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Spatial discretization effects in spanwise forcing
for turbulent drag reduction
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Wall-based spanwise forcing has been experimentally used with success by Auteri et al.
(Phys. Fluids, vol. 22, 2010, 115103) to obtain large reductions of turbulent skin-friction
drag and considerable energy savings in a pipe flow. The spatial distribution of the
azimuthal wall velocity used in the experiment was not continuous, but piecewise constant.
The present study is a numerical replica of the experiment, based on a set of direct
numerical simulations (DNS); its goal is the identification of the effects of spatially
discrete forcing, as opposed to the idealized sinusoidal forcing considered in the majority
of numerical studies. Regardless of the discretization, with DNS the maximum drag
reduction is found to be larger: the flow easily reaches complete relaminarization, whereas
the experiment was capped at 33 % drag reduction. However, the key result stems from
the observation that, for the piecewise-constant forcing, the apparent irregularities of the
experimental data appear in the simulation data too. They derive from the rich harmonic
content of the discontinuous travelling wave, which alters the drag reduction of the
sinusoidal forcing. A detailed understanding of the contribution of each harmonic reveals
that, whenever for example technological limitations constrain one to work far from the
optimal forcing parameters, a discrete forcing may perform very differently from the
corresponding ideal sinusoid, and in principle can outperform it. However, care should
be exercised in comparison, as discrete and continuous forcing have different energy
requirements.

Key words: drag reduction, pipe flow

1. Introduction

Turbulent flow control for drag reduction is an active discipline, pursuing a technological
goal of steadily increasing economic and environmental importance. A subset of flow
control studies aims at reducing the drag of wall-bounded turbulent flows. This is a
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particularly difficult challenge: once geometry is simplified to consider a parallel flow,
drag is only due to friction, and high levels of turbulent friction stem from the interaction
between turbulence and the wall. Altering this interaction to improve the overall energetic
efficiency, by following either active or passive approaches, is fundamentally appealing
but practically difficult.

An active, open-loop strategy to reduce friction drag which gained popularity in recent
years is made by spanwise forcing (a thorough review has been recently provided by
Ricco, Skote & Leschziner (2021)), notably in its spatially distributed version made by
the streamwise-travelling waves (StTW), where the spanwise velocity component W at the
wall is prescribed according to

W(x, t) = A sin (κxx − ωt) (1.1)

in which x, t are the streamwise coordinate and time, and κx and ω are the streamwise
wavenumber and frequency of the oscillating wave, which is thus characterized by a phase
speed c = ω/κx. The StTW, introduced by Quadrio, Ricco & Viotti (2009), are interesting
owing mainly to their good energetic performance, which is preserved at high Reynolds
numbers (Gatti & Quadrio 2016). The StTW are effective even in compressible and
supersonic flows (Ruby & Foysi 2022; Gattere et al. 2024), and have been demonstrated to
affect favourably the aerodynamic drag of a three-dimensional body (Banchetti, Luchini
& Quadrio 2020), up to the point that an actuation over a limited portion of the wing of
an airplane in transonic flight reduces the total drag of the aircraft by nearly 10 % at a
negligible energy cost (Quadrio et al. 2022).

The major obstacle to the deployment of StTW (and of spanwise forcing in
general) in practical applications is the lack of suitable actuators. Very few laboratory
implementations of StTW are available, and typically the idealized sinusoidal waveform
of the wall velocity cannot be achieved. Bird, Santer & Morrison (2018) describe a planar
actuator for StTW, formed by a tensioned membrane skin mounted on a kagome lattice;
they discuss why the measured drag reduction turns out to be less than expected, and
attribute it to the out-of-plane velocity component created by the actual forcing. Benard
et al. (2021) report preliminary results on the implementation of steady longitudinal waves
of spanwise forcing via plasma dielectric barrier discharge (DBD) actuators, based on
electrodes designed with a suitable shape, which are affected by the non-ideal response
of the actuator. For a long time, the sole available laboratory experiment with StTW
(and the most successful one) was the water pipe flow experiment carried out by Auteri
et al. (2010) (referred to as ABBCQ in this paper), who set-up a low-Reynolds-number
turbulent pipe flow modified by StTW and reported up to 33 % of drag reduction. The
StTW were implemented with an original device, recently replicated by Marusic et al.
(2021) in plane geometry, in which the circular pipe is subdivided into axial slabs
that independently oscillate in the azimuthal direction. Different rotational speeds of
nearby slabs provided the desired streamwise variation of transverse velocity, realizing
a discrete travelling wave (DTW). A sketch of the DTW concept is provided in figure 1(a).
The experimental set-up of ABBCQ consisted of 10 sets of six independently movable
segments and allowed to test waves made by a variable number s = 2, 3, 6 of segments
discretizing each sinusoid. As emphasized in figure 1, the actual streamwise distribution
of the forcing spanwise velocity with DTW is far from the sinusoidal one (red line) and is
instead well approximated by a staircase function (blue line).

The design of the ABBCQ pipe flow experiment was guided by the original numerical
study by Quadrio et al. (2009), carried out for the plane channel flow; however, the
two flows are not identical. The drag reduction datasets, while in broad agreement, do
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Figure 1. (a) Sketch of StTW actuation (continuous wave, red line) and DTW actuation with s = 3 (discrete
wave, blue line), as applied to the cylindrical pipe geometry by ABBCQ. (b) Percentage drag reduction R
experimentally measured for DTW by ABBCQ in the pipe flow (symbols), compared at the same value of κ+
with available direct numerical simulations (DNS) information for StTW from the DNS study of Quadrio et al.
(2009) in planar geometry (continuous black line). Besides the different geometry, the numerical study has a
slightly smaller forcing amplitude and a slightly larger Reynolds number.

present a few differences which have not been examined in depth so far. Figure 1(b)
compares the experimental drag reduction data measured by ABBCQ for s = 3 with
the corresponding subset of DNS data, at the same wavelength of the travelling wave,
with a similar forcing amplitude and Reynolds number. The largest drag reduction rate
measured in the experiment is 33 % instead of more than 50 % in the DNS. No drag
increase is found in the experiment, and only a drop of drag reduction to nearly zero level is
observed, albeit at the very same frequency ω+ ≈ 0.1 where the DNS study predicts drag
reduction to become negative. Moreover, the experimental data present a rather irregular,
wiggling dependence upon ω+ compared with the smooth evolution of the DNS plane
channel: especially at negative frequencies, some of the experimentally measured drag
reduction rates are comparable and even marginally larger than the simulations, but other
measurement points lie well below the numerical curve.

