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Scaling of small-scale wall turbulence

S.L. Tang1,† and R.A. Antonia2

1Center for Turbulence Control, Harbin Institute of Technology, Shenzhen 518055, PR China
2School of Engineering, University of Newcastle, NSW 2308, Australia

(Received 29 January 2022; revised 19 June 2022; accepted 13 August 2022)

In the vicinity of walls, turbulence is anisotropic. Since the classical hypotheses of
Kolmogorov (Dokl. Akad. Nauk SSSR, vol. 30, 1941, pp. 299–303), Obukhov (Izv. Akad.
Nauk SSSR Geogr. Geofiz, vol. 13, 1949, pp. 58–69) and Corrsin (J. Appl. Phys., vol.
22, 1951, pp. 469–473) require small-scale turbulence to be isotropic, they have only
limited relevance to wall-bounded turbulent flows. Here, we put forward a hypothesis
whereby small-scale near-wall statistics, when suitably normalized, are independent of
the type of flow as well as of the Reynolds and Péclet numbers. The relatively large
amount of available wall turbulence direct numerical simulations data, related mainly to
second-order statistics, in a channel flow and a boundary layer provides good support for
the independence with respect to the Reynolds number. To fully validate the hypothesis,
more data are required for higher-order statistics as well as for other wall flows and for
different surface conditions.

Key words: turbulence theory

1. Introduction

One striking success in describing and predicting small-scale turbulent motion (Nelkin
1992) is the phenomenological picture for the velocity field introduced by Kolmogorov
(1941). Kolmogorov’s hypotheses were extended further by Obukhov (1949) and Corrsin
(1951) to describe the behaviour of a passive scalar field within a turbulent flow. The
Kolmogorov–Obukhov–Corrsin hypotheses are commonly referred to as the KOC theory
in the literature. This theory requires that the Reynolds and Péclet numbers are sufficiently
large so that the small-scale velocity and passive scalar fields are isotropic and statistically
independent of the large scales (Warhaft 2000; Chassaing et al. 2002). However, wall
turbulent flows are characterized by anisotropy (Antonia, Kim & Browne 1991; Kasagi,
Tomita & Kuroda 1992; Antonia, Abe & Kawamura 2009; Vreman & Kuerten 2014a,b;
Tang et al. 2015; Pumir, Xu & Siggia 2016; Kaneda & Yamamoto 2021), especially near
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the wall, thus the influence of the large scales on small-scale quantities may persist.
Wall turbulence is of great importance in meteorological and oceanic flows and hence
in a climatological context (Marusic, Mathis & Hutchins 2010; Smits & Marusic 2013).
The flow behaviour in the near-wall region also determines the drag force on planes and
ships, and the energy required to pump fluids through pipelines (Marusic et al. 2010;
Smits & Marusic 2013). Pipe and channel flows and the boundary layer, including the
atmospheric surface layer, are the most frequently investigated wall-bounded turbulent
flows. The conventional scaling of wall turbulence is based on the wall parameters uτ ,
θτ and ν, where uτ = (τw/ρ)1/2 is the friction velocity (τw is the wall shear stress and
ρ is the density of the fluid), ν is the kinematic viscosity, and θτ = Qw/ρcpuτ is the
friction temperature (Qw is the averaged wall heat flux and cp the specific heat at constant
pressure). Several decades of research into small-scale wall turbulence have shown that
the scaling of small-scale quantities, such as the mean turbulent energy dissipation rate ε̄

(≡ ν(∂ui/∂xk)(∂ui/∂xk)), the mean scalar dissipation rate ε̄θ (≡ κ(∂θ/∂xk)(∂θ/∂xk)) and
their transport equations, based on uτ , θτ and ν, is untenable in the region near the wall
(Antonia et al. 1991; Kasagi et al. 1992; Antonia & Kim 1994; Abe, Antonia & Kawamura
2009; Vreman & Kuerten 2014b; Gerolymos & Vallet 2016; Alcántara-Ávila, Hoyas &
Pérez-Quiles 2021; Pirozzoli et al. 2021). The scaling of the energy spectra based on uτ

and ν near the wall is also untenable (see figure 5(a), which will be discussed later).
Here, the streamwise (x1), wall-normal (x2) and spanwise (x3) velocity fluctuations are
denoted respectively by u1, u2 and u3. Also, κ is the thermal diffusivity, θ denotes the
scalar fluctuation, and the overbar denotes an averaged value at a given x2 location. To our
knowledge, there is no theory that can describe and predict the behaviour of small-scale
wall turbulence. The major objective of this paper is to develop a hypothesis that addresses
this behaviour in an adequate manner.

2. A hypothesis of small-scale wall turbulence

If a proper theory of small-scale wall turbulence were to emerge, which has the prospect of
being universal, then it first requires the identification of the proper scaling parameters for
small-scale quantities, which, as noted above, are unlikely to be the conventional scaling
of wall turbulence, i.e. uτ , θτ and ν. Another set of scaling parameters for small-scale
turbulence provided by the KOC theory is ε̄, ε̄θ and ν. This requires local isotropy to be
satisfied and the small scales to be statistically independent of the large scales. These two
requirements are not satisfied in wall turbulence (Antonia et al. 1991, 2009; Kasagi et al.
1992; Abe et al. 2009; Vreman & Kuerten 2014a,b; Tang et al. 2015; Gerolymos & Vallet
2016; Pumir et al. 2016; Alcántara-Ávila et al. 2021; Kaneda & Yamamoto 2021), so the
theory is invalidated. In wall turbulence, one expects that the small scales will deviate from
isotropy and may be affected by the large-scale forcing associated with diffusion and mean
shear phenomena. However, if this deviation and the effect of the large-scale forcing can
become independent of the Reynolds and Péclet numbers, then the small-scale quantities,
when suitably normalized, may become universal. If ε̄, ε̄θ and ν are indeed the proper
scaling parameters, then we can formulate a hypothesis for small-scale wall turbulence, as
follows.

