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Abstract. By replacing the use of arbitrary bijections in the definition of

“cardinal number” with that of suitably computable re-orderings, one arrives
at the notion of an “effective cardinal.” We use this notion to give a charac-

terization of Σ0
4-determinacy in the spirit of Reverse Mathematics.

1. Introduction

Assuming the Axiom of Choice, the infinite cardinal numbers can be constructed
inductively in many ways, one of which is the following:

ℵ0 = N
ℵα+1 = sup{γ : there is a wellordering of (a subset of) ℵα of length γ}

ℵλ = sup{ℵα : α < λ}, at limit stages.

An interesting concept is what results of this definition when one replaces the
use of arbitrary wellorderings at each stage by only those which are appropriately
computable. Let us be more precise. Recall Gödel’s constructible hierarchy given
by L0 = ∅, Lα+1 = all sets definable over Lα from finitely many elements of
Lα, and Lλ =

⋃
α<λ Lα at limit stages. A subset of an ordinal α is α-recursively

enumerable (α-r.e.) if it is Σ1-definable over Lα with parameters. Note that this
definition makes sense for arbitrary α.

Definition 1. The effective cardinal numbers are defined inductively as follows:

η0 = N
ηα+1 = sup{γ : there is an ηα-r.e. wellordering of a subset of ηα of length γ}

ηλ = sup{ηα : α < λ}, at limit stages.

We have chosen to define effective cardinals in terms of recursive enumerability
and not plain recursiveness (where a set is recursive if it is both r.e. and co-r.e.); the
two notions will coincide in all cases of interest, but the computations involved will
be simpler this way. Recall that an ordinal α is said to be admissible if Lα is a model
of Kripke-Platek set theory, the result of removing from Zermelo-Fraenkel set theory
the axioms of Powerset and Replacement and adding the axioms of Separation and
Collection, both restricted to formulae in which only bounded quantifiers appear.
For simplicity, we will assume that KP includes the schema of foundation for all
formulae. For an ordinal α, we denote by α+ the smallest admissible ordinal greater
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than α. According to our definition, all admissible ordinals are effective cardinals,
though the converse is not true.

Definition 2. Let α, β be ordinals. ηα is said to be β-Gandy if α+ ≤ ηα+β .

Our definition is a generalization of that of a Gandy ordinal (which coincides
with that of a 1-Gandy ordinal). These ordinals were first studied by H. Friedman
(unpublished) and Gostanian [9] (and indirectly by Solovay [22]) and named by
Abramson and Sacks [1].

A question of interest is that of the admissibility of ηα; another one is the related
question of whether ηα is β-Gandy, for a given β. In this article, we shall present
the main properties of effective cardinals and present an application to the reverse
mathematics of determinacy. For context, we mention the following result, which
is commonly known:

Theorem 3 (Aczel, Richter; Gostanian; Grilliot; Solovay). The following are equiv-
alent over KPl:

(1) There is an ordinal which is not 1-Gandy.
(2) Σ0

2-determinacy.

Proof Sketch. Theorem 3 is obtained by combining several well-known results: first,
by KPl, we have access to Shoenfield’s absoluteness, so we may assume V = L in
both directions. By work of Gostanian [9], the existence of an ordinal which is
not 1-Gandy is equivalent to the existence of an ordinal which is Π+

1 -reflecting (in
the terminology of [3]). This is equivalent to Σ1

1-reflection by Aczel-Richter [2].
By Aczel-Richter [2], this ordinal, if it exists, is equal to the closure ordinal of
Σ1

1-inductive definitions. By a theorem of Grilliot (unpublished, but see [4] for a
proof), this ordinal, if it exists, is also the closure ordinal of monotone Σ1

1-inductive
definitions. A theorem of Solovay (unpublished, but see Kechris [12] or Moschovakis
[17]) asserts that if this ordinal σ1

1 exists, then all Σ0
2 games won by Player I have

a winning strategy in Lσ1
1
. As noted by Welch [24], the argument also shows that

all other games are won by Player II, as witnessed by a strategy in any admissible
set containing Lσ1

1
. (In fact, they appear in a strict initial segment of such an

admissible set; see [6]). For the converse, if Σ0
2-determinacy holds, then a theorem

of Tanaka [23] asserts that all monotone Σ1
1 inductive definitions reach a fixpoint.

By Grilliot’s theorem, all non-monotone Σ1
1 inductive definitions have a fixpoint, so

that there is a Σ1
1-reflecting ordinal, by Aczel-Richter [2] and thus an ordinal which

is not 1-Gandy, by Gostanian [9]. □

The ordinal of Theorem 3 has many equivalent characterizations, some of which
we have mentioned; we refer the reader to [5] for a compilation of some others.