Auteri et al. (2010) discuss some possible reasons behind these differences. The
geometry (plane channel versus circular pipe) certainly does play a role; the value of
the Reynolds number is not identical between the two studies, being Reτ = 200 in the
plane channel DNS and Reτ ≈ 175 in the circular pipe experiment; the same applies to
the forcing amplitude, A+ = 12 in DNS and A+ = 13.8 in the experiment; the periodic
boundary conditions employed in the DNS are not fully equivalent to the actual flow
conditions at the inflow and outflow sections of a finite length of a pipe, implying that
a temporal transient in the former can easily be discarded, whereas the equivalent spatial
transient in the experiment cannot be eliminated and affects the measurement. However,
the major difference – and the one the present work sets out to investigate – consists
in the nature of the spatially distributed forcing applied at the wall: it is a sinusoidal
function in the DNS study, where (1.1) is enforced as a boundary condition, whereas in the
experiment it consists of a piecewise-constant and time-periodic function. The importance
of waveform discretization was already discussed by ABBCQ. They mentioned how the
wave realized with two segments only, i.e. s = 2, is a limiting case of the DTW, in which
there can be no travelling direction for the wave, which becomes standing and works in
a region of the parameter space where performance is suboptimal, especially in terms
of energy saving. Moreover, the harmonic content of DTW was suggested to potentially
explain some features of the experimental results shown in figure 1.
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The importance of an in-depth understanding of discretization effects comes from the
necessity of any experimental realization of such forcing to be, to an extent, spatially
discrete. For temporal discretization (which is not particularly critical in experiments),
these effects were systematically studied by Cimarelli et al. (2013), who considered various
temporal waveforms to implement the spatially uniform spanwise-oscillating walls, and
concluded that the sinusoidal waveform is the best overall in terms of energy savings.
Spatially discrete forcing, instead, has been rarely used so far and never discussed in terms
of discretization effects. Kiesow & Plesniak (2003) experimentally generated a localized
cross-flow in a three-dimensional turbulent boundary layer using a transverse running belt.
In a numerical study, Mishra & Skote (2015) used only the positive cycle of steady square
waves to enforce drag reduction in a turbulent boundary layer, under the rationale that
similar performance compared with the complete control could be obtained with lower
energy consumption. Straub et al. (2017) studied the spanwise oscillating wall technique
in a low-aspect-ratio duct, and considered how it performs when only a fraction of the
available surface is actuated. Benard et al. (2021) dealt with the issue that several DBD
actuators must be placed side by side to achieve a near-wall distribution of velocity that
should be as spanwise uniform as possible.

The present paper describes a replica (including, first of all, the spatially discrete
forcing) of the ABBCQ pipe flow experiment, based on DNS, with a focus on drag
reduction and energy efficiency. Not much information is available for spanwise forcing
applied to cylindrical geometries. Besides a few early works (Orlandi & Fatica 1997;
Nikitin 2000; Quadrio & Sibilla 2000) which proved with DNS the validity of spanwise
(azimuthal) forcing in a pipe flow, only recently Liu et al. (2022) tested spatially
non-uniform spanwise forcing (in the form of stationary waves) in a pipe flow. Strictly
speaking, thus, StTW for drag reduction have never been tested numerically in a pipe. For
that purpose, in our DNS study we employ an original DNS solver, designed for efficient
simulations of high-Reynolds-number turbulent pipe flows, which addresses the problem
of excess azimuthal resolution near the pipe axis: it exploits a mixed discretization (Fourier
in the homogeneous directions and compact finite differences in the radial direction) to
decrease the azimuthal resolution as the pipe axis is approached.

The structure of the paper is as follows. In § 2 the DNS code will be presented
and validated, the DTW forcing will be introduced and the computational procedures
adopted for the present study will be described. Results of the simulation campaign
will be presented in § 3, touching upon drag reduction, power budget and flow statistics.
Discussion of the discretization effects and a critical evaluation of the present results
against the ABBCQ experiment are contained in § 4; summarizing conclusions are
provided in § 5.

2. Methods

2.1. The DNS code
We solve by DNS the incompressible Navier–Stokes equations, written in non-dimensional
form and cylindrical coordinates, for the primitive variables pressure p and velocity u. The
axial, radial and azimuthal directions are indicated with x, r and θ ; the respective velocity
components are u, v and w. The axial length of the computational domain is L, the pipe
radius is R; the complete azimuthal extent of 2π is considered.

Temporal discretization of the equations follows the usual partially implicit approach
in DNS of wall-bounded flows: the code implements a combination of the implicit
Crank–Nicholson scheme for the viscous terms with a library of explicit schemes for
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the nonlinear convective terms. In this work, the three-substeps, low-storage Runge–Kutta
scheme described in Rai & Moin (1991) is used.

Spatial discretization, instead, deserves a specific discussion. The discretization
is mixed, as in the Cartesian DNS solver (Luchini & Quadrio 2006) which has
inspired the present code. The homogeneous directions x and θ call for a spectral
discretization, naturally enforcing the required periodic boundary conditions with the
computational efficiency of the pseudospectral approach. Compact, fourth-order accurate
finite differences are used to discretize differential operators in the radial direction. The
mixed discretization is at the root of an interesting feature of the present code, which
addresses a fundamental problem with the DNS of the turbulent pipe flow. Once the
number of azimuthal Fourier modes is set according to physics-based considerations to
yield the adequate azimuthal spatial resolution at the pipe wall, the azimuthal resolution
increases above the required level as the pipe axis is approached. Such excess resolution
not only is useless and thus a waste by itself, but also causes a steep rise in the
computational cost of the simulation, since a vanishing spanwise cell size implies a
vanishing time step, as the stability of the explicit temporal scheme requires that the
Courant–Friedrichs–Lewy (CFL) number remains below the threshold dictated by the time
integration scheme. Thus, while in general the computational cost of a DNS quickly grows
with Re, for a pipe flow with a Fourier azimuthal discretization the cost has an even steeper
rise because of the rapidly shrinking time step.

To handle this problem, short of accepting the vanishingly small time step, recent
high-Re simulations of pipe flow (e.g. Pirozzoli et al. 2021) resort to an implicit treatment
of the azimuthal convection terms. The alternative approach that is followed here derives
from and extends the one introduced two decades ago by Quadrio & Luchini (2002),
who developed a DNS solver for the incompressible Navier–Stokes equations written in
velocity–vorticity form, and used it for the DNS of the turbulent flow in an annular pipe.
Although the present code solves the Navier–Stokes equations in their primitive-variables
formulation with a monolithic approach, in both cases the truncation of the azimuthal
Fourier series changes with the radial coordinate, in such a way that the actual azimuthal
resolution remains approximately constant across the pipe. This can be achieved smoothly
and without interpolation, provided the spanwise Fourier series is combined, as in the
present case, with a collocated method for the discretization of the radial direction.

The radially varying number of azimuthal modes implies that some modes exist at
the pipe wall at r = R but do not reach the pipe axis at r = 0; hence, these modes
end in the bulk of the flow, where a suitable boundary condition has to be provided
for them. On the ground that a well-designed DNS neglects, i.e. puts to zero, all the
modes above its maximum wavenumber, in their original formulation Quadrio & Luchini
(2002) used a simple homogeneous boundary condition also for these modes terminating
in the fluid. Here, we go one step further and use as a boundary condition the same
regularity conditions that are employed at the pipe axis. There, as shown for example
by Lewis & Bellan (1990), scalar and vector quantities require a different treatment. Let
β be the spanwise wavenumber, and let the superscript ·̂ indicate the Fourier coefficient
of a variable. For pressure, p̂(r) ∼ r|β| as r → 0. For the velocity vector, the equivalent
condition becomes

⎧⎪⎨
⎪⎩

û(r) ∼ r|β|

v̂(r) ∼ r|β|−1

ŵ(r) ∼ r|β|−1
when β /= 0

⎧⎪⎨
⎪⎩

û(r) ∼ r0

v̂(r) ∼ r
ŵ(r) ∼ r

when β = 0. (2.1)
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Figure 2. Schematics of the spatial waveform for the control: the red line is the sinusoidal wave, and the blue
line is its discrete approximation by three segments per period, i.e. s = 3. The corresponding representation
after the Fourier transform without (empty symbols) and with (filled symbols) spatial filtering is also depicted.

