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Computations with classical and p-adic modular forms
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Abstract

We present p-adic algorithms for computing Hecke polynomials and Hecke eigenforms associated
to spaces of classical modular forms, using the theory of overconvergent modular forms. The
algorithms have a running time which grows linearly with the logarithm of the weight and are
well suited to investigating the dimension variation of certain p-adically defined spaces of classical
modular forms.

1. Introduction

In this article we present some simple p-adic algorithms for computing with modular forms
based upon the work of Katz, Coleman and Wan. The algorithms have the unusual property
that their running time is polynomial in the p-adic precision and also grows linearly with the
logarithm of the weight. Our methods rely upon the theory of overconvergent modular forms,
but let us turn first to applications of these methods to classical modular forms.

1.1. Classical modular forms

Let p be a prime number and N be a positive integer coprime to p. Denote by Pk(t) ∈ Z[t] the
reverse characteristic polynomial of the Atkin operator Up acting upon the space Mk(Np, C)
of classical modular forms of level Γ1(N) ∩ Γ0(p) and weight k. We show the following (see also
Note 1.5).

Theorem 1.1. There exists an explicit algorithm which takes as input positive integers
N, k and m and a prime number p> 5 not dividing N and gives as output the integer
polynomial Pk(t) with coefficients modulo pm and runs in time polynomial in N, p and m
and in time linear in log(k).

For non-negative α ∈Q write d(k, α) for the number of reciprocal roots of Pk(t) of p-adic
valuation α. (This is the dimension of a certain ‘slope α’ subspace of the space of classical
modular forms over the field of p-adic numbers [21, p. 450].) From Theorem 1.1 and a result
of Wan [21, Lemma 3.1] one deduces the next result.

Theorem 1.2. There exists an explicit algorithm which takes, as input, positive integers
N, k and β and a prime number p> 5 not dividing N and gives, as output, d(k, α) for all
α6 β, and runs in time polynomial in N, p and β and in time linear in log(k).

The linear dependence on log(k) makes the algorithm well suited to studying experimentally
the following conjecture of Gouvêa and Mazur on the variation of d(k, α) as k moves p-adically
in a fixed residue class modulo (p− 1).
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Conjecture 1.3 (Gouvêa–Mazur). If k0, k1 ∈ Z with k0, k1 > 2α+ 2 for some rational
number α and k0 ≡ k1 mod pn(p− 1) for some integer n> α then d(k0, α) = d(k1, α).

The above conjecture is difficult to investigate with classical algorithms since their time
requirement grows as a polynomial function of the weight k.

To each eigenvalue λ of Up on Mk(Np, C) one may associate a (generalised) eigenspace; that
is, the union over positive integers j of the kernel of (Up − λ)j . The elements in this space are
called (generalised) eigenforms. An adaptation of the algorithm underlying Theorem 1.1 yields
the following. (In this theorem we assume that the matrix Au,vi,s (j) for the Up operator in § 2.3
is p-adically integral.)

Theorem 1.4. There exists an explicit algorithm with the following input, output and
complexity. The input comprises positive integers N, k and a prime p> 5 not dividing N , and,
in addition, positive integers m and ν. The output is the image in Z[[q]]/(pm, qν) of a basis
of (normalised) eigenforms for the Up operator acting upon Mk(Np, C) for all eigenvalues
of valuation zero which have multiplicity one as a reciprocal root of Pk(t) modulo p. The
algorithm runs in time polynomial in N, p, m and ν and in time linear in log(k).

The integrality assumption underlying this theorem implies that our main algorithms
(Algorithms 1 and 2) compute an integral matrix A for the Up operator (step (6)). Given
that the latter is true (which the author has found in practice, cf. Note 3.1), and provided one
is restricted to eigenvalues of slope zero which can be approximated by Newton lifting, various
complications disappear. More generally, we sketch (without rigorous proofs) an algorithm
which computes the image in Z[[q]]/(pm, qν) of a basis of eigenforms for any eigenvalue λ ∈ Zp
which can be approximated by Newton lifting and runs in time polynomial in N, p, ordp(λ), m
and ν and in time linear in log(k) (§ 3.4.2). The output of this latter algorithm is provably
correct (we just do not prove that it always works).

The explicit relationship between the Atkin Up operator acting upon classical forms of weight
k and level Γ1(N) ∩ Γ0(p) and the Hecke Tp operator acting upon classical forms of weight k
and level Γ1(N) is explained in [12, Section 4]. This allows one to deduce the same results for
the latter case from our theorems above for the former. That is, one may replace ‘Up acting
upon Mk(Np, C)’ by ‘Tp acting upon Mk(N, C)’ and modify the statements of these theorems
accordingly.

Our theorems for classical modular forms follow from analogous results for overconvergent
modular forms along with the theorem of Coleman which tells us that overconvergent
eigenforms of slope less than k − 1 are classical modular forms [5].

Note 1.5. All complexity estimates are measured in bit operations, unless stated otherwise.
We assume for all our theorems that there exists an algorithm which computes a basis of
q-expansions in Zp[[q]] modulo (pa, qb) for the space Mk(N, Zp) (§ 2.1) of classical modular
forms of level N and weight k in time polynomial in a, b, N, k and log(p) (or p). (Our theorems
transform such an algorithm into one for related problems which have running time linear in the
logarithm of the weight.) For level N = 1 this can be done deterministically [20, Lemma 2.20],
and so for level 1 all the algorithms in this paper are deterministic. For a general level, the
author’s own analysis suggests one can just use [20, Algorithms 5.11, 9.12] to compute a basis
over the integers and reduce coefficients, cf. [9, pp. 1–2]. (These algorithms seem to require
some randomisation, and the author does not know if there exist deterministic algorithms.)
However, computing coefficients over the integers is not very good in practice and one really
desires an algorithm which directly computes the coefficients modulo any desired power of p
(see also Notes 3.4 and 3.5).

Daqing Wan has observed that since Pk(t)≡Pk+(p−1)pm−1(t) mod pm, see [21, Lemma 2.4],
one may restrict the input to 0 6 k < (p− 1)pm−1, and thus remove the dependence upon k
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in all of our theorems. In practice, though, the time of one step of the algorithm does grow
linearly with log(k) (step (4) of Algorithms 1 and 2), so we prefer the theorems as stated.

1.2. Overconvergent modular forms

Let Qp denote the field of p-adic numbers and Zp its ring of integers. Choose a finite extension
K of Qp with ring of integers B such that there exists r ∈B with 0< ordp(r)< p/(p+ 1). The
space Mk(N, K, r) of r-overconvergent modular forms of level N and weight k is defined in § 2.1.
It contains all classical modular forms of weight k for Γ1(N) ∩ Γ0(p). Elements f ∈Mk(N, K, r)
have q-expansions and the Atkin Up operator acts upon them in the usual manner, see (2.1).
The characteristic series

Pk(t) := det(1− tUp |Mk(N, K, r))

is a p-adically entire function lying in 1 + tZp[[t]] which is independent of the auxiliary choice
of K and r. For each positive integer m reducing the coefficients of this series modulo pm, one
obtains a polynomial, which we denote Pk(t) mod pm. The central result of this paper is the
following theorem.

Theorem 1.6. There exists an explicit algorithm which takes, as input, integers N, k, m
and a prime number p> 5 not dividing N and gives, as output, Pk(t) mod pm and runs in time
polynomial in N, p and m and in time linear in log(k).

