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Abstract. When the univariate twin design is extended by including parents of twins, it is 
possible to assess additive genetic effects in the presence of assortative mating and geno­
type-environment correlation, the effects of parental influence, as well as the extent of 
residual shared environmental influences. The analysis of data obtained in such an extend­
ed twin design can be carried out by means of constrained maximum likelihood confir­
matory factor analysis. Specifically, the structural model underlying this design can be 
represented as a LISREL model with nonlinear constraints. This representation offers 
the possibility to consider extended multivariate twin designs involving common genetic 
and environmental factors. The proposed method will be illustrated with applications to 
simulated and real data. 
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INTRODUCTION 

The model for data obtained on twins and their parents as developed by Jencks et al [6 ] 
and Eaves et al [3] and subsequently further elaborated by Fulker [4] may be formulated 
as a LISREL model. Briefly summarized, the parent-offspring design (Fig. 1) allows for 
the estimation of additive genetic effects in the presence of assortative mating, the 
effects of parental influences, the correlation between genotype and environment and the 
effects of residual shared environmental influences among the offspring [4]. 

In this paper we want to show how the general parent-offspring model, where in this 
case the offspring consists of identical and fraternal twins, can be rewritten as a LISREL 
model. The advantages of this undertaking are twofold: first, there is a conceptual advan-
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Fig. 1 - Parent-offspring model. PP and PP are parental phenotypes, PC and PC are children's 
phenotypes. G and E represent genetic and environmental influences, y, e and 6 represent correlations 
induced by assortative mating and s is the correlation between G and E. Intluence of parental pheno-
type on child's environment is z, and residual shared environment among offspring is (3. 
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tage, when we want to analyze alternative models and also when the univariate model is 
extended to the case where parents and their offspring have been measured on more than 
one variable. Second, there is a numerical advantage, in terms of computer time and preci­
sion of the solution obtained. The univariate LISREL model will be illustrated with simu­
lated and real data. Finally, it is shown, once the univariate LISREL model is specified, 
how this model can be extended to handle multivariate data sets. 

The LISREL model was originally developed by Joreskog [7] and is used to describe 
and estimate the unknown coefficients in a set of linear structural equations. The varia­
bles in the model are either directly observed or are unmeasured latent factors. In its 
most general form the model assumes that there is a causal structure among a set of la­
tent variables and that the latent variables are underlying causes of the observed ones. 
Within a quantitative genetics framework, we assume that an observed phenotype is 
causally related to an underlying genotype and an environment that are not measured, 
and that there are relationships among parental genotypes and environments and the 
latent genotypes and environments of their children. Thus, relations among observed 
variables, expressed as correlations among parents and their offspring, are explained 
by an underlying model of latent factors. In LISREL this correlation matrix may be 
expressed as the product of several parameter matrices as follows (we here use a subset of 
the general LISREL model where y = AT? and T? = Br? + f): 

2 = A B - 1 ^ B - 1 , A \ 

where A is a matrix containing the factor loadings of the observed on the latent variables, 
B contains the direct effects of latent variables on other latent variables and \j/ contains 
the variances of the residuals of the latent factors and the covariances between these 
residuals. In the following the application of these parameter matrices to parent-off­
spring models is explained in more detail. 

A contains the factor loadings of the observed phenotypes on the latent genotypic 
and environmental factors: 
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From this matrix it can be seen that the phenotype of each subject is defined in terms 
of G and E by the structural equation: 

P = h G + eE, 

where h is the factor loading on the genotype and e on the environment. 
B contains the coefficients that represent the influences of parental genotype on the 

genotype of the child and the influences of parental genotype and environment on the 
environment of the child: 
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GP, EP, GP, EP, GC. EC, GC, EC, 

GP, 
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GP, 
EP, 
GC, 
EC, 
GC, 
EC, 

From this matrix it can be seen that the path from parental genotype to the genotype 
of the child is 0.5. The path from parental genotype to the environment of the offspring 
equals zh and from parental environment to the environment of the child ze. Thus the 
path from parental phenotype to child's environment equals z as required. 

Finally, the diagonal elements in i// contain the variances of the residuals of the la­
tent factors: 
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These variances are one for the latent factors of the parents (assuming that all ob­
served and latent variables are standardized with means zero and unit variance) since par­
ental genotype and environment are not explained by any other factors in the model. 
The covariances between the latent factors in the parents, that is, s, 7, 5 and e, are also in 
t//. The variances of the latent factors of the children are a little more complicated. Since 
the genotype of the children is a function of the genotype of the parents, the variance of 
the latent genotype of the offspring is built up as follows: 

GC, = 0.5 GP, + 0.5 GP, + genetic residual 
GC, = 0.5 GP, + 0.5 GP, + genetic residual 

Var (GC) = 0.5 + 0.5 7 + Var (genetic residual) 

so that the variance of the genetic residuals equals 

Var (genetic residual) =1—0.5 (1+7) 
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For identical twins the correlation between the genetic residuals is one, since their 
genotypes are identical. Thus, the covariance between their genetic residuals is equal to 
the variance of these residuals. The correlation of the genetic residuals of fraternal twins 
is zero, since their genetic resemblance is fully explained by the relationship with the par­
ents. 

