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SOME CONSEQUENCES OF TD AND sTD

YINHE PENG, LIUZHEN WU, AND LIANG YU

Abstract. Strong Turing Determinacy, or sTD, is the statement that for every set A of reals, if∀x∃y ≥T
x(y ∈ A), then there is a pointed set P ⊆ A. We prove the following consequences of Turing Determinacy
(TD) and sTD over ZF—the Zermelo–Fraenkel axiomatic set theory without the Axiom of Choice:

(1) ZF + TD implies wDCR—a weaker version of DCR.
(2) ZF + sTD implies that every set of reals is measurable and has Baire property.
(3) ZF + sTD implies that every uncountable set of reals has a perfect subset.
(4) ZF + sTD implies that for every set of reals A and every ε > 0:

(a) There is a closed set F ⊆ A such that DimH(F ) ≥ DimH(A) – ε, where DimH is the
Hausdorff dimension.

(b) There is a closed set F ⊆ A such that DimP(F ) ≥ DimP(A) – ε, where DimP is the
packing dimension.

§1. Introduction.

1.1. Turing Determinacy and strong Turing Determinacy. Turing reduction ≤T
is a quasi-order over reals. x ≤T y, or x is Turing reducible to y, means x can be
computed by a Turing machine with oracle y. The reduction naturally induces an
equivalence relation ≡T . Given a real x, its corresponded Turing degree x is a set of
reals defined as {y | y ≡T x}. We say x ≤ y if x ≤T y. We use D to denote the set
of Turing degrees. An upper cone of Turing degrees is a set of form {y | y ≥ x} for
some x.

We say that a perfect set P is pointed if there is a perfect tree T ⊆ 2<� such that
[T ] = P and for any x ∈ P, T ≤T x, where [T ] = {x ∈ 2� | ∀n(x�n ∈ T )}.

Definition 1.1. • Turing Determinacy, or TD, is the statement that for every
set A of Turing degrees, either A or D \A contains an upper cone of Turing
degrees.

• Strong Turing Determinacy, or sTD, is the statement that for every set A of
reals, if ∀x∃y ≥T x(y ∈ A), then there is a pointed set P such that P ⊆ A.

Clearly sTD implies TD. Martin proves the following famous theorem, which
partly justifies why Turing degrees are important to set theory.

Theorem 1.2 (Martin [16]). Over ZF, Axiom of Determinacy, or AD, implies sTD
and so TD.
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Definition 1.3. • Countable choice axiom for sets of reals, or CCR, is the
statement that for every countable sequence {An}n∈� of nonempty sets of
reals, there is a function f : � → R such that for every n, f(n) ∈ An.

• Dependent choice axiom for sets of reals, or DCR, is the statement that for
every binary relation R over reals such that ∀x∃yR(x, y), there is a function
f : � → R such that for every n, R(f(n), f(n + 1)).

Turing Determinacy is an important and very useful consequence of AD. In
many situations, TD seems sufficient to be used to prove set theory theorems. The
following theorem partly justifies this phenomenon. Actually Woodin shows that
under ZF + TD + DCR, every Suslin set is determined (see [28, Theorem 1.2]).

Theorem 1.4 (Woodin [28, Theorem 1.1]). Assume ZF + V = L(R) + DCR. AD
is equivalent to TD.

Moreover, as we shall see in this paper, the consequences of TD (and sTD) may
be proved in a uniform way, unlike the proofs that assume AD, which often require
a very genius, tricky, and case-by-case design of games.

The first result in this paper concerns the relationship between AD and Axiom
of Choice, or AC. Although AD contradicts AC, Mycielski proves the following
theorem.

Theorem 1.5 (Mycielski [18]). Over ZF, AD implies CCR.

The question if AD implies DCR remains open for a long time.

Question 1.6 (Solovay [26]). Over ZF, does AD imply DCR?

Kechris proves the following result.

Theorem 1.7 (Kechris [12]). Assume ZF + V = L(R). AD implies DCR.

It is unknown whether the assumption V = L(R) can be removed. Recently, the
following “unconditional” result is proved.

Theorem 1.8 (Peng and Yu [20]). Over ZF, TD implies CCR.

We will use CCR throughout the paper even without mentioning it.
The first result in this paper is a partial solution to Question 1.6. We prove

in Theorem 4.3 that ZF + TD implies wDCR, a weaker version of DCR (for the
definition of wDCR, see Definition 4.1).

The second result in this paper is about the regularity properties of sets of reals.
Although TD seems unlikely as strong as AD, a natural question is whether TD is as
“useful” as AD. Sami initiated this project by proving (in [23]) that ZF + TD implies
CH, the continuum hypothesis. But it seems a rather difficult (and long-standing)
question whether ZF + TD(+DC) implies regularity properties for sets of reals.
A progress is made in [8] by showing that the perfect set property for all Turing
invariant sets of reals implies the perfect set property for all sets of reals. A partial
answer (Theorem 5.1) to this question is due to Woodin and remains unpublished
(email communication between Woodin and Yu in April 2021). In this paper, we
give another proof of Theorem 5.1 that strong Turing Determinacy, sTD–a stronger
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SOME CONSEQUENCES OF TD AND sTD 1575

version of TD—implies the regularity properties for sets of reals via a recursion
theoretical method that is different from Woodin’s.