The algorithm underlying this theorem is given explicitly, for level N = 1 in Algorithm 1
and for a general level N in Algorithm 2. In particular, for level 1 it is quite elementary and
straightforward to implement.

For non-negative α ∈Q, write d(k, α) for the number of reciprocal roots of Pk(t) of p-adic
valuation α. As before we have the following two associated results. (The latter depends upon
the same integrality assumption as Theorem 1.4, and again we explain how to proceed more
generally in § 3.4.2.)

Theorem 1.7. There exists an explicit algorithm which takes, as input, integers N, k and
β and a prime number p> 5 not dividing N and gives, as output, d(k, α) for all α6 β and
runs in time polynomial in N, p and β and in time linear in log(k).

Theorem 1.8. There exists an explicit algorithm with the following input, output and
complexity. The input comprises integers N ,k and a prime p> 5 not dividing N , and, in
addition, positive integers m and ν. The output is the image in Z[[q]]/(pm, qν) of a basis
of (normalised) eigenforms for the Up operator acting upon Mk(N, K, r) for all eigenvalues of
valuation zero which have multiplicity one as a reciprocal root of Pk(t) modulo p. The algorithm
runs in time polynomial in N, p, m and ν and in time linear in log(k).

Let us now give a brief summary of results in the literature which are relevant to the work
in this paper.

1.3. The literature

The Gouvêa–Mazur conjecture was made in [12, Conjecture 1], and was motivated mainly by
experimental work for level 1 in collaboration with Mestre. Further numerical evidence strongly
supporting the original conjecture was presented in [11] (see also the webpages of Gouvêa and
Stein). An analogue of this conjecture for overconvergent modular forms was stated in [13,
Conjecture 2], and is now known to imply the original conjecture by work of Coleman [5].
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Coleman and Wan proved a version of the Gouvêa–Mazur conjecture in which the linear
bound n> α is replaced by a bound with a quadratic function of α with coefficients depending
upon N and p; see [6, 21]. This is the strongest current result toward the conjecture. Buzzard
defined the notion of a regular prime p for each level N , and gave an algorithm which conjec-
turally gives as output the sequence of slopes (p-adic valuations of reciprocal roots of Pk(t)) at
different weights k for a prime p which is regular with respect to the level [2]. The smallest prime
which is not regular in level 1 is p= 59, and Buzzard and Calegari found a counterexample to
the conjecture in this case [3]. Namely, for k0 = 16 and k1 = 16 + 58× 59 we have d(k0, 1) = 1
and d(k1, 1)> 1 but k0 ≡ k1 mod (p− 1)p. Note that this counterexample still leaves open the
possibility that one can replace ‘n> α’ by ‘n> α+ 1’, so there remains a large gap between
what has been observed experimentally and the quadratic bound of Coleman and Wan.

The experimental work for computing slopes in [3, 11, 12] is based upon classical algorithms.
These classical algorithms run in polynomial time in p, m (and N , cf. Note 1.5) but exponential
time in log(k). An algorithm for computing the characteristic series Pk(t) modulo pm using a
formula due to Koike is applied in [7]. This is useful for small p and m but has the drawback
that the complexity grows exponentially with m. Methods for computing Pk(t) modulo pm

which have polynomial running time in m are available for small primes (p6 19) in level 1
through work of Buzzard (unpublished), Loeffler [18] and Kilford [17]. (The algorithm based
upon Koike’s formula should run in linear time in log(k) and the methods for small primes
in level 1 might also (suitably adapted), although these papers do not address this question.)
The problem of computing eigenfunctions is discussed in [14], [18, Section 4] and [17, § 4.2].
A powerful general method for working with overconvergent modular forms has been developed
by Pollack and Stevens, based upon overconvergent modular symbols, and used to compute
approximations to p-adic L-functions in time polynomial in m; see [19] and, for certain efficient
computations related to Stark–Heegner points, see [8]. (One can also compute invariants related
to p-adic L-functions in some special cases with our methods, see § 3.4.4.) From the complexity
analysis in [8, Proposition 2.14] it seems that the methods of Pollack and Stevens may be
comparable to our own in terms at least of the running time dependence on p and m, but
the author is not sufficiently expert to make a clear comparison. In any case, our methods are
completely different and we hope they will be a useful complement to those currently in the
literature.

1.4. The structure of the paper

This paper is organised in a straightforward manner. The theory lying behind our results is
described in Section 2, the algorithms themselves are presented and our theorems proved in
Section 3, and we conclude with some illustrative examples in Section 4.

2. Theory

In this section we present the ideas underpinning out main algorithms (Algorithms 1 and 2)
and consequently the proof of Theorem 1.6. We shall follow closely the notation and exposition
of Wan [21].

2.1. Katz expansions

For each integer k let Mk(N, Zp) denote the space of classical modular forms on Γ1(N) whose
q-expansions at infinity have coefficients in Zp. This is a free Zp-module of finite rank. Let
Ep−1 be the classical Eisenstein series of weight p− 1 and level 1 normalised to have constant
term 1. For each integer i > 0, Katz showed that one may choose a free Zp-module Wi(N, Zp)
of Mk+i(p−1)(N, Zp) such that

Mk+i(p−1)(N, Zp) = Ep−1 ·Mk+(i−1)(p−1)(N, Zp)⊕Wi(N, Zp).
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(This choice is not canonical; see [15, p. 105].) Define W0(N, Zp) := Mk(N, Zp). Let K be
a finite extension of Qp with ring of integers B. Define Wi(N, B) := Wi(N, Zp)⊗Zp

B. For
r ∈B the space Mk(N, B, r) of r-overconvergent modular forms is by (our) definition the space
of all ‘Katz expansions’ of the form

f =
∞∑
i=0

ri
bi

Eip−1

, bi ∈Wi(N, B), lim
i→∞

bi = 0

where bi→ 0 as i→∞ means the q-expansions of bi are more and more divisible by p as i goes
to infinity. We define Mk(N, K, r) :=Mk(N, B, r)⊗B K, a p-adic Banach space.

2.2. Atkin’s operator and Coleman’s trick

One can write elements in Mk(N, K, r) as q-expansions. (Note that Ep−1 has constant term
1 so E−ip−1 has a q-expansion in 1 + qZp[[q]].) We define the action of Atkin’s Up operator on
q-expansions in the usual manner:

Up :
∞∑
n=0

anq
n 7→

∞∑
n=0

apnq
n. (2.1)

A crucial point which underlies the analysis by Wan is that

pUp(Mk(N, B, r))⊂Mk(N, B, rp) (2.2)

provided 0< ordp(r)< 1/(p+ 1); see [21, Equation (2.6)]. Let us from now on assume that
0< ordp(r)< p/(p+ 1) and so, in particular, since we have a natural injection

i :Mk(N, B, rp) ↪→Mk(N, B, r),

the space Mk(N, K, r) is stable under Up(= Up ◦ i). We define

Pk(t) := det(1− tUp |Mk(N, K, r)),

a p-adic entire function with p-adically integral coefficients [21, p. 454, Lines 13–15].
Now write k := k0 + j(p− 1) where 0 6 k0 < p− 1. Using Katz expansions one sees that the

multiplication map
Ejp−1 :Mk0(N, K, r)→Mk(N, K, r)

is an isomorphism of p-adic Banach spaces. Since conjugate operators have the same
characteristic series, it follows that

Pk(t) = Pk0+j(p−1)(t) = det(1− tE−jp−1 ◦ Up ◦ E
j
p−1 |Mk0(N, K, r)).