In wall turbulence at sufficiently high Reynolds and Péclet numbers, although the effect
of the large-scale forcing on the small scales depends on the distance from the wall and
on the turbulent scale (or wavenumber), it does not depend on the Reynolds and Péclet
numbers when the normalization uses ε̄, ε̄θ and ν. Consequently, the small-scale statistics
are universal. They depend only on the turbulent scale (or wavenumber) and the distance
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from the wall. The larger the Reynolds and Péclet numbers, the larger the distance from the
wall and the range of turbulent scales over which this universality applies. By ‘universality’
we mean independence with respect to the type of flow as well as the Reynolds and Péclet
numbers.

Mathematically, this hypothesis predicts that in wall turbulence, the behaviour of any
small-scale quantity, say Ψ , can be expressed as

Ψ (r∗or k∗, x∗
2) = fΨ (r∗or k∗, x∗

2), (2.1)

where the asterisk denotes normalization by ε̄, ε̄θ and ν (or equivalently the Batchelor
temperature scale θB = (ε̄θ (ν/ε̄)1/2)1/2 and the Kolmogorov velocity uK = (νε̄)1/4 and
length η = (ν3/ε̄)1/4 scales), and the function fΨ is universal; fΨ should depend only on
x∗

2 and the scale r∗ in physical space (or wavenumber k∗ in spectral space) once appropriate
values of the Reynolds and Péclet numbers are reached. In particular, at a given scale r∗
(or k∗) in the small-scale range, Ψ (x∗

2) will depend only on x∗
2. We immediately recover

the predictions of the KOC theory, provided that local isotropy is satisfied and the small
scales are statistically independent of the large scales in the region far from the wall,
viz. Ψ (r∗ or k∗) = fΨ (r∗ or k∗); this is supported by the energy spectra in a channel flow,
in a boundary layer and in a pipe flow (Saddoughi & Veeravalli 1994; Rosenberg et al.
2013; Tang et al. 2015; Vallikivi, Ganapathisubramani & Smits 2015). Further, for scales
larger than the viscous scales but smaller than the integral scale L (representing the scale at
which turbulent energy is introduced), the KOC theory predicts that Ψ (r or k) are uniquely
determined by ε̄ and ε̄θ (no longer depending on ν). In this case, a universal scaling law,
i.e. the Kolmogorov k−5/3 scaling of the energy spectrum, emerges. This is supported by
the spectra of Rosenberg et al. (2013) on the pipe centreline at Reτ = 98 190, where one
can observe approximately one decade of k−5/3 behaviour. Evidently, the KOC predictions
are compatible with those of the present hypothesis provided that the distance from the
wall is sufficiently large, local isotropy is satisfied, and the small scales are statistically
independent of the large scales. However, when the latter conditions do not apply, the
present hypothesis extends the KOC theory in a significant way.

3. Test of the hypothesis

Figure 1(a) shows the distributions of ε̄+, where + denotes normalization by uτ and ν,
in a channel flow over a large range of Reτ (550–104). Since ε̄+ = u4

K/u4
τ = δ4

ν/η
4, the

purpose of showing the ε̄+ distributions is to examine whether they can collapse over a
certain x+

2 range. This would imply that the wall parameters and the Kolmogorov scales
can be used interchangeably in this range. In the region x+

2 � 20, the magnitude of ε̄+
increases systematically with Reτ . Beyond this region, it decreases quickly with x+

2 to
approach a value close to 0 at x+

2 ≈ 103. In order to examine this region more closely,
figure 1(b) shows the same distributions premultiplied by x+

2 , i.e. x+
2 ε̄+; note that this

does not affect the collapse of ε̄+, if it indeed exists. Evidently, the magnitude of x+
2 ε̄+

evolves systematically with Reτ except for the distributions at Reτ = 5200 and 104, which
collapse over the range 50 � x+

2 � 200. Further, the distributions of x+
2 ε̄+ in figure 1(b)

do not exclude the possibility that the x+
2 range over which x+

2 ε̄+ collapses may extend to
larger and smaller values of x+

2 as Reτ keeps increasing. In particular, we underline that if
x+

2 ε̄+ does not collapse, then scaling based on Kolmogorov scales will exclude the scaling
based on wall parameters, and vice versa.
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Figure 1. Distributions of (a) ε̄+ and (b) x+
2 ε̄+ in a channel flow. They are plotted using the data of Lee &

Moser (2015, 2019) and Hoyas et al. (2022).

Before testing the scaling based on the Kolmogorov scales, we report in figure 2
the variation of x∗

2 with x+
2 across the whole channel, over the ranges x+

2 = 0–100 and
x+

2 = 1–3, respectively. This figure helps to identify the x+
2 range that corresponds to the

x∗
2 range over which the present hypothesis applies. Note that x∗

2 = x+
2 /η+ = x+

2 ε̄+1/4.
Strictly speaking, at a given x+

2 , if ε̄+ (or equivalently x+
2 ε̄+) does not collapse (figure 1),

then x∗
2 also should not collapse. Indeed, the dependence of x∗

2 on Reτ at a given x+
2 can be

observed from figures 2(a,b) and the inset, at large x+
2 (� 500), moderate x+

2 (∼100) and
small x+

2 (∼1). We first test the scaling based on the wall parameters and the Kolmogorov
scales in the context of the components of the dissipation rate tensor, i.e.

