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Abstract

We show that the Kato conjecture is true for m-accretive operators with highly singular coefficients. For
operators of the form A = D*FD, where D formally corresponds to d/dx +zS on i,2(R), we prove that
Dom(A1/2) = Dom(D) — e~zli H'(R), where H is the Heavyside function. By adapting recent methods
of Auscher and Tchamitchian, we characterize Dom(A) in terms of an unconditional wavelet basis for
L2(K).

1991 Mathematics subject classification (Amer. Math. Soc): 47B25,47B44, 35J15.

1. Introduction

Kato's conjecture, or the 'square root problem', involves the square root of certain
elliptic operators that arise from sesquilinear forms defined on domains in L2(W). To
consider the simplest case, let J be the sesquilinear form defined on / / ' (K) by

J(f,g)= I F(x)f'(x)g'(x)dx,

where F e L°°(K) and Re F(x) > y > 0 for some constant y. Then J determines
a maximal accretive operator T (which is formally (—d/dx)F (d/dx)). It is well-
known that T has a maximal accretive square root, defined by

T1/2/ = - I (I + t2T)~lTfdt

(cf. [8]); the conjecture of Kato is that the domain of T1/2 is / / ' (R). In one dimension
this was first proved by Coifman, Mclntosh and Meyer (cf. [5, 6]). More recently,
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[2] Examples related to Kato's conjecture 275

Auscher and Tchamitchian gave a new, simple proof (cf. [1, 2]), using a wavelet
construction due to Tchamitchian ([16]). If n > 2, only partial results have been
obtained (by Fabes, Jerison, and Kenig [7]); in general, the question remains open. In
this paper we adapt the method of Auscher and Tchamitchian to a family of operators
with highly singular coefficients that is based on examples introduced in [4], and show
that the domains of their square roots satisfy the Kato conjecture.

The Kato conjecture is related to the subtle issue of the representation of forms
by square roots (cf. [10]). If the form J is closed, symmetric, and bounded below,
then there is an associated self-adjoint operator T with the property that Dom(7*1/2) =
Dom(J), and

•/(/, g) = (T1/2f, Tl/2g),

for all / , g e Dom(J). (This is the 'second representation theorem' in [8, p. 331]).
The situation is somewhat different for non-symmetric forms. In fact, Mclntosh
showed that in general, Dom(r1/2) and Dom(7*1/2) need not coincide; in [10], he
provides conditions under which a form J is representable by square roots in the sense
that

Dom(r1/2) = Dom(r*1/2) = Dom(/),

and

Moreover, he relates this difficulty to deep results of Calderon on norm inequalities for
commutators of pseudodifferential operators, as well as to subtle multilinear estimates
for singular integral operators. This relationship is central to the proof of the Kato
conjecture in [5], and is thoroughly discussed in the survey article by Mclntosh [12].

Viewed in another way, the Kato conjecture is connected to problems in perturbation
theory. It is well-known that if Ho is a semi-bounded self-adjoint operator, and V is a
symmetric form that is small with respect to Ho in the sense that Dom(V) 2 Q(H0),
(where Q(H) is the form domain of the operator H, cf. [14, p. 167]) and

\V(d>,cj>)\ <a{H04>,(j>) + b\\(i>\\2

for constants 0 < <i< 1, k I , and all (p e Dom(//0), then the form sum Ho + V
is a semi-bounded symmetric form, and so corresponds to a self-adjoint operator H
(formally Ho + V) with Q(H) = Q(H0). Note that it follows from the spectral
theorem that Q(H) = Dom(|//|1/2). If Ho is not bounded below, the result is no
longer true, even for symmetric forms (cf. [8, p. 341]). This result can be related to
the form domain question for square roots by considering the form H — Ho, where Ho

is a self-adjoint operator, and H is a symmetric form with domain Q(H0). If H — Ho

is small with respect to |//0|, then H determines a self-adjoint operator (the so-called
pseudo-Friedrichs extension, cf. [8, p. 341]), and the relevant question is whether
Q(H) = Dom(|//|1/2) = Q(H0). In general, the answer is no (cf. [10]).
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276 Rhonda J. Hughes and Paul R. Chernoff [3]