A basis for a class C of linearly ordered sets is a collection B ⊆ C such that
for each L1 ∈ C, there is an L2 ∈ B such that L2 is isomorphic to a subset
of L1. Investigating basis for linear ordering is a very active area in set theory
today. For example, Moore [17] proves that under proper forcing axioms, PFA,
a five-element basis for uncountable linear orders exists. But it seems that basis
theorems for linear orderings under AD remain untouched. In this paper, we
prove a basis theorem for linear orderings over R under the assumption ZF +
TD + DCR + “every uncountable set of reals has a perfect subset” by showing that
for every linear order ≤L over R, there is an order-preserving embedding
from (2�,≤) to (R,≤L). In other words, {(2�,≤)} is a basis for {(R,≤L) |≤L
is a linear ordering over R}.

The last result in this paper is an application of recursion theory to fractal
geometry theory. Besicovitch and Davis [1, 5] prove that for every analytic set,
its Hausdorff dimension can be approximated arbitrarily close by the Hausdorff
dimension of its closed subsets. Joyce and Preiss [11] prove a similar result for
packing dimension. Recently Slaman [25] proves that both Besicovitch–Davis and
Joyce–Preiss theorems fail for some Π1

1-set under the assumption V = L. However,
we prove in Theorem 6.5 that both theorems hold for arbitrary sets of reals over
ZF + sTD. So the phenomenon can be viewed as a new regularity property for the
sets of reals. This weakens the assumption of the following result in [3].

Theorem 1.9 (Crone, Fishman, and Jackson [3]). Assume ZF + AD + DCR. For
every set A and ε > 0, there is a closed set F ⊆ A such that DimH(F ) ≥ DimH(A) – ε.

The proof of this theorem is direct and uses some rather deep results from set
theory. However, we believe that our proof is simpler and, most importantly, it does
not depend on DCR.

1.2. Point to set principle. Relativization opens a door between recursion theory
and other mathematical branches. In recursion theory, for a real x, a relativization to
x, roughly speaking, is a way to add prefix x- to every appearance of any notion in the
statement. Then if a notion is defined in recursion theory, its relativization is defined
naturally. And if a theorem in recursion theory is proved, then its relativization also
follows naturally. For example, every continuous function is a recursive function
relative to a real, and a Borel set is a hyperarithmeitc set relative to a real. From this
point of view, one may apply recursion theory results to analysis.

The “point to set” principle is a more concrete way, by using relativization, to apply
recursion theory to other areas of mathematics. Generally speaking, the principle
says that a set A having certain property is equivalent to that it contains some special
points. Such argument can be dated back to Sacks, who (in [21]) gave a recursion
theoretical proof of the classical result that every analytic set is measurable. For
one more example, given a relativizable algorithmic randomness notion Γ (such as
Martin-Löf and Schnorr), we have the following fact.

Fact 1.10. Assume ZF + CCR. A setA ⊆ R is null if and only if there is some real
x such that no Γ(x)-random real is in A.
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So a set A is not null is equivalent to say that for every real x, there is a Γ(x)-
random real in A. One may also replace randomness with genericity and obtain
the corresponding results. In this paper, we apply some recent results in recursion
theory and algorithmic randomness theory to descriptive set theory and fractal
geometry theory. Especially some deep results concerning the lowness properties for
various recursion theory notations turned to be crucial to our proof. The so-called
“lowness properties” is a kind of property preserving some algorithmic property
that was considered as very unique in algorithmic randomness theory. For example,
a real x is low for Turing jump (or just low) if x′ ≡T ∅′, and a real x is called low
for Schnorr random (for the definition of Schnorr randomness, see the paragraphs
below Theorem 4.3) if every Schnorr random real is Schnorr random relative to
x, etc. Ironically, different from the “slowdown” properties of themselves, these
notions will be used to prove some “speedup” results. We expect to see more such
applications in the near future.

In [15], a specific theorem (i.e., Theorem 6.6) is called the “point to set” principle.
It can be viewed as a dual principle to the randomness in geometric measure theory.

We organize the paper as follows. In Section 2, we give some terminologies
and notions. In Section 3, we sketch a recursion theoretical reformulation of
Sami’s proof that ZF + TD implies CH. The result will be used in Section 5. In
Section 4, we prove wDCR within ZF + TD. In Section 5, we prove that ZF + sTD
implies regularity properties for sets of reals. In the same section, we also prove
a basis theorem for linear orderings over sets of reals within ZF + TD + DCR +
“every uncountable set of reals has a perfect subset.” In Section 6, we prove that
the Besicovitch–Davis theorem holds for every set of reals within ZF + sTD.

§2. Terminologies and notions. We assume that readers have some knowledge of
descriptive set theory and recursion theory. The major references are [2, 6, 10, 14,
19, 22].

2.1. Set theory. We assume that readers have some knowledge of axiomatic set
theory. ZF is the Zermelo–Fraenkel axiom system. AD is the axiom of Determinacy.

When we say that T ⊆ 2<� is a tree, we mean that T is a tree without dead
nodes. [T ] is the collection of infinite paths through T. Given any x ∈ �� and
natural number n, we use x�n to denote an initial segment of x with length n. In
other words, x�n is a finite string � ∈ �<� of length n such that for any i < n,
�(i) = x(i).

2.2. Recursion theory. We use ≤T to denote Turing reduction and ≤h to denote
hyperarithmetic reduction. We use Φx to denote a Turing machine with oracle
x. Sometimes we also say that Φx is a recursive functional. We fix an effective
enumeration {Φxe }e∈� of recursive functionals.