These regularity conditions are enforced not only for those standard modes that span
the full radial extent of the pipe 0 < r < R but also for those terminating in the bulk;
this provides them with a smooth decay in the radial direction. Of course, as long as the
baseline resolution is well chosen, no differences are expected in flow statistics between
the present approach and the one employed by Quadrio & Luchini (2002).

The variable-modes approach can be easily programmed in a simple and general way.
In the code, written in CPL (Luchini 2020, 2021), a two-dimensional (for generality) array
of pointers is used to reference into a variable-sized one-dimensional array, storing all the
non-zero coefficients as a function of r. Although this exceeds the scope of this work, such
a programming approach makes it straightforward to extend the use of variable modes: for
example, in the plane channel flow it could be advantageous to have the number of both
streamwise and spanwise modes become a function of the wall-normal coordinate.

As its Cartesian counterpart, the code is capable of parallel computing. It sports at
the same time a shared-memory and a distributed-memory algorithm where a low-level
message-passing strategy is employed on a computational domain subdivided into
wall-parallel slices so that the two-dimensional inverse/direct fast Fourier transforms can
be computed locally to each machine. A standard message-passing version based on the
MPI (message passing interface) library is also available.

2.2. The DTWs
The piecewise-continuous wall forcing shown with a blue line in figure 1 does not lend
itself to an immediate description within a Fourier discretization. An equivalent problem
was faced by for example Ricco & Hahn (2013) and Wise & Ricco (2014), who described
spatially discontinuous forcing distributions with a Fourier discretization. Mishra &
Skote (2015), who dealt with the same issue, reported that oscillations introduced at
the discontinuities (the so-called Gibbs phenomenon) produce instabilities and large
numerical errors, and therefore need to be adequately treated.

The present DTW forcing, shown in figure 2, is defined by a number s of
segments discretizing the continuous sinusoidal counterpart. One wavelength of the
piecewise-constant travelling wave is written analytically as

w(x, t; s) = A sin
(

ωt − 2πi
s

)
for

i
s
λ ≤ x <

i + 1
s
λ, (2.2)
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Figure 3. Schematic representation of the radially varying number of azimuthal nodes (only the positive ones
are shown). The maximum value Nθ,max is constant from the pipe wall at r = 1 to the radial position r =
r0 = 0.8R, then decreases linearly to the value Nθ,min at the pipe axis. In this plot, as in the main simulations,
Nr = 100 and every other radial point is omitted for clarity.

where λ = 2π/κx stands for the wavelength of the wave, and i is an integer spanning
the range 0 ≤ i < s − 1 (note that this definition is non-unique, as the phase difference
between the DTW and the sinusoid could be chosen differently without altering the results
discussed in the following). The waveform is then periodically extended to the whole axial
length of the pipe, which always fits an integer number of wavelengths.

To avoid the appearance of spurious oscillations, the discontinuities in the DTW are
regularized via a smoothing Gaussian filter. The expression of the filter in physical space
is

G(x) =
(

6
πΔ2

)1/2

exp
(

−6x2

Δ2

)
(2.3)

with Δ the filter width; the filtered wall forcing is obtained via convolution of the original
one with the kernel G(x) in physical space, and then Fourier-transformed. The filter width
was carefully determined after a parametric study in the preliminary work carried out by
Biggi (2012); the value of Δ is chosen as to strike a compromise between the range of
scales/positions affected by the filter and the magnitude of the residual oscillations. The
employed filtering is represented in figure 2, where it can be appreciated that oscillations
are reduced to a very small level, while the step function remains relatively sharp.

2.3. Validation
Before delving into the actual study, we preliminarily assess, for a canonical turbulent pipe
flow, to what extent the radially varying number of azimuthal modes affects the solution
and the computational efficiency of the code. For a turbulent pipe flow at a bulk Reynolds
number of Reb = UbD/ν = 4900, which is the value used for the rest of the study, two
configurations are considered: one in which the spanwise truncation of azimuthal modes
is simply kept constant at the value Nθ,max, and the other in which the azimuthal modes
decrease with r from Nθ,max to Nθ,min. As shown schematically in figure 3, based on
previous experience, we have set up the azimuthal discretization such that the maximum
resolution with Nθ,max = 96 (i.e. 193 azimuthal modes, from −Nθ,max to +Nθ,max) holds
in a near-wall layer r0 ≤ r ≤ R, with r0 = 0.8R; for larger wall distances, the number
of azimuthal modes decreases linearly with r so that Nθ,min = 4 (i.e. nine modes, from
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Figure 4. Spectral energy density Φ+
uu of the axial velocity fluctuations in the r–β plane. Black contour lines

are from the simulation with constant azimuthal resolution, and the colourmap with white dashed contours is
from the simulation where the number of azimuthal modes varies with r. Contour levels start from 100, spaced
by one order of magnitude.

−Nθ,min to +Nθ,min) at the centreline. The discretization also employs 384 streamwise
modes and 100 radial points, for a pipe with a length of L = 22R.

In figure 4 we compare the spectral energy density Φ+
uu(β) of the streamwise velocity

fluctuations in the r–β plane, as computed from the two simulations. As expected, the
simulation with the standard discretization has an energy density (black contour lines)
that peaks near the wall; towards the axis of the pipe, it decreases to very low values
already at a rather small azimuthal wavenumber. For the considered spanwise resolution,
the near-wall maximum captured at the largest β is approximately 10−4; as the pipe axis
is approached, the energy levels decrease, and at the axis, the energy levels drop below
10−30 for the largest β. Once a radially varying number of azimuthal modes is employed
(coloured contour), this waste is avoided, and densities below 10−7 are not computed in the
core region of the pipe. Importantly, the white dashed contour lines of the variable-modes
simulation demonstrate that the two datasets overlap perfectly in the region of the r–β

plane where they are both defined.
The two cases produce a virtually identical value of the friction coefficient, namely

Cf = 9.52 × 10−3, which is very near to the value of 9.45 × 10−3 predicted by the Blasius
power-law Cf = 0.0791Re−1/4

b (Schlichting & Gersten 2000); a more than satisfactory
agreement, given the known difficulties for such correlations at low values of the Reynolds
number.

An additional validation step is carried out in the presence of the spanwise forcing.
The availability of the recent work by Liu et al. (2022), who numerically tested the drag
reduction capabilities of standing waves, allows us to repeat a representative set of their
simulations for comparison. As in that work, a fixed Reτ = 180 is enforced, and the pipe
length is L = 6πR. We keep the same spatial resolution employed above since it is nearly
identical to the one employed in their study. We replicate one of their cases at A+ = 12
and λ+ = 424 with 40.4 % drag reduction, obtaining 40.6 % drag reduction. Another case
with A+ = 6 and λ+ = 1695 is reported to yield 28.1 % drag reduction; here it yields
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28.5 %. Finally, the case with A+ = 30 and λ+ = 1695 is confirmed to lead to a complete
relaminarization of the flow.

In terms of computational efficiency, the code has been tested on an Intel Cascade Lake
8260 processor. The single-core solution of one Runge–Kutta time step (i.e. the sum of the
three substeps) requires �20 s when the full azimuthal nodes are retained, and �15 s with
the variable modes set-up as described above, with a 25 % saving in computing time.
However, as previously discussed, the true advantage of employing a radially varying
number of azimuthal modes lies in the larger time step size allowed by the stability
condition. In these tests, the same value of (unitary) CFL corresponds in the first case
to a time step of 
t+ � 0.008, which becomes in the second 
t+ � 0.08, demonstrating
one order of magnitude larger time steps when the azimuthal modes are truncated. Finally,
the usage of variable modes is beneficial also for the memory occupation of the code,
which in this configuration (i.e. with a Runge–Kutta method that stores the solution at one
previous time level) amounts to 331 MB of RAM instead of 434 MB when Nθ is kept
constant at Nθ,max across the pipe.

