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ABSTRACT

The paper deals with the study of the arising amd dis~
appearence of collinear (Rilerian) L ,L2,1‘3, triangular

(Lagrangian) LysLg, coplanar LgrLqgs ring Lo ard infinitely
distant L_'.m solutions in a restricted problem of three vari-

able-mass kodies for different time dependencies of main ko~
dies masses and for some additional conditions imposed on the
systems parameter s.In this case it is assumed that the motion
of varijable-mass main bodies is determined by the Gylden-
Mestscher sky problem. The Hill surfaces in the restricted
three-body problem where main lodies masses variate isotropi-
cally according to the Mestschersky law are studied. Certain
possibkilities of applying the results of investigations to
ronstationary double stellar systems are discussed.

LIBRATION POINTS

The importance of the lilration points in the analysis
of the motion in the classical restricted three-body prohl em
is well known. The investigation of the lilration points in
the restricted three~kody prob em with variahle masses was
marked in papers by Gelfgat (1973), Horedt (1984), Sing and
Ishwar (1984) under the various assumptions relatively the
mass variation of the main odies and the passive gravitating
material point.
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Let us consider the restricted problem of tlree varia-
He mass bodies with isotropic mass variation of main bodies
according to the unified Mestschersky law (Mestscher sky,
1902). In this case it is assumed that the motion of variahble
mass main bodies is determined by the Gylden-Mestscher sky
problem (Gylden, 1884, Mestscher sky, 1902).

The equations of motion of the passive gravitating mat-
erial point in the revolving barywentric coordinmate system
%cyz' the plane xy of that coincides with the plane of the

motion of main bodies, and the x-axis always pass through
these points, have following form

X=X XX

. - 2
X"2wY=wX-wY"ul 3 - Hsy 3 1]

u T2
Y+2‘“’.‘=“’Y"°x'“1y§' T H2 Z:T’ @)
Ty 2

z = - z_ .- z
="MW 3 W2 3 -
) )

Here ry,r,- the distances of gravitating point from the
main bodies, w-their angular velocity of motion, and the qua~
ntities My and u, are determined by equalities.

Mo

Yat® + 28t + vy (2)

where G - the gravitational constant, My (t) and M, (t)-masses
of main bodies,and their ratio Ml/M is constant.
The equations (1) by the transformation Gelfgat, 1973)

u
F,yz) = 2 FeE,me), dr = ()% at, w= (2 )%
H Uo Uo o
3)
are reduced to autonomous form
E" = 2ugn' = 3U/3%, n" 4 2w E' = 30U/8n , ¢t = 93U/3L )
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Bere P12’ x~constants, are defined by the main lodies
motion (the particular solution of the Gylden-Mestscher sky
problem)

2
righ =XCJ &k > 0) (6)

where Co - the constant of the area integral ryp - the dis-
tance between the main lodies.

Let us choose the units of measurement so,that in Nech-
vil coordinates (,n,0,17) the distance between the main hod-
ies P12 and common mass uo are equal to unit, i.e. P12 = 1,

- 2 _
Mo =1, then xw =1,

Besides introduce the mass parameter

u H
2oy, 0eve By, B oaax )
uo 1“0

We show that the equations @) are smatisfied by some

. constant quantities of coordinates £,n,¢ .The lilration poi-
nts - the constant solutions of equations (4) in cloosing
units of measurement are satisfied by the following system

5-1—31 (~E+v)--3l E+v-1) = 0,
[o] P
1 2
a-2 - 2yn=oy,
1 p)
(B -1 2y =, ®)
51 )

wher e
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oy = .[(gw)z + n2 + cz v Py = f(g+v—1)2 + n2 + t_‘.z .

The first tw equations in the system (8) are complete
equal to analogous equations of classical restricted three-
body problem. Therefore, as in classical problem, for an arb-
itrary values of v and indeperdently of x, there exist tihree
coll inear L]_,2,3 anmd two triangular L4,5 solutions (Gelfgat,

1973; Bekov, 1988; Luk'vanov, 198 9%). The motion of all three
bodies in the variables (,y,z,t) is accomplished, in distin-
ction from the classical case, by some similar spirals.