We use Kleene’s O and we write �CK
1 for the least non-recursive ordinal, �x1 for

the least ordinal not recursive in x.
We say a set A ranges Turing degrees cofinally if for every real x, there is some

y ≥T x in A. We use x′ to denote the Turing jump relative to x. More generally,
if α < �x1 , then x(α) is that α-th Turing jump of x. Then, x ≤h y if x ≤T y(α) for
some α < �y1 .
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The following fact is folklore and a sketched proof can be found in [20].

Lemma 2.1. Assume ZF. For any Turing degree x, there is a family of Turing
degrees {yr | r ∈ R} satisfying the following properties:

(1) For any r ∈ R, x < yr .
(2) For any r0 �= r1 ∈ R and z < yr0 , yr1 , we have that z ≤ x.
(3) For any z ≥ x′′, the Turing double jump of x, there is an infinite setCz ⊂ R such

that y′′r = z for any r ∈ Cz.

§3. On Sami’s theorem.

Theorem 3.1 (Sami [23]). ZF + TD + DC proves CH.

In this section, we sketch a recursion theoretical proof of Theorem 3.1 to show
that DC can be removed from the assumption, which was also observed by Sami.
So we can give another proof of the following result.

Proposition 3.2 (Sami, email communication between Sami and Yu in June 2021).
ZF + TD proves CH.

Proof. Given an uncountable set A ⊆ R, by Lemma 2.1, for any real x, there is
a real y >T x such that there is some real r ∈ A Turing below y′′ but not below y.
So, by TD, there is some real z0 such that for any y ≥T z0, there is some real r ∈ A
Turing below y′′ but not below y.

Now it is simple to construct a Σ1
1(z0) set B so that:

(i) For any y ≤h z0 and x ∈ B , we have that y ≤T x.
(ii) For any x0 �= x1 ∈ B , if y ≤h x0, x1, then y ≤h z0.

To see the existence of such B, first note that the set {y | ∀r ≤h z0(r ≤T y)} is an
uncountable Σ1

1(z0)-set. Then one may construct a perfect set P ⊆ B so that any two
different members from P form a minimal pair over z0 in the hyperarithmetic degree
sense.

Now for every real x ∈ B , let yx = Φx
′′
e where e is the least n such that Φx

′′
n

is in A and not Turing below x. For any x0 �= x1 ∈ B , if yx0 = yx1 , then by (ii),
yx0 = yx1 ≤h z0. By (i), we have that yx0 = yx1 ≤T x0, which is a contradiction.

So x → yx is a 1–1 map from B to A. It is known that every uncountable analytic
set has a perfect subset and so A has the same power as R. �

From the proof of Proposition 3.2, we can see the following fact that will be used
later. Actually by the remark after the proof of [23, Theorem 1.3], Sami proves that
fn below can be chosen to be continuous. But we only need this weaker version
here.

Lemma 3.3 (Sami [23]). Assume ZF + TD. For every uncountable set A of reals,
there is a perfect set B of reals and a sequence of arithmetical functions {fn}n∈� from
B to R such that B ⊆

⋃
n∈� f

–1
n (A). Moreover, restricted to B, fn is 1–1 for every n.

Proof. Fix an effective enumeration of Turing functional {Φn}n∈� . Going to a
subset, assume that in the proof of Proposition 3.2, B is perfect. Define fn : B → R
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by

fn(x) =

{
↑, (∃mΦx

′′
n (m) is not defined) ∨ (Φx

′′
n ≤T x),

Φx
′′
n , otherwise.

(1)

Clearly fn is arithmetical for every n. We have that B ⊆
⋃
n∈� f

–1
n (A). Moreover,

if x ∈ B and fn(x) is defined, then fn(x) ≤T x′′ ∧ fn(x) �≤T x. Then by the same
reason as in the proof of Proposition 3.2, fn must be 1–1 on B. So {fn}n∈� is as
required. �

§4. Weakly dependent choice. Throughout the section, we work within ZF + TD.

Definition 4.1. Weakly dependent choice for sets of reals, or wDCR, is the
statement that for every binary relation R over R with the property that the set
{y | R(x, y)} has positive inner measure for any real x, there is a sequence {xn}n∈�
of reals such that ∀nR(xn, xn+1).

Remark. wDCR is not a consequence of ZF. To see this, let V be a model of
ZFC+GCH and κ = ℵV� . Let G be Col(�,< κ)-generic over V. Let An = κ� ∩
V [G ∩ Col(�,< ℵVn )]. Let

M = HODV [G ]⋃
An∪{〈An :n<�〉}.

Then in M:

• 2� ∩M = 2� ∩ (
⋃
An). [See, e.g., the proof of [24, Theorem 6.69].]

• An is countable.
• Every countable subset of reals intersects at most finitely many An+1 \An’s.

For every x ∈ 2� ∩M , let n(x) be the least n such that x ∈ An. Then in M,

R = {(x, y) ∈ 2� × 2� : n(x) < n(y)}
witnesses the failure of wDCR.

Proposition 4.2. wDCR does not imply CCR.

Proof. To see this, let V = L[A] for some set A of ordinals, P be the random
forcing over 2�×� , G be P-generic over V, and rG : � × � → 2 be the induced
random real. Let xn = rG(n, ·) : � → 2 for each n < � and X = {xn : n < �}. Let

M = HODV [G ]
{A}∪X∪{X}.

First note that any bijection � : � → � will induce a homeomorphism �̃ of 2�×� to
itself by: �̃(x)(n,m) = x(�(n), m). Moreover, �̃ preserves measure and X. Then the
following hold in M.