2.4. Computational procedures
The numerical study described in the remainder of the paper is carried out at the same
Reynolds number of the ABBCQ experiment, namely Reb ≡ UbD/ν = 4900, where Ub
is the bulk velocity, and D = 2R is the pipe diameter. Every simulation is performed by
adjusting at every time step the axial homogeneous pressure gradient in such a way that
the flow rate does not vary in time, i.e. by following the constant flow rate (CFR) strategy,
as defined by Quadrio, Frohnapfel & Hasegawa (2016). An uncontrolled simulation serves
as the reference case and establishes the corresponding nominal values for the drag and
the friction-based Reynolds number, Reτ ≈ 170.

The length of the computational domain is 22R; 384 × 192 Fourier modes are used
to discretize the streamwise and azimuthal directions, respectively, while Nr = 100 nodes
discretize the radial direction. Once the additional modes used to remove the aliasing error
are accounted for, the spatial resolution of the reference case is 
x+ = 4.8 and r
θ+ =
2.8 at the pipe wall. The radial resolution varies from 
r+ = 0.7 near the wall to 
r+ =
2.4 at the centreline. The radially varying modes are set up as described above in § 2.3,
with a linear variation from Nθ,min = 4 to Nθ,max = 96, and r0 = 0.8R. The time step is
dynamically adjusted to satisfy the constraint CFL = 1.

The reference experimental dataset by ABBCQ, already shown in figure 1, consists
of data taken at various oscillation frequencies, ranging from ω+ = −0.25 to ω+ = 0.2
(note that quantities indicated with the + superscript are defined in terms of the friction
velocity of the uncontrolled flow). The forcing amplitude is also fixed at A/Ub = 1 (or
A+ ≈ 14). Owing to the fixed size of the device producing the DTW, the wavelength
could not be changed continuously in the experiment. For the DTW produced with three
moving segments, s = 3, it was λ/R = 4.38 (equivalently, the streamwise wavenumber
was κxR = 1.43 or κ+

x = 0.0082).
The present numerical experiments include three sets of simulations. In one, labelled

SIN, the idealized sinusoidal boundary condition (1.1) is applied, while the second and
third sets consider DTW, realized with a relatively fine (s = 6, case S6) and coarse (s = 3,
case S3) discretization of the waveform, according to (2.2a,b). In particular, case S3 has
the closest correspondence to the experiment. The wavelength and amplitude of the forcing
are nominally identical to those of the experiments, whereas the oscillation frequency is
varied with a relatively fine step, and covers a slightly larger range.
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Twenty-nine simulations are performed for each forcing type, for a total of 88 cases
including the reference one. Understanding the harmonic content of the forcing led us to
run 45 additional simulations where only some harmonics of the DTW are included. Each
case is run for a total of 1000 convective time units; the first half of the time history is
discarded to avoid the influence of the initial transient, which can be particularly long at
times, especially for the cases with the highest drag reduction. In a few selected cases, a
database is saved for later statistical analysis; for these, 50 oscillation cycles are sampled,
and four phases are stored for each cycle. Most of the simulations are run serially (i.e. on
one core each) on a single machine equipped with an Intel Xeon Phi processor and 68
cores, which was kept busy for approximately two months.

3. Results

3.1. Drag reduction
We start by looking first at the raw changes in skin-friction drag. The drag reduction rate
is

R = 1 − Cf

Cf ,0
= 1 − τw

τw,0
, (3.1)

where the subscript 0 indicates quantities evaluated for the uncontrolled flow, Cf is the
friction coefficient, defined in the usual way as

Cf = 2τw,x

ρU2
b

(3.2)

and the last equality in (3.1) only holds for CFR simulations. Note that, in cylindrical
coordinates, the longitudinal and azimuthal components of the mean wall shear stress are

τw,x = −μ
∂ ū
∂r

∣∣∣∣
r=R

, τw,θ = −μ

(
∂w̄
∂r

− w̄
R

)∣∣∣∣
r=R

, (3.3a,b)

where the overbar indicates temporal average.
Figure 5 compares the output of our simulations with the ABBCQ measurements

for s = 3. The first striking observation is that the experimental data, labelled as EXP,
are quite far from the results obtained with the ideal sinusoidal forcing, case SIN.
The qualitative look of the curves is similar. The sudden shift from drag reduction to drag
increase for waves travelling at a phase speed comparable to the convection speed of the
near-wall turbulent structures known to take place in the planar case (Quadrio et al. 2009)
is confirmed. However, significant quantitative differences do exist. The maximum drag
reduction obtained with SIN is approximately twice the experimental one, and peaks at
66 %, which at this Re corresponds to full relaminarization of the flow. Moreover, the SIN
data do not present the evident wiggles of the experimental R = R(ω+) curve. The error
bars plotted in figure 5 refer to the finite averaging time, and are computed according to the
procedure introduced by Russo & Luchini (2017). They are generally small, and confirm
the deterministic nature of the wiggles, which are not an artifact of the measurement
procedure. An evident exception are the points at ω+ = 0.04, where the flow is on the
verge of relaminarization, and alternately visits a turbulent state and a nearly laminar state,
switching between them over a long time scale. This observation also explains the apparent
disagreement of the curves SIN, S3 and S6 at this very specific control point.

Such differences between the experimental data and the expected drag reduction from
plane channel DNS were already noticed in the original paper by Auteri et al. (2010), in

982 A11-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.107


Spatial discretization of spanwise forcing

–0.3 –0.2 –0.1 0 0.30.20.1

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Laminar

ω+

R

S6

S3

SIN

EXP

Figure 5. Drag reduction rate R computed with DNS against experimental measurements from ABBCQ (blue
triangles, blue line). The plot shows the laminar limit (upper dashed line), and quantifies with bars the error
deriving from the finite averaging time (see text).

a comparison with plane-channel information at Reτ = 200, but their identification and
interpretation are now easier. The one-to-one comparison made possible by the present
data rules out several alternate explanations for these discrepancies, as for example the
difference between circular and planar geometries (which, in fact, acts to actually reduce
differences), or the slightly different parameters of the forcing.

Case S3 (green curve) is the one that should most closely correspond to EXP (blue
curve); indeed, experiments and simulations, while not overlapping, do show much better
agreement. Both datasets present, especially at negative frequencies, the large wiggles
that are missing in the SIN curve. Notably, at certain frequencies, the discrete wave
realized by S3 achieves a distinctly larger R than SIN, a feature that was not previously
observed. Relaminarization is only partial for S3, with a maximum R of 57 %, obtained
at a frequency slightly larger than the optimum for SIN; as for EXP, the region of drag
increase at ω+ ≈ 0.1 is correctly identified, but R remains positive and no drag increase
is measured.

Case S6 implements the same travelling wave tested in experiments, but yields a
better approximation of the sinusoidal waveform. Drag reduction data from S6 resemble
very much those from SIN, and full laminarization is achieved at the smallest positive
frequency, indirectly confirming the key role of control discretization. Still, a slightly
diminished drag increase and the presence of wiggles (albeit of smaller amplitude) indicate
that discretization effects remain at work even in the S6 case. Reasons explaining the
observed discrepancies among these data sets will be discussed later in § 4.