We shall prove the following analogue of Theorem 3:

Theorem 4. The following are equivalent over KPl:

(1) There is an ordinal which is not ω-Gandy.
(2) Σ0

4-determinacy.

As an immediate consequence, we obtain the following boldface result in terms of
a relativized form of Gandiness. Below, the notion of an ordinal ξ being α-Gandy
relative to x ∈ R is defined just like before, except that Definitions 1 and 2 are
modified to speak of the L[x]-hierarchy instead of the L-hierarchy.
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Corollary 5. The following are equivalent over KPl:

(1) For each x ∈ R, there is an ordinal which is not ω-Gandy relative to x.
(2) Σ0

4-determinacy.

We do not know if there is any kind of analogue of Theorem 3 and Theorem 4
for Σ0

3 sets, though the existence of an ordinal which is not 2-Gandy implies the
consistency of Σ0

3-determinacy and indeed of Z2. Let us finish this introduction by
briefly recalling the history of Σ0

4-determinacy.
The first proof of Σ0

4-determinacy was obtained as a consequence of Martin’s [14]
proof of Σ1

1-determinacy, which assumed the existence of a measurable cardinal.
The first proof that did not require assumptions beyond ZFC was that of Paris
[18]. Martin’s [15] proof of Borel Determinacy showed that Σ0

4-determinacy is
indeed provable in Z3 and further work of his (see [13]) showed this cannot be
improved to Z2. Martin’s unprovability result built on work of Friedman [8] whereby
Σ0

5-determinacy is not provable in Z2. A strengthening of Martin’s unprovability
result due to Montalbán and Shore [16] showed that Z2 cannot even prove that all
Boolean combinations of Σ0

3 games are determined. However, Martin has shown
(see [13]) that all wellfounded models of Z2 satisfy ∆0

4-determinacy. A previous
characterization of Σ0

4-determinacy in the spirit of Reverse Mathematics was carried
out by Hachtman [10]; the proof of ours will rely on Hachtman’s result.

2. Basic properties

We shall use basic properties of the constructible universe L without much de-
tail. We refer the reader to Barwise [7], Jech [11], Simpson [21], or Sacks [20] for
background. In talking about formulae which define sets over structures of the form
Lα, it will be convenient to recall the existence of Gödel’s pairing function, which
allows multiple elements of Lα to be coded by tuples ⟨x, y, z⟩. Lα is closed under
Gödel’s pairing function whenever α is a multiplicatively indecomposable ordinal.

We have mentioned this before, but let us state it explicitly.

Lemma 6. Suppose α is admissible. Then, α is an effective cardinal.

Proof. This is simply because if ≺ is a wellorder (in the real world) which belongs
to Lα, then Lα can recursively construct an isomorphism from ≺ to an ordinal, so
if ηβ < α, then ηβ+1 ≤ α. □

Lemma 7. Let α be a recursively inaccessible ordinal. Then α = ηα.

Proof. This is immediate from the previous lemma. □

Below, we say that an ordinal γ is β-r.e. if there is a β-r.e. wellordering of β of
length γ.

Lemma 8. Let α, β, and γ be ordinals. Suppose that β < ηα and γ is β-r.e. Then,
γ < ηα+1.

Proof. Let ϕ be the Σ1 formula which defines over Lβ a wellordering of length γ.
Then, the formula

ϕ∗(x, y, β) ↔ Lβ |= ϕ(x, y)

is Σ0 (thus Σ1) over Lηα
with parameters in Lηα

. □

Lemma 9. Let α be an ordinal. Then, ηα is a limit ordinal and is closed under
addition, multiplication, exponentiation with base ω, the Veblen functions, etc.
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Proof. This is proved by induction. The limit stages are immediate. Supposing ηα
satisfies those closure properties and β, γ are ηα-r.e., we can use the fact that ηα
is multiplicatively indecomposable (thus closed under coding of tuples) to combine
the definitions of β, γ into ηα-r.e. wellorderings of length β + γ and β · γ. Closure
under the Veblen functions is a bit tricker and will not be used below, but it can
be done by lifting the proof that ωck

1 is closed under the Veblen functions (see e.g.,
Rathjen-Weiermann [19]). □

Lemma 9 will be very useful and used without explicit mention in the future. Its
main consequence is that Lηα

is closed under the Cantor pairing function. Thus, we
can replace mention of finite sequences of parameters in Lηα

by single parameters
which can additionally be assumed to be ordinals. Many consequences of admissi-
bility will hold in Lηα , except possibly those that crucially depend on Σ0-collection.