The same reasoning applies to the variances and the correlations of the environ­
mental residuals in the offspring. Part of the correlation between the environments of the 
children is explained by parental influences: 

EC j = z PPj + z PP2 + environmental residual 

EC2 = z PP( + z PP2 + environmental residual 

Var (EC) = 2z2 + 2z2ju + Var (environmental residual) 

Thus, the variances of the environmental residuals equal: 

Var (environmental residual) = 1 — 2z2 (1 +/u) 

The covariance between the environmental residuals is represented by |3, that is, the 
covariance between the childrens' environments after allowing for parental effects. 

The LISREL model was developed by Joreskog along with a computer program. We 
cannot, however, use the original LISREL program, since estimation of the unknown pa­
rameters in the parent-offspring model involves a set of nonlinear constraints (Table 1). 

We therefore developed our own program, using subroutines written by the Numeri­
cal Algorithms Group [10]. (See [l] for a discussion of this constrained optimization 
technique). The program uses first derivatives of the constraints and of the likelihood 
function with respect to the parameters in the model. The use of such derivatives results 
in a good conditioned and faster converging optimization. Joreskog [8 ] has published the 
explicit equations for the derivatives of the likelihood function, which therefore can be 
determined in a fully automatized manner. 

Table 1. Constraints 

h2+e2+2hes = 1 

zh/h = ze/e 

s = zh(l +7)+ze(s + 6) 

Var (genetic residuals) = 0.5 - 0.5T 
2 2 

Var (environmental residuals) = 1 - 2(z +z n) = 

= 1 - 2[(zh)2(l+7)+(ze)2(l + e) + 2(zh)(ze)(s+6)] 

M = 7/(h + se)2 = e/(e '+ sh)2 = 5/(h + se)(e + sh) 
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SIMULATION 

Correlation matrices for MZ and DZ families were simulated in two ways: by computing 
the exact expected correlation matrices and by generating data for 100 MZ and 100 DZ 
families, using IMSL subroutine FTGEN [5]. True parameter values are shown in Table 2. 

For both cases several sets of starting values were considered. In the first case true 
parameter values were recovered exactly and x2 was zero. Input correlation matrices for 
the second simulation are in Table 2. The solution to these data was obtained by starting 
h at 0.3 and e at 0.9. As can be seen, the solution is close to the true parameter values. 

Table 2. Simulated data 

p p l 

1.0 
0.2360 
0.6014 
0.6014 

True and Estimated Parameter Values 

h 
e 
zh 
ze 
s 
7 
5 
6 

(3 
res(g) 
res(e) 

0.707 
0.5 
0.236 
0.167 
0.354 
0.156 
0.133 
0.113 
0.025 
0.422 
0.733 

0.684 
0.507 
0.248 
0.184 
0.397 
0.185 
0.163 
0.143 
0.096 
0.408 
0.675 

Observed (upper triangle) and Expected (lower triangle) Correlations 

MZ (n=100) 

PP2 PC, 

0.2097 0.6884 
1.0 0.5043 
0.6014 1.0 
0.6014 0.8512 

P C 2 

0.6885 
0.5074 
0.8516 
1.0 

DZ (n=100) 

PP, PP2 PC, 

1.0 0.2608 0.5338 
0.2360 1.0 0.6739 
0.6014 0.6014 1.0 
0.6014 0.6014 0.6604 

PC2 

0.6239 
0.5930 
0.6588 
1.0 

SHYNESS DATA 

We also applied the program to shyness data collected by Dr. Rose in 144 MZ and 106 
DZ twin families. These are the same data that were analyzed in Fulker's article. Table 3 
shows the LISREL estimates and the estimates obtained by Fulker, as well as the observed 
and expected correlation matrices. 

The two sets of parameter estimates are fairly similar, with the possible exception of 
the estimate for 8. The total 8 is almost the same in both estimation procedures. But in 
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Table 3. Shyness data 

Parameter Estimates 

h 
e 

z, 
Z 2 
s 
7 
6 
c 
M 
0(total) 

0 

Fulker(1982) 

0.84 
0.74 

-0 .29 
-0 .19 
-0 .20 

0.096 
0.079 
0.065 
0.200 
0.160 
0.016 

LISREL 

0.785 
0.759 

-0 .20 
-0 .20 
-0.161 

0.091 
0.087 
0.083 
0.208 
0.172 
0.076 

Observed (upper triangle) and Expected (lower triangle) Correlations 

PP, 

1.0 
0.208 
0.1296 
0.1296 

MZ(n= 

PP, 

0.18 
1.0 
0.1296 
0.1296 

=144) 