R1 = 2ν

(
∂u1

∂xk

∂u1

∂xk

)
, R1 = 2ν

(
∂u2

∂xk

∂u2

∂xk

)
, R3 = 2ν

(
∂u3

∂xk

∂u3

∂xk

)
. (3.1a–c)

Since R1 + R2 + R3 = 2ε̄, we show, as in figure 1(b), the premultiplied R+
i in figure 3(a),

i.e. x+
2 R+

i for Reτ = 550–104. The distributions of R∗
i are plotted in figure 3(b). The

following comments can be made with regard to figure 3. (i) Like the distributions of
x+

2 ε̄+, those of x+
2 R+

i also collapse approximately at Reτ = 5200 and 104 in the range 50 �
x+

2 � 200. (ii) In the region x+
2 � 10, x+

2 R+
2 ≈ 0 and thus the collapse is not surprising.

(iii) In the region around x+
2 ≈ 23, there is a reasonably good collapse for x+

2 R+
1 at all

Reτ . Since x+
2 (R+

1 + R+
2 + R+

3 ) = 2x+
2 ε̄+ and the x+

2 ε̄+ distributions around x+
2 ≈ 23 do

not collapse (see figure 1b), the collapse of x+
2 R+

1 around this location implies a relatively
more rapid evolution for other components, which is indeed observed from the x+

2 R+
3

distributions. (iv) Except for the quantities at certain locations, as mentioned above, the
other distributions evolve systematically with Reτ . (v) In contrast, there is a nearly perfect
collapse for the distributions of R∗

2 across the channel when Reτ > 1000. The same feature
can be observed in the R∗

1 and R∗
3 distributions when Reτ > 1000 and x∗

2 � 20. (vi) In the
region x∗

2 � 20, the magnitudes of R∗
1 and R∗

3 appear to evolve, albeit slightly, with Reτ for
Reτ � 550. This is consistent with the observation, also in a channel flow, of Gerolymos &
Vallet (2016) that the peaks of R1/(2ε̄) − 1/3 and R3/(2ε̄) − 1/3 vary with Reτ . However,
a close look at the distributions of R∗

1 and R∗
3 in the region x∗

2 � 20 shows that there is
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Figure 2. Variation of x∗
2 with x+

2 (a) across the whole channel and (b) on the range x+
2 = 0–100. The inset

in (b) zooms in on the range x+
2 = 1–3. The plots use the data of Lee & Moser (2015, 2019) and Hoyas et al.

(2022).

an approximate collapse when Reτ > 1000; this is confirmed by figure 4, which shows
the distributions of R∗

1, R∗
2 and R∗

3 for Reτ > 1000 in the channel flow. Note that the
same feature can be observed also in the distributions of the Kolmogorov-normalized
R12 = 2ν((∂u1/∂xk)(∂u2/∂xk)), i.e. R∗

12, which are also shown in figure 4. (vii) Overall,
the comparison between the wall-parameter-normalized and Kolmogorov-normalized
distributions of Ri indicates that the scaling based on Kolmogorov scales is superior to
that based on wall parameters. More importantly, there is an approximate collapse for all
distributions across the channel when Reτ > 1000 (figure 4). Also shown in figure 4 are
the R∗

i and R∗
12 distributions in a boundary layer for Reτ > 1000. It is remarkable that

the boundary layer data can collapse reasonably well with the channel data in the region
x∗

2 � 70. Evidently, figure 4 provides reasonably good support for the present small-scale
wall turbulence hypothesis.

Before testing the hypothesis systematically in the context of energy spectra, it is
desirable to compare the wall-parameter- and Kolmogorov-normalized spectra at a location
very near the wall to evaluate which scaling is adequate. The results are shown in
figures 5(a,b), which compare the wall-parameter-normalized spectrum φu2(k

+
x3

) at x+
2 = 2

with the Kolmogorov-normalized spectrum φu2(k
∗
x3

) at x∗
2 = 1.5 in a channel flow (Lee &

Moser 2015, 2019). The comparison allows a critical evaluation of the two normalizations,
using exaggerated horizontal and vertical axes. The same scales for the horizontal axis and
two decades for the vertical axis are used in figures 5(a,b). These two locations (x+

2 = 2
and x∗

2 = 1.5) are close to each other (see the inset of figure 2b). It can be seen that there is
no collapse for φu2(k

+
x3

), regardless of the wavenumber. Instead, the variation of φu2(k
+
x3

)

with Reτ is systematic, implying that the scaling based on wall parameters is not tenable. In
contrast, there is a good collapse for φu2(k

∗
x3

) in the high-wavenumber range (small-scale
range). This is consistent with the prediction of the present hypothesis.

We now test the hypothesis using spectra in both a channel flow and a boundary layer.
According to (2.1), the spectra should be universal in the small-scale range, depending
only on x∗

2 and k∗. In particular, at a given distance x∗
2 from the wall, energy spectra should

depend only on k∗. Figure 6 shows the Kolmogorov-normalized φu1(k
∗
x3

), φu2(k
∗
x3

) and
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Figure 3. Distributions of R1, R2 and R3 in a channel flow. Normalizations based on (a) wall parameters and
(b) Kolmogorov scales. They are plotted using the data of Lee & Moser (2015, 2019) and Hoyas et al. (2022).
Note that the R+

i distributions in (a) have been premultiplied by x+
2 . The horizontal line in (b) indicates the

isotropic ratio (2/3).
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0.5

1.0

1.5

2.0

Boundary layer:

Channel flow:

x2
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∗
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∗ R2

∗

–R∗
12

Reτ = 104

(b)(a)

Figure 4. Distributions of (a) R∗
1, and (b) R∗

2 and R∗
3, in a channel flow for Reτ > 1000 for the data in

figure 3(b); the corresponding distributions for the Kolmogorov-normalized R12 = 2ν((∂u1/∂xk)(∂u2/∂xk)),
i.e. R∗

12, are also shown. For comparison, the boundary data of Simens et al. (2009), Jiménez et al. (2010),
Borrell, Sillero & Jiménez (2013) and Sillero, Jiménez & Moser (2013) for Reτ > 1000 are also shown. Note
that as in figures 9(a) and 10(a), the data close to and beyond the edge of the boundary layer (x2/δ > 0.8) are
not shown since they are affected by the intermittency associated with the turbulent/potential flow interface.

