
ON POLYNOMIAL ALGEBRAS AND FREE ALGEBRAS 
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1. I n t r o d u c t i o n . I t is well known t h a t given the polynomial algebra 
<5p(a)(r) (for definitions, see §2), an algebra §1 of type r, and a sequence a of 
elements of 31, one can define a congruence relation 6a of $ ( a ) (r) such t h a t the 
factor algebra ^(a)(r)/da is isomorphic to the subalgebra of 31 generated by a, 
and the isomorphism is given in a very simple way. 

I t will be shown in this note t h a t this result can be extended to the case 
when 31 is a part ial algebra. Theorem 1 gives the description of 6a. This is then 
used to describe the s t ructure of ^3(a)(r)/6a, which turns ou t to be the free alge­
bra over K(T) generated by 3Ï in the sense of §6. Some elementary observations 
are made concerning the existence of algebras freely generated by partial 
algebras in §6. 

I t should be emphasized t h a t the main results of the paper are the description 
of 6a and of 93 ( a )(r)/0a . T h e results in §6 are not applications b u t only 
il lustrations of these. 

2. P r e l i m i n a r i e s . A partial algebra 31 = (A ; F) is a non-empty set A and 
a set F of finitary partial operations on A. Well-ordering F = (/0, . . . , 
fyy • • • )T</3 a n d associating with it the sequence r = (n0, . . . , ny, . . . )y<p 
(where fy is an w7-ary partial operation) yields the type r of 31. /3 will be denoted 
by O(T). K(T) is the class of all algebras of type r. T h e set of a-ary polynomial 
symbols P ( a ) ( r ) is defined by the following rules: 

(i) X7 6 P ( a ) 0 ) for 7 < a; 
(ii) if po, . . . , pny-i are in P ( a ) ( r ) , then f7(p0 , . . . , p„7_i) is in P<«>(T) for 

7 < O(T); 

(iii) a-ary polynomial symbols are those and only those which can be 
obtained from (i) and (ii) in a finite number of steps. 

T h e algebra $(o:) (r) = (P ( a ) (r) ; F) is obtained in the na tura l manner , 
using (ii) to define the operations on P ( a ) ( r ) . In the case of a partial algebra 3Ï, 
an a-ary polynomial symbol is no t always associated with a mapping of Aa 

into A. Thus , we have to specify its interpretat ion: 
Le t 31 be a part ial algebra of type r, a0, . . . , a7, . . . Ç i , 7 < a , p G P ( a ) ( r ) . 

Then p(a0l . . . , ay, . . .) is defined and equals a 6 A if and only if i t follows 
from the following rules: 

Received August 15, 1966. Research supported by the National Science Foundation under 
grant number GP-4221. Theorem 1 was announced in Notices Amer. Math. Soc, 12 (1965), 336. 

575 

https://doi.org/10.4153/CJM-1968-057-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-057-1


576 GEORGE GRATZER 

(i) if p = x7, 7 < a, then p(aQ, . . . , a7, . . .) = ay. 
(ii) if piiao, . . . , ay, . . .) is denned and equals bt for 0 < i < nyj 

fy(boj . . . , &n7-i) is denned and equals b, 
p = fy(p0, . . . ,Pn7-i), 

then p(do, . . . , ayj . . .) is denned and equals b. 
We adopt the convention that an equation p(a0, . . . , ay, . . .) = 

q(a0, . . . , ayi . . . ) includes the assertion that the terms considered are defined. 

3. The congruence relation 0a. Let 31 be a partial algebra of type r, 
a 6 Aa, a = (a0, . . . , ay, . . .)7<a, and define a binary relation 6a on P ( a )(r) as 
follows: 

p = q(0a) if and only if there exist k > 1, r 6 P w 0 ) , and p*, q* G P ( a )(r) 
(0 < i < k) such that />*(a0, . . . , a7, . . .) and g*(a0, . . . , ay, . . .) exist, 
pt(a0, . . . , ay, . . .) = g<(a0, . . . , a7, . . .), and p = r(p0, . . . , p*-i), q = 
r(q0, . . . ,q*-i) . 