PC, 

0.1523 
0.0597 
1.0 
0.5245 

PC, 

0.1723 
0.1478 
0.525 
1.0 

PP, 

1.0 
0.208 
0.1296 
0.1296 

DZ (n= 

PP, 

0.2367 
1.0 
0.1296 
0.1296 

106) 

PC, 

0.0387 
0.262 
1.0 
0.2444 

P C 2 

0.0323 
0.1771 
0.2433 
1.0 

our case a smaller part of this correlation between the environments of the twins is induced 
by parental influences. Notice also that in our estimation procedure we did not separate 
the parental influences into maternal and paternal influences. When we did, however, this 
did not seem to result in a better fit. x2 with 8 df was 2.65. However, the x2 should be 
regarded as an approximation to the exact sampling distribution of the likelihood-ratio 
test. In constrained problems such as these, the precision of this test is unknown [eg, 2]. 

With this LISREL model it now has become quite easy to analyze parent-offspring 
data with different models, or to analyze data from more than two generations. For 
example: analyzing a model in which there is a relationship between parental environ­
ment and environment of the child instead of a path from parental phenotype to the 
environment of the offspring [eg 11 ] only involves changing the coefficients in the B 
matrix (and of course also changing the constraint for s). 

MULTIVARIATE MODELS 

Now that we have formulated a univariate LISREL model the extension to the multi­
variate case may be readily accomplished. We may, for example, consider a factor model 
in which the correlation between different variables is explained by their loadings on 
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common genetic and common environmental factors. For the correlations among twins 
we then get the model as implied in Fig. 2, where factor loadings on common factors are 
represented by capital letters, and loadings on the unique factors by lower case letters. 

Each observed phenotype X and Y has loadings on a common genetic factor and on a 
unique genetic factor. The same is true for the environmental factors. At the bottom of 
the diagram are the unique factors for each variable. This part of the model is just a repe­
tition of the univariate models for X and Y. The upper part of the diagram repeats this 
model for the common factors. The variance of X and the twin correlation become: 

Var (X) = H2 + E2 + 2sH E + h2 + e2 + 2s h e 
v / X X X X X X X X X 

Cor (PC, X, PC2X) = aH2
 + /JE2

 + 2sHJtEx + % h 2
 + 0xex + 2sxhxex 

The phenotypic correlation between X and Y and the twin cross-correlations are a 
function of the loadings of X and Y on the common factors: 

Fig. 2 - Bivariate factor model for twin correlations. 
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Cor(X,Y) = HxHy + E x E y + sH x E y + sHyEx 

Cor (PCjX, PC2 Y) = aHxHy + 0ExEy + sHxEy + sHyEx 

where a is 1 for MZ and 0.5 +0.57 for DZ twins. The factor model for the relationship 
between parents is seen in Fig. 3. 

Again the unique factors for each variable are at the bottom of the diagram and the 
common genetic and environmental factors in the upper part. The spouse correlation for 
X now may be expressed as follows: 

ju = 7H2 + eE 2 +(5, + 5 , ) H E +y h2 +e e2 +25 h e 
r X X ' X X v l 2' X X ' X X X X X X X 

and the spouse cross-correlations: 

Fig. 3 • Bivariate factor model for spouse correlations. 
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^x = 7HxVe ExV5lHxEy + Wx 

Finally, the last two path diagrams are combined in Fig. 4 where the relationship 
of parents with one child is shown. 

This last figure is the factor model as proposed by Martin and Eaves [9], but now 
extended to the parent offspring case. For example, the correlation between parent 1 and 
offspring for X becomes: 

Cor (PP,X, PC, X) = (ExZx + exzx)(l + MX) + ExZy(cor %Y) + Mxy) + 

+ l/2Hx(l + T) + l/2hx(l + 7X) + l/2HxEx(s + 8 x) + l/2hxex(sx + 5x) 

and the parent offspring cross-correlation between trait X in parent 1 and trait Y in the 
child: 

Fig. 4 - Bivariate factor model for parent-offspring correlations. 
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Cor(PP1X,PC1Y)= EyZx(l +M_x) + (EyZy + eyzy)(cor(X,Y) + iUxy) + 

+ l /2H x H y ( l + 7 ) + l /2HyEx(s+51) 

The estimation of these parameters may be accomplished with the LISREL model as 
follows: In A are the factor loadings on the common and unique genetic and environ­
mental factors, and in B the influences of parental genotype and environment on all la­
tent genetic and environmental factors of the twins. <// again contains the variances of the 
residuals of the latent factors and the covariances between these residuals. 

In conclusion, the parent-offspring design together with the LISREL model just 
proposed, offers extensive possibilities for uni- and multivariate quantitative genetics 
analysis. 
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