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Static and dynamic stability of pendant drops
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Despite the widespread occurrence of pendant drops in nature, there is still a lack of
combined studies on their dynamic and static stability. This study focuses on the dynamic
and static stability of elongated drops with either a free or pinned contact line on a
plane. We first examine static stability for both axisymmetric and non-axisymmetric
perturbations subject to volume or pressure constraints. The stability limits for volume
and pressure disturbances (axisymmetric) correspond to the maximum volume and
pressure of the drops, respectively. Drops with free contact lines are marginally stable
to non-axisymmetric perturbations because of their horizontal translational invariance,
whereas pinned drops are stable. The linear dynamic stability is then investigated
numerically through a boundary element model, restricted to volume disturbances.
Results show that when the stability limit is reached, the first zonal mode has a
zero frequency, suggesting that the thresholds for static and dynamic stability are
essentially equivalent. Furthermore, natural frequencies experience sharp changes as
the stability limit is approached. Another zero frequency mode associated with the
horizontal motion of the centre of mass is also revealed by the numerical results,
reflecting the horizontal translational invariance of drops with free contact lines. Finally,
the frequency spectrum modified by gravity is explored, resulting in the identification
of five gravity-induced frequency shift patterns. The frequency shifts break the spectral
degeneracy for hemispherical drops with free contact lines, leading to various spectral
orderings according to polar and azimuthal wavenumbers.

Key words: drops, capillary flows, boundary integral methods

1. Introduction

Stability of capillary surfaces is an important topic in the hydrodynamics of multiphase
flow. Capillary surfaces dominated by surface tension may suffer from a variety of classical
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(a) (b)

(c) (d)

Figure 1. Schematic diagrams of (a,b) pressure and (c,d) volume disturbances of partially wetting drops,
with (a,c) free and (b,d) pinned CLs. The solid and dashed lines indicate the disturbance and the base
state, respectively. The blue T-shaped piston is to keep the liquid pressure constant, and the red bars placed
vertically and horizontally indicate the opening and closing of the valve, respectively, to switch between
preserving-pressure and preserving-volume constraints. The stabilising effects of CL pinning and the volume
constraint are indicated by the horizontal and vertical arrows, respectively, with stabilisation along the direction
of the arrows (see also Bostwick & Steen 2015, figure 10).

instabilities, such as the Plateau–Rayleigh instability (Rayleigh 1878; Haefner et al. 2015;
Pham, Perrard & Le Doudic 2020), the Rayleigh–Taylor instability (Daly 1969; Scase
& Hill 2018) and the Faraday instability (Kumar & Tuckerman 1994; Kumar 1996). As
essential tools in the study of capillary instability (Michael 1981; Bostwick & Steen 2015),
static stability analysis predicts the onset of instability, and dynamic stability analysis gives
the growth rate of instability or the vibrational properties in forms of natural frequencies,
damping factors and mode shapes. The stability theory serves as an underlying framework
for an overall understanding of capillary instability.

Partially wetting drops on a plane are typical examples of stability analysis of capillary
surfaces and have continued to receive special attention in recent years (Bostwick &
Steen 2014, 2015, 2016; Chang et al. 2015; Steen, Chang & Bostwick 2019; Montanero &
Ponce-Torres 2020; Ding & Bostwick 2022a,b; McCraney et al. 2022). Prior to performing
static and dynamic stability analysis, in addition to the base state (i.e. the equilibrium
shape), two other conditions are required: (i) whether the contact line (CL) is pinned or
free, and (ii) whether the liquid bulk is subject to a volume or pressure constraint (figure 1).
The free (pinned) CL condition is to keep the contact angle (CL) fixed under disturbances.
Similarly, volume (pressure) disturbances preserve the volume (pressure) of the base state.
The switching between the above pressure and volume constraints might be achieved by
the on–off of the valve in the experiment, as shown in figure 1.
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Figure 2. Volume–pressure diagrams of gravity-free drops with free CLs (α = 90◦, red line) and pinned
CLs (R = 1, green line). Drops with free CLs and hydrophobic (α > 90◦) drops with pinned CLs are
p-unstable (dashed line), while the hydrophilic (α < 90◦) drops with pinned CLs are p-stable (solid line).
The hemispherical drop with a pinned CL (green point) is marginally p-stable. Drops with either free or pinned
CLs are always v-stable.

Static stability is illustrated briefly by gravity-free sessile drops (see also Bostwick &
Steen 2015). Noting that the sessile and pendant drops without gravity are identical, the
following stability analysis also holds true for gravity-free pendant drops. Based on the
Young–Laplace equation, the equilibrium shape is a spherical cap determined by the drop
volume V and contact angle α. After scaling, the Laplace pressure P and volume V of the
liquid are related by V = 8πP−3(2 + cos α)(1 − cos α)2/3, where P = 2 sin α/R, with R
being the CL radius. Obviously, we have dP/dV < 0 for drops with free CLs (see the
red line in figure 2), indicating that all equilibria are unstable to pressure disturbances
(called p-unstable) (Bostwick & Steen 2015); for pinned CLs, the hydrophilic drops
(α < 90◦) are p-stable due to the stabilisation of CL pinning, while the hydrophobic drops
(α > 90◦) are still p-unstable. Thus the hemispherical drop (α = 90◦) with a pinned CL
corresponding to a vertical turning point (TP) is marginally p-stable, consistent with the
Poincaré–Maddocks (PM) theory (Maddocks 1987; Lowry & Steen 1995). By contrast, all
equilibria are stable to volume disturbances (called v-stable) due to the stabilisation of the
volume constraint (Bostwick & Steen 2015). The above stability results can be interpreted
physically as follows: under pressure disturbances, the derivative dP/dV > 0 means that
an increase in the drop volume leads to an increase in the pressure, which expels the liquid
and returns the volume to its initial state, whereas the opposite occurs for dP/dV < 0, thus
giving instability (Bostwick & Steen 2015). However, this explanation does not account for
the volume-preserving drops; they are stable because the configuration of the spherical cap
on a plane has minimum surface energy (Marinov 2012). Both the pinned CL and volume
constraint have a stabilising effect on static stability, as shown in figure 1.

Regarding dynamic stability, the seminal works of Rayleigh (1879) and Lamb (1932)
used linear stability analysis to obtain the natural frequencies λ of a spherical inviscid
drop:

λ2
[k,l] = k (k − 1) (k + 2) , k, l = 0, 1, . . . , l � k, (1.1)
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where k and l are the polar and azimuthal wavenumbers, respectively. The mode shapes
are the spherical harmonics Yl

k, which together with the degenerate frequencies (1.1) are
called the Rayleigh–Lamb (RL) spectrum. For the spherical drop, there are k = 0 and
k = 1 zero frequency modes, which reflect the conservation of volume and the symmetry
of translational invariance, respectively (Bostwick & Steen 2009). Another noteworthy
property of (1.1) is the spectral degeneracy of the RL spectrum, i.e. all modes with
the same k have the same frequency. This spectral degeneracy can be broken by the
external flow (Feng 1992), the drop rotation (Busse 1984) and the external fields (Feng
& Beard 1991; Shi & Apfel 1995). The inclusion of an eccentric bubble in drops also
eliminates the degeneracy (Sumanasekara & Bhattacharya 2017), while the concentric
geometry ensures this degeneracy (Bhattacharya 2016). Interestingly, finite-amplitude
oscillations and viscosity do not break the spectral degeneracy of spherical drops
(Trinh, Zwern & Wang 1982; Tsamopoulos & Brown 1983; Wang, Anilkumar &
Lee 1996).