THEOREM 1. 0a w a congruence relation of ^a) (r). 

Remark. If 21 is an algebra, 0a is defined simply by the rule: p = q(0a) if 
and only if p(a0, . . . , ayj . . .) = q(a0, . . . , ay} . . .) . 

Proof, (i) 0a is obviously symmetric, and an easy computation shows that 
it is reflexive. 

(ii) To prove the substitution property, let p = f7(po, . . . ,pw<y_i), 
q = f7(q0, . . . , qW7-i), and p* = q<(0a), 0 < i < ny. Then 

Pi = ri(p0\ . . . , pni-i)9 Qt = ri(q0\ . . . , a»,--i), 

and £/(#o, . . . , a7, . . .) = g/(a0 , . . . , a7, . . .). 

If follows easily from the definition of a-ary polynomials that there are n-ary 
polynomial symbols r' t1 n = n0 + ni + . . . + wW(y_i, such that 

^i\boj . . . , bni-\) = r i(co, • • • , cw,0-i> cWo, . . . , cWo+...+wi_1_i, fro, • • • , 

for a l i i = 0, . . . , ny — 1, bj £ A, Cj £ A. Thus we have that 

P i = r'iipo0, . . . , pn0-i, • . • , i>o7~\ . • . , P^Ç-i-i) 

for all 0 < i < ny. Setting r = f7(rr
0, . . . , rVy-i), we get 

r(po , . . . , P°o-i' • • • » Po7_1, • • • , P^7_i-i) = i>, 

r(Qo , . . . , «„0-i, . . . , Qo7 , . . . , «nL-i-i) = ^. 
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Thus, p = q(0a), which was to be proved. In order to establish the transitivity 
of 0a we need a lemma. 

LEMMA 1.* p = /7(p0 , . . . , p„7_i) = /«(q0, . . . , q„8_i) = q(0a) holds if and 
only if (a) p(a) = g(a), or (b) p0 = qo(0a), . . . , p„7-i = qWr-i(0a) and y = Ô. 

Proof. The "if" part is obvious, so we prove the "only if" part: By the 
definition of 0a there is an r £ P{k) (r) such that 

p = r(p0f . . . , p*-i), q = r(q0, . . . , q*-i), and p*(ct) = q*(a), 

i = 0, . . . , ny — 1. 
A A 

Hence, either r = xt for some i, i.e., p = p*, q = q*, and p(a) = g(ct) (i.e. (a)) 
or r = /y(r0 , . . . , rWj,_i). In the latter case, 

A A A A 

P = A ( P 0 , • • , Pny-l) = A(^o(pO, • • • > P * - l ) , • • • , *n„-l(pO, • • • , P * - l ) ) 

and 

q = /*(qo, • • • , q^- i ) = fp(r0(q0, . . . , q*_i), . . . , rn,_i(q0> . . . , q*_i)) ; 

thus y = ô = v and p , = rt(p0, . . . , p*-i), q* = ^(q 0 , • • • , q*-i). Since 
p^ = q*(0„) and the substitution property has already been proved, we 
conclude that p* = q*(0a), 0 < i < ny. This completes the proof of the lemma. 

(iii) We prove the transitivity of 0a by induction on the maximum rank of 
the polynomial symbols involved (the rank of a polynomial symbol p, rk(p), 
is the number of symbols needed in building it up). Assume that q = p(0a) 
and p = r(0a) and max{rk(q), rk(p),rk(r)} = 2, i.e., all polynomial symbols 
are of the form xt. Then q = r(0a) is obvious. Assume that max{rk(q), 
rk(p), rk(r)} = n and that transitivity has been proved for k < n. I t follows 
from the definition of 0a that either all of p(a), q(a), r(a) exist or none. In the 
first case q = r(0a) is clear; in the second case Lemma 1 shows that 

P =Â(P0, • • • ,Prc7-l), 

q =A(qo, • . • , q ^ - i ) , 

r = A ( r 0 i • • • t r w 7 - l ) -

p = q(0a) and Lemma 1 imply that q^ = p*(0tt); P = r(0a) and Lemma 1 
imply that pt = r*(0a). Since max{rk(qi), rk(p*), rk(r*)} < n, we conclude 
that q* = Ti(da)j i = 0, . . . , ny — 1, and hence, by the substitution property, 
that q = r(0Q). This settles the transitivity. Thus, 0a has been shown to be a 
congruence relation of ty^ir), concluding the proof of Theorem 1. 