φu3(k
∗
x3

) at x∗
2 = 1.5 in a channel flow and a boundary layer. At this very-near-wall location,

all spectra collapse reasonably well in the small-scale range, except for φu1(k
∗
x3

), which
requires Reτ � 1000 for φu1(k

∗
x3

) to collapse over a large range of k∗
x3

. This implies that the
threshold value of Reτ , beyond which the hypothesis is valid, may depend on the specific
quantity investigated. For this reason, the spectra of u1 in both the x1 and x3 directions at
Reτ = 550 will not be shown in figures 7–9. When Reτ � 1000, the collapse of φu1(k

∗
x3

)

and φu3(k
∗
x3

) extends to k∗
x3

≈ 0.015 and 0.05, respectively. In contrast, there is adequate
collapse at virtually all wavenumbers for φu2(k

∗
x3

) over the same range of Reτ (� 1000).
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Figure 5. (a) Wall parameter-normalized spectrum φu2 (k
∗
x3

) at x+
2 = 2 in a channel flow (Lee & Moser 2015,

2019). The arrow is in the direction of increasing Reτ . (b) Kolmogorov-normalized spectra at x∗
2 = 1.5, which

is close to x+
2 = 2 (see the inset in figure 2b). Note that when data were not obtained at exactly x+

2 = 2 and
x∗

2 = 1.5, interpolation was used, based on available spectra closest to these two locations.
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∗
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∗
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∗
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Reτ = 1307

Reτ = 1707
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Figure 6. Kolmogorov-normalized spectra at x∗
2 = 1.5 in a channel flow and a boundary layer. The inset zooms

in on the range k∗
x3

= 0.2–0.4 for φu1 (k
∗
x3

) and φu3 (k
∗
x3

). Note that when data were not obtained at exactly
x∗

2 = 1.5, interpolation was used, based on available spectra closest to this location.

Figures 7(a,b) show distributions of φu1(k
∗
x3

), φu2(k
∗
x3

) and φu3(k
∗
x3

) in a channel flow and
a boundary layer at two locations (x∗

2 = 10 and 50) over a wide range of Reτ (= 550–5200).
Figures 8(a,b) show distributions of φu1(k

∗
x1

), φu2(k
∗
x1

) and φu3(k
∗
x1

) in a channel flow
at the same locations. As expected, the collapse is nearly perfect over a wide range of
relatively large wavenumbers after normalizing by the Kolmogorov scales (or equivalently,
ε̄ and ν). When Reτ � 1000, the collapse of φu1(k

∗
x3

), φu2(k
∗
x3

) and φu3(k
∗
x3

) extends to
k∗

x3
≈ 0.02, 0.1 and 0.05, respectively, at x∗

2 = 10 (figure 7a). At a location further away
from the wall (x∗

2 = 50, figure 7b), the collapse of φu1(k
∗
x3

), φu2(k
∗
x3

) and φu3(k
∗
x3

) can
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Figure 7. Energy spectra in a boundary layer and a channel flow. Distributions of φu1 (k
∗
x3

), φu2 (k
∗
x3

) and
φu3 (k

∗
x3

) at (a) x∗
2 = 10 and (b) x∗

2 = 50. The plots use the wall-parameter-normalized spectra in a boundary
layer (Simens et al. 2009; Jiménez et al. 2010; Borrell et al. 2013; Sillero et al. 2013) and the non-normalized
spectra in a channel flow (Lee & Moser 2015, 2019). For clarity, the distributions at x∗

2 = 50 for φu2 (k
∗
x3

) in (b)
are shifted to the left by 0.5 of a decade. Note that the spectrum of u1 at Reτ = 550 is not shown for the reason
mentioned in the context of figure 6. Note also that when data were not obtained at exactly x∗

2 = 10 and 50,
interpolation was used, based on available spectra closest to these two locations.
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Figure 8. Energy spectra in a channel flow. Distributions of φu1 (k
∗
x1

), φu2 (k
∗
x1

) and φu3 (k
∗
x1

) at (a) x∗
2 = 10 and

(b) x∗
2 = 50. The plots use the non-normalized spectra in a channel flow (Lee & Moser 2015, 2019). For clarity,

the distributions for φu3 (k
∗
x1

) in (a,b) are shifted to the left by 0.5 of a decade. Note that the spectrum of u1 at
Reτ = 550 is not shown in (a,b) for the reason mentioned in the context of figure 6. Note also that when data
were not obtained at exactly x∗

2 = 10 and 50, interpolation was used, based on available spectra closest to these
two locations.
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Figure 9. Energy spectra in a boundary layer and a channel flow. (a) Distributions of φu1 (k
∗
x3

), φu2 (k
∗
x3

) and
φu3 (k

∗
x3

) versus x∗
2 at k∗

x3
= 0.08. (b) Distributions of φu1 (k

∗
x1

), φu2 (k
∗
x1

) and φu3 (k
∗
x1

) versus x∗
2 at k∗

x1
= 0.06.

The plots use the wall-parameter-normalized spectra in a boundary layer (Simens et al. 2009; Jiménez et al.
2010; Borrell et al. 2013; Sillero et al. 2013) and the non-normalized spectra in a channel flow (Lee & Moser
2015, 2019). Note that the spectrum of u1 at Reτ = 550 is not shown in (a,b) for the reason mentioned in
the context of figure 6. Note also that when data were not obtained at exactly k∗

x3
= 0.08 and k∗

x1
= 0.06,

interpolation was used, based on available spectra closest to these two locations.

extend to k∗
x3

≈ 0.03, 0.02 and 0.02, respectively; note that k∗
x3

≈ 0.02 for φu2(k
∗
x3

) actually
corresponds to k∗

x3
≈ 0.04 since the distributions of φu2(k

∗
x3

) are shifted to the left by 0.5
of a decade for clarity (see the caption of figure 7). A similar observation can be made
for φu1(k

∗
x1

), φu2(k
∗
x1

) and φu3(k
∗
x1

) at x∗
2 = 50 in figure 8(b), which shows that the collapse

can be observed over the range k∗
x1

� 0.01–0.03 when Reτ � 1000. It is worth mentioning
that the collapse of φu1(k

∗
x1

) at x∗
2 = 10 in figure 8(a) can extend to k∗

x1
≈ 0.001, which

is three decades larger than the Kolmogorov scales. It is clear that the wavenumber range
over which the energy spectra collapse may depend not only on the specific small-scale
quantity, but also on the location x∗

2. Another feature of figures 7 and 8 is that the collapse
extends to increasingly smaller wavenumbers (larger scales) with increasing Reτ , except
for φu2(k

∗
x1

) at x∗
2 = 10 (figure 8a), which collapses at all wavenumbers in the present Reτ

range. We recall that there is a strong departure from local isotropy in the context of the
dissipation tensor in the region x∗