The RL spectrum is modified for gravity-free sessile drops (Chang et al. 2013). As the
solid surface constrains the drop, only the k + l = even modes are preserved due to the
non-penetration condition. For hemispherical drops with free CLs (called free semi-drops),
the modes still satisfy the RL spectrum (1.1) with k + l = even, thereby maintaining the
spectral degeneracy and resulting in a zero frequency [1, 1] mode that relates to the
horizontal displacement of the centre of mass. Lyubimov, Lyubimova & Shklyaev (2004,
2006) found that the frequencies of free semi-drops are raised by CL pinning, with greater
shifts for larger l. As a consequence, the spectral degeneracy is broken and the [1, 1]
mode has a non-zero frequency. Bostwick & Steen (2014) found that varying contact angle
also breaks the spectral degeneracy, obeying that the larger l, the smaller the frequency
for hydrophilic drops, and the opposite holds for hydrophobic drops. Accordingly, Steen
et al. (2019) introduced the periodic tables of modes to characterise the above spectral
orderings. Sharma & Wilson (2021) presented a fully analytical solution based on a
toroidal analysis for drops with pinned CLs. In these studies, only volume disturbances are
allowed. Recently, Ding & Bostwick (2022b) studied the dynamic stability of spherical
cap drops for pressure disturbances.

Gravity plays a crucial role in the equilibrium and stability of partially wetting
drops, which are elongated (pendant) or flattened (sessile) depending on the direction
of gravity. The equilibria and static stability of sessile and pendant drops have been
studied extensively (Padday 1971; Padday & Pitt 1972, 1973; Pitts 1974; Concus &
Finn 1979; Finn 1986; Del Rıo & Neumann 1997; Sumesh & Govindarajan 2010;
Pozrikidis 2012; Gulec et al. 2019). For equilibrium shapes, there are generally no
closed-form solutions (Padday 1971; Finn 1986), but asymptotic solutions exist for
some limiting cases (Yariv 2022). The stability of pendant drops is of particular
concern compared to sessile drops because pendant drops may be v-unstable while
sessile drops are always v-stable (Padday & Pitt 1973; Pitts 1974). This instability
is closely related to the pinch-off phenomenon and drop detachment from a ceiling
(Schulkes 1994; Henderson, Pritchard & Smolka 1997). The PM theory (Maddocks
1987; Lowry & Steen 1995) can deal with static stability for axisymmetric perturbations,
indicating that the stability limit for volume (pressure) disturbances corresponds to the
maximum volume (pressure) of the drop (see also Padday & Pitt 1973) (figure 2). For
non-axisymmetric perturbations, the boundary parameter comparison approach (Myshkis
et al. 1987; Zhang & Zhou 2020) is usually preferred to avoid solving a series of
intractable eigenvalue problems (Myshkis et al. 1987; Bostwick & Steen 2015) for static
stability.
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Stable drops exhibit natural oscillations that reflect their dynamic stability. Many
experiments and numerical simulations have investigated the effects of gravity on the
frequency spectrum, where frequency prediction models are developed based on the
modified RL spectrum (Yoshiyasu, Matsuda & Takaki 1996; Perez et al. 1999; Parkinson &
Phan 2018), and analogies to harmonic oscillators (Celestini & Kofman 2006; Sakakeeny
& Ling 2020, 2021; Sakakeeny et al. 2021) and one-dimensional waves (Noblin, Buguin
& Brochard-Wyart 2004; Temperton, Smith & Sharp 2015). These works analysed the
vibrational processes to extract the natural frequencies. An alternative is to solve a
functional eigenvalue problem governing the linear dynamics of drops (Strani & Sabetta
1984; Myshkis et al. 1987; Bostwick & Steen 2014). This approach is accurate and
efficient, but difficult to solve for drops of more general shape (Gañán & Barrero
1990; Gañán 1991). To investigate drops with arbitrary shapes, numerical methods for
solving the eigenvalue problem are necessary (Siekmann & Schilling 1989; Ebrahimian,
Noorian & Haddadpour 2013, 2015). Recently, Zhang, Zhou & Ding (2023) applied a
boundary element (BE) model to gravity-flattened sessile drops, and found a complicated
dependence of the frequency spectrum on gravity. However, a systematic understanding of
the effect of gravity on the spectrum is still lacking for pendant drops with opposite gravity.
In contrast to sessile drops, gravity destabilises pendant drops, leading to downward
frequency shifts and capillary instability (Basaran 1992; Basaran & DePaoli 1994;
Schulkes 1994). It is unclear if the downward frequency shifts are still maintained over
a wider parameter domain. In addition, how static stability and dynamic stability are
related for pendant drops is also an important issue. It is known that the Plateau limit of a
capillary cylinder can be recovered from the dynamic stability with the growth rate being
zero (Rayleigh 1879; Bostwick & Steen 2015). One can expect that the static stability of
pendant drops can also be recovered from their dynamic stability, which gives us a different
perspective on static stability.

In light of the above, this study will consider both the static and dynamic stability of
pendant drops. Static stability is analysed first by the PM theory (Maddocks 1987) and
the boundary parameter comparison approach (Myshkis et al. 1987) for axisymmetric and
non-axisymmetric perturbations, respectively, and then dynamic stability is investigated
numerically by the BE model (Zhang et al. 2023) that can deal with drops of arbitrary
shape. The relation between static stability and dynamic stability is illustrated by the BE
results of stability limits. Finally, we study the effects of gravity on the frequency spectrum
and present some interesting consequences, such as zero frequency modes, breaking of
spectral degeneracy, and spectral ordering due to gravity.

2. Mathematical formulation

In this section, we first give the governing equations of the base state for static and
dynamic stability, then perform static stability analysis for both axisymmetric and
non-axisymmetric perturbations, and finally write the functional eigenvalue problem of
dynamic stability with a brief description of the mode classification of the BE model
results.

2.1. Equilibrium shapes of pendant drops
Consider a pendant drop suspended from a plane as shown in figure 3, whose equilibrium
interface is governed by the (dimensionless) Young–Laplace equation (see e.g. Padday
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Figure 3. (a) Schematic diagram of a pendant drop suspended from a plane under gravity g, and (b) the
rendered perturbed surface Γ̄ . For comparison, a gravity-free drop (dashed line) of the same volume is drawn.