The operator Up is Frobenius linear, so E−jp−1 ◦ Up = Up ◦ E−jp−1(qp). Defining

G(q) :=
Ep−1(q)
Ep−1(qp)

,

we see that
Pk(t) = det(1− tUp ◦G(q)j |Mk0(N, B, r)).

We note that the fact that G(q) is (a 1-unit) in the ring M0(N, B, r) provided 0< ordp(r)<
1/(p+ 1) is key to the analysis of Wan [21, Lemma 2.1].

2.3. Wan’s analysis

Let us now assume then that 0< ordp(r)< 1/(p+ 1). Write mi for the rank of the free
B-module Wi(N, B) and choose an (ordered) basis {bi,1, . . . , bi,mi

}. Then the elements

ei,s :=
ri

Eip−1

bi,s, i> 0, 1 6 s6mi
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(ordered in the obvious manner), form an orthonormal basis for the p-adic Banach space
Mk0(N, K, r). Write

Up ◦Gj(ei,s) =
∑
u,v

Au,vi,s (j)eu,v

where Au,vi,s (j) ∈K. Since Gj ∈M(N, B, r), Wan easily deduces [21, p. 457], using (2.2),

ordp(A
u,v
i,s (j)) > u(p− 1)ordp(r)− 1. (2.3)

This is the final ingredient we shall need in our algorithm

2.4. An outline of the algorithm

With this theory in place the algorithm is quite straightforward. Using (2.3) one finds an
appropriate subset of the basis of Mk0(N, B, r), depending on the required precision, and
computes the action of Up ◦G(q)j on the elements in this set using q-expansions and a fast
exponentiation routine. The only non-trivial algorithmic problem which needs to be solved is
for certain i to compute a basis of q-expansions for the spaces Wi(N, B) modulo (pm, q`

′p)
for a suitable integer `′ which one must determine. When the level N is 1, this is not difficult
as the Miller basis [20, Lemma 2.20] allows one to determine the necessary `′ and directly
compute the bases.

3. Algorithms

In this section we present explicitly the algorithm underlying the proof of Theorem 1.6. We
consider first the case of level N = 1 since then the whole algorithm can be worked out and
implemented using completely elementary methods.

3.1. Preliminaries

We shall use the notation O( · ) and Õ( · ) to measure the running time and space requirements
of algorithms, usually in bit operations and bits of space, respectively, unless stated
otherwise [10, § 25.7]. For α ∈Q we define bαc to be the greatest integer not greater than
α, and dαe to be the least integer not less than α. By a ‘row-reduced basis of q-expansions’ of
some space of modular forms over a ring, we shall mean a set of q-expansions (modulo some
power of q) which when placed in a matrix are in row-reduced form over that ring. We shall of
course not work with q-expansions in Zp[[q]] exactly but rather with their images in the finite
ring Zp[[q]]/(pa, qb)∼= Z[[q]]/(pa, qb) for different integers a and b.

3.2. Level 1

We now present and give a detailed analysis of the algorithm underlying Theorem 1.6 for the
case of level N = 1.

Algorithm 1. Given a prime number p> 5, an integer k and a positive integer m, this
algorithm computes the reverse characteristic series modulo pm of the Atkin Up operator (or of
the operator pUp) on the space of overconvergent p-adic modular forms of weight k and level 1.

(1) Dimensions. Compute the unique k0, j ∈ Z with 0 6 k0 < p− 1 and k = k0 + j(p− 1).
Compute n := b((p+ 1)/(p− 1))(m+ 1)c. For i= 0, 1, . . . , n compute di, the dimension of
the space of classical modular forms of level 1 and weight k0 + i(p− 1). Compute mi :=
di − di−1, for i> 1, m0 := d0, and ` :=m0 +m1 + · · ·+mn = dn. Compute working precision
m′ :=m+ dn/(p+ 1)e.

(2) Complementary spaces. For each 0 6 i6 n denote by Mk0+i(p−1) a row-reduced basis of
q-expansions in Z[[q]]/(pm

′
, q`p) of the space of classical modular forms of weight k0 + i(p− 1)

and level 1. Compute the last mi elements in Mk0+i(p−1) and call this ordered set Wi.
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(3) Katz expansions. Compute the q-expansion in Z[[q]]/(pm
′
, q`p) of the Eisenstein series

Ep−1(q). For each 0 6 i6 n, let bi,1, . . . , bi,mi
denote the elements in Wi. Compute ei,s :=

pbi/(p+1)cE−ip−1bi,s in Z[[q]]/(pm
′
, q`p).

(4) Coleman’s trick. Define G(q) := Ep−1(q)/Ep−1(qp) and compute G(q)j in Z[[q]]/
(pm

′
, q`p) using a fast exponentiation routine. For each 0 6 i6 n and 1 6 s6mi compute

ui,s :=G(q)jei,s in Z[[q]]/(pm
′
, q`p).

(5) Atkin operator. For each 0 6 i6 n and 1 6 s6mi compute ti,s := Up(ui,s) in
Z[[q]]/(pm

′
, q`), where Up is the Atkin operator on q-expansions.

(6) Linear algebra. Compute T , the `× ` matrix over Z/(pm′) whose entries are the
coefficients in the q-expansions modulo q` of the ` elements ti,s. Compute E, the `× ` upper-
triangular matrix over Z/(pm′) whose entries are the coefficients in the q-expansions modulo
q` of the ` elements ei,s. Use linear algebra over Z/(pm′) to compute the matrix A over
Z/(pm′) such that T =AE. (One may need to multiply T by p and solve pT =AE.) Return
det(1−At) mod pm.

Note 3.1. The ambiguity over the output (det(1− Upt) or det(1− pUpt)) arises since (2.3)
only guarantees that the matrix for pUp has integral coefficients. However, in the author’s
experiments the matrix for Up always has integral coefficients, and in theory one can in
any case deduce det(1− Upt) mod pm from det(1− pUpt) mod pc(p)m where c(p) is an explicit
polynomial function of p.

3.2.1. Proof of correctness. For each i> 0, let di denote the dimension of Mk0+i(p−1)(1, Zp)
and mi that of Wi(1, Zp). Thus d0 =m0 and di =mi −mi−1 for i> 1. We first need a lemma.

Lemma 3.2. For 0 6 i6 n the elements in Wi (step (2) of Algorithm 1) are the reduction
modulo (pm

′
, q`p) of a basis for some choice of the space Wi(1, Zp).

Proof. Let Mk0+i(p−1) denote the ordered set of elements in the row-reduced form of the
basis modulo (pm

′
, q`p) in step (2). Then the rth element in Mk0+i(p−1) has lowest coefficient

qr−1; see [20, Remark 2.21]. Hence, since Ep−1 has lowest term 1, the ordered set

{Ep−1f | f ∈Mk0+(i−1)(p−1)}

is such that the rth element has lowest term qr−1. The mi = di − di−1 elements in the
ordered set Wi have leading term qr−1 for r > di−1 = #Mk0+(i−1)(p−1). Thus no non-zero
Z/(pm′)-linear combination of them can be the reduction modulo (pm

′
, q`p) of an element

in Ep−1 ·Mk0+(i−1)(p−1)(1, Zp). Hence they are the reduction modulo (pm
′
, q`p) of a basis for

some choice of space Wi(1, Zp).