Lemma 10. Let α be an ordinal. Then, every illfounded ηα-r.e. linear order has
an infinite descending chain which is Π2-definable over Lηα+1

.

Proof. Let ≺ be such a linear order. Using the closure properties provided by
Lemma 9, we may construct inside of Lηα+1

an isomorphism

ix :≺↾ x → βx

for some βx, for each x in the wellfounded part of ≺. The construction of ix is by
transfinite recursion on ≺↾ x and requires βx stages, so it belongs to Lηα+βx . Since
Lηα+1 is additively indecomposable, ix ∈ Lηα+1 . The function f given by f(x) = βx

is partial ∆1 over Lηα+1, with domain a subset of Lηα
which need not be ∆1 over

Lηα+1. Consider the set

A = {x < ηα : x ∈ dom(f)}.

Thus, A is Σ1-definable over Lηα+1. A is precisely the wellfounded part of ≺, for if
x ∈ wfp(≺) \ A, then ≺↾ x cannot be isomorphic to an ordinal smaller than ηα+1

(otherwise f(x) would be defined), so ≺↾ x is an ηα-r.e. wellorder of length at
least ηα+1, which contradicts the definition. Using A we can replicate the proof of
König’s lemma: by induction on i ∈ N, define xi+1 to be the <L-least x ̸∈ A such
that x ≺ xi. This defines an infinite descending chain through ≺.

As for the complexity of this sequence s, we have xi < ηα for each i, and the
restriction of <L to Lηα is Σ1 over Lηα and hence an element of Lηα+1. Therefore,
s is the unique ω-sequence all of whose elements xi have the following properties:

(1) xi ̸∈ A;
(2) xi+1 ≺ xi;
(3) for all y ∈ ηα, if y ≺ xi and y ̸∈ A then xi+1 <L y.

The first condition is Π1 over Lηα+1 ; the second is ∆0; and the third is Π2, since
xi+1 <L y is equivalent to Lηα

|= xi+1 <L y (we cannot conclude that the third
condition is Σ1, because ηα+1 may not be admissible). □

We remark the following consequence of the proof of the previous lemma:

Lemma 11. Let α be an ordinal and let ≺ be an illfounded ηα-r.e. linear order.
Then, either ≺ has an infinite descending sequence in Lηα+1, or the wellfounded
part of ≺ is isomorphic to ηα+1.
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Proof. This follows from the preceding argument, using the observation that if the
range of f is bounded below ηα+1, say f [ηα] ⊂ β < ηα+1. Then, A is Σ1-definable
over Lβ . □

Below, an ordinal α is locally countable if every infinite β < α has a bijection
with ω in Lα.

Lemma 12. Let α be an ordinal. Suppose ηα is inadmissible. If ηα is locally
countable, then ηα+1 is admissible.

Proof. Suppose first that ηα is a successor effective cardinal and let β be its prede-
cessor. Since ηα is locally countable, there is a real x ∈ Lηα coding a wellordering
of N of length β. Let γ be least such that x ∈ Lγ+1. Then, for each ξ,

Lξ ⊂ Lξ[x] ⊂ Lγ+1+ξ.

Since ηα is additively indecomposable, we have

Lηα
= Lηα

[x].

The proof that ωck
1 is the least admissible ordinal (see Barwise [7]) relativizes and

shows that ωx
1 , the supremum of x-recursive ordinals, is least such that Lωx

1
[x] is

admissible. Thus,

Lη+
α
= Lωx

1
= Lωx

1
[x].

Therefore, there are ηα-r.e. wellorderings of lengths cofinal below η+α and the result
follows.

The previous argument applies also to the case that ηα is a limit effective cardinal
but there is a largest admissible smaller than ηα; the remaining case is that ηα is
an inadmissible limit of admissibles. This case will not be necessary below, but
it is good to note. To obtain it, follow the argument of Gostanian [9, Theorem
2.1] replacing KP by KPl throughout. This shows that if α is a locally countable
limit of admissibles, then the α-recursive wellorders are cofinal below α+ unless α
is Σ1

1-reflecting. This is enough to yield the result, since Σ1
1-reflecting ordinals are

all admissible. □

3. Σ0
4-determinacy

In this section we prove the main theorem.

Theorem 13. The following are equivalent over KP.

(1) Σ0
4-determinacy;

(2) there is an ordinal which is not ω-Gandy.