4. An embedding theorem for partial algebras. Let 21 be a partial 
algebra of type r, a = (a0, . . . , ay, . . .)7<«, and assume that each element of A 

*This lemma and the resulting proof of the transitivity of 0a are due to G. H. Wenzel. 
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occurs once and only once in this sequence. Then the following embedding 
theorem shows that 2t can be considered to be a relative subalgebra of 

THEOREM 2. Let A* denote the set of elements of the form [x7]0a, i.e., the set of 

congruence classes of the x7 in ^(a) (r)/0a. Then 

4>: a7 —> [Xy]da 

is an isomorphism between 21 and 21* = (^4*; F). 

Proof. [Xy]da = [xs]0a can hold only if y = <5, since neither x7 nor x§ have 
non-trivial representations x7 = r (p0, . . . , p*-i) or x8 = r(q0, . . . , q^-i). 
Thus, $ is 1-1. Since <f> is obviously onto, we just have to verify that 
fy(a8oy . . . , <35nr-i) = a8 holds if and only if 

jf7([xao]0a, • • • , [xsnr-M = [x«K. 

Clearly,/7(a5o, . . . , &5n7-i) = a8 implies that 

fy([Xs0]Oa, . . . , [X5„7-i]0a) = [Xs]da. 

Observing that xs admits only trivial representations (an argument which we 
used once already), we conclude the converse statement. This completes the 
proof of the theorem. 

Theorem 2 yields the "least economical" embedding of the partial algebra 21 
into an algebra. More precisely, $ (a )(r)/0 t t is the largest algebra into which 21 
can be embedded such that the image of 21 is a generating system. (This was 
anticipated in (2).) The next section is devoted to a description of the structure 
of the algebra ^(a)(r)/6a as defined above. 

5. The structure of ^a)(T)/da. Let 2Ï be a partial algebra of type r,ct G Aa, 
and assume that each element of A occurs once and only once in a. We define 
certain subsets A{niy) and A\nt7) (0 < w < co, 0 < 7 < O(T)) of P ( a )(r) as 
follows: 

i4'(0.0) = -4* , 

where A* was defined in Theorem 2. Defining (m, y) < (n, 8) by (i) m = n 
and 7 < 8 or (ii) m < n (lexicographic ordering), we define recursively 

V (A (m,y)\ (w, 7) < (n, 8)) ((n,8) 7e- (0,0)) 
and 

^4(rc,Ô) = A\nt8) V {fô(bo, . . . , ^ 5 - l ) J &0, • • • , K&-1 £ ^\n,b)}. 

LEMMA 2. 77£e following equality holds: 

P(a)(r)/0a = V (A(n,8);0 < n < co, 0 < 8 < O(T)). 

Proof. The inclusions 

(i) A if y < S, 
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(ii) A{n,y) Ç A'(m,8) Ç A{m,8) if n < m, 
follow immediately from the definitions. Take p Ç P ( a )(r) . We shall prove by 
induction on the rank of p that [p]0a £ 4̂(̂ ,5) for some n < co, 8 < o{r). 
If p = Xy, then [p]0a 6 A(0,o) by definition. Let p = fT(p0, . . . , Pn7-i) and 
assume that [p*]0a € A(nitSi), 0 < i < ny. Setting n = maxjw0, . . . , ^ 7 - i } , 
Ô = max{50, . . . , ôny-i}, we get A(nii8i) Ç ^4(w>5) Ç A(n+1,0) from (i) and (ii). 
Thus, [p]0a = f7([^o]0a, . • • , [pny-i]0a) G ^4(W+i,o), which was to be proved. 
One more definition is needed to describe the detailed structure of $(aO(r)/0a. 