In a formal sense, the operator T determined by the form (Ff, g') on / / ' may be
viewed as a singular perturbation of Ho = —F(d2/dx2). Although there is no form
corresponding to Ho, it is shown in [13] for certain F, (and in [9] in general) that
Dom(//0

1/2) = Hl. On the other hand, since the Kato conjecture is true, Dom(T1/2) =
Hl. That is, the domain of the square root of the 'perturbed operator' coincides with
the domain of the square root of the 'unperturbed' operator. We will see that for
the operators considered here, the Kato conjecture is true, whereas the domain of the
square root of the perturbed operator does not coincide with the domain of the square
root of the unperturbed operator. In a sense, perturbation theory and the theory of
quadratic forms provide different answers for the square root question as it pertains to
the examples described in the next section.

2. Generalized elliptic operators

Recently, Auscher and Tchamitchian proved Kato's conjecture for second order
elliptic operators on an open set in K, with arbitrary boundary conditions, thereby
extending the results in [5]. Their proof relies on the reduction of the general case to the
(formal) operator (—d/dx)F(d/dx), whose domain is spanned by an unconditional
(Riesz) basis of wavelets adapted to the function F(x). Here, we extend these results
to a family of operators based on examples in [4], where we introduce a new class of
point interactions that are explicitly solvable in terms of their spectral and scattering
properties. These operators arise from sesquilinear forms, and involve more singular
coefficients than those in [2]; formally, they have the form A = D*FD, where
D — d/dx + zS, in the sense defined by Segal (cf. [15]). We will show in Sections 3-
5 that the Kato conjecture is true for these operators; that is, Dom(Al/2) = Dom(D) =
e~zH Hl (R), where H is the Heaviside function. We proceed by reducing the problem
to the case of the second-order term, as in [2], and by modifying the wavelet basis for
L2 (K) used in [ 1 ]. We will see, however, that as formal perturbations of F (x) (d2/dx2),
these examples are too singular to preserve form domains in the sense described at the
end of the last section.

For r e l , z e C , define

where Tz = e~zH(d/dx)ezH, H is the Heaviside function, and

Dom(Tz) = {<^e L2(W)\ezH<j> e

thatis,</> G //HKXfO}), and«/)(0+) = e~z0(O~). Although TZ is formally d/dx + z8, it
is argued in [4] that a more reasonable interpretation involves a renormalization of the
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coupling constant, so that z is replaced by 2tanh(z/2). Continuing the development,
define

L{r,z) = Q{r,z) — r I,

where I is the indentity operator on L2(K). It is easy to see that Dom(L(rz)) is
prescribed by the two boundary conditions:

L(r,Z) is a self-adjoint extension of — A|C£°(R\{0}) and, when expanded formally,
corresponds to a perturbation of the Laplacian by pseudopotentials (which are not
rigorously defined) involving 8 and <52 terms. We show in [4] that these operators
can be approximated in the strong resolvent sense by operators with local short range
potentials.

Recall now that if Ho is a a self-adjoint operator acting on a Hilbert space J$?, then
the form domain Q(H0) is defined by

Q(H0) = L e Jif | I \X\d{E{X)<t>, <p) < oo] ,

where Ho = fXdE(k) is the spectral representation of Ho. Also, Q(H0) —

Dom (v/|7^I); by the spectral theorem vf#ol = / I A. I l/2d E(X).

PROPOSITION 1. Q{L[r,l}) = e~zHHl(

PROOF. Since bounded perturbations preserve form domains,

Q ( i H ) = Q((TZ + riy(T2 + rl)) = Dom (7(7; + rI)*(Tz + r/)) .