3.2. Power budget
With active control, it is important to complement the information regarding drag
reduction with the cost of the input power, conveyed by the power ratio Pin between the
power required to create the control action and the power P0 per unit wall area required
to drive the uncontrolled pipe flow. Hence, if saving energy is the ultimate interest, more
than the drag reduction rate R itself, the most informative quantity is the net power saving
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Figure 6. Input power ratio Pin (a,b) and net savings S (c,d). Panels (b,d) emphasize variations from the SIN
case.

S , defined as
S = R − Pin. (3.4)

In the present application, the control acts in the azimuthal direction only, and the
input power that an ideal control system transfers to the viscous fluid, normalized with
the pumping power P0, is

Pin = 1
P0

1
2πRLT

∫ T

0

∫ 2π

0

∫ L

0
−μw

(
∂w
∂r

− w
R

)∣∣∣∣
r=R

R dx dθ dt. (3.5)

Note that the term w/R in the integrand of (3.5) is sometimes incorrectly omitted
in existing studies, but its present in the correct expression of the wall shear stress in
cylindrical coordinates. Figure 6(a,b) plots how Pin changes with the control frequency,
in comparative form between SIN and cases S3, and S6. The outcome is not obvious.
The input power varies significantly with the control parameters; as in the planar case,
it is minimum in the region (small positive frequencies) where the drag reduction is
maximum. Of primary interest here, however, are the relative differences between the
sinusoidal forcing and DTW, highlighted in figure 6(b). It is seen that at not-too-small
negative frequencies (say ω+ < −0.02) and large positive ones (ω+ > 0.14), DTW are
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Figure 7. Mean streamwise velocity profile for two cases with drag reduction ((a) ω+ = −0.08) and drag
increase or minimal drag reduction ((b) ω+ = 0.11). Cases SIN and S3 are compared with the uncontrolled
flow.

less expensive than their sinusoidal counterpart, with larger differences, of the order of
10 %, observed for S3 and backward-travelling waves. However, the opposite scenario
is observed at small positive frequencies, i.e. in the most interesting region where the
control is supposed to work, owing to the lower absolute energetic costs. For example, at
ω+ = 0.02 the power Pin required by S3 is twice that for SIN.

The combined dependence of both R and Pin on the control parameters determines
the changes to the net savings S , plotted in figure 6(c,d). The large differences in terms
of relaminarization (or lack thereof) observed at the smallest frequencies for the various
types of forcing blurs the picture further; moreover, the ratio of S obtained with DTW
and SIN becomes a delicate indicator whenever S approaches zero. The most expensive
S3 forcing shows significant extra savings compared with SIN; however, this happens
for frequencies where S is large and negative, which makes the improved performance
pointless. Wherever S is positive (or, as in this case at a relatively large forcing amplitude,
wherever it approaches zero), S3 presents a significant efficiency gap compared with SIN.
At any rate, in correspondence of the optimum parameters, SIN remains the best forcing
type, in terms of both Pin and S .

3.3. Flow statistics
Turbulence statistics are inspected here for the sole purpose of verifying whether or not
the discrete form of the forcing alters the flow significantly, besides the already quantified
different level of R. To this aim, we focus on SIN and S3 and pick two cases: one
is at ω+ = −0.08 and consistently yields a large positive R, whereas the second is at
ω+ = 0.11 and yields drag increase – more precisely, a negative R for SIN and a very
small positive value of R for S3. In figure 7, the mean streamwise velocity profile ū is
plotted against the wall distance y = 1 − r in the law-of-the-wall form by using the actual
friction velocity as a reference velocity. This is the so-called true viscous scaling (Quadrio
2011), indicated with an asterisk superscript. It can be appreciated that the profiles of
ū∗ differ essentially only because of the different value of R, which translates into a
different vertical shift of the logarithmic portion of the profile. Indeed, owing to the scaling
employed, all profiles collapse in the viscous sublayer; the vertical shift 
B∗ appears in
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Figure 8. Wall-normal profiles of the stochastic turbulent stresses. Colours as in figure 7.

the logarithmic region (which is not particularly wide, since Re is low and further lowered
by drag reduction). As a proxy for the shift, we consider the value of ū∗ at y∗ = 100, and
obtain a 
u∗ of 5.1 for SIN and 6.9 for S3 when ω+ = −0.08, in agreement with the larger
drag reduction of the latter case. For the positive frequency, instead, 
u∗ is −0.8 for SIN
and +0.9 for S3, once again in agreement with the small drag increase of the former and
the small drag reduction of the latter. Besides the different levels of R and the consequent
different vertical shifts, no other difference can be appreciated in the profiles.

A similar picture emerges by looking at second-order statistics, i.e. for example the
variance of velocity fluctuations. In the present case, the fluctuations should be defined by
accounting not only for the mean flow but also for the control-induced coherent velocity
field with zero average. To this purpose, we use a classic triple decomposition, where
a generic quantity a is decomposed as a = ā + ã + a′′, i.e. into its mean, coherent and
stochastic components. The sum of the coherent and stochastic components is indicated
as a′ = ã + a′′. The mean component is obtained by averaging each quantity in time and
along the azimuthal and streamwise directions; the coherent part, instead, derives from
averaging together points at the same phase φ = κxx − ωt after removal of the mean value.
The difference between the instantaneous field and the corresponding mean and coherent
parts defines the stochastic field.

In the present work, we do not consider the coherent components, since their magnitude
is negligible compared with the stochastic ones. An exception is obviously the Stokes
layer contributions w̃ and w̃w, and a small streamwise modulation of the ũ component,
which becomes apparent in its wall derivative. Figure 8 depicts the wall-normal profiles of
the (stochastic) Reynolds stresses normalized with the actual friction velocity, i.e. u′′u′′∗,
v′′v′′∗, w′′w′′∗ and u′′v′′∗. The streamwise fluctuations always decrease with control, either
continuous or discrete, for both drag reduction and drag increase. This can be attributed
to the strengthened redistribution action of the pressure-strain term, which moves energy
towards the spanwise and wall-normal fluctuations. The redistribution is enhanced by the
tilting of the structures (Yakeno, Hasegawa & Kasagi 2014; Gallorini, Quadrio & Gatti
2022). For example, the maximum tilt angle, defined as in Yakeno et al. (2014), here is
14◦ for ω+ = −0.08, and becomes 34◦ for ω+ = 0.11 with SIN and ≈27◦ at the same
frequency with S3.
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For the negative drag-reducing frequency ω+ = −0.08, the reduction in intensity is
accompanied by a slight shift of the near-wall peak farther from the wall. The shift is
larger, and the decrease of the peak value is much larger, for S3 than for SIN. Since the
different R is already accounted for by the * scaling, the extra reduction of the peak value
provided by S3 is attributed to the highly subcritical turbulent state (described later in
§ 4.2) reached by the turbulent flow in this case. The positive drag-increasing frequency
ω+ = 0.11 has the location of the wall-normal peak approximately unchanged, but the
profiles after the peak show a linear (in semilogarithmic scale) region that is absent in the
reference profile (at these Re). Such linear regions also appear in the profile for w′′w′′∗, and
resemble those observed by Lee & Moser (2015) in canonical channel flows, but at much
higher Reynolds numbers (Reτ > 550). It is worth mentioning that the shift of u′′u′′∗ in the
wall-normal direction qualitatively agrees with the observation of Gallorini et al. (2022),
in which the authors pointed out a movement away from the wall of the quasi-streamwise
vortices related to R in case of drag reduction and minor modifications in case of drag
increase. The spanwise and wall-normal diagonal components of the Reynolds stress
tensor show minor changes for the negative frequency, but very large increases for the
positive frequency, suggesting lesser changes in the drag-reduced turbulent flow, and minor
effects of the discrete forcing as long as it works to reduce drag, whereas drag increase
implies important modifications also far from the wall. The off-diagonal component u′′v′′∗

presents changes that are expected from the Fukagata–Iwamoto–Kasagi (FIK) identity
(Fukagata, Iwamoto & Kasagi 2002) (although contributions from additional terms are
present due to streamwise inhomogeneity) and decreases whenever drag reduction is
present.