1971; Del Rıo & Neumann 1997):

dr
ds

= cos β,

dz
ds

= sin β,

dβ

ds
= −Bo × z − sin β

r
+ μ,

dV
ds

= πr2 sin β,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1a–d)

where (r(s), z(s)) is a parametrization of the interface generatrix by its arc length s, β is
the inclination angle measured counterclockwise, Bo ≡ ρgl∗2/σ is the Bond number with
gravity g, surface tension σ and the characteristic length l∗, μ is a Lagrange multiplier,
and V is the dimensionless volume. Note that (2.1d) is not necessary for defining the
equilibrium, which is included to determine the drop volume (Del Rıo & Neumann 1997).
In the following, unless otherwise stated, the dimensionless drop volume is always set to
2π/3 (equal to the volume of a hemispherical drop of radius 1) to exclude the effect of
drop volume. This helps us to focus on the effects of gravity. Thus the characteristic length
is defined as l∗ = lv ≡ (3v/2π)1/3 based on the actual drop volume v. Accordingly, the
Bond number is given as

Bo = ρg
σ

(
3v

2π

)2/3

. (2.2)

The system of (2.1) generally has no closed-form solutions, and must be integrated
numerically together with the initial conditions

r(0) = z(0) = β(0) = V(0) = 0. (2.3)

To begin integration, the relation sin β/r = μ/2 is used to remove the singularity of (2.1c)
at r = 0 (Del Rıo & Neumann 1997). For given Bo and μ, we can determine uniquely a
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Static and dynamic stability of pendant drops

solution curve (r(s), z(s)) and then obtain a drop shape by using the volume condition

V(sc) = 2π/3, (2.4)

where sc denotes the arc length at the CL. However, we usually use the geometric condition
(instead of unknown a priori μ)

β(sc) = α or r(sc) = R (2.5a,b)

to determine a drop with given Bo. The boundary value problem (2.1) with (2.3)–(2.5) for
the equilibrium shape of pendant drops can be solved by the shooting method (see e.g. Del
Rıo & Neumann 1997).

There may exist multiple equilibrium shapes for given parameters Bo and α (or R), some
of which are stable, while others are unstable and cannot exist stably (Pozrikidis 2012).
For given Bo and α, there may be two distinct stable pendant drops with pinned CLs
(Pozrikidis 2012), which will be discussed in § 2.2.1. This suggests that (α, Bo) cannot be
used as control parameters for uniquely determining the base state with a pinned CL. This
issue will be addressed in the next section.

2.2. Static stability

2.2.1. Axisymmetric perturbations
The static stability of pendant drops can be examined by solving a series of intractable
eigenvalue problems (Myshkis et al. 1987, pp. 129–130). For axisymmetric perturbations,
an alternative is the PM method (Maddocks 1987) that determines stability from a family
of equilibria. This method only requires solving the equilibrium problem (2.1) with
(2.3)–(2.5) to obtain the diagram of volume Ṽ against pressure P̃. The PM theory indicates
the occurrence of instability along the counterclockwise direction through a TP (Lowry &
Steen 1995). To draw the curve of Ṽ versus P̃, here all drops are scaled by the capillary
length lc = √

σ/ρg so that the volume is no longer fixed at 2π/3. Due to the different
scalings used here and in § 2.1, the relations between dimensionless parameters are given
as follows:

Ṽ = 2π

3
Bo3/2, P̃ = P√

Bo
, α̃ = α, R̃ =

√
Bo R, (2.6a–d)

where quantities with and without tildes correspond to the characteristic lengths of lc and
lv , respectively. Tildes of α are omitted hereafter for simplicity.

Using the capillary length lc as the characteristic length, the Young–Laplace equation
(2.1) will change to a different dimensionless form (e.g. Sumesh & Govindarajan 2010;
Zhang & Zhou 2020):

dr̃
ds̃

= cos β̃,
dz̃
ds̃

= sin β̃,
dβ̃

ds̃
= −z̃ − sin β̃

r̃
+ μ̃,

dṼ
ds̃

= πr̃2 sin β̃, (2.7a–d)

where variables with tildes are dimensionless counterparts of variables in (2.1). With a
variable μ̃, (2.7) has a family of solutions (see the grey lines in figures 4a,d) for the initial
conditions r̃(0) = z̃(0) = β̃(0) = Ṽ(0) = 0. In this case, one can easily impose a fixed
contact angle condition β̃(s̃c) = α (free CL) or a fixed CL boundary condition r̃(s̃c) = R̃
(pinned CL).

Figures 4(a) and 4(d) show the curves of CL points for the boundary conditions α = 70◦
and R̃ = 1, respectively. Each point on the CL curves determines a pendant drop with
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Figure 4. (a,d) The family of solution curves (grey lines) for the Young–Laplace equation (2.7), where five
typical solution curves (black solid lines) are plotted for μ̃ = 1, 2, 3, 4, 5. The red and blue lines denote
the boundary conditions (a) α = 70◦ and (d) R̃ = 1, respectively, where the arrows indicate the direction of
instability. (b,c,e–h) The curves of volume Ṽ versus μ̃, pressure P̃ versus μ̃, and Ṽ versus P̃ for (b,c,g) α = 70◦

and (e, f,h) R̃ = 1. For α = 70◦, the solid and dashed lines correspond to the first and second curves of CL
points (yellow dots), respectively. The inset in (g) compares our results (red line) with those of Sumesh &
Govindarajan (2010) (©) for Ṽ/π versus H with α = 70◦. The inset in (h) shows a pendant drop scaled by lc,
where H is the drop height.
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Static and dynamic stability of pendant drops

a given α or R̃, whose shape is the portion of the corresponding solution curve with a
specific μ̃ (see the green lines). For α = 70◦, there can be multiple CL points (see the
yellow dots) for one solution curve (e.g. with μ̃ = 5). The first and second CL points
belong to the first CL curve, while the third and fourth points belong to the second CL
curve. Accordingly, we can plot the curves of volume Ṽ versus μ̃, and pressure P̃ versus μ̃,
as shown in figures 4(b,c,e, f ). Additionally, we compare our results with those of Sumesh
& Govindarajan (2010) for Ṽ/π versus drop height H, and find excellent agreement, as
shown in the inset of figure 4(g). Here, the pressure P̃ is the pressure of the liquid on the
wall, and μ̃ is the pressure at the drop apex (see the inset of figure 4h), so the pressure P̃
required by the PM theory is given by P̃ = μ̃ − H. From figures 4(b,e), we can see that
there are multiple equilibria for certain volumes Ṽ , consistent with the results of Sumesh &
Govindarajan (2010). Although we are only concerned with stable equilibrium, however,
there may be two stable equilibria for pinned drops (Pozrikidis 2012). Multiple stable
equilibria render it difficult to choose the control parameters to determine the pendant
drop uniquely. Fortunately, by choosing the appropriate parameter space, only one of these
equilibria is stable, which is related to the PM theory (Maddocks 1987).