But VAM = \A\,(cf. [K]), so that the latter is equal to

Dom(|7; +rl\)= Dom(Tz + rl) = Dom(7z) = ^ " / / ' ( R ) .

We see immediately from the perturbation theory viewpoint that unless z = 0,
Q(L{r,z)) # Q(—A), despite the fact that these operators are formally perturbations of
—A by quadratic forms, and are explicitly strong resolvent limits of operators whose
form domains are / / ' (K). On the other hand, these operators arise from the forms

, if) = «TZ + rl)<t>, (Tz
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with domain e~zH Hl(K), and as such support the Kato conjecture. Indeed, J[rz} is a
closed, densely-defined positive form with associated self-adjoint operator L{rz] +r2l,
and so

Dom(/(r,z)) = e-zHH\K) = Dom ULM + r2A = Dom ( y ^ ) = Q(LM).

As observed by Chernoff, we can expand this family to include - A + c8 by
considering the extended family of operators

Llw] = (Tz + rH(x) + sH(-x)T(Tz + rH{x) + sH{-x)) - r2H(x) - s2H(-x)

where z e C , r , j e l . Then L[r<sz] is a self-adjoint extension of - A|C~(R\{0}) and
its domain corresponds to the conditions 0 € Dom(Tz) and (T.+rH(x)+sH(—x))<p e
Dom(rz*). That is,

m the notation of [4], this corresponds to the boundary conditions

with a = e~z, ft = 0, y = eJs — e~zr, r\ = e1. Note that when z = 0, the boundary
conditions become

0(0+) = 0(0"),

0'(O+) - 0'(O") = (s -

which are the boundary conditions for — A + cS, with c = s — r.
It follows from essentially the same argument as that given above that Dom(LJ/j z))

= e~zHHl(R), so that when z = 0, we have the familiar result that g ( - A + c8) =

Continuing our development, let F e L°°(IR) with ReF(x) > p > 0 for some
constant p. Then J(f,g) = {Ff',g'), denned on //'(IR), is a closed sectorial
form (cf. [8, 6]) that gives rise to an m-accretive operator J which is formally
(—d/dx)F{d/dx). In [2], this result is extended to the case where J is replaced by
the sesquilinear form

(1) / ( / , g) = (af, g') + (bf, g') + (cf, g) + (df, g),

on Dom(V) c //'(OS), and a, b,c,d e L°°(R), with Rea(x) > 1 or, more generally,
to Dom(Y) c H1 (S2), where S2 is an open set in K.
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We now consider the family of sesquilinear forms

•W)(/> 8) = «F(T: + rH(x) + sH(-x))f, (Tz + rH(x) + sH(-x))g)

with domain e~zH Hl{R), thereby introducing more singular coefficients than in (1).
Note that when z = 0, these forms are a special case of those in [2]. However,
when z ^ 0 , the coefficients are considerably more singular than those studied there.
Observe further that if F = 1 (and z = 0), the corresponding (self-adjoint) operator
is-A + (s -r)S + (r2+s2)I.

PROPOSITION 2. For z e C, r, s e U., J{r,s,z) '•*
a closed sectorial form with domain

PROOF. It is well known that the form / in (1) above is a closed sectorial form on
l(VL) (cf. [K]), and that for suitable y e R, 0 < 9 < n/2,

and
| Im J((j), <t>)\ < tan6»(Re J((p, <f>) + y \\4>f).

Then for / e ^ W / / ' ( K ) , / = <rz"'</> for <j> e Hl (R), and Jlw}(f, f) = J(4>,4>),
where

a(x) =e-2mz)HF(x),

b(x) = e-2Rc(z)HF(x)[rH(x)+sH(-x)],

c(x) = e-2Re(z)HF(x)[rH(x) + sH(-x)],

d(x) = e-2Ke(z)HF(x)[r2H{x)+s2H{-x)].