With a streamwise-varying forcing, the streamwise direction is not homogeneous
anymore, and flow statistics may vary also with the phase φ = κxx − ωt of the forcing.
Figure 9 plots the stochastic Reynolds stresses as a function of y and φ, after averaging
in time and over the azimuthal direction. For the cases with drag reduction, as originally
observed by Quadrio et al. (2009), no streamwise modulation of the statistics is observed,
if not for some residual statistical noise: the flow does not get directly altered along the
forcing wavelength, and its main change is the reduced level of wall friction. The cases
with drag increase, instead, do show a strong modulation over the forcing wavelength,
which extends quite far from the wall. As in the planar case, the periodic modulation
possesses a structure in the radial direction that is influenced by the specific spatial shape
of the coherent generalized Stokes layer (Quadrio & Ricco 2011). The modulation is
interpreted as a sort of resonance between the convection speed of the near-wall turbulence
structures and the phase speed ω/κx of the travelling wave. It is worth noting that such
modulation is visible for S3 too, although R is slightly positive. The coexistence of
(small) drag reduction and a streamwise-modulated flow can be attributed to the complex
interactions taking place with DTW; as shown later in § 4.1, the superposition of different
harmonics is such that, in this case, features of drag-reducing and drag-increasing flows
are observed simultaneously.

4. Discussion

Replicating the ABBCQ experiment by DNS has confirmed that some features of the
experimental data derive from the different nature of continuous and discrete forcing. In
this section, we discuss the reason for the two major differences: the wiggles in the curve
R = R(ω+) (which are always present for discrete forcing, regardless of the nature of the
measurement), and the larger maximum drag reduction observed in the simulations.
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Figure 9. Components of the stochastic Reynolds stress tensor as a function of the radial coordinate r and the
phase φ, for two cases with drag reduction ((a,b,e, f,i, j,m,n) ω+ = −0.08) and drag increase or minimal drag
reduction ((c,d,g,h,k,l,o, p) ω+ = 0.11).
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Figure 10. Wall forcing along one wavelength, for SIN (red line) and S3 (blue line), at four different times
during the period T . At each time, the dots mark the position at which SIN is maximum.

4.1. The role of different harmonics
Although in both the continuous and discrete case the spanwise wall velocity W varies in
time between ±A, a meaningful comparison between DTW and SIN at the same amplitude
is not obvious.

It is easy to show that the staircase function sketched in figure 1 and expressed
analytically by (2.2a,b) has a lower amplitude compared with the sinusoidal forcing once
averaged over the forcing period. Figure 10 plots SIN and S3 at four different instants
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during one period. As time progresses, the sinusoidal wave is simply shifted in space,
whereas DTW sees its waveform modified during the period; by focusing on a specific
phase φ = κxx − ωt (for example, as in the figure, where SIN has its maximum), it can
be seen that DTW assumes different values at different times. For the generic phase
φ, the average intensity of DTW can be quantified analytically. By defining Δs = 2π/s
as the width of each constant piece of the DTW, W(φ) can assume any value from
A sin(φ − Δs/2) to A sin(φ + Δs/2). Taking the average of the sinusoidal function over
the interval Δs, one obtains

W(φ) = 1
Δs

∫ φ+Δs/2

φ−Δs/2
A sin(φ′) dφ′ = − A

Δs

[
cos

(
φ + Δs

2

)
− cos

(
φ − Δs

2

)]
. (4.1)

The previous equation can be rearranged, with the aid of the prosthaphaeresis formulae,
into the following expression:

W(φ) = 2
A
Δs

sin
(

Δs

2

)
sin(φ) = s

π
sin

(π

s

)
︸ ︷︷ ︸

γ (s)

A sin(φ). (4.2)

Hence, the averaged DTW can be written as γ (s)A sin(φ), i.e. proportional to A sin(φ),
but its effective amplitude is equal to A only for the ideal sinusoidal forcing described
by (1.1), for which s → ∞ and lims→∞ γ (s) = 1. Compared with the nominal amplitude
A, the amplitude of DTW is decreased by a factor γ (s), which depends on the number of
slabs discretizing the sinusoid. For the S3 case, γ (3) = 0.83. This is consistent with the S3
forcing not reaching relaminarization, as shown in figure 5, because of its smaller effective
amplitude. In fact, we have verified with an additional simulation, run with sinusoidal
forcing for ω+ = 0.02 and a forcing intensity reduced by a factor 0.83, that the flow does
not reach the fully laminar state, and yields R = 0.43.

However, this is only part of the whole picture. Once the importance of discretization
is recognized, it is necessary to proceed further to properly describe DTW; in fact, the
reduced amplitude discussed above cannot explain, for example, other results reported in
figure 5, where in the range −0.12 ≤ ω+ ≤ −0.06 drag reduction due to the discrete S3
forcing is larger than that achieved by SIN, while the reduced effective amplitude discussed
above would suggest otherwise.

The DTW described by (2.2a,b) can be expanded into an infinite Fourier series.
Following ABBCQ, a DTW characterized by its three parameters A, κx and ω, and
discretized into s segments, is rewritten as the following sum:

W(x, t; s) = A
∞∑

m=0

sin[(ms + 1)π/s]
(ms + 1)π/s

sin[ωt − κx(ms + 1)x]

+ sin[((m + 1)s − 1)π/s]
((m + 1)s − 1)π/s

sin[ωt + κx((m + 1)s − 1)x]. (4.3)

The DTW written as in (4.3) is made by two families of sinusoidal waves: one family has
a phase speed of the same sign of the nominal wave (and thus travels in the same direction,
SD), while the other has the opposite sign and travels in the opposite direction (OD). The
temporal frequency of the waves is unchanged (in absolute value) and equals the nominal
one, but the effective amplitude (always ≤A) and streamwise wavenumber (always ≥κx) of
each wave depend on the number of slabs s and on the index m of the series. The amplitude
of the harmonics decreases with m, and the wavenumber correspondingly increases. The
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1.0

Figure 11. Sketch of the first two pairs (m = 0 and m = 1) of harmonics for S3 (a) and S6 (b). Each pair is
made by two waves: one travelling in the same direction (1SD, 2SD) and the other in the opposite direction
(1OD, 2OD) of the nominal DTW.

averaged DTW derived above in (4.2) is recognized as the first SD wave with m = 0.
Figure 11 plots as an example the first (m = 0) pair (1SD and 1OD) and the second (m = 1)
pair (2SD and 2OD), for a visual appreciation of the relative amplitude and wavelength.

It remains to be established to what extent the (linear) superposition of the DTW
harmonics can be useful in understanding the pattern of drag reduction and the differences
between SIN and S3. To this aim, additional simulations (for cases S3 and S6) are run
at three frequencies: ω+ = 0.11 (drag increase); ω+ = −0.08 (drag reduction, where S3
performs better than SIN and S6 equals SIN); and ω+ = −0.2 (drag reduction, where S3
performs worse than SIN, and S6 performs better). Instead of the actual DTW given by
(2.2a,b), the employed forcing is sinusoidal, and contains one or more of the harmonics of
the series (4.3). In particular, we consider the first two pairs of harmonics, isolated or in
combination, for a total of eight additional simulations for each case.