Finally, the curves of Ṽ–P̃ can be drawn (see figures 4(g,h) for α = 70◦ and R̃ = 1).
For fixed contact angle, the drops corresponding to the second Ṽ–P̃ curve (see figure 4g)
are always unstable to both volume and pressure disturbances due to their multiple
inflection points (dβ/ds = 0) (Wente 1980; Sumesh & Govindarajan 2010). For simplicity
in discussing stability, parts of the Ṽ–P̃ curves in figures 4(g,h) are reproduced in figure 5.
Figure 5(a) shows the Ṽ–P̃ curves for drops with free CLs and α = 70◦, where the
horizontal and vertical TPs correspond to the stability changes to volume and pressure
disturbances, respectively. Therefore, for volume disturbances, the equilibria are v-stable
on the right-hand side of the horizontal TP, and v-unstable on the left-hand side, as
indicated by the PM theory. For pressure disturbances, all pendant drops with free CLs
are p-unstable in the same way as gravity-free drops, while pendant drops can be p-stable
due to the stabilisation of CL pinning. Figure 5(b) shows the results for pinned CLs and
R̃ = 1. Pressure instability occurs at the first vertical TP (the right-hand one), and then
there is a volume stability change through the horizontal TP. We recall that the gravity-free
drops are always v-stable due to the absence of a horizontal TP (see figure 2). In contrast,
pendant drops can be v-unstable under the destabilising effect of gravity. The stabilisation
of CL pinning delays the onset of volume instability. For example, the drop Ã with a free
CL is v-unstable, while the drop D̃ with a pinned CL (having the same shape as the drop
Ã) is v-stable.

Pozrikidis (2012) has demonstrated that there may exist two distinct v-stable drops
with pinned CLs for given α and Ṽ (e.g. pinned drops with the same shape as Ã and
B̃, denoted by Ãp and B̃p, respectively). Note that though the drop Ã is v-unstable, the
drop Ãp with pinned CL (i.e. D̃) is v-stable due to the stabilisation of CL pinning (see
figure 5b). Therefore, the distinct drops Ãp and B̃p are both v-stable and have the same
contact angle α and volume Ṽ (or Bo). This implies that the parameter pair (α, Bo) cannot
define uniquely the base state with a pinned CL. Knowing that only one branch of solutions
in the fold bifurcation is stable (Maddocks 1987), this indicates that the parameter pair
(R, Bo) can determine uniquely a stable drop with pinned CL. Thus in the following, the
base states (stable) with free and pinned CLs for dynamic stability are governed by the
control parameters (α, Bo) and (R, Bo), respectively.
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Figure 5. Volume–pressure (Ṽ–P̃) diagrams of pendant drops with (a) free CLs and α = 70◦, and (b) pinned
CLs and R̃ = 1. Instability occurs at the TPs (hollow circles) along the counterclockwise direction. In (a), drops
Ã and B̃ are v-unstable and v-stable, respectively, but both are p-unstable. In (b), the drop D̃ with the same shape
as Ã (v-unstable), however, is v-stable due to the stabilising effect of the pinned CL. All gravity-free drops are
v-stable. Here, the characteristic length l∗ is the capillary length lc = √

σ/ρg.

To summarize briefly, the PM theory states that the pendant drop is v-stable (p-stable) to
axisymmetric perturbations before its volume (pressure) reaches a maximum. In contrast
to sessile drops, pendant drops can be v-unstable destabilised by gravity. Note that static
stability is maintained for different scalings, thus these conclusions hold for drops with
fixed volume in § 2.1.

2.2.2. Non-axisymmetric perturbations
The PM method described above deals with only static stability for axisymmetric
perturbations (Bostwick & Steen 2015). Fortunately, for non-axisymmetric perturbations,
the static stability of a pendant drop can be determined by comparing the boundary
parameter χ with the critical boundary value χ∗

1,1 (Myshkis et al. 1987; Zhang &
Zhou 2020), referred to as the boundary parameter comparison approach. The critical
boundary value χ∗

1,1 corresponds to the {1, 1} mode, which is the most dangerous among
non-axisymmetric perturbations, given by (see Myshkis et al. 1987, p. 141)

χ∗
1,1 = −r′(sc)

z′(sc)
K1(sc) = −K1(sc) cot α, (2.8)

where the prime denotes the derivative with respect to arc length s, sc is the arc length
at the CL, and K1 = dβ/ds is the signed curvature of the drop profile. The boundary
parameter χ measures the degree of CL pinning, expressed in terms of the included angle
π − α between n and ns (figure 3a), and the liquid K1 and solid K̄ curvatures at the CL, as

χ = K1(sc) cos(π − α) − K̄
sin(π − α)

, (2.9)

where the curvature of the solid surface is K̄ < 0 if the solid is convex to the liquid, K̄ = 0
for a flat solid surface, and K̄ > 0 otherwise (Myshkis et al. 1987).

We determine the stability as follows: the drop is stable if χ > χ∗
1,1, is marginally

stable (i.e. with a zero eigenvalue) when χ = χ∗
1,1, and otherwise unstable. Note that
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all non-axisymmetric perturbations automatically satisfy volume conservation, so volume
and pressure disturbances are not distinguishable in this case. We have the solid curvature
K̄ = 0 for free CLs and K̄ = −∞ for pinned CLs, since the pinned CL can be regarded
as a CL at a convex edge with an infinitesimal curvature radius (Myshkis et al. 1987).
Comparing (2.9) and (2.8) yields

χ = χ∗
1,1 = −K1(sc) cot α (2.10)

for free CLs, and
χ = +∞ > χ∗

1,1 (2.11)

for pinned CLs. Thus for non-axisymmetric perturbations, pendant drops with pinned CLs
are stable, while drops with free CLs are marginally stable, leading to a zero frequency
mode {1, 1} (see § 3.4). This is consistent with the physical intuition that drops with free
CLs on a plane have horizontal translational invariance (Zhang et al. 2023).

2.3. Dynamic stability

2.3.1. Eigenvalue problems for natural oscillations
We restrict ourselves to the dynamic stability of stable drops with a volume constraint.
In this case, stable drops exhibit natural oscillations, which reflect their dynamic stability.
To study natural oscillations of pendant drops (figure 3a), we need to solve the following
functional eigenvalue problem (Myshkis et al. 1987; Zhang et al. 2023):

1
r

∂

∂r

(
r

∂φ

∂r

)
+ ∂2φ

∂z2 − l2

r2 φ = 0 [D], (2.12a)

∂φ

∂n
= 0 [∂Ds], (2.12b)

(
∂φ

∂n

)′′
+ r′

r

(
∂φ

∂n

)′
+

[
Bo × r′ +

(
K1

2 + K2
2
)

− l2

r2

]
∂φ

∂n
= −λ2φ [∂D f ], (2.12c)

∫
Γ

∂φ

∂n
dΓ = 0 [∂D f ], (2.12d)

(
∂φ

∂n

)′
+ χ

∂φ

∂n
= 0

∣∣∣∣
s=sc

[γ ], (2.12e)

where φ and ∂φ/∂n are the potential function and its normal derivative, respectively, λ is
the dimensionless frequency (scaled by the characteristic time t∗ = √

ρl3∗/σ with l∗ = lv),
and K1 = dβ/ds and K2 = sin β/r are the two principle curvatures of the drop surface.

