ON POLYNOMIAL ALGEBRAS AND FREE ALGEBRAS

GEORGE GRATZER

1. Introduction. It is well known that given the polynomial algebra
P@ (1) (for definitions, see §2), an algebra A of type r, and a sequence a of
elements of Y, one can define a congruence relation 6, of @ (v) such that the
factor algebra P@ (7) /6, is isomorphic to the subalgebra of 9 generated by a,
and the isomorphism is given in a very simple way.

It will be shown in this note that this result can be extended to the case
when 9 is a partial algebra. Theorem 1 gives the description of 6,. This is then
used to describe the structure of P (7) /s, which turns out to be the free alge-
bra over K (r) generated by ¥ in the sense of §6. Some elementary observations
are made concerning the existence of algebras freely generated by partial
algebras in §6.

It should be emphasized that the main results of the paper are the description
of 6, and of P@(7)/6,. The results in §6 are not applications but only
illustrations of these.

2. Preliminaries. A partial algebra I = (A ; F) is a non-empty set 4 and
a set F of finitary partial operations on 4. Well-ordering F = (fo,...,
fyr - - <8 and associating with it the sequence 7 = (o, ..., 7y, ... )y<s
(where f, is an n,-ary partial operation) yields the type 7 of 9. 8 will be denoted
by o(r). K(7) is the class of all algebras of type 7. The set of a-ary polynomial
symbols P@ (7) is defined by the following rules:

(i) x4y € P@(7) for v < a;
(i) if po, ..., Pr,—1 are in P@(r), then £,(po, . . ., Pn,—1) is in P@(7) for
v < o(r);

(iii) a-ary polynomial symbols are those and only those which can be
obtained from (i) and (ii) in a finite number of steps.

The algebra P@(r) = (P@(7); F) is obtained in the natural manner,
using (ii) to define the operations on P@ (7). In the case of a partial algebra ¥,
an a-ary polynomial symbol is not always associated with a mapping of A<
into A. Thus, we have to specify its interpretation:

Let A be a partial algebra of type 7, @, . . .y @yy ... € 4, v < a,p € P@(7).
Then p(ao, . .., @y, ...) is defined and equals a € 4 if and only if it follows
from the following rules:
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@) if p=xy vy <a, then p(ag, ..., ay,...) = a,.
(i) if py(ao, ..., ay, ...) is defined and equals b, for 0 < 7 < n,,
Sy (Do, - . . ,bm,-l) is defined and equals b,

p= ‘Y(pOy e pn-y—l)y
then p(ao, ..., @y, ...) is defined and equals b.
We adopt the convention that an equation p(ag, ..., ay, ...) =
q(ao, ..., ay, ...) includes the assertion that the terms considered are defined.

3. The congruence relation 6,. Let 9 be a partial algebra of type 7,
a € A% a = {Q,...,dy ... v and define a binary relation 6, on P@®(7) as
follows:

p = q(6,) if and only if there exist > 1, r € P® (1), and p;, q; € P@(7)
(0 <7< k) such that p;(ao,...,ay,...) and gqi(ao,...,a,...) exist,
pilaoy .ooyty...) =qi(as, ..., 0y...), and p = rPo, ..., Pr1),q =
T(qo, ce ’qk—l)-

THEOREM 1. 6, is a congruence relation of P (7).

Remark. If U is an algebra, 6, is defined simply by the rule: p = q(6,) if
and only if p(ag, ...,y ...) =qlao, ..., Qy...).

Proof. (i) 6, is obviously symmetric, and an easy computation shows that
it is reflexive.

(ii) To prove the substitution property, let p = £,(po, ..., Pr,-1),
q=1,Qo-..,4q,-1), and p; = q:(6), 0 < ¢ < n,. Then

pi = ri(DOiv LR )p;i—l): q; = ri(qﬂir sy qrfi—l);

and p,-i(ao,...,ay,...) =q; @0+, ay...).

If follows easily from the definition of a-ary polynomials that there are n-ary
polynomial symbols t/;, n = no + n1 4+ ... + 7n,—1, such that

ri(bOy R bn,’—l) = 7'i<601 c ooy Crg—1y Cpgy « « + 3 Cppteni—1—1y bOy D)
bni—ly Cno+...+n,', .. -)
foralle =0,...,n, — 1,0, € A,c; € A. Thus we have that

Ty 1

0 0 7,—1
D= 7,1'(1)0 y oo ypno-—l, R [ LI nn.y_1—l)

forall 0 < 7 < . Setting r = f,(1'q, ..., I's,—1), We get

0 0 7,—1 7,—1
7(PO;--~:Pn0—1,---rP07 1"-11)”’!:7—-1-1) =D,
0 0 na—1 My—1
P gty - @ ) = 4
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Thus, p = q(6:), which was to be proved. In order to establish the transitivity
of 6, we need a lemma.