Let us now prove the correctness of an idealised form of our algorithm in which one
makes the following modifications. First, let us choose a rational number ε > 0 and define
nε := b(((p+ 1) + ε)/(p− 1))(m+ 1)c and `ε := dnε

, and replace n and ` throughout the
algorithm by nε and `ε. Second, choose an element r in some extension B of Zp such that
ordp(r) = 1/((p+ 1) + ε) and in step (3) define ei,s := riE−ip−1bi,s. Third, assume that all
computations are done exactly with elements in B rather than in B/(pm

′
). Then by Lemma 3.2

one observes that we have computed exactly the top `ε × `ε lefthand corner of the infinite
matrix (Au,vi,s (j)) from § 2.3 for a particular choice of r with 0< ordp(r)< 1/(p+ 1). (Recall
(Au,vi,s (j)) is the matrix for Up ◦Gj on our orthonormal basis and det(1− Up ◦Gjt) is the
characteristic series of the Up operator on the space of overconvergent modular forms of level 1
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and weight k = k0 + j(p− 1).) From (2.3) one sees that for

u>
(p+ 1) + ε

p− 1
(m+ 1)

the coefficients in the rows of Au,vi,s (j) labelled by pairs (u, v) (1 6 v 6mu) have p-adic valuation
at leastm. Now by (2.3) either the matrix (Au,vi,s (j)) has integral entries, or if not then p(Au,vi,s (j))
does. In the former case we see that this matrix reduces modulo pm to an `ε ×∞ matrix. Thus
its characteristic series is equal modulo pm to the reverse characteristic polynomial of the `ε × `ε
submatrix in the top lefthand corner. However, this is exactly what our idealised algorithm has
computed. In the latter case, the same argument shows that our idealised algorithm outputs
the characteristic series of pUp modulo pm acting on overconvergent modular forms of weight k.

Let us now deduce the correctness of Algorithm 1 from that of our idealised algorithm. First
observe that the idealised algorithm would output correctly even performing computations in
B/(pm

′
) rather than B. (Note that over K one can rewrite T =AE as A= TE−1 and since E

is upper-triangular one sees that the valuation of E−1 at least −nε/(p+ 1). Thus there is a loss
of precision of nε/(p+ 1) 6 dnε/(p+ 1)e=m′ −m p-adic coefficients when solving this system.
This accounts for the slightly higher working precision needed in the algorithm.) Next, let us
choose ε > 0 small enough so that nε = n and so `ε = `. Then our idealised algorithm (revised to
perform computations over B/(pm

′
)) only differs from Algorithm 1 in the choice of basis ei,s in

step (3). Precisely, there is a diagonal change of basis matrix Pε with entries δi,s := rip−bi/(p+1)c

where 0 6 ordp(δi,s)< 1 (shrinking ε further if required). Let γ := max{ordpδi,s}< 1 be the
maximum valuation of non-zero entries in Pε. Let Aε denote the matrix computed in step (6)
of the (revised) idealised algorithm and A that computed by our actual algorithm, both with
entries reduced modulo pm. Then Aε ≡ P−1

ε APε mod pm−γ . Thus in the case in which Up acts
by an integral matrix Au,vi,s (j) we have

det(1−At)≡ det(1−Aεt)≡ det(1−Au,vi,s (j)t) mod pm

since m− γ >m− 1. The same argument works when Au,vi,s (j) has valuation −1 and one instead
computes the characteristic series of pUp modulo pm.

3.2.2. Analysis of the complexity. Let us first examine the space requirements of the
algorithm. Observe that n, m′ ∈ O(m) and so ` ∈ O(pm) by the dimension formula [20,
Corollary 2.16]. Thus q-expansions in Z[[q]]/(pm

′
, q`p) require O(p2m2 log(p)) bits of space.

We shall need O(`) such q-expansions (bi,s, ei,s and ui,s for 0 6 i6 n and 1 6 s6mi) and
hence the main space requirement is O(p3m3 log(p)) bits. (This absorbs the auxiliary space
required for performing quasi-linear time multiplication in the ring Z[[q]]/(pm

′
, q`p).) We shall

of course need O(log(k)) bits of space for the integer k, giving a total space requirement of
O(p3m3 log(p) + log(k)) bits. (Here and elsewhere for k < 0 by ‘log(k)’ we mean log(−k) and
for k = 0 we just take ‘log(0)’ to mean 1.)

We now consider the running time of the different steps of the algorithm. Recall that one
can multiply two elements in the ring Z[[q]]/(pm

′
, q`p) in time Õ(mp`) bit operations using

FFT-based methods [1, Section 3], and that for any finite ring R and element a ∈R one can
compute an integer power aj ∈R within 2 log2(j) ring multiplications [10, § 4.3].

(1) The formula for these dimensions is given in [20, Corollary 2.16].
(2) Computation of q-expansions in Z[[q]]/(pm

′
, q`p) for the whole row-reduced basis

Mk0+i(p−1) of the space of modular forms of weight k0 + i(p− 1) for each i= 0, 1, . . . , n is
unnecessary, since one only requires the last mi elements of the basis in each case. The
last mi elements in the basis can be computed directly by using the Miller basis (for cusp
forms) described in [20, Lemma 2.20]. Each element in Wi can then be computed in time
Õ(`p×m) = Õ(p2m2) bit operations, provided that one first precomputes the Eisenstein
series E4(q) and E6(q) and also ∆(q) in Z[[q]]/(pm

′
, q`p). Ignoring the precomputation, this

gives a total running time of O(p2m2 × `) =O(p3m3) bit operations. Precomputation of
E4, E6 and ∆ can certainly be done within this bound, even using naive algorithms. (Recall
∆ = (E3

4 − E2
6)/1728.)
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(3) Computation of the Eisenstein series Ep−1(q) in Z[[q]]/(pm
′
, qlp) can naively be done

in Õ((`p)1/2 × (`p)×m) = Õ(p3/2m5/2) bit operations. One can then find all ei,s in time
Õ(`×m× `p) = Õ(p3m3) bit operations.

(4) Computation of G(q) is straightforward and G(q)j can be found in O(log(j)) =O(log(k))
operations in the ring Z[[q]]/(pm

′
, q`p); that is, Õ(`p×m× log(k)) = Õ(p2m2 log(k)) bit

operations. One now finds all ui,s in Õ(p3m3) further bit operations.
(5) Computation of the Atkin operator on q-expansions is trivial.
(6) Since E is in upper-triangular form the computation of A is simple and can certainly

be done in Õ(`3 ×m) = Õ(p3m4) bit operations. One can compute the reverse characteristic
polynomial of A in O(`3) =O(p3m3) operations in the ring Z/(pm′) using a classical algorithm
based upon Hessenberg form [4, § 2.2.4]; that is, Õ(p3m4) bit operations.

In conclusion the algorithm requires Õ(p3m4 + p2m2 log(k)) bit operations where the
dependence upon log(k) (step (4)) is in fact linear rather than quasi-linear.

Note 3.3. In the author’s experiments the most time consuming part was step (2).
The matrix computations in step (6) were very fast; in particular, using Wan’s bound [21,
Lemma 3.1] one only needs to compute the initial few coefficients in det(1−At) mod pm since
all the higher coefficients vanish, and this can be done naively by taking small powers of the
matrix.