Substituting (2.10) and (2.11) into (2.12e), we obtain the free CL condition
(

∂φ

∂n

)′
− K1 cot α

∂φ

∂n
= 0

∣∣∣∣
s=sc

, (2.13)

and the pinned CL condition

∂φ

∂n
= 0

∣∣∣∣
s=sc

, (2.14)

respectively.
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The eigenvalue problem (2.12) is derived from potential flow theory and linearised
governing equations on the boundary via the normal mode decomposition and separation
of variables method (see e.g. Bostwick & Steen 2014; Zhang et al. 2023). Equation (2.12a)
is Laplace’s equation written in cylindrical coordinates (r, z), (2.12b) is the no-penetration
condition on the solid surface, (2.12d) is the condition of volume conservation, (2.12c) is
the free-surface governing equation derived from the kinematic condition and the dynamic
pressure balance, and (2.12e) is the CL condition. The solutions of the eigenvalue problem
(2.12) give the dimensionless frequencies λ and mode shapes ∂φ/∂n. Since the frequency
squared λ2 is inversely proportional to the drop volume (Noblin et al. 2004), we adopt
a characteristic length lv = (3v/2π)1/3, fixing the drop volume at 2π/3 to exclude the
volume effect. Therefore, the real frequency f ≡ λ/(2πt∗) (in Hz) is given as

f 2 =
(

ρ

σ

)1/2( g
Bo

)3/2(
λ

2π

)2

= σ

6πρv
λ2. (2.15)

2.3.2. Boundary element model and mode classification
Theoretical methods (e.g. Lyubimov et al. 2006; Bostwick & Steen 2014; Sharma &
Wilson 2021) for solving the eigenvalue problem (2.12) usually require drops to be
hemispheres or spherical caps. The BE model developed in Zhang et al. (2023) can deal
with drops of arbitrary shape and has been applied successfully to gravity-flattened sessile
drops, so it is also applicable to our problem. We adopt the BE model to solve numerically
the eigenvalue problem (2.12). The fundamental procedures for constructing the BE model
can be found in Appendix A. One can refer to Zhang et al. (2023) for more details on the
formulation of the BE model.

The solutions of the BE model give the natural frequencies and mode shapes. Analogous
to spherical harmonics, these modes can be categorised into zonal [k, l = 0], sectoral
[k, l = k > 0] and tesseral [k > l, l > 0] modes according to polar k and azimuthal l
wavenumbers (Bostwick & Steen 2014). In experiments (Chang et al. 2013, 2015), another
more intuitive layer–sector classification {n, l} is usually used for identifying the number
n = (k − l)/2 + 1 of vertical layers, so that zonal, sectoral and tesseral modes are labelled
as {n � 2, l = 0}, {n = 1, l > 0} and {n > 1, l > 0}, respectively. In terms of mode shape,
the zonal mode is axisymmetric, the sectoral mode is star-shaped, and the tesseral mode
has a complex wave pattern, as shown in figure 6. One of the rocking l = 1 modes with
one sector rocking from side to side is also drawn, and the rocking modes are particularly
easy to identify in experiments. Besides, the directional movement of drops on a vibrating
plate is attributed to the rocking modes (Ding et al. 2018; Costalonga & Brunet 2020).

3. Numerical results and discussion

3.1. Verification
The BE model has been well validated for gravity-free drops and gravity-flattened sessile
drops in Zhang et al. (2023). The natural frequencies of pendant drops are verified here.
Figure 7 compares the experimental results of DePaoli, Scott & Basaran (1992) with the
inviscid results of the BE model for zonal mode {2, 0} with pinned CL. It is shown that
for CL diameter D = 0.16 cm, the BE results of small drops are overpredicted, while the
results of large drops agree well. This is due to the great viscous effect of small drops,
which significantly reduces the resonant frequency (Lyubimov et al. 2006; Chang et al.
2015), while the viscous effect is negligible for large drops with low Ohnesorge numbers.
However, for the CL 0.068 cm, our predictions are underestimated for large drops.
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Zonal mode
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Rocking mode
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(a)

(b)

(c)

(d)

(e)

Figure 6. Typical mode shapes for a pendant drop with Bo = 1.4, α = 90◦ and R = 0.7 in (a) cross-sectional
and three-dimensional (c,e) oblique and (b,d) bottom views. The modes with free and pinned CLs are indicated
by the red and green lines, respectively.

A reasonable explanation is that the drop volume might be measured inaccurately in the
experiment, because volume values of large drops in experimental data exceed the volume
of the maximum drop (yellow dot), indicating that these drops cannot exist stably.

Interestingly, our results show that there is a sharp fall in frequency to zero near the
maximum drop point. This suggests that the frequency of pendant drops near the maximum
drop point is highly sensitive to the drop volume. Furthermore, the numerical results show
that the zonal mode {2, 0} of the maximum drop has zero frequency. This is consistent
with the maximum drop being marginally stable indicated by the PM theory (see the inset
in figure 7), further validating the accuracy of the BE model.
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Figure 7. Frequency of zonal mode {2, 0} with pinned CL against equivalent radius r̃ = (3v/4π)1/3. The
numerical results of the BE model (solid lines) are compared with the experimental results of DePaoli et al.
(1992) (dots) for CL diameters D = 0.068 cm (red) and 0.16 cm (black). The BE results without gravity
(dashed lines) are drawn for comparison. For D = 0.068 cm, the maximum drop (yellow dot) corresponds to the
horizontal TP (the right-hand inset; see also figure 5). The physical parameters used here are ρ = 997 kg m−3,
σ = 0.072 N m−1 and g = 9.81 m s−2. A sharp fall in frequency is highlighted by the cyan region.

3.2. Stability limits: maximum Bo
As shown above, the maximum drop (with the maximum Bond number Bomax) determines
the stability limit. Figures 8(a,b) plot the maximum Bond number Bomax against contact
angle α and CL radius R, respectively, for free and pinned CLs. Results show that for
free CLs, Bomax decreases with increasing α, consistent with the physical intuition that
more hydrophilic surfaces can suspend larger drops. For pinned CLs, however, Bomax
increases and then decreases with increasing R (figure 8b). At R = R∗ = 1.5445, Bomax
reaches its maximum, and the corresponding drop (labelled G) has a zero contact angle,
which has the same shape as the maximum drop A (with α = 0◦) for free CLs. This is
due to the indistinguishability of the free and pinned CLs for α = 0◦, both having the
boundary parameter χ = +∞. For R > R∗, the marginally v-stable drops with α < 0◦
are non-physical (see the drop H̄) so that Bomax corresponds to v-stable drops with
α = 0◦ (e.g. H). Thus the static stability limits are determined by the maximum Bond
numbers Bomax corresponding to marginally v-stable drops, except for R > R∗. The
curves of Bomax versus α, and Bomax versus R, divide the parameter spaces into regions
where equilibrium exists and regions where it does not, labelled as equilibrium and
non-equilibrium, respectively. In the equilibrium region, multiple equilibria exist and
the only v-stable equilibrium can be determined through the PM theory, as shown in
figures 8(c–f ). We are concerned only with the dynamic stability of v-stable equilibria
in the following.