The functions a(x), b(x), c(x), and d(x) are in L°°(R) and Re(a(x)) > e~2Re(z)p =
p > 0. Clearly,

R e ( / , w ) ( / , / ) ) = Re(J(<p,<p)) > -y\\4>\\2 > -y l l / l l 2 ,

and

| Im J{r,s,z)(f, / ) | = | Im J(<p, 0) | < tan^(Re /(</>, 0) + y \\(f>\\2)

so that J[r,sa) is sectorial; the form is closed because / is closed.
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We remark that Proposition 2 also follows from [6, Theorem 10.3].
By the first representation theorem for sesquilinear forms (cf. [8, Theorem VI.2.1]),

there exists an m-sectorial operator A(rii)Z) such that Dom(A(rs z)) c e~zH Hl(R), and
J{r,,M g) = (A(r.5.zi/. 8), for all / e Dom(Alw)), g e e"^ / / 1 (!R). In particular,
for some v e l , A(rfiiZ) + v is w-accretive, and so has an m-accretive square root. We
then have

PROPOSITION 3. For r,s,y e R,

Dom((A(,il|jy, + v)1/2) = e-^Z/'CK).

PROOF. For simplicity, we assume that v = 0. Following the ideas in [2], we begin
by reducing the problem to the case of the second-order term only. In [2, Proposition
1], this reduction is done for the form J in (1); namely, if

Dom F —

for all accretive F e L°°, then the same is true for the domain of the square root of the
m-accretive operator corresponding to the form / (which contains lower order terms).

To see that this reduction is also possible for the form J{r,s,z], we introduce the
notation/) = e~zH(d/dx)ezH, withDom(D) = e~z////1(^),andconsiderthe(closed)
form:

Hf, g) = (FDf, Dg), f , g e e-:HHl(R)

As was shown above, J is sectorial and determines an m-accretive operator A. Sup-
pose that all such operators satisfy Dom(A1/2) = e~zli Hx (R). Following the proof of
[2, Proposition 1] verbatim, set

f = D*aD + D*b + cD + d, fx = D*ab + D*b, f* = D*aD,

where we note that D* = ezH(d/dx)e~zH, and a, b, c, and d are given by

a(x) = F(x),

b(x) = F(x)[rH(x) + sH(-x)],
c{x) = F(x)[rH(x)+sH(-x)],
d(x) = F(x)[r2H(x) + s2H(-x)].

ThenDom(f) = Dom(7\), andDomCT,*) = Dom(f2*). According to the hypothesis,
Dom((f2*)1/2) = e~zHH\R), and the fact that Dom(f1/2) = e-zHH\R) follows
from Lemma 1 and Lemma 2 in [2].
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Having reduced the problem to the case of the highest-order term, we recall that
/ ( / , g) = (FDf, Dg) = (Af, g); formally, A = D*FD. Now, consider the form

on //'(IR), where F = e~2Ke(z)HF'. Since F e L°°(R), and ReF(x) > p > 0, it
follows from the Kato conjecture in one dimension that if A is the corresponding
m-accretive operator (formally A = (-d/dx)F(d/dx)), then Dom(Al/2) = Hl(K).
We want to show that Dom(A1/2) = e~zHHx (D£). We have that

J(4>, f) = \F^-<t>, ^-yfr) = {A<f>, if)
\ ax dx )

for all ir e Dom(A) c H\ if e / / ' . On the other hand, for all 4>, ir e H\

-zH4>, e~zHif) = (FDe-zHcp, De~z"if) = (Fe-zli—<t>, e~zH'—I
\ dx dx

Moreover,

= (Ae-zH<p, e~zHir) = (e~zHAe~zH4>, if),

for all <p such that e~zli4> e Dom(A) c e~zHH1 and if e Hl.
Let S denote the operator e'yH Ae~'yH, with