To prove the corresponding result for Σ0
2-determinacy (Theorem 3), one first uses

Solovay’s theorem on the complexity of winning strategies for Σ0
2 games and positive

Σ1
1 induction, and then uses the results of Aczel-Richter, Gostanian, and Grilliot to

relate this to 1-Gandy ordinals. The proof of Theorem 13 follows a similar outline:
first we appeal to a theorem on the complexity of winning strategies for Σ0

4 games,
and then we relate that to ω-Gandy ordinals. The result we will require is due to
Hachtman and we state it now. Here, recall that the rank of a wellfounded relation
B is defined inductively as the strict supremum of the ranks ρ(a) of its elements,
where ρ(a) = sup{ρ(b) + 1 : bBa}.
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Theorem 14 (Hachtman [10]). The least ordinal θ such that every Σ0
4 game has

a winning strategy definable over Lθ is the least ordinal such that Lθ satisfies “R
exists and every wellfounded tree has a rank.”

Recall that by Gödel’s condensation lemma, a structure of the form Lθ satisfies
“R exists” if and only if it is not locally countable. Thus, we need to prove:

Theorem 15. Assume KP. Then, the existence of an ordinal ζ which is not ω-
Gandy is equivalent to the existence of an ordinal θ such that θ is not locally count-
able and Lθ |= “every wellfounded tree has a rank.” Moreover, letting ζ and θ be
the least such ordinals, then ζ = ηζ and θ = ηζ+ω.

We prove this theorem in the remainder of the section. We would like to thank
R. Lubarsky for bringing the following fact to our attention at some point in the
past.

Lemma 16. Let α be a multiplicatively indecomposable ordinal and let ρα be the
supremum of ranks of wellfounded α-r.e. trees. Then ρα is the supremum of lengths
of α-r.e. wellorderings of α.

Proof. If T is a wellfounded α-r.e. tree, then its Kleene-Brouwer linearization ≺T is
an α-r.e. wellorder. A simple induction shows that the length of ≺T is at least the
rank of T . Conversely, suppose ≺ is an α-r.e. wellorder and let T≺ be the tree of all
descending chains through ≺ ordered by end-extension. Then this is a wellfounded
α-r.e. tree and – as before – a simple induction shows that its rank is at least the
length of ≺. □

We will use the preceding lemma without mention, alternating between talking
about trees and linear orders as we deem convenient. Lemma 17 below is already
half of the proof of the theorem.

Lemma 17. Suppose ηξ is not ω-Gandy. Then, letting γ = ηξ+ω < ξ+, γ is not
locally countable and

Lγ |= “every wellfounded tree has a rank.”

Proof. It follows from Lemma 12 that for all i ∈ N with i ̸= 0, Lηξ+i
is not locally

countable. This implies in particular that for each i,

P(N) ∩ Lγ = P(N) ∩ Lηξ+i
= P(N) ∩ Lηξ

,

so Lγ is also not locally countable. It remains to show that:

Lγ |= “every wellfounded tree has a rank.”

If ≺ is a linear ordering in Lγ , then ≺ is ηξ+i-r.e. for some i, by Lemma 8.
Thus, there are two possibilities: either ≺ is wellfounded (in the real world) and
thus isomorphic to some ordinal <ηξ+i+1. If so, then such an isomorphism can be
constructed within Lηξ+i+1

and belongs to Lγ . Otherwise, ≺ is illfounded (in the
real world) and thus has an infinite descending chain in Lηξ+i+1 (by Lemma 10)
and thus in Lγ . □

For the rest of this section, we will denote by θ the least ordinal such that Lθ

satisfies “R exists and every wellfounded tree has a rank,” and we write

ζ = ωLθ
1 .

Observe that ζ = ηζ .
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Lemma 18. θ = ηζ+ω. Moreover, ηζ+i is inadmissible for all i ∈ N.

Proof. Clearly ηζ+ω is inadmissible. We prove that for each i, ηζ+i < θ and ηζ+i

is inadmissible. This implies that ηζ is not ω-Gandy and that ηζ+ω ≤ θ, so that
ηζ+ω = θ by Lemma 17 and the minimality of θ.

Inductively, suppose that ηζ+i < θ and that either i = 0 or ηζ+i is inadmissible.

Claim 19. Let ≺ be an illfounded ηζ+i-r.e. linear order. Then, there is an infinite
descending chain through ≺ definable over Lηζ+i

.