Figure 9(a) plots the frequency λ2,0 of zonal mode {2, 0} against Bo for free CLs with
four different contact angles. For contact angles α = 50◦, 100◦ and 150◦, the frequencies
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Figure 8. (a,b) Maximum Bond number Bomax versus (a) contact angle α for free CLs, and (b) CL radius R for
pinned CLs. The black solid and black dashed lines correspond to marginally v-stable drops with α � 0◦ and
α < 0◦, respectively. In (b), the red solid line corresponds to drops with α = 0◦. (c–f ) The curves of Bo versus
P̃ for (c) drop A with α = 0◦, (d) drop B with α = 50◦, (e) drop F with R = 1, and ( f ) drop H̄ with R = 2. The
maximum Bond numbers Bomax correspond to the horizontal TPs of the P̃–Ṽ curves due to Bo = (3Ṽ/2π)2/3

(see (2.6a–d)).

decrease with increasing Bo, consistent with the numerical results of DePaoli et al. (1992).
However, for a very small contact angle α = 0◦, the frequency initially increases and
then decreases. The initial increase of frequency seems counterintuitive, because gravity
reduces the restoring force and makes the pendant drop slender, both of which decrease
frequency in most cases (Basaran 1992; Ibrahim 2005; Temperton et al. 2015). This
suggests that the deformation of pendant drops with small α increases the frequency at low
gravity. For pinned CLs, the frequencies always decrease with increasing Bo regardless of
the CL radius R, as shown in figure 9(b). We also observe zero frequency modes {2, 0}
at Bomax, except for the non-marginally stable drop H. Note that although the numerical
results of λ2,0 cannot be exactly zero, one can verify our results converging to zero by grid
refinement, as will be discussed in § 3.4. Therefore, the static stability of pendant drops
can be recovered by letting λ2,0 = 0 in the dynamic stability, and the critical conditions
for static and dynamic stability are essentially the same.

Furthermore, we observe sharp frequency falls when approaching Bomax, except for the
drop H. The sharp fall in λ2,0 may be explained by the fact that the base state near Bomax
(see the horizontal TP in figure 5) is sensitive to volume or gravity (i.e. a small change
in volume leads to a large change in pressure). When approaching Bomax, other modes
are also sensitive to Bo, leading to similar sharp changes in frequency (see figure 13). We
note that the sharp change in frequency with respect to wavenumber k is also observed
for the rotating Rayleigh–Plateau instability near stability thresholds (Dubey, Roy &
Subramanian 2022). The sharp frequency changes may lead to inaccurate theoretical
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Figure 9. Frequency of zonal mode {2, 0} against the Bond number Bo for (a) free and (b) pinned CLs. The
eight points A–H correspond to the maximum Bond number Bomax (i.e. drops A–H in figure 8). The cyan region
highlights a sharp fall in frequency.

predictions near Bomax, affecting relevant applications such as surface tension
measurements via oscillation (Mollot et al. 1993; Chang & Franses 1994). Therefore,
for better predictions, experiments on pendant drops that are close to marginally v-stable
should be avoided.

3.3. Frequency shifts due to gravity
To measure how gravity affects the frequency spectrum, we define the shift factor Sn,l of
frequency for each mode {n, l} as follows:

S f
n,l(α, Bo) = λ

f
n,l(α, Bo)

λ
f
n,l(α, 0)

− 1, free CLs, (3.1a)

Sp
n,l(R, Bo) = λ

p
n,l(R, Bo)

λ
p
n,l(R, 0)

− 1, pinned CLs. (3.1b)

The value of Sn,l denotes the relative change of frequency and Sn,l > 0 (<0) indicates an
upward (downward) shift of frequency due to gravity. In (3.1), the control parameters are
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Figure 10. Five typical contour diagrams of shift factor Sn,l. (a–c) Types I, T and II correspond to modes
{10, 0}, {6, 9} and {1, 2} with free CLs, respectively. (d,e) Types A and B correspond to modes {1, 10} and
{2, 0} with pinned CLs, respectively. The black dashed and red dashed lines indicate Bomax (see figure 8) and
Sn,l = 0, respectively.

chosen as (α, Bo) and (R, Bo) for free and pinned CLs, respectively, to determine the base
state uniquely (see § 2.2.1).

Figure 10 shows five typical phase diagrams of how gravity shifts the natural frequencies
of pendant drops. For free CLs, there are three types (I, II and T) of contour diagrams of
S f

n,l, as shown in figures 10(a–c). For type I, there is a longitudinally inclined critical line

S f
n,l = 0, a region S f

n,l > 0 (red) on the left-hand side of the critical line, and a region

S f
n,l < 0 (blue) on the right-hand side. This means that the frequency of the mode of

type I with small (large) contact angles increases (decreases) under gravity. For type II,
we observe S f

n,l > 0 regardless of α and Bo, which implies that gravity always increases
the frequency. The diagram of type T presents a complex pattern of gravity affecting
frequency, which is a transition between types I and II. The three patterns are generally
opposite to those of sessile drops (Zhang et al. 2023), as the direction of gravity is reversed
for pendant drops and sessile drops. For pinned CLs, there are two types (A and B) of
diagrams of Sp

n,l (figures 10d,e). The diagram of type A indicates that gravity decreases
(increases) the frequency for modes with small (large) CL radii R (figure 10d). For type B,
gravity always decreases the frequency (figure 10e).

Figure 11 presents the classifications of the Sn,l diagrams according to the mode numbers
{n, l}. For free CLs, modes with larger n (l) are more likely to be type I (II), and the
remaining modes in the middle are type T. As a consequence, all zonal modes are of type
I, and most sectoral modes are of type II. For pinned CLs, the modes with l > n (l < n) are
of type A (B), and modes {n, l = n} are possible for both. Therefore, all zonal and sectoral
modes with pinned CLs are of type B and A, respectively. The above findings provide an
overview of gravity affecting natural frequencies for pendant drops, and complement the
study of the effects of gravity on partially wetting drops (Zhang et al. 2023).
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Figure 11. Types of contour diagrams of Sn,l for modes with (a) free and (b) pinned CLs, where
n = 1, 2, . . . , 10 and l = 0, 1, . . . , 10.

The above findings show that the frequency shifts due to gravity compared to the
gravity-free case are complex, depending on the modal pair {n, l}, the Bond number Bo,
and the contact angle α or CL radius R. Intuitively, gravity is supposed to decrease the
frequency of pendant drops due to gravity acting as a destabilising force, in agreement with
the experimental and numerical observations (DePaoli et al. 1992; Basaran & DePaoli
1994). However, gravity also distorts the base state (elongated) and thus affects the
frequency indirectly. Since the vibrations of sessile/pendant drops might be analogous
to liquid sloshing in an upright cylindrical container (Noblin, Buguin & Brochard-Wyart
2009; Temperton et al. 2015), the drop elongation can be characterised by an increase in
mean height of the liquid in the cylinder, which increases the frequencies, while gravity as
a destabilising force always decreases the frequencies (Temperton et al. 2015). Therefore,
the competing effects of the reduced restoring force and base state elongation due to
gravity lead to the above complex dependence of the frequencies on gravity.

3.4. Zero frequency modes {2, 0} and {1, 1}
Two modes of pendant drops can have zero frequency: the zonal {2, 0} and Noether {1, 1}
modes. The results of λ1,1 = 0 for free CLs are not surprising, because the Noether mode
{1, 1} reflects the horizontal displacement of the drop and has zero frequency according to
Noether’s theorem when its base state has the horizontal translational invariance. Bostwick
& Steen (2014) noticed that the symmetry of translational invariance can be broken by
CL pinning or changing the wetting parameter, resulting in a non-zero frequency of the
Noether mode. However, varying contact angle or exerting gravity does not break this
symmetry, so that gravity-flattened sessile drops with free CLs always have the zero
frequency mode {1, 1} (Zhang et al. 2023).