(1) M satisfies wDCR. [Let R be a binary relation in M satisfying the assumption
of wDCR. Find a ∈ V , x0, ... , xm–1 ∈ X and formula ϕ such that xRy iff
V [G ] � ϕ(x, y, a, x0, ... , xm–1, X ).We may assume that there is no occurrence
of xi in ϕ since, e.g., we may view L[A, x0, ... , xm–1] as the ground model and
rG �[m,�)×� as the random real over L[A, x0, ... , xm–1]. So

xRy iff V [G ] � ϕ(x, y, a, X ).
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Recall that R ∩ V has full outer measure in V [G ]. Consequently, for any
x ∈ R ∩ V , there is some y ∈ V such that xRy. We will be done if R ∩ (R ∩
V )2 ∈ V . Now it suffices to prove that for any x, y ∈ R ∩ V , for any p, q ∈ P,

p � ϕ(x, y, a, Ẋ ) iff q � ϕ(x, y, a, Ẋ ).

Suppose towards a contradiction thatp � ϕ(x, y, a, Ẋ ) and q � ¬ϕ(x, y, a, Ẋ ).
Find finite unions of basis open sets Op and Oq such that for some n:
• �(Op) = �(Oq) = ε for some ε > 0;
• �(Op \ p) + �(Oq \ q) < ε2;
• Op =

⋃
i<k O�i and each �i : n × � → 2 is a finite partial map;

• Oq =
⋃
i<k∗ O	i and each 	i : n × � → 2 is a finite partial map.

Fix a bijection � : � → � such that �[[0, n)] ⊂ [n,�). Then

�(p ∩ �̃(q)) ≥ �(Op ∩ �̃[Oq]) – �(Op \ p) – �(�̃[Oq \ q]) > 0.

But recall that �̃[Ẋ ] = Ẋ . So

p ∩ �̃(q) � ϕ(x, y, a, Ẋ ) ∧ ¬ϕ(x, y, a, Ẋ ).

A contradiction.]
(2) There is no injection from� to X. [Suppose otherwise, f is an injection. Then

for some a ∈ V , x0, ... , xm–1 ∈ X and formula ϕ, for any (n, x) ∈ � × X ,
f(n) = x iff V [G ] � ϕ(n, x, a, x0, ... , xm–1, X ). Choose n such that f(n) =
xk /∈ {x0, ... , xm–1} and p ∈ G such that p � ϕ(n, ẋk, a, ẋ0, ... , ẋm–1, Ẋ ). It
is straightforward to find a bijection � : � → � such that � is identity
on {0, ... , m – 1}, �(k) �= k and �(p ∩ �̃[p]) > 0. But then p ∩ �̃[p] � ẋk =
ḟ(n) = ẋ�(k). A contradiction.]

So M does not satisfy CCR. To see this, find a sequence of disjoint rational intervals
〈In : n < �〉 such that In ∩ X �= ∅ for each n. Then by (2), 〈In ∩ X : n < �〉 admits
no choice function. �

If we use Cohen forcing instead of random forcing in the above argument, then
we conclude that the category version of wDCR does not imply CCR. But we do not
know if CCR implies wDCR.

Theorem 4.3. ZF + TD implies wDCR.

We remark that if “having positive inner measure” is replaced by having Baire
property and non-meager in the definition of wDCR, then the theorem still holds.

A Schnorr test relative to x is an x-recursive sequence of x-recursive open
sets {Vn}n∈� such that ∀n�(Vn) = 2–n. A real r is called x-Schnorr random if
r �∈

⋂
n∈� Vn for any Schnorr test {Vn}n∈� relative to x. If x is recursive, then we

simply use Schnorr randomness instead of x-Schnorr randomness. It is not difficult
to see that there is a Schnorr random r ≤T ∅′. And it is clear from the definition that
if r is x-Schnorr random and z ≤T x, then r is also z-Schnorr random. Also note
that if x ≥T ∅′ and r is x-Schnorr random, then x is Turing incomparable with r.

A real x is called low for Schnorr random if every Schnorr random real is Schnorr
random relative to x. The following theorem, which was proved by Sacks forcing, is
due to Terwijn and Zambella.
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r0 ≤T Φ
y′′0
e0

y0-Schnorr Random

r1 ≤T Φ
y′′1
e0

y′′0 -Schnorr Random

r2 ≤T Φ
y′′2
e0

y′′1 -Schnorr Random

···

···

R R R

Figure 1. R(rn, rn+1).

Theorem 4.4 (Terwijn and Zambella [27]). For every real y ≥T ∅′′, there is a real
x low for Schnorr random such that x′′ ≡T y.

Proof of Theorem 4.3. Fix a binary relation R as stated in wDCR. To prove
wDCR, we may assume that for any real x, the set Rx = {y | R(x, y)} is upward
closed under Turing reduction (and so Rx is co-null for any x). I.e., for any y and
z, if y ≤T z and y ∈ Rx , then z ∈ Rx . To see this, we may define a new relation
R̃ so that R̃(x, y) if and only if ∀z0 ≤T x∃z1 ≤T y R(z0, z1). Then for every real
x, the set R̃x = {y | R̃(x, y)} is upward closed under Turing reduction and has
positive measure, and so co-null. Moreover, if there is a sequence {yn}n∈� such that
∀nR̃(yn, yn+1). Then we build a sequence {xn}n∈� so that ∀nR(xn, xn+1) as follows.