The third equation in the system B) is different from
the classical one by the presence of the term x-1)/x,there-
fore, as it show in paper (Bekov, 1988), the system (), in
distinction from the classical case, is admitted in the exis-
tence of the coplanar solutions (£,0,7), that are determined
from following system & > 1):

£ -1 E+) - Y Esv-l) =0,
o1 P2
e Y (9)
1 P

2

where py = E+v)™ + 27, »

The value { enter in equations only under the square
symbol, therefore the coplanar solutions alwys exists by
pairs (£, 0, 7).

The analysis of the system (9) shows (Luk'yanov,19 %;
Bekov; Bekov, 1988) that in the domain

2 = /(£+v-l)2 +z

~Q-v) &k-1) < £ < v&-l) @ 0)

in which Py and Py the real distances, for the arbitrary
vand x > 1 are exist two coplanar solutions Le 7-
14
For solutions Le 7 the motion of the third body M in
14

distinction from the solutions L; o, is accomplished by the
spatial winded on the surface of the rourd cone, formed

by the rotation of the generatrix x = + kz, k =| %} , where
£, - coordinates of solutions L6 7 around the z-axis.
1
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In the case of the straight-line restricted three-mdy
problem with the variable masses (o = 0, x = «) the equati-
ons (8) allows, besides the collinear Ll 2.3 solutions, the

[ 4 ’

spacial solutions Lo €,n.2),for which

by =Py =1 a1)

where Dl = /VE+ILT + n° + 52 ’ pz

For this solutions all three lodies always are formed
the equilateral triangle in space. The dense set of splutions
L, can £ill the ring with radius p = /3/2, this is the con-
sequences of the axis symmetry of the prohlem when C = 0,the-
refore the spacial L, solutions we can call the ring soluti=-
ons. The solutions - the Lagrange ring - for the main bodies
mass variation according the unified Mestscher sky law was
considered by Sersic (1970, 1973), hut by the other way.

We rote that in the straight-line prohlem the ring solu-
tions Ly in particular always allows the solutions L4 5 and

= /(5+\>-1)2 + n2 + cz

Le 7 (the solutions in given planes), therefore they alvays
14

are attending to L, solutions and we'll note their presemnce
side by side with the L, solutions.

The motion of M body in this case so, that the configur-
ation of three lodies always remains similar itself and the
motion of all three bodies is taken place by some straight
lines.

In the classical problem besides collinear and triangular
solutions are exists also the infinitely distant L, soluti-
ons (uk'yanov, 198),for vhich ££=0, and { = * o, ~ The sys-
tem (8) admit this solutions only whenx =1, i.e. for the
first Mestschersky lawyu = 1/ (at+b).

At last, there exists the collinear L1 2,3 and the

spac1a1 ring L solutions (and as consequences the tr iangular
4 5 and cop?anar L6 7 solutions) in the case of the class~
(4 (4

ical straight-line three-body problem with constant masses
(Bekov, 1990).

For arbitrary mass variation of the main bodies, when
the ratio of masses is constant, amd in the more general case,
when we have the arbitrary time variable masses of main bo-
dies anmd ul/u2 # const., it may be point out (Luk'yanov,

198 9b; Bekov; Bekov, 1990) on the existence of the analogous
particular solutions.The results of the investigations are
presented in the table.
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The table of particular solutions (the existing solutions
are marked by "plus" sign)

N Conditions Rarticular References
slutions
For main fodies| For systan
wass variation | parameters |L, , 3|L, £|L ¢,
B, () am u, &) | c_,x,v rer ' ’ -
1 2 (o]
1., Arhitrary ard
imdeperdent fun- Co #0 - + - - f103,
ctions of time [12]
co =0 - + + - [43]
2.| Arbitrary furc-~
tions of time S #0 + +| - -1 [10]
vhen ul/u2 =
const,
c. =0 + + + - [4]
°
3.| Unified
Mestscher sky Co #0 + + - -1 [5]
law furctions
o] (t)=u10u(t), O<x<1l
U, (B)=u,, u(t),

2 20 Co £0 L6,7
ult) = <> 1 + |+ o+ -] inf2]
1//atZ 4286+ Y

1
Co =0 . . . _ LO in
X = (131,
[14]
4.| First Mestsc- C #0 ‘ [ 9],
hersky law A R L 5]
functions
HyRyg U ), Co= 0 + + + -
5.(Classical mro- L,
Hemn when cC #0 + + - + 3
¥y = const., o (8]
n,= const. C=0 + +| + _| [4]
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HILL SURFACES

Hill surfaces in restricted three~-lody problem gives
the possibility to fimd out some general properties of the
relative motion of the kndy with snall mass in the gravita-
tional field of tw main bodies with finite masses. It may
be important the role of anmalogues of surfaces in the prob-
lem with variable masses.