Obviously, pendant drops with free CLs on a plane also have horizontal translational
invariance, indicating that their Noether mode {1, 1} has zero frequency regardless of α

and Bo. For verification purposes, figure 12 plots the BE results of |λ2
1,1| against the inverse

1/N of the grid number in log-log scale. Here, the grid number N is the number of BEs of
the liquid surface (see figure 15). The power laws |λ2

1,1| ∝ (1/N)c with exponents c ∼ 2
are found for two cases, (α = 50◦, Bo = 2) and (100◦, 1). The exponents c ∼ 2 reflect the
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Free,  Bo = 1, α = 100°

10–3 10–2 10–1

10–8

10–6

10–4

10–2

1/N

Pinned, Bo = Bomax, R = 1

Free, Bo = Bomax, α = 50°

Free,  Bo = 2, α = 50°

{2, 0}

{2, 0}

{1, 1}

{1, 1}

|λ2|

Figure 12. Numerical results of the absolute value |λ2| of frequency squared versus the grid number inverse
1/N of the BE model for zonal {2, 0} (©, �) and Noether {1, 1} (

�
,
�

) modes. The frequencies decay
to zero in power laws |λ2| ∝ N−c with exponents c ∼ 2 for these modes, as indicated by the lines fitted by
least squares.

second-order convergence of the BE model (Zhang et al. 2023). Therefore, one can expect
that the numerical results of λ1,1 decay to zero as the grid number N increases. The results
of λ1,1 = 0 are also consistent with the prediction by the boundary parameter comparison
approach (§ 2.2.2), which suggests that pendant drops with free CLs are marginally stable
to non-axisymmetric perturbations.

A new feature of pendant drops is their zero frequency mode {2, 0} at Bomax. Figure 12
confirms λ2,0 = 0 of the maximum drops B and F (figure 8) by the power laws |λ2

2,0| ∝
N−c with c ∼ 2. Due to the destabilisation of gravity, pendant drops can detach from the
wall or pinch off under gravity (Henderson et al. 1997), reflecting the capillary instability
related to the zonal mode {2, 0}. This instability occurs when the drop volume exceeds
the maximum volume (i.e. Bomax). As stated in § 3.2, the pendant drop with Bomax
corresponding to the horizontal TP is marginally v-stable (see figure 5) and has the zero
frequency mode {2, 0}. This suggests that the static stability of pendant drops can be
recovered by letting λ2,0 = 0 in the dynamic stability, and the critical conditions for static
and dynamic stability are essentially the same.

Additionally, the zero frequency mode {2, 0} with Bomax can also be used to define
the characteristic length scale of instability for pendant drops. For the Rayleigh–Plateau
instability of a liquid cylinder of radius r0, the critical wavelength LRP = 2πr0 (with
dimensionless wavenumber k = 1) is usually used to define the characteristic length
scale of critical instability (Plateau 1873). Similarly, the pendant drops also have critical
states of instability corresponding to the {2, 0} mode with k = 2. Thus a characteristic
length scale can be defined as L = 2πl∗/k = πl∗ based on the wavelength of the
{2, 0} mode. The critical value of l∗ = √

σBo/ρg is reached at Bo = Bomax. Therefore,
for pendant drops, the characteristic length scale of critical instability is given as
L = π

√
σ Bomax/ρg = π Bo1/2

max lc, where Bomax depends on α or R (see figure 8). It can
be seen that the characteristic length scale L is related to the capillary length lc and the
maximum Bond number Bomax.
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Figure 13. Breaking of the spectral degeneracy due to gravity: frequency λn,l versus the Bond number Bo for
(a) k = 2, (b) k = 3, (c) k = 4, (d) k = 5, (e) k = 6, and ( f ) k = 7, where the layer number is n = (k − l +
2)/2. The yellow dots indicate the spectral degeneracy of free semi-drops with λ2 = k(k − 1)(k + 2) (see also
Bostwick & Steen 2014, figure 2). The cyan region highlights sharp frequency changes near Bomax.

3.5. Breaking of spectral degeneracy and spectral ordering
For free semi-drops (with α = 90◦, R = 1, Bo = 0 and free CLs), CL pinning or varying
contact angle breaks the spectral degeneracy inherited from the RL spectrum (Lyubimov
et al. 2006; Bostwick & Steen 2014). Figure 13 shows that gravity breaks the spectral
degeneracy, where the spectral splitting exhibits the larger (smaller) frequency for pendant
(sessile) drops with the higher l (see the direction of the arrows). The spectral splitting due
to gravity for Bo > 0 (pendant) is similar to those of varying contact angle for α > 90◦
and CL pinning (Lyubimov et al. 2006; Bostwick & Steen 2014). Specifically, there are two
opposite kinds of spectral splitting: the higher the l, the larger the frequency for Bo > 0,
CL pinning and α > 90◦, and the reverse holds for Bo < 0 and α < 90◦. The two kinds of
spectral splitting arising from the breaking of spectral degeneracy are associated with the
construction of periodic tables (PTs) of modes (Steen et al. 2019).

Steen et al. (2019) used an analogy of the PT of chemical elements to categorise the
modes of spherical cap drops into two standard PTs and other non-standard PTs with
irregularities, where modes are ordered according to the kinetic energy (or frequency).
In the two standard PTs, the modes are first sorted in ascending order of k, and then
modes with the same k are sorted in descending or ascending order of l (Steen et al.
2019). Figures 14(a,b) show two standard spectral orderings equivalent to the two standard
PTs, which arise from the breaking of spectral degeneracy. For free semi-drops satisfying
(1.1), modes are sorted in ascending order of k, but cannot be sorted by l due to the
spectral degeneracy. As described above, the CL pinning, varying α or exerting gravity
leads to the spectral splitting, so that modes with the same k can be sorted by l. For
example, exerting low gravity (e.g. Bo = 0.3) to free semi-drops allows modes to be
ordered in ascending order of l (see figure 13), and still maintains the ascending order
of k, as shown in figure 14(a). Likewise, the CL pinning or slightly raising contact angle
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k = 8
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(a)
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(c)

(d)

(e)

Figure 14. Spectral ordering of the first 19 modes. (a,b) In the two standard orderings (equivalent to the
standard PTs proposed by Steen et al. 2019), modes are first sorted in ascending order of k, and then modes with
the same k are sorted in (a) ascending or (b) descending order of l. (c–e) Three non-standard spectral orderings
with irregularities arise from the breaking of the order of (c,e) k or (d) l.

(e.g. α = 91◦) for free semi-drops can also result in the same standard spectral ordering
(Steen et al. 2019). Similarly, the other standard spectral ordering in figure 14(b) can be
generated by slightly lowering α or exerting opposite low gravity for free semi-drops,
where modes with the same k are in descending order of l.