First let x0 = y0. By the definition of R̃, we may choose the leastm1 such that Φy1
m1

is defined and R(x0,Φ
y1
m1 ). Let x1 = Φy1

m1 . Generally, if xn is defined, then xn ≤T yn.
So by the definition of R̃, we may choose the least index mn+1 such that Φyn+1

mn+1 is
defined and R(xn,Φ

yn+1
mn+1 ). Set xn+1 = Φyn+1

mn+1 . Then we have that ∀nR(xn, xn+1).
Now fix a real z. Note that by the assumption on R,

⋂
y≤T z′ Ry is co-null. Then by

Fact 1.10, there is a real z0 ≥T z ′ such that for every y ≤T z ′ and every z0-Schnorr
random r,R(y, r). Also by relativizing Theorem 4.4 to z, there is a realx >T z low for
z-Schnorr random such that x′′ ≥T z0. So for every y ≤T z ′ and every x′′-Schnorr
random r, R(y, r). Also note that there is a z-Schnorr random, and so x-Schnorr
random, real r ≤T z ′. Since x′′ ≥T z ′, there is some index of Turing functional e
such that Φx

′′
e = z ′. For every number e ∈ �, define the set

Ae = {x | ∃r(r is x-Schnorr random ∧ r ≤T Φx
′′
e )

∧∀r0 ≤T Φx
′′
e ∀r1(r1 is x′′-Schnorr random → R(r0, r1))}.

Then by the discussion above,
⋃
e∈� Ae ranges Turing degrees cofinally. So there

must be some e0 such that Ae0 ranges Turing degrees cofinally. By TD, there is some
x0 such that every y ≥T x0 is ≡T equivalent to some y0 in Ae0 . We may assume that

x0 ∈ Ae0 . Recursively in x(�)
0 , we first find a sequence of reals

{yn ∈ Ae0 | n < � ∧ yn ≡T x(2n)
0 }.

Then find a sequence of reals {rn}n∈� so that for every n, rn ≤T Φy
′′
n
e0 is yn ≡T

x(2n)
0 -Schnorr random. Note that for every n, rn ≤T Φy

′′
n
e0 and rn+1 is x(2n+2)

0 ≡T y′′n -
Schnorr random (see Figure 1). So by the definition of Ae0 , R(rn, rn+1). �
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The reason we choose Schnorr randomness, instead of Martin-Löf randomness
that is the standard randomness notion, is that every low for Martin-Löf random
real is Turing below ∅′. So for any real x low for Martin-Löf random, there is no
way to make the Turing jumps of x be very high.

§5. Regularity properties of sets of reals. In this section, we prove some regularity
properties for sets of reals under ZF + sTD(+DCR). Woodin already considered
sTD long time ago. All the results in Sections 5.1 and 5.2 have been known to him
(email communication between Woodin and Yu in April 2021).

Theorem 5.1 (Woodin, unpublished). (1) ZF + sTD implies that every set is
measurable and has Baire property.

(2) ZF + sTD implies that every uncountable set of reals has a perfect subset.

5.1. The proof of part (1). We only prove that every set is measurable and leave
the second part to readers.

It suffices to prove that for any set A, if every measurable subset of A is null, then
A must be null. Now suppose, for a contradiction, that every measurable subset of
A is null but A is not null. Then, by Fact 1.10 with Schnorr randomness, for every
real z, there is a z-Schnorr random real z0 in A. By Theorem 4.4 relative to z, there
is a real x ≥T z low for z-Schnorr random and x′′ ≥T z0.

Now for every e ∈ �, let

Be = {x | Φx
′′
e ∈ A is an x-Schnorr random real}.

The argument in the previous paragraph shows that
⋃
e∈� Be ranges Turing degrees

cofinally. Then there is some e0 such that Be0 ranges Turing degrees cofinally. By
sTD, there is a pointed subset P ⊆ Be0 .

Let

C = {r | ∃x ∈ P(Φx
′′
e0

= r)}.

C is an analytic set and so measurable. Since P is a pointed set, by the definition of
Be0 and Fact 1.10 with Schnorr randomness, C is not null. This is absurd.

Remark. Clearly the proof can be localized if we assume CCR, as pointed out
by one of the referees. For example, assuming ZF + CCR, if sTD holds for Σ1

n-sets,
then every Σ1

n-set is measurable.

5.2. The proof of part (2). We first prove the following lemma.

Lemma 5.2. Assume ZF + sTD. For every perfect set P of reals and every partition
P =

⋃
n<� Bn, there exists n such that Bn has a perfect subset.

Proof. Clearly we may assume that P = 2� via a homeomorphism. Then for
some n,Bn ranges Turing degrees cofinally. By sTD,Bn contains a perfect subset. �

Proof of part (2) of Theorem 5.1. Suppose that A is uncountable. By Lemma
3.3, we may fix a perfect set B and a sequence of functions {fn}n∈� as in the lemma.
Then by Lemma 5.2, we can choose a perfect Q ⊂ f–1

n [A] for some n. Now fn[Q]
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is an uncountable analytic subset of A. So fn[Q] and hence A contains a perfect
subset. �

Remark. We would like to thank the referee who pointed out to us that the proof
derived the result that ZF + TD + “every set of reals has Baire property” implies
every uncountable set of reals has a perfect subset.

Here we mention another approach, within ZF + sTD + DCR, to get a perfect
subset due to Sami. A set A of reals is called Bernstein if neither A nor R \ A has
a perfect subset. Notice that the nonexistence of a Bernstein set implies that for
every perfect set P and its subset A ⊆ P, either A or P \ A has a perfect subset.
Sami observed the following relationship between the existence of a Bernstein set
and perfect subset property.