3.3. Level N

The main complications in level N > 1 are that one cannot write down a basis for the
complementary spaces Wi(N, Zp) so easily, and one needs to do computations modulo
q`
′p where `′ > ` is at least the Sturm bound [16, Theorems 3.13, 6.19] for the space

Mk0+n(p−1)(N, Zp) with, as before, n := b((p+ 1)/(p− 1))(m+ 1)c. Although the algorithm
is otherwise very similar, for clarity we shall write it out in full.

Algorithm 2. Given a positive integer N , a prime number p> 5 not dividing N , an
integer k and a positive integer m, this algorithm computes the reverse characteristic series
modulo pm of the Atkin Up operator (or of the operator pUp) on the space of overconvergent
p-adic modular forms of weight k and level N .

(1) Dimensions. Compute the unique k0, j ∈ Z with 0 6 k0 < p− 1 and k = k0 + j(p− 1).
Compute n := b((p+ 1)/(p− 1))(m+ 1)c. For i= 0, 1, . . . , n compute di, the dimension of
the space of classical modular forms of level N and weight k0 + i(p− 1). Compute mi :=
di − di−1, for i> 1, m0 := d0, and ` :=m0 +m1 + . . .+mn = dn. Compute working precision
m′ :=m+ dn/(p+ 1)e. Compute `′ > `, the Sturm bound for the space of classical modular
forms of level N and weight k0 + (p− 1)n.

(2) Complementary spaces. For each 0 6 i6 n compute Mk0+i(p−1), a row-reduced basis of
q-expansions in Z[[q]]/(pm

′
, q`
′p) of the space of classical modular forms of weight k0 + i(p− 1)

and level N . Set Wi := ∅ and, for each 1 6 w 6 di, if the valuation (degree of lowest term) of
the wth element in Mk0+i(p−1) does not occur as the valuation of an element in Mk0+(i−1)(p−1)

then adjoin that element to Wi.
(3) Katz expansions. Compute the q-expansion in Z[[q]]/(pm

′
, q`
′p) of the Eisenstein series

Ep−1(q). For each 0 6 i6 n, let bi,1, . . . , bi,mi
denote the elements in Wi. Compute ei,s :=

pbi/(p+1)cE−ip−1bi,s in Z[[q]]/(pm
′
, q`
′p).

(4) Coleman’s trick. Define G(q) := Ep−1(q)/Ep−1(qp) and compute G(q)j in Z[[q]]/
(pm

′
, q`
′p) using a fast exponentiation routine. For each 0 6 i6 n and 1 6 s6mi, compute

ui,s :=G(q)jei,s in Z[[q]]/(pm
′
, q`
′p).

(5) Atkin operator. For each 0 6 i6 n and 1 6 s6mi compute ti,s := Up(ui,s) in
Z[[q]]/(pm

′
, q`
′
), where Up is the Atkin operator on q-expansions.
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(6) Linear algebra., Compute T , the `× `′ matrix over Z/(pm′) whose entries are the
coefficients in the q-expansions modulo q`

′
of the ` elements ti,s. Compute E, the `× `′ matrix

over Z/(pm′) whose entries are the coefficients in the q-expansions modulo q`
′

of the ` elements
ei,s. Use linear algebra over Z/(pm′) to compute the matrix A over Z/(pm′) such that T =AE.
(One may need to multiply T by p and solve pT =AE.) Return det(1−At) mod pm.

Note 3.4. In step (2) one could compute Mk0+i(p−1) by first computing Ep−1m for all
m ∈Mk0+(i−1)(p−1) and then generating mi further elements in weight k0 + i(p− 1) at random
to (hopefully) complete the basis. It would be better still though to find a direct method of
computing only the complementary space, as in Algorithm 1. Unfortunately, in the author’s
Magma implementation for level N > 1, the whole basis in weight k0 + i(p− 1) is generated
over Z for each 0 6 i6 n and then reduced modulo pm

′
, making it practical for only small

values of N , p and m (although k can be large).

Note 3.5. The difficulty in using modular symbols methods to compute modular form
expansions directly modulo pm

′
is that when the weight becomes larger than p the space of

Manin symbols [20, Theorem 8.4] computed modulo p sometimes does not have the expected
dimension, and then existing implementations fail. (This was pointed out to the author by
Buzzard.) In Algorithm 2 one needs to compute up to weight approximately mp. Loeffler
has suggested instead computing modular forms in small weight (with coefficients modulo pm

′
)

and then, using the ring structure, multiplying them together to generate the required modular
forms in higher weight. One may also be able to construct the complementary spaces directly
using such ideas. The author’s preliminary implementation suggests this is a very promising
approach for making the algorithm much more practical for a general level.

3.3.1. Analysis of the algorithm. As before, for each i> 0, let di denote the dimension of
Mk0+i(p−1)(N, Zp) and mi that of Wi(N, Zp). Thus d0 =m0 and di =mi −mi−1 for i> 1.

Lemma 3.6. For 0 6 i6 n, the elements in Wi (step (2) of Algorithm 2) are the reduction
modulo (pm

′
, q`
′p) of a basis for some choice of the space Wi(N, Zp).

Proof. Since Ep−1(q) has constant term 1, working with a row-reduced form of bases one can
identify a complementary space to Ep−1 ·Mk0+(i−1)(p−1)(N, Zp) in Mk0+i(p−1)(N, Zp) simply
by looking at the position of leading entries in the rows of the matrices corresponding to the
bases Mk0+(i−1)(p−1) and Mk0+i(p−1). Note that the choice of `′ equal to the Sturm bound
ensures that none of the rows in the matrix corresponding to a row-reduced basis for the space
of classical modular forms of weight k0 + n(p− 1) and level N vanish when reduced as q-series
modulo q`

′
. Thus every element in our choice of space Wi(N, Zp) can be uniquely identified

(modulo pm
′
) via its image in the Z/(pm′)-span of the elements in Wi.

The proof of correctness now follows exactly the argument in § 3.2.1, using Lemma 3.6 in
place of Lemma 3.2.

Regarding the complexity of the algorithm, observe that ` and `′ are polynomially bounded
by N, p and m, and one can compute q-expansions modulo (pm

′
, q`
′p) of the basis Mk0+i(p−1)

in time polynomial in N, p and m (by our assumption in Note 1.5). The complexity analysis
then follows that for the case N = 1.

Note 3.7. For the sake of simplicity of presentation, the author has glossed over one
minor point relating to the loss of precision in Algorithm 2. The working precision m′ is at
least correct when the row-reduced form of a basis for the space of classical modular forms
of level N and weight k0 + n(p− 1) has leading entries which are p-adic units. Otherwise, in
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certain exceptional cases there may be a small additional (but computable) loss of precision in
step (6) (the author does not know if these cases actually occur). For theoretical purposes, one
can show using naive estimates on the size of the coefficients in a basis over Z for this space of
modular forms that one can take m′ to equal m plus an explicit polynomial function of N, p
and m, and then be sure that the output is correct modulo pm.

3.4. Deductions from Theorems 1.6

We now explain how to deduce the remaining theorems in Section 1 from Theorem 1.6.