Hence, in these numerical experiments, the wall forcing is given by various
combinations of the following sinusoids:

W(x, t; 3) = 3
√

3
2π

A
[

sin(ωt − κxx) + 1
2

sin(ωt + 2κxx) − 1
4

sin(ωt − 4κxx)

−1
5

sin(ωt + 5κxx)
]

(4.4)

for case S3, and

W(x, t; 6) = 3
π

A
[

sin(ωt − κxx) + 1
5

sin(ωt + 5κxx) − 1
7

sin(ωt − 7κxx)

− 1
11

sin(ωt + 11κxx)
]

(4.5)

for case S6.
Results from these experiments are shown in tables 1 and 2, in terms of R and Pin,

respectively. By focusing first on R, the first and relatively trivial observation is that the
series (4.3) converges rather quickly in terms of drag reduction; for example at ω+ = −0.2,
the first pair of harmonics of S3 yields a drag reduction of 7.5 %, adding the second pair
yields 11.5 % and the actual DTW at m → ∞ yields 14.3 %. A less obvious observation is
the very different role played by the two harmonics at a given m, and their highly nonlinear
combination. As an example, for the drag-reducing case at ω+ = −0.2, the wave 1SD
alone yields a significant 20.3 % drag reduction, whereas 1OD produces precisely the same
amount of drag increase. However, the nonlinear interaction between the two is such that,
when the two harmonics are at play together, drag reduction prevails over drag increase
with an outcome of R = 0.075.
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Case SIN S3 1SD 1OD 1p 1p + 2p S6 1SD 1OD 1p 1p + 2p

ω+ = −0.2 0.231 0.143 0.203 −0.203 0.075 0.115 0.254 0.221 0.188 0.253 0.263
ω+ = −0.08 0.324 0.381 0.305 0.319 0.364 0.375 0.311 0.312 0.118 0.312 0.318
ω+ = 0.11 −0.097 0.041 −0.094 0.146 −0.022 0.029 −0.060 −0.094 0.033 −0.081 −0.066

Table 1. Here R for different harmonics of the Fourier series (4.3), cases S3 and S6. Columns marked with
1SD (1OD) correspond to simulations where only the first same-direction (opposite-direction) wave is present,
whereas 1p means the first harmonic pair combined, and 1p + 2p the first two harmonic pairs combined.

Case SIN S3 1SD 1OD 1p 1p + 2p S6 1SD 1OD 1p 1p + 2p

ω+ = −0.2 2.22 2.09 1.52 0.33 1.86 2.00 2.14 2.02 0.05 2.07 2.13
ω+ = −0.08 1.46 1.29 1.00 0.12 1.12 1.21 1.42 1.33 0.04 1.37 1.41
ω+ = 0.11 1.42 1.46 0.97 0.31 1.29 1.38 1.43 1.30 0.08 1.38 1.42

Table 2. Here Pin for different harmonics of the Fourier series (4.3), cases S3 and S6. Columns as in table 1.

Considering just the first pair of harmonics explains some of the features observed in
figure 5. The amplitude of the 1SD component is closer to A for S6 than S3, and the
amplitude of 1OD decreases more rapidly for S6 than S3; the opposite happens for the
wavenumber. By noting that, apart from the amplitude and a phase-shift, the 1SD wave for
S6 corresponds to the 2OD wave for S3, one understands why the S3 data are further away
from SIN than S6 data, show stronger wiggles and never achieve relaminarization. For the
two cases corresponding to the second and third row of table 1 (i.e. drag reduction and drag
increase), the position of the first S3 harmonics in the plane of the control parameters is
shown in figure 12. The drag reduction map is recomputed from the information provided
by Gatti & Quadrio (2016), hence at Reτ = 200 and for the planar geometry, and is
adapted to the forcing intensity of the present case to convey a qualitative information
of the behaviour expected for the harmonic. Results at ω+ = 0.11 are interesting in
understanding the effects of the drag-increasing components. The dominant wave travels
at the same phase speed as the nominal wave and produces the same drag-increasing
effect, quantitatively not too far from the one by SIN. However, as clearly shown by
figure 12, higher harmonics possess a different phase speed and a different wavenumber:
they are all located in drag-reducing areas of the ω+–κ+

x plane. Hence, they act to weaken
the drag-increasing effect of the nominal wave, resulting in a small drag reduction. The
different 1OD wave between cases S3 and S6 explains why S6 instead achieves drag
increase.

The case at ω+ = −0.08 demonstrates an interesting interplay between the waves of the
first pair. They both lie in the drag-reducing regime, but their combination results in an
enhancement of R for S3, while for S6 the drag variation is essentially unchanged. Once
again, this happens because 1OD sits in a more effective region of the parameter space (in
this case, nearly at the optimal position). Lastly, at ω+ = −0.2, the 1OD waves have an
opposite effect: drag increase for S3, and drag reduction for S6. This affects the combined
wave and reduces R for S3, but increases it for S6.

Table 2 reports Pin for the same cases considered in table 1. Again, the variation of the
DTW compared with SIN can be ascribed to the different harmonic components, which
differ in their amplitude and their position in the ω+–κ+

x plane. In terms of power, however,
the various harmonics are almost perfectly additive, in sharp contrast with drag reduction
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Figure 12. Position on the drag reduction map of the first two harmonic pairs of the DTW with s = 3, for
a drag-reducing case (white dots: ω+ = −0.08; κ+

x = 0.0082; R = 0.38) and a nearly drag-increasing one
(black dots: ω+ = 0.11; κ+

x = 0.0082; R = 0.04). Note how each pair of corresponding harmonics of the
same case (e.g. white dots for ω+ = 0.08) have the same frequency with opposite sign. The drag reduction
map is adapted from Gatti & Quadrio (2016), for a plane channel flow at Reτ = 200 and A+ = 14.2. The
legend below each dot quantifies the amplitude A/W of the harmonic, and the drag reduction achieved by that
harmonic alone.
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Figure 13. Drag reduction rate R computed with DNS for the first pair of harmonics (1SD and 1OD) and
their combination (indicated with 1p) compared with S3.

data. This is reasonable, as the input power for the spanwise forcing has little to do with
the superimposed turbulent flow, and can be described quite well by the laminar transverse
flow alone (Quadrio & Ricco 2011).

A global view of the effect of the 1SD and 1OD waves, as well as their combination
(indicated with 1p) is provided in figure 13, where results from an additional set of
numerical experiments are plotted. For 15 points with frequency −0.10 ≤ ω+ ≤ 0.16, the
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drag reduction rate from case S3 is compared with the ones obtained with forcing by the
sinusoidal wave 1SD, 1OD and their combination 1p, all with the amplitude prescribed
by (4.3). First of all, one notices that the first pair of harmonics is responsible for most
(but not all) of the effects of the DTW, especially at negative frequencies. The exception
at ω= + 0.04, where S3 nearly achieves laminarization but the 1p harmonics do not, has
been discussed already. The figure also provides detailed information on the non-trivial
contribution of the isolated waves 1SD and 1OD. At first approximation, the 1SD curve
resembles SIN, but for the reduced amplitude of the forcing; the 1OD curve, instead, acts
at a doubled wavenumber, as previously exemplified in figure 12, so that its horizontal axis
is enlarged by a factor of two and also reversed by virtue of the phase speed reversal.