Lemma 5.3 (Sami [23]). Assume ZF + TD + DCR. If there is no Bernstein set,
then every uncountable set of reals has a perfect subset.

Proof. Suppose that A is uncountable. By Lemma 3.3, we may fix a perfect set
B and a sequence of functions {fn}n∈� as in the lemma.

Let T 0 ⊆ 2<� be a perfect tree such that [T 0] = B . We will inductively choose a
decreasing sequence of perfect trees T 0 ⊃ T 1 ⊃ ··· ⊃ Tn ⊃ ··· until the procedure
terminates. Suppose that Tn has been chosen and we choose Tn+1.

Case (1). There is some perfect tree T ∗ ⊆ Tn such that fn is defined on
every member in [T ∗] and fn([T ∗]) ⊆ A. Fix such T ∗. Then fn([T ∗]) ⊆ A is
an uncountable analytic set. Thus A must have a perfect subset. The procedure
terminates and we are done.

Case (2). Otherwise. Then by the assumption of no Bernstein set, choose Tn+1 to
be a perfect subtree of Tn such that for every x ∈ [Tn+1], either fn(x) is not defined
or fn(x) �∈ A.

Either we stop at Case (1) of some n, then we find a perfect subset of A. Or else,
the construction goes through all of n’s. Then

⋂
n<�[Tn] is non-empty. Moreover,

for every x ∈
⋂
n<�[Tn] and every n, either fn(x) is not defined or fn(x) �∈ A. This

contradicts the fact that B ⊆
⋃
n∈� f

–1
n (A).

Thus we must stop at Case (1) of some n and so A must have a perfect subset. �

sTD implies that every set is measurable and so there is no Bernstein set. Thus
ZF + sTD + DCR implies every uncountable set of reals has a perfect subset.

5.3. An application of regularity properties to linear orderings over R.

Lemma 5.4. Assume ZF + CCR + “every set of reals is measurable.” Given any
linear order ≤L of R and any non-null set A ⊆ R, the collection of all x ∈ A such
that either {y ∈ A | y ≤L x} is null or {y ∈ A | x ≤L y} is null is a null set.

Proof. Given a linear order ≤L over R, letA ⊆ R be any non-null set. Fix a non-
null set B ⊆ A. By Fubini’s theorem, the set {(x, y) | x ≤L y ∧ x ∈ B ∧ y ∈ B} is
measurable and has positive measure. Let

LB = {x ∈ B | {y ∈ A | y ≤L x} is null}
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be a subset of B. Then by Fubini’s theorem again, the set B \ LB is not null. So the
set

LA = {x ∈ A | {y ∈ A | y ≤L x} is null}

is a null subset of A.
By the same method, the set

RA = {x ∈ A | {y ∈ A | x ≤L y} is null}

is also a null subset of A. �

Finally, we have the following basis theorem for linear orderings over R under
ZF + sTD. In what follows, we use ≤ to denote the usual order on reals. Since the
lexicographic order on 2� is order isomorphic to the real order on the Cantor set
through the standard bijection, we also use ≤ to denote this order on 2� .

Theorem 5.5. Assume ZF + DCR + “every set of reals is measurable.” For every
linear order≤L overR, there is an order-preserving embedding from (2�,≤) to (R,≤L).

Proof. First we set P∅ = [0, 1].
By Lemma 5.4, there is a real x ∈ P∅ such that both the sets {y ∈ A | y ≤L x}

and {y ∈ A | x ≤L y} have positive measure. So both of them have disjoint perfect
subsets P0 and P1 with positive measure, respectively. Moreover, we may require
that for any i ∈ {0, 1} and y, z ∈ Pi , |y – z| ≤ 2–1.

Now, by an induction, it is not difficult to construct a sequence {P�}�∈2<� of
perfect sets so that:

• If � extends 	, written as � � 	, then P� ⊂ P	 has positive measure.
• If � and 	 are incompatible, then P� ∩ P	 = ∅.
• If for some n, � �n= 	 �n and �(n) < 	(n), then ∀x ∈ P�∀y ∈ P	(x ≤L y).
• For any � and x, y ∈ P� , |x – y| ≤ 2–|�|.

Define f : 2� → R so that f(x) is the unique real in
⋂
n Px�n. Then f is an

order-preserving embedding from (2�,≤) to (R,≤L). �

One may wonder what happens to Lemma 5.4 under ZF + TD. Since it is
unknown whether ZF + TD implies that every set of reals is measurable, we have to
use a more involved argument.

Definition 5.6. A linear order (L,≤L) is locally countable if for any l ∈ L, the
set {x ≤L l | x ∈ L} is countable.

A typical locally countable order is (�1,≤).
For a set A of reals that is closed under Turing equivalence relation, a real x is a

minimal upper bound of A if:

• every member of A is recursive in x; and
• there is no real y <T x such that every member of A is recursive in y.

By a classical theorem in recursion theory (see Theorem 4.11 in [14]), every
countable set of reals has a minimal upper bound.

Lemma 5.7. Assume ZF + TD. There is no uncountable set A ⊆ R with a locally
countable linear order over A.
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Proof. By Proposition 3.2, it suffices to prove that there is no locally countable
linear order on R.

Suppose not. Let (R,≤L) be a locally countable order. For every real x, let Ix be
the Turing downward closure of the set {z | z ≤L x}. I.e.,

Ix = {s | ∃z ≤L x(s ≤T z)}.