2 � 30 (figure 3b). It is pertinent to identify the scales
that characterize the anisotropy of ε̄. Although not shown here, at x∗

2 = 10, the peaks of
the dissipation spectra k∗2

x3
φu1(k

∗
x3

), k∗2
x3

φu2(k
∗
x3

) and k∗2
x3

φu3(k
∗
x3

) are located at k∗
x3

≈ 0.11,
0.19 and 0.09, respectively. On the other hand, a general definition of the Taylor microscale
is λ = (5ν)1/2 uiui

1/2/ε̄1/2. The estimated magnitude of λ/η is 11.7–12.8 at x∗
2 = 10 in the

channel flow for Reτ = 550–5200. Therefore, the locations of the peaks of the dissipation
spectra are comparable to λ. Namely, the anisotropy of ε̄ represents mainly the anisotropy
of the scales around λ, at least at x∗

2 = 10.
Further, according to (2.1), the energy spectra should depend only on the location x∗

2 at a
given small scale k∗. In order to demonstrate this, we report in figure 9(a) the distributions
of φu1(k

∗
x3

), φu2(k
∗
x3

) and φu3(k
∗
x3

) versus x∗
2 in a channel flow and a boundary layer at a

typical k∗
x3

(= 0.08). Similarly, figure 9(b) shows the distributions of φu1(k
∗
x1

), φu2(k
∗
x1

) and
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Figure 10. Energy spectra in a boundary layer and a channel flow corresponding to figures 9(a,b) for only
Reτ � 2000. The insets zoom in on the range x∗

2 = 100–800.

φu3(k
∗
x1

) versus x∗
2 in a channel flow at a typical k∗

x1
(= 0.06). Evidently, there is reasonably

good collapse in the near-wall regions and, generally, the larger Reτ , the wider the x∗
2 range

over which the collapse occurs. In order to quantify the x∗
2 range over which the spectra

collapse at large Reτ , we report in figures 10(a,b) the energy spectra corresponding to
figures 9(a,b) for only Reτ � 2000. It is clear that the collapse can extend to x∗

2 ≈ 200 for
Reτ � 2000 in a boundary layer and a channel flow. Overall, figures 5(b) and 6–10 provide
good support for the present hypothesis in the context of energy spectra.

Finally, we test the hypothesis in the context of the transport equations for ε̄ and ε̄θ in a
channel flow:

− ∂

∂x2
u2ε︸ ︷︷ ︸

Tu

− 2ν
∂ui

∂x2

∂ui

∂x1

∂Ū1

∂x2︸ ︷︷ ︸
PU

− 2ν
∂u1

∂xk

∂u2

∂xk

∂Ū1

∂x2︸ ︷︷ ︸
Pm

− 2ν
∂ui

∂xk

∂ul

∂xk

∂ui

∂xl︸ ︷︷ ︸
Pu

− 2ν u2
∂u1

∂x2

∂2Ū1

∂x2 ∂x2︸ ︷︷ ︸
Pg

− 2ν
∂

∂x2

∂u2

∂xk

∂p
∂xk︸ ︷︷ ︸

Π

− 2ν2 ∂2ui

∂xk ∂xl

∂2ui

∂xk ∂xl︸ ︷︷ ︸
D

+ ν
∂2ε̄

∂x2
2︸ ︷︷ ︸

Tν

= 0,

(3.2)

− 1
Pr

∂u2(∂θ/∂xi)
2

∂x2︸ ︷︷ ︸
Tθu

− 2
Pr

∂θ

∂xi

∂θ

∂xj

∂uj

∂xi︸ ︷︷ ︸
Pθu

− 2
Pr

∂θ

∂x2

∂θ

∂x1

∂Ū1

∂x2︸ ︷︷ ︸
PθU

− 2
Pr

∂θ

∂xi

∂u2

∂xi

∂Θ

∂x2︸ ︷︷ ︸
PθΘ

− 2
Pr

u2
∂θ

∂x2

∂2Θ

∂x2 ∂x2︸ ︷︷ ︸
Pθg

− 2
Pr2

∂2θ

∂xj ∂xi

∂2θ

∂xj ∂xi︸ ︷︷ ︸
Dθ

+ 1
Pr2

∂2ε̄θ

∂x2
2︸ ︷︷ ︸

Tκ

= 0, (3.3)

where Ū1 is the mean velocity in the streamwise (x1) direction, and Θ is the mean
scalar. In (3.2), the terms Tu, Π and Tν are the (large-scale) turbulent, pressure and
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Scaling of small-scale wall turbulence

viscous diffusion terms, respectively. The terms PU , Pm and Pg are the (large-scale) mixed
production, mean gradient production and gradient production terms, respectively. The
terms Pu and D are the small-scale terms that represent the production of ε̄ through the
stretching of vorticity, and its destruction through the action of viscosity, respectively.
Similarly, in (3.3), terms Tθu and Tκ are the (large-scale) turbulent and viscous diffusion
terms, respectively. Terms PθU , PθΘ and Pθg are the (large-scale) mixed production,
mean gradient production and gradient production terms, respectively. Terms Pθu and
Dθ are the small-scale terms that represent the production of ε̄θ due to stretching of the
temperature field and its destruction by the thermal diffusivity, respectively. All terms
in (3.2), after normalizing by wall parameters (uτ and ν) and Kolmogorov scales (η
and uK ; or equivalently, ε̄ and ν), are shown in figures 11(a,b), respectively. It can be
observed from figure 11(a) that the magnitudes of both large- and small-scale terms in
the region near the wall increase with Reτ , except for the gradient production term (Pg
term) and the pressure term (Π term), which make only small contributions to (3.2). In
contrast, the corresponding Kolmogorov-normalized distributions at Reτ = 180 and 590
(figure 11b) follow each other closely and, for Reτ � 590, collapse reasonably well in the
region x∗

2 � 60. All terms in (3.3), after normalizing by the wall parameters (uτ , θτ and
ν) and the Batchelor–Kolmogorov scales (η, θB and uK ; or equivalently, ε̄, ε̄θ and ν),
at Pr = ν/κ = 0.71 and four values of Reτ (= 500, 1000, 2000, 5000; the corresponding
Péclet number is equal to Reτ Pr) are shown in figures 12(a,b). We can observe that there is
a significant difference between the distributions normalized by wall parameters and those
normalized by the Batchelor–Kolmogorov scales, for both large and small-scale terms. In
the region near the wall, the magnitude of each term, normalized by wall parameters,
increases systematically with Reτ except for the gradient production term (Pθg term),
which makes only a small contribution to (3.3). However, the Batchelor–Kolmogorov
normalized distributions collapse reasonably well in the region near the wall. As Reτ

increases, the x∗
2 range for this collapse widens. Figures 11(b) and 12(b) provide further

strong support for the present hypothesis.