Dom(S) = {<£ e L2{JSL)\e-iY"<t> e D o m ( i ) j ,

y € R. Then S is a closed /n-accretive operator with Dom(S) c Hl(W), and for all
0 e Dom(5), if e Z/1, (S<p, if) = / ( 0 , i/f). By uniqueness in the representation
theorem for sectorial forms, 5 = eiyHAe~iYH = A, and so A = e~iyHAeiyH. Next,
the operator e~

iyHA1/2eiyH with domain {</> e L2\eiyH4> e Dom(i41/2)} is m-accretive,
and (e~'yH A1/2e'yH)2 = A. It follows from uniqueness of the square root of A that
A1'2 = e-iyHAx/2eiyH, hence Dom(i1/2) = e~iyHHXl

NOTE. The operator S in the proof of Proposition 3 is unitarily equivalent to A
when z = iy. This is not the case, however, when z ^ iy. In order to extend the
result in Proposition 3 to all z e C, we find a wavelet basis for Dom(>4) that is a
modification of the construction in [1].
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3. Wavelet bases

The wavelet basis used in [1] can be adapted to provide unconditional bases for the
domains of the operators considered in Section 2. This is not entirely surprising, since
the growth conditions on the wavelets in [16] are similar to those on the eigenvectors
of the operators studied in [4]. The main result, similar to that in [1], involves the
operator A = D*FD of the previous section. Recall that D = e~zH\d/dx)ezH so that
A depends on z.

THEOREM 4. There exists a family of Lipschitz functions {rk(x)} belonging to
Dom(A) that forms an unconditional basis for each of L2(R), e~zH Hl(W), and
Dom(i).

PROOF. Using the notation in [1], let A denote the collection of all dyadic intervals
in K. If A. = [k2"j, (k + \)2''), with k, j e Z, then there exists a family of functions
{9k(x)} of class C2 satisfying the following conditions (cf. [16]):

(-y \2Jx-k\),

\D9x(x)\ < C23j/2exp(-y\2jx - k\),

\D26x(x)\ < C25j/2exp(-y\2jx-k\),

where D = —i{d/dx) with domain //'(K). hi general, [9x(x)} is adapted to a function
b(x) e L°°(R) satisfying Reb(x) > 1, in the sense that

/ •
6k(x)b(x)dx = 0,

(2) I xOk(x)b(x)dx = 0,

where A., fi 6 A. The family {0k(x)} forms an unconditional basis for L2(R); that is,
for all / e L2(K), we have /(*) = Y,ak9^x) where {a-,.} e /2(A), and ||/| |2 and

1/2 a r e equivalent norms. Moreover, for all A e A

(3) ak= [ f(x)9k(x)b(x)dx.

We take b(x) = e2Re(z)H F(x)~l, and following [1], set

rk(x) = 2> e~zH D~\e2mz)H F{xy{9x)(x),
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and
ak(x) = -2-je-z

(Note that zk and ak here are different from those in [1]). It follows from [1] that
both {ezHxk} and {ezHak} are unconditional bases for L2(R). It therefore follows that
{rx} and [ak] are also unconditional bases for L2(K), since each is the image of an
unconditional basis under a bounded invertible linear transformation.

To see that {T^} is an unconditional basis for e~zHHX{R), recall that in [1] it is
shown that {ezHxk} is an unconditional basis for Hl(R), and that if g e Hl(R), then
g(x) = J2^Hxk(x), where {&} and (2'A) e /2(A), and \\g\\2 and (£ l&l2)"2 are
equivalent norms. Thus, if / e <rz////'([R), then f(x) = £ & T X ( J C ) , and ||/ | |2 and
( E IAJ2)1/2 are also equivalent norms. Conversely, if {&} and {2J fa] e /2(A), then
by [1], g(x) = Z^ezHr-,(x) e Hl(K), so that / = e~zHg = J2pkrk e e-zHH[(R).

In order to characterize Dom(i), set D — e'zliDezli. For / € Dom(i) c
e~zHHl (R), we have / = £ a ^ , where {ax} and {2;ax} e /2(A). We then have, for
/ € Dom(A) and£ e e'zHHl(R),

(Af, g) = (FDf, Dg) = {Fe-z"DezH Q > > ^ ) , e~zHDezlig).