Overall, the general picture emerging from this analysis is that the sinusoidal forcing
is always best, as long as one can work with the optimal control parameters that yield
maximum drag reduction. However, as soon as the forcing parameters do not assume
their optimal values (something that is not inconceivable e.g. because of technological
limitations), the higher harmonics of a non-sinusoidal forcing affects the outcome in a
way that depends on their location in the parameter space, so that the discrete forcing
may outperform the sinusoidal forcing. This is exactly the conclusion reached one decade
ago by Cimarelli et al. (2013), who experimented with the temporal waveform for the
spanwise oscillating wall. In both the spatial and temporal cases, regions of the parameters
space exist where the sinusoidal forcing can be outperformed, in terms of both R and S .
However, such regions are far from the global optimum, in correspondence of which the
sinusoidal forcing remains the best choice.

The final message is that, whenever the forcing is spatially distributed, its spatial
discretization is an essential ingredient to evaluate drag reduction and its success in
terms of energy savings. Experimental studies where a discrete form of spanwise forcing
is employed can hardly be compared with results from a sinusoidal forcing, unless
discretization is properly accounted for.

4.2. Localized turbulence
Once it is recognized that S3 and EXP data present the very same wiggles, which
should not be attributed to experimental errors, but are a direct consequence of forcing
discretization, one remaining difference becomes even more evident. In figure 5, EXP
data do not reach above an apparent threshold of maximum R ≈ 0.33, while S3, S6 and
SIN achieve much higher values of R, up to the complete relaminarization of the flow.

Even though the only experimental information provided by ABBCQ is the drag
reduction value, the additional insight allowed by the present numerical study highlights
a peculiar feature of the solution, which could explain the discrepancy. Instantaneous
snapshots of the sinusoidally forced flow for two SIN cases with drag reduction above
and below the apparent experimental threshold (namely at ω+ = 0 and ω+ = −0.2, with
R = 0.42 and R = 0.23, respectively) are compared with a snapshot from the reference
flow in figure 14. The background colourmap shows the azimuthal velocity at the pipe
wall; isosurfaces for λ2 (Jeong et al. 1997) are plotted at the level λ+2 = −0.03, and
provide a qualitative idea of the turbulent structures at play within the flow. As expected,
the control action reduces the presence of structures at both frequencies, with a more
evident effect when drag reduction is higher. However, the most striking feature of the
plot is that turbulent activity for ω+ = 0, where drag reduction is larger and goes above
the apparent experimental threshold, appears to be spatially intermittent, whereas in the
reference flow and also for the lower drag reduction case, it assumes a more conventional,
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Ref

ω+ = 0

ω+ = –0.2

(a)

(b)

(c)

Figure 14. Instantaneous snapshot of the reference and sinusoidally forced pipe flow, with parameters yielding
drag reduction above (ω+ = 0) and below (ω+ = −0.2) the apparent experimental threshold for R. The
background colourmap (from blue to red) encodes the azimuthal velocity of the wall; the grey isosurfaces
are drawn for λ+2 = −0.03.

spatially uniform look. Turbulent structures at ω+ = 0 appear clustered, and surrounded
by a refractory region where turbulence is absent or nearly so. One can envisage the
arrangement of the flow structures in what is usually called a puff (Barkley 2016; Avila,
Barkley & Hof 2023), which is typical of transitional pipe flow; a notable difference here
is that the flow is turbulent, the Reynolds number is relatively high and the structures also
undergo a swirling motion due to the spanwise flow induced by the forcing.

Hence, we link the state of turbulent localization observed in DNS-computed flow
fields to the ability to reach R levels above the plateau of approximately 30 %–35 %
found in the experiment. This suggestion is supported by the observation that the local
friction oscillates around the laminar value far from the turbulent regions, whereas in
correspondence to them it becomes comparable to the experimentally measured value.
Several reasons might have prevented the ABBCQ pipe flow from reaching such a higher
drag reduction state. Examples include the periodic streamwise boundary conditions as
opposed to a fixed level of disturbance entering the experimental pipe via the inlet, or the
idealized setting of the simulation, which is free from environmental disturbances.

5. Conclusions

In this work, DNS have been used to replicate the successful turbulent pipe flow
experiment by Auteri et al. (2010) for skin-friction drag reduction based on spanwise
forcing. The experiment was carried out at a rather low value of Reynolds number, which
is replicated precisely here. We are aware that this is a marginally low Re, and in fact
several control configurations lead to total partial relaminarization of the flow. However,
the study is not designed to address the important question of the Re dependence on drag
reduction (in general, and with spanwise forcing in particular), for which the discrete
nature of the forcing should not play any crucial role. Rather, the goal here is to exploit the
detailed comparison between experimental and simulation data obtained under nominally
identical conditions to understand how a spatially discrete implementation of StTW of
azimuthal wall velocity affects the outcome of the flow control technique. In fact, any
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experimental implementation of the forcing unavoidably differs from the ideal sinusoidal
function typically considered in numerical studies; accounting for the effect of a spatial
waveform is required for a proper assessment of the forcing performance.

The DNS simulations have been carried out with an original code that uses Fourier
discretization for the homogeneous directions and resorts to compact finite differences
for the radial one. Such mixed discretization is particularly suited for the turbulent pipe
flow, and provides an efficient strategy to solve the issue of excess azimuthal resolution
near the pipe axis, by allowing the number of azimuthal spanwise modes to gradually
decrease as the axis is approached. Thanks to the efficiency of the code in terms of CPU
and memory requirements, most of the present study has been carried out on a single Xeon
Phi processor.

The experimental conditions have been replicated by implementing the spanwise forcing
as a piecewise-continuous, streamwise- and time-periodic function. Differences between
the drag reduction rate R computed by DNS and measured in the experiment have been
identified and explained. The much higher drag reduction measured in simulations for
both continuous and discrete forcing is suggested to derive from low-Re effects, which
enable the numerically simulated flow to reach a state of spatially localized turbulence
and eventually fully relaminarize. The apparently irregular behaviour of experimental R
is observed in the numerical results too, and is shown to derive from the discretization of
the sinusoidal waveform, locally resulting into either larger of smaller R depending on the
combination of control parameters. By expanding the piecewise-continuous function into
a Fourier series, the discrete forcing is shown to be equivalent to two families of sinusoidal
waves, each with decreasing amplitude and wavelength as the order of the harmonics is
increased; one family is made of waves travelling in the same direction of the discrete
wave, whereas the other contains waves travelling in the opposite direction. Additional
simulations have been run to observe the role of the various harmonics, concluding that
discretization has a predictable but non-trivial effect depending not only on the degree of
discretization, but also on the position of the nominal (sinusoidal) wave in the plane of the
control parameters. In the end, the drag reduction performance of the discrete wave can be
predicted from its harmonic content, provided full information for the sinusoidal waves is
available

To progress from the idealized setting of a DNS towards experimental or real-world
applications, where a discrete spatial waveform is unavoidable, it is essential to fully
understand the differences between continuous and discrete waveforms, and to exercise
care when comparing DNS data computed for sinusoidal forcing with experimental,
non-sinusoidal ones. This applies not only to raw drag reduction data, but also to the
energetic requirements of the forcing. Provided a comparison is carried out properly,
a sinusoidal forcing remains the best option in correspondence of the optimal forcing
parameters. Yet, whenever for example technological limitations prevent the actuator to
operate in correspondence of the best forcing conditions, the discrete forcing can in
principle outperform the sinusoidal one.
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