4. Discussion

4.1. x∗
2 range over which present hypothesis applies

It is of interest to identify the x∗
2 range of validity for the present hypothesis. The following

further comments can be made with regard to figures 4, 10, 11(b) and 12(b).
(i) Figure 4 shows that the distributions of R∗

i (i = 1, 2, 3) in a boundary layer collapse
well with the channel data in the range x∗

2 � 70 (or equivalently x+
2 � 213 (≈ 0.11δ) in

the boundary layer at Reτ = 1988). In contrast, in the channel flow, the collapse of the R∗
i

distributions at Reτ = 2000 and 5200 with the distribution at Reτ = 104 can extend to the
channel centreline. A close look at the R∗

i distributions in the channel flow shows that the
departure from the isotropic value of 2/3 is smaller than 10 % and 5 % when x∗

2 � 70 and
150, respectively. Evidently, the channel flow approaches local isotropy gradually, which
is a requirement of the KOC theory, with increasing x∗

2.
(ii) It can be observed from figures 10(a,b) that the collapse of the energy spectra at

two typical scales (k∗
x3

= 0.08 and k∗
x1

= 0.06) can extend to x∗
2 ≈ 200 for Reτ � 2000 in

a boundary layer and a channel flow. At Reτ ≈ 2000, x∗
2 ≈ 200 corresponds to x+

2 ≈ 986
(≈ 0.49δ) in a channel flow and x+

2 ≈ 795 (≈ 0.40δ) in a boundary layer. We should stress
that the x∗

2 range over which the energy spectra collapse can widen if we focus on a smaller
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Figure 11. Distributions of terms in (3.2) in a channel flow. Normalizations based on (a) wall parameters
and (b) Kolmogorov scales. They are plotted using the data of Vreman & Kuerten (2014a,b) and Kaneda
& Yamamoto (2021). Note that for the data of Kaneda & Yamamoto (2021) at Reτ = 1000, there
are two simulations with effective grid spacings (�x1)

+ × (�x2)
+ × (�x3)

+ = 18.5 × 0.6–0.8 × 8.9 and
7.8 × 0.6–0.8 × 4.2. Only the latter dataset, corresponding to a higher resolution, is shown. Note that in
order to obtain the Kolmogorov-normalized distributions in (b), the wall-parameter-normalized distributions
in (a) are divided by (u+

K /η+)3 since their relation in the context of transport equation for ε̄ is given by
[wall scaling] = [Kolmogorov scaling]((u4

K/η2)(δ2
υ/u4

τ )) = [Kolmogorov scaling](u+3
K /η+3).
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Figure 12. Distributions of terms in (3.3) for Pr = 0.71 in a channel flow. Normalizations based on (a) wall
parameters and (b) Batchelor–Kolmogorov scales, using the information in Alcántara-Ávila et al. (2021), as
explained in Appendix A.

scale (or larger wavenumber). In order to demonstrate this, we report in figure 13(a) the
distributions of φu1(k

∗
x3

), φu2(k
∗
x3

) and φu3(k
∗
x3

) versus x∗
2 in a channel flow at k∗

x3
= 0.45.

We can observe that the collapse of the energy spectrum at Reτ = 2000 with the spectrum
at Reτ = 5200 can extend to the channel centreline. In particular, in the region x∗

2 � 60,
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Figure 13. (a) Distributions of φu1 (k
∗
x3

), φu2 (k
∗
x3

) and φu3 (k
∗
x3

) versus x∗
2 in a channel flow at k∗

x3
= 0.45. Pink

and green curves correspond to Reτ = 2000 and 5200, respectively. The vertical lines indicate the locations at
x∗

2 = 60 and 200, respectively. (b) Corresponding distributions of φu1 (k
∗
x3

), φu2 (k
∗
x3

) and φu3 (k
∗
x3

) versus k∗
x3

at
x∗

2 = 60 (blue curves) and 200 (red curves), respectively. Dashed and solid curves correspond to Reτ = 2000
and 5200, respectively. They are plotted using the non-normalized spectra in a channel flow (Lee & Moser
2015, 2019).

all the spectra become approximately constant. This implies that beyond this location,
the energy spectra depend only on the wavenumber (and not on x∗

2). Consequently, all
the energy spectra in the region x∗

2 � 60 should collapse, which is the prediction of the
KOC theory. This is indeed supported by figure 13(b), which shows the distributions of
φu1(k

∗
x3

), φu2(k
∗
x3

) and φu3(k
∗
x3

) versus k∗
x3

at two locations (x∗
2 = 60 and 200) marked

in figure 13(a); at Reτ = 2000, x∗
2 ≈ 60 and 200 correspond to x+

2 ≈ 181 (≈ 0.09δ) and
x+

2 ≈ 985 (≈ 0.50δ), whereas at Reτ = 5200, x∗
2 ≈ 60 and 200 correspond to x+

2 ≈ 179
(≈ 0.03δ) and x+

2 ≈ 912 (≈ 0.18δ), respectively. This is also consistent with the collapse
of the experimental data for φu1(k

∗
x1

) at various locations (away from the wall) in the pipe
flow and the boundary layer at higher Reτ (Rosenberg et al. 2013; Vallikivi et al. 2015).
From the above discussion with respect to R∗

i and the energy spectra, it is obvious that the
KOC theory represents a special case of the present hypothesis.