Let 93 be a partial algebra, X ÇZ B and F = X V {/7(x0, . . . , xn7-i); 
x, 6 X) for some/ , G i7. We shall write F = X[fy] if 

(i) /y(x0, . . . , xn#y_i) = jfsOV • • > ff'na-i) £ X implies that y = ô, xt = %'u 

0 < i < ny; 
(ii) x0, . . . , xn5_i Ç F and xt Q X for some 0 < i < n8 implies that 

f8(x0, . . . , xn8-i) does not exist in 33 or is not in F, for any ô < O(T). 
Using this terminology we get the following result concerning the structure 

of$<«>(r)/0«. 

THEOREM 3. 93(a)(r)/0a contains an isomorphic copy 21* of the partial algebra 
21. If we start with A* and we perform two kinds of constructions, 

(i) taking the set union of previously constructed sets, 
(ii) constructing X[fy] from X, 

then we get an increasing transfinite sequence of subsets of P ( a )(r)/0a such that 
the union of all these subsets is the whole set. 

In the light of Lemma 2 and the preceding definitions, it suffices to prove 
the following lemma. 

LEMMA 3. A(n,y) = A\n,y)[fy]. 

Proof. Lemma 1 immediately yields part (i) in the definition of A\n>y)\fy]. 
Moreover, the same lemma yields that a0, . . . , an5_i Ç A(n>y) and, say, 
a{ £ A\nf7), and f8(a0, . . . , an5_i) Ç A(n,y) — A\n>y) is impossible. Thus, we 
assume that aQ, . . . , awg_i G Ain,y), aû g A\n,y) and f8(a0, . . . , aW5_i) £ A\n,y). 
Setting at = \pi]da,fi(a0, . . . , a^-i) = [p]0a, we get/a(p0, . . . , p„a-i) = p(0tt) 
and hence, by Lemma 1, p = /«(p'o, • • . , p'wj-i) and 

Vi =pfi(Ba),0 <i <n8 - 1. 

Since [p]0a G <4'(»,7)t there is a smallest (w, X) < (n, 7) such that [p]0a Ç 
-4(OTix). Since [p]0a g -4'«>fo) by Theorem 2, [p]0a Ç ̂ 4(m,x) — -4'(OTlx) and so there­
fore p = /x(qo, • • • , q^x-i) (ft»), for some [Qi]0a 6 A\m,\). Lemma 1 shows that 
X = ô and [qj0a = \pt]0a. Hence, aj = \pj]Oa G -4'<m,«) £ ^'(n,7), a contradic­
tion. This completes the proof of Lemma 3 and also of Theorem 3. 

6. Free algebras generated by par t ia l algebras. The congruence relation 
0a for algebras is used, among other things, to describe the free algebra over 
a class of algebras K Ç K(T). In this section we shall show that ^a)(r)/6a can 
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be given a similar interpretation if we find a suitable generalization of the 
concept of free algebras. 

Let $ be a class of algebras of type r and let 2Ï = (A ; F) be a partial algebra 
of type r. The algebra $x(3I) is called the algebra freely generated by the partial 
algebra 2t if the following conditions are satisfied: 

(i) ffe(3t) eK. 
((i) $K(!&) is generated by A' and x- -4' -* A is an isomorphism between 

31 = (A; F) and W = (Af; F) which is a relative subalgebra of $*(«) . 
(iii) If 0 is a homomorphism of 21 into 6 £ K, then there exists a homo-

morphism \p of gK (21) into S such that \j/ is an extension of <t>. 
Using this definition, the following theorem is clear. 

THEOREM 4. (i) If 21 « an algebra in K, then g^(2l) = 21. 
(ii) 3^(21) is unique up to isomorphism. 

(iii) If the domain of each fy Ç F is empty, then %K{^i) = Sx(nt) if 8^(îtt) w 
the free algebra on m generators and m = \A\. 

