W.Y. (2021). Safety-first portfolio selection. Mathematics and Financial Economics 15: 657–674.
[8] Cont, R. (2010). Encyclopedia of quantitative finance. New York: John Wiley & Sons.
[9] Cui, Y. & Feng, Y. (2020). Composite hedge and utility maximization for optimal futures hedging. International Review of

Economics and Finance 68: 15–32.
[10] Das, S., Markowitz, H., Scheid, J., & Statman, M. (2010). Portfolio optimization with mental accounts. Journal of Financial

and Quantitative Analysis 45: 311–334.
[11] DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/N portfolio

strategy? Review of Financial Studies 22: 1915–1953.
[12] Draper, N. & Smith, H. (1981). Applied regression analysis, 2nd ed. New York: John Wiley & Sons.
[13] Duffie, D. & Richardson, H.R. (1991). Mean-variance hedging in continuous time. Annals of Applied Probability 1: 1–15.
[14] Eberlein, E. & Kallsen, J. (2019). Mathematical finance. Switzerland: Springer.
[15] Ederington, L.H. (1979). The hedging performance of the new futures markets. Journal of Finance 43: 157–170.
[16] Hsin, C.W., Kuo, J., & Lee, C.F. (1994). A new measure to compare the hedging effectiveness of foreign currency futures

versus options. Journal of Futures Markets 14: 685–707.
[17] Khoury, M.T. & Martel, J.-M. (1985). Optimal futures hedging in the presence of asymmetric information. Journal of

Futures Market 5: 595–605.

Probability in the Engineering and Informational Sciences 831

https://doi.org/10.1017/S0269964822000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000201


[18] Lence, S.H. (1996). Relaxing the assumptions of minimum variance hedging. Journal of Agricultural and Resource
Economics 21: 39–55.

[19] Lien, D. (2007). Optimal futures hedging: Quadratic versus exponential utility functions. Journal of Futures markets 28:
208–211.

[20] Pham, H. (2000). On quadratic hedging in continuous time. Mathematical Methods of Operational Research 51: 315–339.
[21] Pindyck, R.S. (1988). Risk-aversion and determinants of stock market behavior. The Review of Economics and Statistics 70:

183–190.
[22] Roy, A.D. (1952). Safety-first and holding of assets. Econometrica 20: 431–449.
[23] Schweizer, M. (1992). Mean-variance hedging for general claims. Annals of Applied Probability 2: 171–179.
[24] Schweizer, M. (1996). Approximation pricing and the variance-optimal martingle meansure. Annals of Probability 64:

206–236.
[25] Seber, G.A.F. (1977). Linear regression analysis. New York: John Wiley & Sons.
[26] Shefrin, H. & Statman, M. (2000). Behavioral portfolio theory. Journal of Financial and Quantitative Analysis 35: 127–151.
[27] Telser, L. (1956). Safety first and hedging. Review of Economic Studies 23: 1–16.

Cite this article: Chiu WY (2023). A value-at-risk approach to futures hedge. Probability in the Engineering and Informational Sciences
https://doi.org/10.1017/S0269964822000201

W.-Y. Chiu832

37 , 818–832.

https://doi.org/10.1017/S0269964822000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000201
https://doi.org/10.1017/S0269964822000201