Lemma 1% p = fy(Po, - - - s Pr—1) = f5(Qo, + - - Qus—1) = q () holds if and
only if (a) p(a) = ¢(a), or (b) po = qo(t), - - -, Pry-1 = Qu,-1(6) and v = 6.

Proof. The ““if”’ part is obvious, so we prove the ‘“only if"’ part: By the
definition of 6, thereisanr € P® () such that

p=r®u-..,DPe1), 4=7@on-..,q1), and P.a) = q.(a),

1=0,...,n, — L
Hence, either r = Xx; for some 7, i.e., p = f)i, q= fl,-, and p(a) = ¢(a) (i.e. (@)
orr = f,(ro, . .., In,1). In the latter case,
P =fiPo -, Pu-1) =fv(70(130, ) f)k—l)y ) rn,-—l(f)()v s f’k—l))
and
Q=F@0 - Qi) = 0@+ Qo) s Pt @or - -y Qi)
thus vy =6 =» and p; = r,-(f)o, e, f)k~1), q; = ri((lio, ce, ak_l). Since

P: = 4.(6,) and the substitution property has already been proved, we
conclude that p; = q;(6.), 0 < 2 < n,. This completes the proof of the lemma.

(iii) We prove the transitivity of 6, by induction on the maximum rank of
the polynomial symbols involved (the rank of a polynomial symbol p, rk(p),
is the number of symbols needed in building it up). Assume that q = p(6,)
and p = r(6,) and max{rk(q), rk(p), rk(r)} = 2, i.e., all polynomial symbols
are of the form x;. Then q = r(f) is obvious. Assume that max{rk(q),
rk(p), rk(r)} = # and that transitivity has been proved for & < #n. It follows
from the definition of 6, that either all of $(a), ¢(a), 7(a) exist or none. In the
first case q = r(6,) is clear; in the second case Lemma 1 shows that

P = f’y(pl)v o ypn‘y—l)y
q= f’Y(qOr ey qn-,—l))
r = f:,(r(), ey rn,y_l).

p = q(6,) and Lemma 1 imply that q; = p;(6:); p = r(6,) and Lemma 1
imply that p; = r;(6,). Since max{rk(q,), rk(p;), rtk(r;)} < n, we conclude
that q; = r;(6.),2 =0, ..., n, — 1, and hence, by the substitution property,
that q = r(6,). This settles the transitivity. Thus, 6, has been shown to be a
congruence relation of @ (7), concluding the proof of Theorem 1.

4. An embedding theorem for partial algebras. Let A be a partial
algebra of type 7, @ = (@, ..., @y, . . . )y<a, and assume that each element of 4

*This lemma and the resulting proof of the transitivity of 6a are due to G. H. Wenzel.
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occurs once and only once in this sequence. Then the following embedding
theorem shows that 9 can be considered to be a relative subalgebra of

P (7)/b0.

THEOREM 2. Let A* denote the set of elements of the form [Xy]6s, i.e., the set of
congruence classes of the Xy in B () /6s. Then

¢: @y — [X,]0a
s an isomorphism between A and * = (A*; F).

Proof. [X,]0. = [Xs]6. can hold only if v = 4, since neither X, nor X; have

non-trivial representations X, = 7(Po,...,Pr—1) Or X; = 7(qo, ..., Qs—1)-
Thus, ¢ is 1-1. Since ¢ is obviously onto, we just have to verify that
fy(@se, « + + s @s,—) = as holds if and only if

Fr([Xso1a, - - - 5 [Xony—1100) = [Xs)6a.
Clearly, fy(@s - + - » @3,,—) = a5 implies that

Fr([Xsolba, - -+ [Xopy—1100) = [Xs5]00.

Observing that X; admits only trivial representations (an argument which we
used once already), we conclude the converse statement. This completes the
proof of the theorem.

Theorem 2 yields the ‘‘least economical’’ embedding of the partial algebra ¥
into an algebra. More precisely, B (7)/6, is the largest algebra into which A
can be embedded such that the image of 9 is a generating system. (This was
anticipated in (2).) The next section is devoted to a description of the structure
of the algebra P@(7)/6, as defined above.