3.4.1. Proof of Theorem 1.7. We explain how to deduce Theorem 1.7 from Theorem 1.6.
For each positive integer m, let w(m) denote the point of intersection of the Wan polygon
from [21, Lemma 3.1] with the line ‘y =m’. Choose m sufficiently large that the gradient of
the line segment joining the origin to the point w(m) is greater than β. (Wan’s polygon gives a
quadratic lower bound on the Newton polygon Pk(t) depending only upon k0 = k mod (p− 1),
and the coefficients in this quadratic lower bound are polynomial in N and p. Thus m is a
polynomial in N, p and β.) By Wan’s analysis, all slopes of Pk(t) mod pm (thought of as an
integer polynomial) which are less than β must be slopes of Pk(t) itself, and vice-versa. So one
deduces Theorem 1.7 by applying Theorem 1.6 with this choice of m. (In actual computations
a more careful comparison of the Newton polygon of the matrix A computed in step (6) when
lifted to Zp and Wan’s polygon allows one to provably compute more slopes of Pk(t) itself.)

3.4.2. Proof of Theorem 1.8. Let us first outline the algorithm for constructing eigenforms
(Theorem 1.8). One works throughout Algorithm 2 (or Algorithm 1) to the desired q-adic
precision ν (at least `′) and computes ‘eigenvalues’ for the finite matrix A (step (6)) and
the q-expansions of their associated ‘eigenvectors’. If v ∈ Z[[q]]/(pm, qν) is such an eigenvector
for Up ◦Gj on overconvergent modular forms of weight k0 then Ejp−1v ∈ Z[[q]]/(pm, qν) is the
desired eigenform for Up on overconvergent modular forms of weight k.

Two difficulties arise in practice. First, one may lose precision when computing the
‘eigenvalues’. Second, the corresponding ‘eigenspaces’ may have additional irrelevant elements
in them. These problems disappear under the assumption that the integral matrix A (step (6))
is for the action of Up (rather than pUp), and one restricts attention to eigenvalues of valuation
zero which are simple reciprocal roots of Pk(t) mod p. For under these assumptions certainly
one may compute the eigenvalues without losing precision. Assume then that λ ∈ Z/(pm) with
det(A− λI) = 0, and ordp(λ) = 0. Since λ is a simple reciprocal root of Pk(t) mod p, we see
that the matrix (A− λI) mod p has a kernel of dimension one. Moreover, we know that there
exists some vector v over Z/(pm) which is non-zero modulo p with (A− λI)v = 0 (coming from
the unique normalised eigenform we wish to approximate). The following simple lemma then
guarantees that ker(A− λI) is as expected.

Lemma 3.8. Let M be a matrix over Z/(pm) and denote its reduction modulo p j by Mj ,
for 1 6 j 6m. Assume that ker(M1) has dimension one and that there exists v over Z/(pm)
which is non-zero modulo p such that Mv = 0. Then ker(M) is free of rank one generated by v.

Proof. We prove by induction on j that ker(Mj) is free of rank one. That is, assume
wj is over Z/(p j) with Mjwj = 0. We show wj ≡ αjv mod p j for some αj ∈ Z/(p j). This is
true for j = 1. For j > 1 we have Mj−1wj−1 = 0 where wj−1 := wj mod p j−1. By induction
wj−1 ≡ αj−1v mod p j−1 for some αj−1, say defined over Z/(p j). Then p j−1 divides wj − αj−1v
so writing u for the quotient we have M1u= 0 mod p, since Mj(wj − αj−1v)≡ 0 mod p j . As
ker(M1) has dimension one we have u≡ βv mod p for some β ∈ Z/(p). Thus wj ≡ (αj−1 +
p j−1β)v mod p j , as required.
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This completes the proof of Theorem 1.8. We now explain how to proceed in general. Let
us assume that we have correctly computed the matrix A over Z/(pm) and successfully used
Newton lifting to obtain an ‘eigenvalue’ λ ∈ Z/(pm) with ordp(λ) = α, bearing in mind possible
precision loss here. (Of course, the same method will work for eigenvalues lying in a finite
extension of Zp.) That is, det(A− λI) = 0. We wish to find the elements in the kernel of the
matrix A− λI which come from the reduction modulo pm of an eigenform. If α > 0 then given
any element v ∈ ker(A) we find that (A− λI)(pm−αv) = 0. The kernel of A is typically very
large, so in this case Eλ := ker(A− λI) will have many elements. However, if all the additional
elements in Eλ arise in the trivial way just described, then computing a generating set for
Eλ over Z/(pm) and then reducing the entries in these vectors modulo pm−α will leave only
the ‘true’ eigenvectors. If we assume the dimension of the space of λ-eigenforms equals the
multiplicity rλ of λ as a root of Pk(t) mod pm then what we require is that when one reduces
the vectors in the generating set for Eλ modulo pm−α we are left with rλ distinct non-zero
vectors. Notice that given that our assumption is true, one must compute the matrix A to
precision pm+α to determine the eigenforms for λ modulo pm.

The method in the above paragraph should also work when the matrix A computed in
step (6) is for the action of pUp, although the author has not encountered this situation.

We conclude with the following observation. The ring M(k, B, r) is stable under pUp ◦
Gj provided 0< ordp(r)< p/(p+ 1), by [21, Lemma 2.1, Equation (2.6)]. However, in
our algorithm we use a ‘step function’ decay rate which approximates the case of r-
overconvergence for ordp(r) = 1/(p+ 1). Thus with respect to the basis we choose, the
coefficient of pbi/(p+1)cE−ip−1bi,s in our eigenform (normalised in such a way that at least one
entry in the eigenvector is a p-adic unit) will have p-adic order at least ip/(p+ 1)− bi/(p+ 1)c,
which is approximately ((p− 1)/(p+ 1))i. Since we take 0 6 i6 n with n of size around
((p+ 1)/(p− 1))(m+ 1) the coefficients in the ‘true’ eigenvector(s) for A will decay linearly to
around zero modulo pm, making them rather easy to spot.

Note 3.9. Darmon has asked the author whether the methods in this paper can be
used to compute the ordinary projection of a p-adic modular form. (The existing (heuristic)
method for this is to iterate the Atkin Up operator on the q-expansion, but this requires an
exponential number of terms in the p-adic precision desired.) The author can do this in certain
examples, by applying the Up operator just once and solving a linear system (given that one
has already computed q-expansions of all eigenforms of slope less than the required precision
using our algorithm). However, the author’s method (and the existing one) are complicated
by the existence of congruences between eigenforms; in particular, one cannot assume (as one
would like) that a cusp form with p-adically integral coefficients is a p-adically integral linearly
combination of normalised eigenforms.

3.4.3. Proof of Theorems 1.1, 1.2 and 1.4. One deduces the results in § 1.1 from those in
§ 1.2 using Coleman’s theorem that (generalised) overconvergent eigenforms of slope less than
k − 1 are classical [5]. Thus for m6 k − 1 we have Pk(t)≡ Pk(t) mod pm and for α < k − 1 we
have d(k, α) = d(k, α); see [21, Lemma 2.3]. If one chooses m> k − 1 then classical algorithms
will compute the desired output in time polynomial in N, p and m for Theorem 1.1 and likewise
for the other two results (recall here our assumption in Note 1.5).

3.4.4. Invariants related to p-adic L-functions. We now show how one can efficiently
compute (∂/∂k)Pk(t) for variable weight k evaluated at k := k0, and present an application of
this to computing invariants associated to p-adic L-functions in certain special cases.