(iii) In figure 11(b), the collapse can be observed for all terms in (3.2) in the region x∗
2 �

60 for Reτ � 590. At Reτ = 590, x∗
2 ≈ 50, 60 and 80 correspond to x+

2 ≈ 147 (≈ 0.25δ),
x+

2 ≈ 191 (≈ 0.32δ) and x+
2 ≈ 296 (≈ 0.50δ), respectively.

(iv) In figure 12(b), the collapse of all terms in (3.3) can extend to x∗
2 ≈ 85, 140 and

240 for Reτ � 500, 1000 and 2000, respectively. The corresponding x+
2 values are 342

(≈ 0.68δ), 662 (≈ 0.66δ) and 1360 (≈ 0.68δ) at Reτ = 500, 1000, and 2000, respectively.
From the above results, it is remarkable that the x∗

2 range over which the hypothesis is
valid extends generally from the wall to a location in the outer region for the small-scale
quantities examined here. This x∗

2 range depends on the specific small-scale quantity.
Generally, for a given small-scale quantity, the larger the Reynolds number, the wider
the x∗

2 range over which this quantity is Reτ -independent.
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4.2. Relationships to wall scaling and outer scaling for small-scale quantities
As pointed out in the context of figure 1, the collapse of x+

2 ε̄+ over a certain x+
2 range

implies that the wall parameters and the Kolmogorov scales can be used interchangeably
in this x+

2 range in the channel flow. This can be extended in a more general way. If x+
2 ε̄+

and x+
2 ε̄+

θ can collapse onto unique curves in all turbulent wall flows over a certain x+
2

range – which has not yet been established – then it is not difficult to conclude that the wall
parameters and the Kolmogorov–Batchelor scales can be used interchangeably. However,
if different wall flows have different Reτ -independent x+

2 ε̄+ (and x+
2 ε̄+

θ ) distributions at
large Reτ , unlike the Kolmogorov–Batchelor normalized distributions, which are universal
as shown in our paper, then the wall-parameter-normalized distributions should collapse
onto different curves in different wall flows.

The same remark can be made with regard to the relationship between normalizations
based on Kolmogorov–Batchelor and outer scales. In particular, it should be mentioned
that if there is an overlap between the wall parameters scaling and outer scaling in
the context of ε̄ (Abe & Antonia 2016) (and also ε̄θ ; Abe & Antonia 2017), then at
least for a given flow, all three types of scaling, i.e. the Kolmogorov–Batchelor scales,
wall parameters and outer scales, can be used interchangeably. However, when the
Kolmogorov–Batchelor normalized small-scale quantities are independent of x∗

2, such
as the energy spectra at large x∗

2 discussed in the context of figure 13, the outer scales
and the Kolmogorov–Batchelor scales can be interchanged only when ε̄δ/u3

τ (and also
ε̄θ δ/(uτ θ

2
τ )) is constant (independent of x2/δ). Similarly, when the Kolmogorov–Batchelor

normalized small-scale quantities are independent of x∗
2, the wall parameter and the

Kolmogorov–Batchelor scales are interchangeable when ε̄+ (and also ε̄+
θ ) is constant

(independent of x+
2 ).

4.3. Behaviour of uiui
∗ and θθ

∗ as x∗
2 → 0

The present hypothesis has been proposed for small-scale quantities in wall turbulence and
thus does not require uiui

∗ and θθ
∗ to be universal. However, in the region x∗

2 → 0, uiui

and θθ are related directly to ε̄ and ε̄θ (e.g. Pope 2000; Alcántara-Ávila et al. 2021), i.e.

ε̄ = 1
2

υ
∂2uiui

∂x2
2

, ε̄θ = 1
2

κ
∂2θθ

∂x2
2

. (4.1a,b)

One thus expects uiui
∗ and θθ

∗ to be universal as x∗
2 → 0. After normalization by the

Batchelor–Kolmogorov scales, (4.1a,b) can be rewritten as

∂2uiui
∗

∂x∗2
2

= 2,
1

Pr
∂2θθ

∗

∂x∗2
2

= 2. (4.2a,b)

Note that we have assumed uK , η and θB to be approximately constant as x+
2 → 0. These

assumptions are justifiable. For example, figure 3 of Antonia et al. (1991) indicates that η+
is approximately constant for x+

2 = 0.1–1 at Reτ = 180 and 395, respectively. Although
not shown here, the distributions of η+, u+

K and θ+
K versus x+

2 for the present channel data
at Reτ = 500–104 indicate that they are approximately constant for x+

2 � 1 at each Reτ .
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10–2 10–1 100 101
10–1

100

x2
∗

Pr

1
uiui

∗/x2
∗2

θθ
∗
/x2

∗2

Figure 14. Distributions of uiui
∗/x∗2

2 in a channel flow and a boundary layer. The solid pink, red, blue, black
and cyan curves correspond to the channel data at Reτ = 550, 1000, 2000, 5200 and 104, respectively. The
dash-dotted green, blue and pink curves correspond to the boundary layer data at Reτ =445, 1307 and 1988,
respectively. Also shown are the distributions of θθ

∗
/x∗2

2 in a channel flow; the dashed black, red, blue and pink
curves correspond to Reτ =500, 1000, 2000 and 5000, respectively. They are plotted using the data of Simens
et al. (2009), Jiménez et al. (2010), Borrell et al. (2013), Sillero et al. (2013), Lee & Moser (2015, 2019) and
Alcántara-Ávila et al. (2021). The horizontal lines indicate the values of 1 and Pr (= 0.71).

Integrating (4.2a,b) twice with respect to x∗
2 leads to

uiui
∗ = x∗2

2 , θθ
∗ = Pr x∗2

2 . (4.3a,b)

Figure 14 shows that both uiui
∗ and θθ

∗ are independent of Reτ in the range x∗
2 � 1. In

particular, (4.3a,b) are satisfied adequately in the region x∗
2 � 0.2 for uiui

∗ and x∗
2 � 1 for

θθ
∗.