5. The structure of P« (7)/8,. Let A be a partial algebra of type 7,a € A,
and assume that each element of 4 occurs once and only once in a. We define
certain subsets A, and A’y 0 <2 < w, 0 < v < o(r)) of P@(7) as
follows:

A'(0,0) = A*,
where A4* was defined in Theorem 2. Defining (m, v) < (n,6) by (1) m = n
and y < é or (ii) m < n (lexicographic ordering), we define recursively

A,(n,ﬁ) =V (A(m,‘)‘); (m, 'Y) < (n; 6)) ((n! 6) #= (0) O))
and
Apsy = Ay V {f6(boy o ooy bug—1); 00y« ooy byg—1 € A’ ()}

LemMma 2. The following equality holds:
P@(r)/0s =V (Aps;0 <2 < 0,0 <6 <o(r)).
Proof. The inclusions
() Ao S Ay © Ay if ¥ <6,
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(11) A(n,‘y) Q A’(m,a) g A(m,g) if < m,
follow immediately from the definitions. Take p € P@ (7). We shall prove by
induction on the rank of p that [p]: € A,s for some 7 < w, § < o(r).
If p=x, then [pla € 4, by definition. Let p = £,(po, . . ., Pr,~1) and

assume that [P € A0, 0 <7 < my. Setting n = max{nq, ..., #,-1},
0= max{&o, ceey 6,,1_1}, we get A(ni,5i) - A("'a) - A(n+1,0) from (1) and (11)
Thus, [pl6. = £,([polbs, . . ., [Pr,-116) € A@y1,0, Which was to be proved.
One more definition is needed to describe the detailed structure of L@ (r)/6,.

Let 8 be a partial algebra, X C B and ¥V =X V {f,(x0, ..., %p1);
x; € X} for some f, € F. We shall write ¥ = X[f,] if

1) fylxoy .- -, x,,,,_l) = fs(®'o, ..., &'ns—1) ¢ Ximpliesthaty = §, x; = &',
0<12 < ny

(i1) %0y .« ., %ps—1 € ¥V and x; ¢ X for some 0 << < n; implies that
Fs(xo, « - -, %ns—1) does not exist in B or is not in Y, for any § < o(7).

Using this terminology we get the following result concerning the structure

of P@ (1) /6.

THEOREM 3. P@ (1) /0, contains an isomorphic copy A* of the partial algebra
. If we start with A* and we perform two kinds of constructions,
(i) taking the set union of previously constructed sets,
(ii) comstructing X[f,] from X,
then we get an increasing transfinite sequence of subsets of P@(r) /0, such that
the unton of all these subsets is the whole set.

In the light of Lemma 2 and the preceding definitions, it suffices to prove
the following lemma.

LEMMA 3. Ay = A [fy]-

Proof. Lemma 1 immediately yields part (i) in the definition of A’ [f,].

Moreover, the same lemma yields that ao, ..., @y-1 € 4w,y and, say,
a; ¢ Ay, and fs(ao, ...y @y—1) € Ay — A’y is impossible. Thus, we
assume that ao, . . ., @Gpgo1 € Ay @3 ¢ A’y and fs(ao, . . ., Gyse1) € A’ o).

Setting a; = [pi]oa:fs(aoy e e ey an,}——l) = [p]ea, we getf5(p0! ey pn,;—l) = p(oa)
and hence, by Lemma 1, p = fs(p’o, . . . , P'ns—1) and

Pi=0":6),0 <7< n — 1.

Since [ploa € 4’(.y, there is a smallest (m, \) < (n, v) such that [plé, €
Ay Since [Pl € A’ 0,00 by Theorem 2, [pl6a € Ay — A’y and so there-
fore p = fA(@o, - - -, Quy—1) (62), for some [q;]0: € A’ (,». Lemma 1 shows that
N = 8 and [q]6. = [p:]6.. Hence, ¢; = [p;16: € A’ (n,5y S A’(n,y, a contradic-
tion. This completes the proof of Lemma 3 and also of Theorem 3.

6. Free algebras generated by partial algebras. The congruence relation

0. for algebras is used, among other things, to describe the free algebra over
a class of algebras K C K (7). In this section we shall show that B (r)/6, can
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be given a similar interpretation if we find a suitable generalization of the
concept of free algebras.