Let us consider the Hill surfaces for the main bodies
ma ss variation according to the Unified Mestschersky law(2).
The equations (1) are reduced to autonomous form @) by
transformation (3). The system (4) have the first integral,
which in taking units of measurement is witten down in the

form
v? =20 -c,
1,2, 2 1 . 1.2 l=v _v_
Q—i-(g -4-n)+2(1x)g+pl +°2'
P = /(ﬁ+v)2 + n2 + ?, Py = /(E+\>-1)2 + n2 + Cz az)

where V2 = 2 + n'2 + c'z - velocity of relative motion,

C - Jacobi constant. The integral (12) is the amalogue of
the Jacobi integral of the restricted problem of three vari-
able- mass bodies (Gelfgat, 1973; Bekov, 1987).

We note that the expression (12) differs from the Jacobi
integral of the classical probhlem by the presence in the
right hand the term (- 1/x)z?, so it make dependent on the
change of the Hill surfaces,Supposing in (12) V = 0 we obtain
the zero velocity surfaces

20 = C i3)

which in the £,n,7 space are restricted the region of pos-
sible motion of the investigating body.

Transiting of initial space~time &,y,z,t) by the tran-
sformation (), we came to conclusion that the knowledge of
coordinates and velocities by the formulars (12) amd (13)
gives us besides the regions of possible motion in initial
coordinates. Consequently, in order to krow the regions of
possible motion in variables &x,y,z,t) it is necessary to
investigate the FKill surfaces (13). The analysis of equation
(13) is made as in classical case, allows to obtain the qua-
litative character and the properties of Hill surfaces. The
knowledge of libration points and the expression (13) for
the zero velocity surfaces allows to make the qualitative
analysis of Hill surfaces for different values of parameters
v and x. The Hill surfaces
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Fig. | Zero velocity curves on ¢z plaone: V= 0.3, x=1.66

Fig. 2 Zero velocity curves on Ng, plone:vV=0.3,x=1.66
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m, O my -Q

Fig.3 Zero velocity curves on &7, Plone: V=0.3y x=5.

Fig. 4 Zero velocity curves on ng plone: v=0.3, x=85.
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Fig. 5 Zero velocity curves on %% plone: V=0.3,x=0.5

T,

1.00

Fig.6 Zero velocity curves on ng plane: V=0.3y x=0.5
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g2+ n? 4 a-L g2 28 v ¢ 14)
X f1 P2

are various in view of presence the parameters v ard X.

In the plane £n the zero velocity curves (14) are coin-
cide with the classical curves.Therefore, it is enough to
consider the surfaces (14) for the case 7 # 0, Figures 1-6
shows the zero velocity curves for values of -parameter v =
0.3 and x = 0.5; 1.66; 5. This curves gives the obvious
presentation about the Hill surfaces and their properties
and manifests new qualitative singularities of the Hill sur-
faces of the restricted problem of three variable-mass lodies.

CONCLUSIONS

The results of investigation of the lilration points
and Hill surfaces in the restricted three-bpbdy problem with
variable ma sses are presented important, because of transit-
ing from coordimates (,n,%,T) to initial space-time ,yvy,z2,
t) we can to investigate the properties of conforming homo-
graphic solutions and anmalogous surfaces.

The masses of celestial bodies are change during evolu-
tion, therefore the restricted three-body prohlem with vari-
able masses may be used in different astromomical problems.
Especially it is concerned to double stars which masses
changes rather intensively. The obtained results allows to
reveal some singularities of structure and dynamics of double
stellar systems, which evolution is accompanied by mass var -
iation of themselves systems.
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