Proof. Suppose otherwise and let β ̸= ηζ+i be least such that there is an infinite
descending chain through ≺ in Lβ+1 and let d be such a chain. By the definition
of θ, β < θ. We have

ζ = ωLθ
1 = |ηζ+i|Lθ ,

as witnessed by a bijection f : ηζ+i → ζ. Using the hypothesis that each ηζ+j is
inadmissible for 0 < j ≤ i, we see that there is no admissible ordinal between ζ and
ηζ+i, and thus such a bijection is definable over Lηζ+i

. Then, f [d] is an ω-sequence
of ordinals countable in Lθ which belongs to Lβ+1 and not to Lηζ+i+1. By Gödel’s
condensation lemma, ζ is no longer a cardinal in Lβ+1, which is a contradiction. □

Claim 20. ηζ+i+1 is inadmissible.

Proof. This follows from the previous claim, since every ηζ+i-r.e. linear order can

be mapped in a ∆
Lηζ+i+1

1 way to an infinite descending chain or to its order-type,
and these order-types are cofinal in ηζ+i+1. □

It follows from the first claim that the set of indices of ηζ+i-r.e. wellorders
is definable over Lηζ+i+1. Thus, there is a linear order in Lηζ+i+2 (and thus in
Lθ) which is longer than all ηζ+i-r.e. wellorders (namely, the sum of all ηζ+i-r.e.
wellorders) and thus has length at least ηζ+i+1. Therefore, ηζ+i+1 < θ. □

We have seen that θ = ηζ+ω is a supremum of inadmissible effective cardinals.
Thus, ζ is not ω-Gandy. This completes the proof of the theorem.

4. Closing Remarks

We have exhibited a characterization of Σ0
4-determinacy in the spirit of Reverse

Mathematics which is analogous to the Aczel-Richter-Gostanian-Grilliot-Solovay-
Tanaka characterization of Σ0

2-determinacy. Some questions are left open by this,
however. Tanaka [23] characterized Σ0

2-determinacy in terms of a theory of mono-
tone inductions. Is there an interesting characterization for Σ0

4-determinacy in
terms of inductive definability? Is there a characterization for Σ0

3-determinacy or
Σ0

5-determinacy in terms of Gandy ordinals?
We believe that the notion of an effective cardinal is a natural one and

foreshadow that there is more to be said about them.
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definability and recursion theory, The Cabal Seminar, Volume III. Cambridge University

Press, 2016.

[13] D. A. Martin. Untitled Book on Determinacy. Unpublished.
[14] D. A. Martin. Measurable cardinals and analytic games. Fundamenta Mathematicae, 66:287–

291, 1970.
[15] D. A. Martin. Borel Determinacy. Ann. Math., 102(2):363–371, 1975.

[16] A. Montalbán and R. A. Shore. The Limits of Determinacy in Second-Order Arithmetic.

Proc. London Math. Soc., 104:223–252, 2011.
[17] Y. N. Moschovakis. Descriptive set theory, second edition, volume 155 of Mathematical Sur-

veys and Monographs. AMS, 2009.

[18] J. Paris. ZF ⊢ Σ0
4 determinateness. J. Symbolic Logic, 37(4):661–667, 1972.

[19] M. Rathjen and A. Weiermann. Reverse Mathematics and Well-Ordering Principles. In

S. Cooper and A. Sorbi, editors, Computability in Context: Computation and Logic in the

Real World. 2011.
[20] G. E. Sacks. Higher Recursion Theory. Lecture Notes in Logic. Springer-Verlag, Berlin, New

York, 1990.

[21] S. Simpson. Subsystems of Second-Order Arithmetic. 1999.
[22] R. M. Solovay. Hyperarithmetically Encodable Sets. Trans. Amer. Math. Soc., 239, 1978.

[23] K. Tanaka. Weak Axioms of Determinacy and Subsystems of Analysis, II: Σ0
2 Games. Ann.

Pure Appl. Logic, 52:181–193, 1991.
[24] P. D. Welch. Weak Systems of Determinacy and Arithmetical Quasi-Inductive Definitions. J.

Symbolic Logic, 76:418–436, 2011.

Department of Mathematics, Ghent University, Krijgslaan 281-S8, B9000 Ghent, Bel-
gium

Institute of Discrete Mathematics and Geometry, Vienna University of Technology,
Wiedner Hauptstraße 8–10, 1040 Vienna, Austria.

Email address: aguilera@logic.at

https://doi.org/10.1017/jsl.2023.90 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.90

	1. Introduction
	2. Basic properties
	3. 04-determinacy
	4. Closing Remarks
	References