Obviously x ≤L y implies Ix ⊆ Iy .
Note that for any real z, there is a real x such that z ∈ Ix . So there is a real z0 ≥T z

such that z0 is a minimal upper bound of Ix . By TD, there is a real z1 such that every
real z2 ≥T z1 is a minimal upper bound over Ix for some x.

For every real z, let

Mz = {x | z is a minimal upper bound of Ix)}

and

Nz =
⋃
x∈Mz

Ix.

Note thatMz2 is nonempty for every z2 ≥T z1. We have the following fact:

• For any z2, z3 ≥T z1, eitherNz3 ⊆ Nz2 orNz2 ⊆ Nz3 . [To see this, suppose that
Nz3 �⊆ Nz2 . Then there must be some x3 ∈Mz3 such that for any x2 ∈Mz2 ,
x3 �≤L x2. In other words, x2 ≤L x3 for any x2 ∈Mz2 . So Nz2 ⊆ Nz3 .]

Now fix a pair of minimal covers z2 �≡T z3 of z1 (i.e., for i ∈ {2, 3}, zi >T z1 but
there is no real y strictly between z1 and zi in the Turing reduction order sense.
For the existence of such a pair, see Lemma 2.1). By the fact above, WLOG, we
may assume Nz2 ⊆ Nz3 and fix some x ∈Mz2 . Then every real in Ix ⊆ Nz2 ⊆ Nz3 is
recursive in both z2 and z3. So every real in Ix is recursive in z1. This contradicts the
fact that z2 is a minimal upper bound of Ix and z1 <T z2. �

Corollary 5.8. Assume ZF + TD. For every uncountable set A ⊆ R and linear
order ≤L over A, there are uncountably many reals x ∈ A such that both {y ∈ A |
y ≤L x} and {y ∈ A | x ≤L y} are uncountable.

Proof. Given a linear order ≤L over R, let

L = {x ∈ A | {y ∈ A | y ≤L x} is countable}

and

R = {x ∈ A | {y ∈ A | x ≤L y} is countable}.

By Lemma 5.7, both L and R are countable. So there are uncountably many reals
x ∈ A such that both {y | y ≤L x} and {y | x ≤L y} are uncountable. �

Now we may obtain the following result.

Theorem 5.9. Assume ZF + TD + DCR. The following are equivalent.

1. Every uncountable set of reals has a perfect subset.
2. For every linear order ≤L over R, there is an order-preserving embedding from

(2�,≤) to (R,≤L).
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Proof. (1)⇒(2). The argument of Theorem 5.5 works here. Just replace “set
with positive measure” by “uncountable set.”

(2)⇒(1). Fix an uncountable set of reals A. By Proposition 3.2, |A| = |R|. So
(A,≤) is order isomorphic to (R,≤L) for some ≤L. By (2), there is an order-
preserving map from (2�,≤) to (R,≤L) and hence (A,≤).

Fix � : 2� → A that preserves order and so is monotonic. Then � is continuous
on all but countably many points. In particular, � is continuous (and injective) on a
perfect subset P. So �[P] is a perfect subset of A. �

§6. Regularity properties for dimension theory. For the notions and terminologies
in fractal geometry, we follow the book [7].

Given a non-empty U ⊆ R, the diameter of U is

diam(U ) = |U | = sup{|x – y| : x, y ∈ U}.

Given any set E ⊆ R and d ≥ 0, let

Hd (E) = lim

→0

inf{
∑
i<�

|Ui |d : {Ui} is an open cover of E ∧ ∀i |Ui | < 
},

Pd0 (E) = lim

→0

sup{
∑
i<�

|Bi |d : {Bi} is a collection of disjoint balls of radii at

most 
 with centres in E},

and

Pd (E) = inf{
∑
i<�

Pd0 (Ei) | E ⊆
⋃
i<�

Ei}.

Definition 6.1. Given any set E:

(1) The Hausdorff dimension of E, or DimH(E), is

inf{d | Hd (E) = 0}.

(2) The Packing dimension of E, or DimP(E), is

inf{d | Pd (E) = 0}.

By the same reason as in the Lebesgue measure, it can be proved with ZF + CCR

that for every Borel set B and ε > 0, there is a closed setF ⊆ B such that DimH(F ) >
DimH(B) – ε.

Theorem 6.2 (Besicovitch [1] and Davis [5]). For every analytic set A and every
ε > 0, there is a closed set F ⊆ A such that DimH(F ) ≥ DimH(A) – ε.

Theorem 6.3 (Joyce and Preiss [11]). For every analytic set A and every ε > 0,
there is a closed set F ⊆ A such that DimP(F ) ≥ DimP(A) – ε.

However Slaman proves that both Theorems 6.2 and 6.3 may fail even for some
Π1

1 set under certain assumptions.

Theorem 6.4 (Slaman [25]). Suppose that the set of constructible reals is not null,
then there is a Π1

1 set C with DimH(C ) = 1 but for any Borel F ⊂ C , DimP(F ) = 0.
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We prove that Theorems 6.2 and 6.3 both remain true for all sets of reals under
ZF + sTD. As pointed out by one of the referees, the following result can be localized
similarly as the localization of Theorem 5.1.

Theorem 6.5. ZF + sTD implies that for every set of reals A and every ε > 0 :

(1) There is a closed set F ⊆ A such that DimH(F ) ≥ DimH(A) – ε.
(2) There is a closed set F ⊆ A such that DimP(F ) ≥ DimP(A) – ε.