Let & be a class of algebras of type 7 and let d = (4 ; F) be a partial algebra
of type 7. The algebra §x (%) is called the algebra freely generated by the partial
algebra U if the following conditions are satisfied:

(i) §«Q) € K.
((1) Fx@) is generated by 4" and x: A’ — A4 is an isomorphism between
A = (4; Fyand A’ = (4’; F) which is a relative subalgebra of Fx().

(iii) If ¢ is a homomorphism of ¥ into € € K, then there exists a homo-
morphism ¢ of Fx(A) into € such that ¢ is an extension of ¢.

Using this definition, the following theorem is clear.

TueoreM 4. (i) If A is an algebra in K, then Fr(A) = .
(i) FxA) is unique up to isomorphism.
(iii) If the domain of each f, € F is empty, then Fx(A) = Fx(m) of Fx(m) s
the free algebra on m generators and m = |A4]|.

We shall conclude this paper by giving sufficient conditions on a class K for
the existence of Fx (). Theorem 5 is based on an idea of G. Birkhoff (1).

THEOREM 5. Let K be a class of algebras and let N be a partial algebra. Assume
that the following conditions hold:
(1) 9 zs zsomorphic to a weak subalgebra of an algebra in K.
(ii) K is closed under the formation of subalgebras and direct products.
Then Fx(A) exists.

Proof. By obvious changes in a proof of (1).
Theorem 6 constructs Fx () from Fx(m).

THEOREM 6. Let K be a class of algebras and let U be a partial algebra. Tz (A)
exists if the following conditions are satisfied:
(1) A is isomorphic to a relative subalgebra of an algebra in K.
(ii) Fx(m) exists for some m > |A|.
(iii) K is closed under the formation of homomorphic images.

Remark. This is analogous to a result of Sikorski (3) on free products of
algebras.

Proof. (ii) and (iii) imply that §x(m) exists for m = |4|. Let @ be an ordinal
with@a=mand let 4 = {a,; v <a}. We define a subset T of (Fx(a))? = (Fg(m))?

as follows:
(x,y) € T'ifand only if x = p(xy, ..., xi,,_,_l), Y=g vy Xjng—y)
and P(aioy ey ain—y—l) = Q(afoy ey ajna—l)- We set 6 = U (Ozy; (x, y) S T)

which, by definition, is the smallest congruence relation under which
(x,y) € T implies that x = y(6). (ii) and (iii) imply that Fx(a)/8 € K, and
we claim that Fx(e)/0 = Fx(A). Let o/, = [x,)0 and 4’ = {d/5; v < a}.
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Take any homomorphism ¢ of A into B € K with ay,¢ = ¢,, ¥ < @, and define
1" in terms of the ¢, as T was defined in terms of the a;. If ® is the corresponding
congruence relation of Fx (), then 6 < ® since ¢ is a homomorphism. Thus, by
the second isomorphism theorem, ¢: [x,]8 — ¢, induces a homomorphism ¥ of
Tx(a)/0 into € with o', ¢ = ¢, since Fx(a)/0 = €. Now we embed ¥ into the
algebra 8 € K (which can be done by (i)) and let ¢: a, — a, be a mapping of
A into B. Applying the above remark, we get a homomorphism x: Fx(a)/0 — B
with a’yx = a,. Thus, x4/: A’ — A is an onto homomorphism while it is trivial
by the construction of 8 that x,~!is a homomorphism of 9 onto %’. Thus, x is an
isomorphism and x¢ = ¢. This completes the proof.

We conclude this section with two corollaries:

CoroLLARY 1. If K is an equational class, then (i) is necessary and sufficient
for the existence of Fx(A).

COROLLARY 2. Let K = K (7). Then Fx(N) always exists and
T (A) = P@(7)/ba,

where A = {ay; v < a} and a = (o, ..., Qy, . . . )y<a COntains each element of
A exactly once.

The last corollary, the proof of which is obvious (Fxn(a) = B@(s) and
6 as constructed in Theorem 6 equals 6,), yields the desired representation of
Fxn (A) as the factor algebra P@ (7)/6b,.

Remark (added May 15, 1967). In a forthcoming paper, P. Burmeister and
J. Schmidt give a result related to Theorem 3 of the present paper. Namely,
they prove the existence of an algebra satisfying a set of axioms which can
be easily shown to be equivalent to the conditions of Theorem 3. It should be
pointed out, however, that the mere existence of an algebra answering the
description of Theorem 3 has already been proved; see for instance (2). The
purpose of this paper is the construction of the ‘‘kernel” 6,.

Also, it should be mentioned that whenever the free algebra generated by
a partial algebra exists, its existence can be proved using the adjoint functor

theorem.
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