The derivative of Pk(t) with respect to k at the point k := k0 equals

lim
m→∞

Pk0+(p−1)pm(t)− Pk0(t)
(p− 1)pm

.
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We may compute this using the following lemma.

Lemma 3.10. Letting s := (p− 1)pm we have

Pk0+s(t)− Pk0(t)
s

≡ Pk0+ps(t)− Pk0(t)
ps

mod pm+1.

Proof. This is equivalent to

p(Pk0+s(t)− Pk0(t))≡ Pk0+ps(t)− Pk0(t) mod p2m+2.

We prove this using the congruences in [13, Section 3]. For arbitrary k write Pk(t) =∑∞
i=0 ai(k)ti. To ease notation fix a choice of 0 6 i <∞ and, omitting the subscript i, note

that we need to show

p(a(k0 + s)− a(k0))≡ a(k0 + ps)− a(k0) mod p2m+2. (3.1)

Define the difference functions δj(a, k0) by

δ1(a, k0) := a(k0 + s)− a(k0)
δj(a, k0) := δj−1(a, k0 + s)− δj−1(a, k0) (j > 2).

By [13, Theorem 2] we have δj(a, k0)≡ 0 mod p j(m+1). We rewrite (3.1) as a(k0 + ps)−
pa(k0 + s) + (p− 1)a(k0)≡ 0 mod p2m+2. Thus it suffices to show that a(k0 + ps)− pa(k0 +
s) + (p− 1)a(k0) is a Z-linear combination of δj(a, k0) for j > 2. Let X be a variable and write
(X − 1)j =

∑j
`=0

(
j
l

)
(−1)j−`X`. Then one proves easily from its definition that δj(a, k0) =∑j

`=0

(
j
l

)
(−1)j−`a(k0 + `s). Hence we must equivalently prove that Xp − pX + (p− 1) is a Z-

linear combination of (X − 1)j for j > 2. This follows since it vanishes to order two at X = 1.
(Indeed, it vanishes to order p modulo p so one can replace m+ 1 by m+ 2 in the congruence
in the lemma.)

Since one can compute Pk0+(p−1)pm(t) mod p2m+1 in time polynomial in m, by the above
lemma we can find (∂/∂k)Pk(t)|k:=k0 mod pm in time polynomial in m (and N and p, and in
time linear in log(k0)).

Let us conclude by explaining how to compute invariants related to p-adic L-functions in
certain cases (see Note 3.11) using a method due to Coleman, Stevens and Teitelbaum. We
restrict to prime level p so we can follow the exposition in [7, Section IV]. Let f =

∑
n anq

n

be a newform of level p and weight k0 which is split multiplicative at p, so ap(f) = p(k0−2)/2.
There is a p-adic invariant Lp(f) which according to [7, p. 155, Proposition] is equal to

−2ap(f)
(∂/∂k)Pk(t)
(∂/∂t)Pk(t)

(3.2)

evaluated at k := k0 and t := 1/ap(f). Here Pk(t) is the characteristic series of the Up operator
on overconvergent modular forms of level 1 and (variable) weight k. Since derivation with
respect to t commutes with specialisation k := k0 the denominator of (3.2) evaluates to
(∂/∂t)Pk0(t) evaluated at t := 1/ap(f). Hence it can be computed using Algorithm 1. For
the numerator, we compute the derivative of Pk(t) with respect to k at the point k := k0 using
the above method. Thus we can find Lp(f) mod pm in time polynomial in m.

Note 3.11. This method for approximating Lp(f) is unfortunately limited to certain very
special cases for the following reason. Except when there is a unique split multiplicative cusp
form in level p and weight k0, the denominator (and hence the numerator) in (3.2) will vanish
and so the equation is not useful for computing Lp(f). (For weight k0 := 2 one should replace
Pk(t) by the characteristic series Qk(t) on overconvergent cusp forms (so Pk(t) = (1− t)Qk(t))
to avoid the denominator vanishing even when there is a unique split multiplicative cusp form.)
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However, we hope the fact that we can efficiently approximate (∂/∂k)Pk(t) evaluated at k := k0

may be of independent interest.

4. Examples

All computations were done using an implementation, in the Magma programming language,
written by the author. We shall focus mainly on the case of level N = 1, since our present
implementation for that case is much better than for N > 1, for the reasons explained in
Note 3.4 (but see also Note 3.5).

4.1. The Gouvêa–Mazur conjecture

Let us first look at some examples illustrating Theorems 1.2 and 1.7. Primes p < 59 are
regular [2, Definition 1.2] for level N = 1, and Buzzard has a conjectural recipe for the slopes
of Pk(t) (or Pk(t)) in this situation; that is, the sequence of p-adic absolute values of the
reciprocal roots. The author found experimentally that slopes sequences for these primes agree
with this conjecture and the Gouvêa–Mazur conjecture. Here are some examples.

Example 4.1. Let p := 5, k := 0 in level N := 1. Then the slope sequence for Pk(t) begins

0, 1, 4, 5, 8, 9, 10, 13, 14, 19, 20, 21, 24, 25, 28, 29, 30, 35, 36, 39, 40, 41, 44, . . . .

This agrees with the conjecture of Buzzard and the conjectural formula of Clay [17,
Equation (4)].

Example 4.2. Let p := 23, k1 := 100000 and k2 := 100000 + (p− 1). Then the slope
sequences for Pk(t) begin

k1 : 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 9, 10, 10, 10, 11, 12, 12, 13, 13,
15, 15, 16, 16, 16, 16, 16, 17, . . .

k2 : 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 9, 10, 10, 10, 11, 12, 12, 13, 13,
14, 14, 16, 16, 16, 16, 16, 17, . . . .

This agreement is similar to that observed in [11] for other examples, and is entirely mysterious.

Let us consider now the first irregular primes, p= 59 and 79.

Example 4.3. Let p := 59 and ka := 16 + (p− 1)pa for 1 6 a6 7 and a=∞ with k∞ := 16,
in level N = 1. Write 7n for a sequence of n sevens. One finds that the slope sequences for
Pk(t) appear to begin as follows (these sequences are not provably correct in their entirety, just
experimentally observed):

k∞ : 0, 1, 772, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, . . .
k1 : 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 724,

8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11,
12, 12, 12, 13, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, . . .

k2 : 0, 1, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 734,
8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 14
15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, . . .

k3 : 0, 1, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 744, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9
10, 10, 10, 11, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, . . .

k4 : 0, 1, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 752, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10,
14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, . . .

k5 : 0, 1, 5, 6, 6, 6, 764, 8, 8, 8, 9, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, . . .
k6 : 0, 1, 6, 770, 8, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, . . .
k7 : 0, 1, 772, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, . . . .
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The case k∞ and k1 is exactly the counterexample of Buzzard and Calegari [3]. In fact,
comparing each ka, (1 6 a6 6) to k∞ gives us a counterexample to the Gouvêa–Mazur
conjecture, but not to a weaker conjecture where one replaces ‘n> α’ by ‘n> α+ 1’. The
symmetry in the sequence for k∞ around the run of sevens is predicted by the theory of twin
eigenforms [11], but the symmetries in the other sequences are not understood by the author.