We shall conclude this paper by giving sufficient conditions on a class K for 
the existence of 3^(2Q« Theorem 5 is based on an idea of G. Birkhoff (1). 

THEOREM 5. Let K be a class of algebras and let 2Ï be a partial algebra. Assume 
that the following conditions hold: 

(i) 21 is isomorphic to a weak subalgebra of an algebra in K. 
(ii) K is closed under the formation of subalgebras and direct products. 

Then 3^(21) exists. 

Proof. By obvious changes in a proof of (1 ). 
Theorem 6 constructs 3^(21) from $K(m)-

THEOREM 6. Let K be a class of algebras and let tytbe a partial algebra. 3^(31) 
exists if the following conditions are satisfied: 

(i) 21 is isomorphic to a relative subalgebra of an algebra in K. 
(ii) %K(w) exists for some m > \A\. 

(iii) K is closed under the formation of homomorphic images. 

Remark. This is analogous to a result of Sikorski (3) on free products of 
algebras. 

Proof, (ii) and (iii) imply that 3^(m) exists for m = \A\. Let a be an ordinal 
with a = m and let A = {a7; y <a}. We define a subset T of (FK(a))2 = (FK(m))2 

as follows: 

(x, y) e Til and only if x = p(xi0, . . . , j f , ^ ) , y = q(xj01 . . . , xjn^x) 

and p(ai0, . . . , at^x) = q(aj0, . . . , ainb-x). We set 6 = [j (fixy; (x, y) 6 T) 
which, by definition, is the smallest congruence relation under which 
(Xj y) G T implies that x = y (6). (ii) and (iii) imply that $KM/0 G i£, and 
we claim that %K{a)/B ^ g*(3t). Let a'7 = [xy]6 and 4 ' = {a'T; y < a}. 
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Take any homomorphism <j> of SI into S3 G K with a7<£ = cy, y < a, and define 
T' in terms of the cy as J" was defined in terms of the a,j. If $ is the corresponding 
congruence relation of ^KM, then 6 < $ since 0 is a homomorphism. Thus, by 
the second isomorphism theorem, \j/: [xy]0 —> cy induces a homomorphism \(/ of 
ISKM/O into (S with a'7^ = cy since ^(aO/fl = (£. Now we embed 2Ï into the 
algebra S3 G K (which can be done by (i)) and let i: ay —> ay be a mapping of 
SI into S3. Applying the above remark, we get a homomorphism x: ^ ( P O / ^ "^ S3 
with a'7x = ay Thus, XA'- 31' —> 21 is an onto homomorphism while it is trivial 
by the construction of 6 that XA~1 is a homomorphism of 21 onto W. Thus, x is an 
isomorphism and x^ = 0- This completes the proof. 

We conclude this section with two corollaries: 

COROLLARY 1. If K is an equational class, then (i) is necessary and sufficient 
for the existence of 3^(21). 

COROLLARY 2. Let K = K(T). Then 3^(81) always exists and 

where A = {ay\ y < a} and a = (a0, . . . , ay, . . .)7<« contains each element of 
A exactly once. 

The last corollary, the proof of which is obvious (%K(T)M = ^3(a)(V) and 
6 as constructed in Theorem 6 equals 0a), yields the desired representation of 
&V(r)(2l) as the factor algebra ^a)(r)/da. 

Remark (added May 15, 1967). In a forthcoming paper, P. Burmeister and 
J. Schmidt give a result related to Theorem 3 of the present paper. Namely, 
they prove the existence of an algebra satisfying a set of axioms which can 
be easily shown to be equivalent to the conditions of Theorem 3. I t should be 
pointed out, however, that the mere existence of an algebra answering the 
description of Theorem 3 has already been proved; see for instance (2). The 
purpose of this paper is the construction of the "kernel" 6a. 

Also, it should be mentioned that whenever the free algebra generated by 
a partial algebra exists, its existence can be proved using the adjoint functor 
theorem. 
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