5. Concluding remarks

We have proposed a hypothesis that describes the behaviour of small-scale wall turbulence
reasonably well. The evidence presented indicates that the larger the Reynolds number,
the larger the distance from the wall and the range of turbulent scales over which this
hypothesis applies. More specifically, at a given x∗

2, collapse of a given small-scale
quantity generally extends to increasingly larger values of r∗ (or smaller wavenumbers)
as the Reynolds number increases. Similarly, the collapse of a given small-scale quantity
extends to increasingly larger values of x∗

2 as the Reynolds number increases. We stress
that the present hypothesis has been tested and validated mainly in a channel flow and
a boundary layer using a relatively large amount of data related mainly to second-order
statistics. Direct numerical simulations (DNS) data corresponding to third-order statistics
(figure 11b) also support the hypothesis. It is now desirable to test the hypothesis against
other third- and higher-order statistics, e.g. the third- and fourth-order moments of different
velocity derivatives. The statistics examined here have validated adequately the claim of
independence with respect to Reτ . Unfortunately, the data have been obtained mainly in
two smooth wall flows (the channel and the boundary layer). It would certainly be desirable
to test the hypothesis further in a fully developed pipe flow, preferably using DNS data
where Reτ exceeds 500, and more generally in flows over different types of surfaces.

948 A25-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.707


S.L. Tang and R.A. Antonia

The present hypothesis should greatly reduce the complexity of wall turbulence and also
enhance our understanding of the physical mechanisms in wall flows. We should underline
that an important application of the hypothesis is the ability to describe adequately the
behaviour of small-scale quantities in wall turbulence. The collapse of the small-scale
statistics shown in figures 4, 5(b), 6–10, 11(b), 12(b) and 13 suggests that the present
hypothesis will underpin future developments of new wall turbulence models and thus
should lead to a significant improvement in wall turbulence calculations. Since the
accuracy of the hypothesis can only improve as Reτ keeps increasing, calculations based on
this hypothesis should be especially suitable in the context of very-large-Reynolds-number
engineering and meteorological flows. Finally, a significant amount of evidence has shown
that the present hypothesis is valid for small-scale velocity quantities in wall turbulence. In
view of the similarity between the small-scale velocity and scalar (Pr ≈ 1) fields (e.g. Abe
et al. 2009; Antonia et al. 2009), one would expect that the present hypothesis will also be
satisfied by small-scale scalar quantities in wall turbulence. The collapse in figure 12(b) is
encouraging in this respect and should spawn future investigations.
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Appendix A. Normalization of figure 12(b)

The relation between Batchelor–Kolmogorov scaling and wall scaling in the context of the
transport equation for ε̄θ is given by

[Batchelor–Kolmogorov scaling] = [wall scaling]
u4
τ θ

2
τ

υ3
υ3

u4
Kθ2

B

= [wall scaling]
u4
τ θ

2
τ

u4
Kθ2

B
= [wall scaling]

u4
τ θ

2
τ

u4
K ε̄θ η/uK

= [wall scaling]
u4
τ θ

2
τ

u3
K ε̄θ η

= [wall scaling]
u4
τ θ

2
τ

u2
K ε̄θυ

= [wall scaling]
uτ θ

2
τ

ε̄θ δv

u2
τ

u2
K

= [wall scaling]
uτ θ

2
τ

ε̄θ δv

η2

δ2
v

= [wall scaling]
ε̄+
θ

η2

δ2
v

= [wall scaling]

ε̄+
θ

√
ε̄+ , (A1)

where + denotes normalization by uτ , θτ and ν. In order to obtain the
Batchelor–Kolmogorov normalized transport equation for ε̄θ (3.3), the wall-parameter-
normalized distributions of Alcántara-Ávila et al. (2021) (see also figure 12a) are divided
by ε̄+

θ

√
ε̄+, as shown in figure 12(b).

Note that the values of ε̄+ for the data in figure 12(b) are not available. However, there
are at least four datasets for ε̄+ at nearly the same Reτ (≈ 500, 1000, 2000 and 5000);
they are those of Bernardini, Pirozzoli & Orlandi (2014) (Reτ = 550, 1000 and 2000),
Hoyas & Jimenez (2006, 2008) (Reτ = 550, 950 and 2000), Lee & Moser (2015, 2019)
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100 101 102 103 104
0
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0.6
Red: Reτ ≈ 500

Reτ ≈ 1000
Reτ ≈ 2000

Blue:
Black:

x2
+

ε–+

Figure 15. Distributions of
√

ε̄+ in a channel flow. The dashed, dotted, solid and dash-dotted curves
correspond to the data of Bernardini et al. (2014) (Reτ = 550, 1000 and 2000), Hoyas & Jimenez (2006, 2008)
(Reτ = 550, 950 and 2000), Lee & Moser (2015, 2019) (Reτ = 550, 1000 and 2000) and Kaneda & Yamamoto
(2021) (Reτ = 500, 1000 and 2000), respectively.

100 101 102 103

–1.0

–0.5

0

0.5

1.0

Dotted: Reτ = 500 Dashed: Reτ = 1000 Solid: Reτ = 2000

x∗2

Dθ

Pθg

Tθu
PθU

Pθu

PθΘ

Tk

Figure 16. Batchelor–Kolmogorov normalized (3.3) at Pr = 0.71 in a channel flow. Note that the ε̄+
distributions of Bernardini et al. (2014) at Reτ = 550, 950 and 2000 are used for normalization.

(Reτ = 550, 1000, 2000 and 5000) and Kaneda & Yamamoto (2021) (= 500, 1000 and
2000) (figure 15). It can be observed that there is only a small difference between the
data of Bernardini et al. (2014) and the other three datasets at Reτ ≈ 550, 1000 and 2000,
respectively; the difference between the dashed and dotted curves, which is maximum at
x+

2 = 1 and Reτ = 550, is only 2.3 %. Therefore, the use of a different ε̄+ distribution will
not affect the results in figure 12(b) where the ε̄+ distributions of Lee & Moser (2015,
2019) are used. This is supported by figure 16, which is normalized by the ε̄+ data of
Bernardini et al. (2014) at Reτ = 550, 1000 and 2000.
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