Now DezHrk = 2>e2KeU)H{F{xYx)9x, and since ^ f f / " t i e // '(K), we have
D(£a>.ezHTx) = ̂ a »2 i t 2 R * ) / / (F (^ ) - i ) ^ ; the term-by-term differentiation is jus-
tified because {2'ax} € /2(A). Consequently,

(4) (Fe-zHDezH ( j > , r x ) , e~zHDezHg) = (j^ctxTek, DezHg) .

Because / e Dom(A), the latter inner product can be extended to a bounded linear
functional on L2(R), and so it follows that ^ a x 2 ; 0 x e // '(K). In general, we have
that if / e / / ' W , and / = £ &0X, then {^2-'} e /2(A). Indeed, from (2) and (3)
we have

/»OO /»

= / /(J:)^(*)6(jf)djc = 2-> /

Recall that {ezHxk} is one of the unconditional bases described in [1], and that those
bases satisfy dual estimates (cf. [1,(11)]) that imply {/^ Df(x)ezHrk(x)dx} € /2(A).
Therefore {&2;} e /2(A), and returning to (4), we now have that {ax2

2y} e /2(A),
and

( )

Conversely, if {ax22;} e /2(A), we see from the same proof that f(x) = ̂  <*A **(.*) e
Dom(A).
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An immediate consequence of the proof is the following (cf. [1]):

COROLLARY 1. J^a^x belongs to L2(K), e~zHHl(K), or Dom(A) according to
whether [ak} belongs to /2(A), /2(A, co), or /2(A, CD2), respectively, where &> = 1+22'.

THEOREM 5. Dom(A1/2) = e~zHHl(R).

PROOF. This follows from Theorem 4, as noted in [1], because of the complex
interpolation theorem of J.-L. Lions: if T is a maximal-accretive operator on Jf then
the Dom(T1/2) is a complex interpolation space between Dom(T) and Jf.

NOTE. AS pointed out by the referee, another proof of Theorem 5 is possible, by
showing that the operator A is similar to an operator of the form bDaD, which in turn
is similar to an operator of the form DaD (for which the Kato conjecture is true, by
[5] and [1]). Moreover, Theorems 4 and 5 remain true when the Heaviside function is
replaced by a more general complex-valued measurable function.

4. A related example

The fundamental building blocks Tz for the operators considered in Sections 2
and 3 were first defined by Segal [S], and formally correspond to perturbations of
d/dx by delta-potentials. While Tz is not self-adjoint, the slightly modified operator
Tic = e~'cH(—id/dx)e'cH is, and the determination of Q(T,c) is an interesting question
in its own right. For c e K, {7̂ c} is the one-parameter family of self-adjoint extensions
of the symmetric operator -/(d/<£x)|C£°(IR\{0}), which has deficiency indices (1, 1).
Recall that

IJ \k\\4>(k)\2dk<oo\Q[-j-f = / / ' («*) = U e I/(R)| / \k\\<p(k)\zdk < oo].

Then it is straightforward to show:

PROPOSITION 6. Q(Tic) = e-'cHHl/2(R).

PROOF. This follows immediately from the spectral theorem. If f XdE(X) is the
spectral representation of D = —i(d/dx), then

Q(D) = \k\d (£(A)0, <P) < oo
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Accordingly, the spectral representation of Tic is f Xd(e~'cHE(\)e'cH), and so

Q{Tic) = L e L2(K)| /" |^|d(^'c / /£(Ay'cW0, </>) < 00

= {0 e L2(R)|

As an operator, Tic does not preserve the form domain of D. However, Tic

arises from the sesquilinear form —i(d/dx)e'cH4>, eicH4>) on e~'cHH1/2(R), and since
Dom(|7;c|

1/2) = e~icliHv2{W) by Proposition 6, the Kato conjecture is true in this
case. If c is not real, there is no corresponding sesquilinear form.
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