Figures 14(c–e) show several non-standard spectral orderings with irregularities when
the order of l or k is broken. Exerting higher gravity, the order of k of few modes can be
broken, e.g. λ[k=6,l=0] < λ[5,5] for Bo = 1 shown in figure 14(c), while the order of l still
holds. For the extreme case of a drop with Bo = Bomax � 2.9, R = 1 and a pinned CL, the
order of k can even be completely broken (figure 14e). Figure 14(d) shows the breaking
of the order of l, where the contact angle and gravity of free semi-drops are both changed
(e.g. α = 85◦ and Bo = 0.3). This is because lowering the contact angle and exerting
gravity have opposite effects on the order of l, the competition of which breaks the order
of l. In summary, gravity can also produce the same spectral orderings as in gravity-free
cases (Steen et al. 2019), which provides an alternative to controlling the spectral ordering
without varying contact angle.

4. Summary and conclusions

This paper is concerned with the static and dynamic stability of pendant drops, with
attention to their relationship and the effects of gravity. Regarding static stability, the
stability limits for volume and pressure disturbances (axisymmetric) correspond to the
maximum volume (Bomax) and maximum pressure, respectively (Padday & Pitt 1973).
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We restrict our study to volume disturbances. Pendant drops can be v-unstable (to volume
disturbances) due to the destabilisation of gravity, while gravity-free drops are always
v-stable. For non-axisymmetric perturbations, drops with free CLs are marginally stable
due to their horizontal translational invariance, whereas pinned ones are stable. The linear
dynamic stability is then investigated numerically by the BE model (Zhang et al. 2023).
Good agreement with experimental values of DePaoli et al. (1992) is found. Results show
that the maximum drop (with Bomax) that is marginally v-stable has a zero frequency
mode {2, 0} (figures 7, 9 and 12), as expected from the PM theory. Another zero frequency
mode {1, 1} is also observed, consistent with the prediction by the boundary parameter
comparison approach, which suggests that pendant drops with free CLs are marginally
stable to non-axisymmetric perturbations. This shows the high accuracy of our results
and, in turn, validates the BE model. Interestingly, there are sharp changes in frequency
near Bomax (figures 9 and 14), which may lead to inaccurate theoretical predictions due to
the high sensitivity of frequency on Bo. Therefore, we recommend avoiding experiments
on pendant drops that are close to marginally v-stable for more accurate frequency
predictions.

Our subsequent analysis endeavours to examine the effect of gravity on the frequency
spectrum, where the natural frequencies are shifted upwards or downwards by gravity
depending on the control parameters (α, Bo) or (R, Bo) and CL condition. There are three
types of contour diagrams (I, II and T) of shift factors S f (α, Bo) showing how gravity
affects the frequency spectrum for free CLs, whereas there are only two types (A and B) of
Sp(R, Bo) diagrams for pinned CLs (figure 10). For instance, the frequencies of the zonal
modes (type I) with free CLs are shifted upwards (downwards) at small (large) contact
angles, whereas the frequencies of the zonal modes (type B) with pinned CLs are always
shifted downwards. Subsequently, these types are categorised according to the modal pair
{n, l}. Generally, modes with large n and small l more likely have diagrams of types I and
B, whereas modes with small n and large l tend to types II and A (figure 11). As a result
of frequency shifts, gravity, similar to CL pinning (Lyubimov et al. 2006) and varying α

(Bostwick & Steen 2014), breaks the symmetry of the free semi-drop inherited from the RL
spectrum, leading to the splitting of degenerate frequencies (1.1) (figure 13) and various
spectral orderings (figure 14). In particular, gravity can also lead to two standard PTs
proposed by Steen et al. (2019), which provides an alternative to controlling the spectral
ordering without varying contact angle.

This work on pendant drops complements the study of the effects of gravity on the
frequency spectrum of partially wetting drops on a plane. In most cases, the effects of
gravity on pendant drops are opposite to those of gravity-flattened sessile drops (Zhang
et al. 2023). Two notable features are the zero frequency {2, 0} mode, which determines
the stability limit, and the sharp frequency changes that occur as approaching the stability
limit. Besides, our results confirm that the static stability of pendant drops can be recovered
by letting λ2,0 = 0 in the dynamic stability, and the critical conditions for static and
dynamic stability are essentially identical.
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�s
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z

Figure 15. Schematic diagram of a uniformly discretised boundary ∂D. There are N uniform BEs for the liquid
surface (red line), and M uniform BEs for the solid surface (black solid line). In each element, the midpoint P
is employed as the collocation point, and the nodes Q located at both ends define the element shape.

Appendix A

The adoption of the BE method for solving functional eigenvalue problems has evolved
into a well-established procedure (see e.g. Ebrahimian et al. 2013, 2015; Zhang et al. 2023).
Thus we provide only a concise outline of the fundamental steps for constructing the BE
model, as follows.

(i) For the discretised boundary ∂D shown in figure 15, the standard formulation (e.g.
Pozrikidis 2002) of the BE method for the Laplace equation (2.12a) yields the following
discrete matrix form (Zhang et al. 2023):

K lφ∗ = H lφ, l = 0, 1, . . . , (A1)

where φ and φ∗ represent the values of the potential φ and its normal derivative ∂φ/∂n at
the collocation points P, respectively. Here, the influence matrices K l and H l for different
l depend only on the shape of the boundary ∂D. By distinguishing the boundary ∂D into
the solid ∂Ds and liquid ∂D f surfaces (i.e. φ = [

φL φS
]T and φ∗ = [

φ∗
L φ∗

S
]T) and

applying the no-penetration condition (2.12b) (i.e. φ∗
S = 0) to (A1), we have

[
H l

1,2

(
H l

2,2

)−1
K l

2,1 − K l
1,1

]
φ∗

L =
[

H l
1,2

(
H l

2,2

)−1
H l

2,1 − H l
1,1

]
φL, (A2)

where the subscripts S and L indicate the quantities measured at the solid and liquid
surfaces, respectively, and the numerals in the subscripts of the influence matrices K and
H indicate the positions of the submatrices.

(ii) Using the finite difference discretisation of the free-surface equation (2.12c) and then
incorporating the free/pinned CL condition (2.12e) can lead to a system of linear equations
(Ebrahimian et al. 2015; Zhang et al. 2023)

K̃ lφ∗ = −λ2Iφ, (A3)

where the influence matrix K̃ l depends on the form and order of the finite difference and
the number N of BEs for the fluid surface, and I denotes the identity matrix.

(iii) Finally, combining (A2) and (A3) with the discretisation of the volume constraint
(2.12d) yields matrix eigenvalue problems (Zhang et al. 2023)

Xφ∗
L = λ2Yφ∗

L for l > 0, (A4)

ZTXZv = λ2ZTYZv for l = 0, (A5)
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with

X =
[

H l
1,1 − H l

1,2

(
H l

2,2

)−1
H l

2,1

]
K̃ l, (A6a)

Y =
[

H l
1,2

(
H l

2,2

)−1
K l

2,1 − K l
1,1

]
, (A6b)

φ∗
L = Zv, (A6c)

where Z is the matrix whose columns span the null space N(rL), and the vector rL is
a row consisting of the radii of collocation points P on the liquid surface. The matrix
eigenvalue problems (A4) and (A5) can be solved effectively by various software tools
(e.g. MATLAB), and their eigenvalues λ and eigenvectors φ∗

L give the frequencies and
mode shapes, respectively.
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