To show the theorem, we use the “point-to-set” method.
Some more facts from algorithmic randomness theory are needed. Let K denote

the prefix-free Kolmogorov complexity. We use Kx to denote the prefix-free
Kolmogorov complexity with oracle, which is a real, x. The following “point to
set” style theorem is due to Lutz and Lutz. A similar form was also discovered by
Cutler. See [4, Theorem 1.4].

Theorem 6.6 (Lutz and Lutz [15]). For every set A ⊆ R,

DimH(A) = inf
x∈R

sup
y∈A

limn→∞
Kx(y�n)
n

and

DimP(A) = inf
x∈R

sup
y∈A

limn→∞
Kx(y�n)
n

.

The following lowness property is crucial to our proof.

Theorem 6.7 (Herbert [9]; Lempp, Miller, Ng, Turetsky, Weber [13]).

• There is a perfect tree T ⊆ 2<� recursive in ∅′ such that for any real x ∈ [T ],

∀y ∈ R

(
limn→∞

K(y�n)
n

= limn→∞
Kx(y�n)
n

)
.

• There is a perfect tree T ⊆ 2<� recursive in ∅′ such that for any real x ∈ [T ],

∀y ∈ R

(
limn→∞

K(y�n)
n

= limn→∞
Kx(y�n)
n

)
.

Now we are ready to prove our major theorem of this section.

Proof of Theorem 6.5.

(1). Suppose that A ⊆ R with DimH(A) > 0. Fix any ε > 0. By Theorem 6.6, for
every real z, there is some real x ∈ A such that

limn→∞
Kz(x�n)
n

> DimH(A) –
ε

2
.

By Theorem 6.7 relative to z, there is a real y >T z such that

limn→∞
Ky(x�n)
n

= limn→∞
Kz(x�n)
n

> DimH(A) –
ε

2
∧ y′ >T x.
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So there must be some e0 such that the set

Be0 =

{
y | Φy

′
e0 ∈ A ∧ limn→∞

Ky(Φy
′
e0 �n)
n

> DimH(A) –
ε

2

}

ranges Turing degrees cofinally. By sTD, there is a pointed set P ⊆ Be0 .
Then the set

C = {x | ∃y ∈ P(Φy
′
e0 = x)}

is an analytic subset of A. By Theorem 6.6,

DimH(C ) > DimH(A) –
ε

2
.

By Theorem 6.2, C has a closed subset F such that

DimH(F ) > DimH(C ) –
ε

2
.

Thus

DimH(F ) > DimH(A) – ε.

(2). The same proof as (1) except replacing Hausdorff dimension with packing
dimension. We leave the details to readers. �

To continue our study, we need the following folklore technique lemma of which
we sketch a proof for the completeness.

Lemma 6.8 (Folklore). Assume ZF + sTD. If f : R → Ord is a degree invariant
(i.e., x ≡T y =⇒ f(x) = f(y)) map such that f(x) < �x1 , then there is an ordinal
α such that f(x) = α over an upper cone of Turing degrees.

Proof. Fix such a map f. Since there are countably many recursive functionals,
by sTD, there is some recursive functional Φ such that Φx codes a linear order for
every real x, and a pointed set P such that f(x) ∼= Φx for any x ∈ P. Let T be a
tree representing P such that ∀x ∈ P(T ≤T x). Then the set

{Φx | x ∈ P}

is a Σ1
1(T ) set and so Φx represents an ordinal smaller than �T1 for any x ∈ P by Σ1

1-
boundedness relative to T (see [2]). By sTD again, there must be some α < �T1 and
a pointed set Q ⊆ P such that f(x) = α for any x ∈ Q. This finishes the proof. �

Crone, Fishman, and Jackson also proved the following result.

Theorem 6.9 (Crone, Fishman, and Jackson [3]). Assume ZF + AD + DC. If
A =

⋃
α<κ Aα for some ordinal κ, then DimH(A) = sup{DimH(Aα) | α < κ}.

We may provide an “elementary” proof of the following weaker result under
ZF + sTD.

Theorem 6.10. Assume ZF + sTD. If A =
⋃
α<�1

Aα , then

DimH(A) = sup{DimH(Aα) | α < �1} and DimP(A) = sup{DimP(Aα) | α < �1}.
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Proof. Let r = DimH(A) and for every real x,

�x = min

{
�| sup
y∈

⋃
α<� Aα

limn→∞
Kx(y�n)
n

≥ r
}
.

By Theorem 6.6, �x is defined for every real x.
For any real z, by Theorem 6.7 and the assumption, there is a real x >T z such

that �x = �z but �x
′

1 > �z . So

�x = �z < �x
′

1 = �x1 .

In other words, x → �x is a degree invariant function such that �x < �x1 over an
upper cone of Turing degrees. Then by Lemma 6.8, x → �x is a constant, say �,
over an upper cone. Then, by the countability of �, for every m ∈ �, there must
be some αm < � such that the set {x | supy∈Aαm limn→∞

Kx (y�n)
n ≥ r – 1

m} ranges
Turing degrees cofinally. Then by Theorem 6.6, DimH(Aαm ) ≥ r – 1

m . So

DimH(A) = sup{DimH(Aα) | α < �} = sup{DimH(Aα) | α < �1}.

We leave the proof of the second part to readers. �

Some remarks:

• The conclusion of Theorem 6.10 can also be proved within ZFC + MAℵ1
.

Furthermore, �1 can be replaced by any cardinal κ < 2ℵ0 .
• We don’t know the consistency strength of the conclusions of Theorem 6.5.
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