A similar picture emerges for p := 79 when ka := 38 + (p− 1)pa for a=∞, 1, 2. We
find d(38, 1) = 1 but d(38 + (p− 1)p, 1) = 2, and d(38 + (p− 1)p2, 1) = 1 but d(38 + (p−
1)p2, 2) = 1 6= 0 = d(38, 2).

Thus our initial experiments for N = 1 support Buzzard’s conjectures for regular primes and
a slight weakening of the Gouvêa–Mazur conjecture in general.

4.2. Hecke polynomials and eigenforms

Let us now consider some examples illustrating Theorems 1.1, 1.4, 1.6 and 1.8. We recall that
our conclusions for classical modular forms follow from those for overconvergent modular forms
(and vice versa) by the theorem of Coleman that overconvergent eigenforms of small slopes are
classical [5].

We first look at some small examples where the output of our algorithm can be compared
directly with that from existing Magma programs. In these examples we remove the trivial
factors coming from the Eisenstein subspaces and work with classical and overconvergent cusp
forms.

Example 4.4. Let p := 5, k := 4 and N := 1. The space Sk(p, C) of cusp forms of level p
and weight k has dimension one and is spanned by the form

fλ = q − 4q2 + 2q3 + 8q4 − 5q5 − 8q6 + 6q7 − 23q9 + 20q10 + 32q11 + . . . .

This is an eigenform for Up acting on Sk(p, C) with eigenvalue λ=−5. If one computes Pk(t)
(modulo p5, say) one discovers −5 is a reciprocal root and the above form is also an eigenform
for Up acting upon overconvergent modular forms of weight 4 and level 1, within the precision
of the computation.

Example 4.5. Let p := 13, k := 24 and N := 1. Then Sk(p, C) has dimension 27. Write
Qk(t) for the reverse characteristic polynomial of Up acting on Sk(p, C), and Qk(t) for the
characteristic series of Up acting on the space of overconvergent cusp forms of weight k and
level 1 (so Pk(t) = (1− t)Qk(t)). One checks that Qk(t)≡Qk(t) mod pk−1. Moreover, there is
a unique slope zero eigenvalue λ ∈ Zp of Up on overconvergent cusp forms, and we compute
λ≡−5417682171 mod p10 and that the corresponding eigenform fλ satisfies

fλ ≡ q + 11497121859q2 − 427686176q3 + 9639421438q4 − 42119324604q5

+ 4033205146q6 + 34959083328q7 − 6918687549q8 + 36824348083q9

− 68609559472q10 − 17625583781q11 + 14252847841q12 − 5417682171q13

+ 3056148420q14 + . . .+ 15384475756q168 mod (p10, q169).

As expected, this is an eigenform of weight k for the Hecke operators T` (prime ` 6= p), within the
precision of the computation. By Coleman’s theorem, fλ ∈ Sk(p, C). One checks the eigenvalues
λ` computed for T` are indeed eigenvalues for the Hecke operator T` on Sk(p, C) modulo p10.
Similarly, there is a unique slope-one eigenvalue µ ∈ Zp, and we find µ≡−29944734937 mod p10

and that the corresponding eigenform fµ satisfies

fµ ≡ q − 11497120779q2 + 428025656q3 − 9614094782q4 + 42192393624q5

−42141698202q6 − . . .+ 45068609300q168 mod (p10, q169).
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Again, one checks this is a Hecke eigenform of weight k, within the precision of the computation,
and by Coleman’s theorem fµ ∈ Sk(p, C). Finally, one checks that these two eigenforms fλ and
fµ are congruent modulo p10 to the (normalised) eigenforms of slope zero and one, respectively,
for the Tp operator acting on the two-dimensional space Sk(1, C), as predicted (modulo pk−1

and modulo pk−2, respectively, in fact) in [12, Section 4].

Example 4.6. Let p := 5, k := 8 and level N := 4. Write Qk(t) for the reverse characteristic
polynomial of Up acting on Sk(Γ0(pN), C). (Note that here, and in Algorithm 2, we replace
Γ1(N) by Γ0(N) since Magma can compute with Γ0(pN) but not Γ0(p) ∩ Γ1(N).) Let Qk(t)
denote the characteristic series of Up acting on the space of overconvergent cusp forms of weight
k for Γ0(N) (so Pk(t) = (1− t)3Qk(t)). Then one finds

Qk(t)≡Qk(t)≡ 1 + 420t+ 12850t2 mod pk−1,

as predicted by Coleman.

We conclude with a few slightly larger examples.

Example 4.7. For p := 31, k := 20000 and N := 1 we find that there is an eigenform fλ for
the Up operator on overconvergent cusp forms with slopes zero eigenvalue λ≡ 386999 mod 314

and

fλ ≡ q − 426011q2 − 354487q3 − 225553q4 − 444281q5 + 283916q6 − 58349q7 − 308209q8

− 308892q9 + 352309q10 − 108755q11 − 71306q12 + 69802q13 − 175397q14

+ 108633q15 − 149157q16 − 12105q17 − 193957q18 + 353356q19 + 419246q20

− 137874q21 − 375223q22 + 268222q23 − 144601q24 − 286014q25 + 32857q26

+ 279753q27 − 305774q28 − 157214q29 − 292132q30 + 386999q31 + . . . mod (p4, q434).

It is an eigenform of weight k for the Hecke operator T` (for prime ` 6= p), within the precision
of the computation. By Coleman’s theorem, fλ is a classical eigenform of level p and weight k
and it is congruent modulo pk−1 to a classical eigenform of level 1 and weight k.

Example 4.8. For p := 7, k := 3141592654 and N := 1, the slope sequence for the Up
operator on overconvergent cusp forms begins 1, 3, 4, 6, 7, . . . and thus there are unique
cuspidal eigenforms fλ1 , fλ3 and fλ4 of slopes 1, 3 and 4, respectively. We compute the
eigenvalues to be λ1 ≡−24525190293240 mod 717, λ3 ≡ 112276712302636 mod 717 and λ4 ≡
−112303394072667 mod 717 and the eigenforms to be

fλ1 ≡ q + 62446499273038q2 + 67809209427118q3 + . . .
fλ3 ≡ q − 114643186896404q2 + 108422174471877q3 + . . .
fλ4 ≡ q + 11716060772632q2 − 86506782486717q3 + . . .

modulo (717, q100). They are, as expected, eigenforms of weight k for the Hecke operator T`
(for prime ` 6= p), within the precision of the computation, which, by Coleman’s theorem, are
classical.

Example 4.9. For p := 23, k := 1234728 and N := 1, we find that there is an eigenform
fλ for the Up operator on overconvergent cusp forms with slopes zero eigenvalue λ≡
11639528745283 mod 2310. The author computed the eigenvalues of T` (prime ` 6= p) on this
eigenform for ` < 529, each modulo 2310. By Coleman’s theorem, fλ is a classical eigenform of
level p and weight k and it is congruent modulo pk−1 to a classical eigenform of level 1 and
weight k.
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Example 4.10. For p := 41, k := 0 and N := 1 we find there is a unique cuspidal
overconvergent eigenform fλ with slope zero eigenvalue λ ∈ Zp (and in addition two further
cuspidal eigenforms of slope zero defined over a quadratic extension of Zp). We compute
λ≡−88357391431 mod 417 and

fλ ≡ q + 17353260525q2 + 3857679517q3 + 44173066834q4 + . . .

modulo (417, q1107). We check it is a (non-classical) eigenform of weight k for the Hecke operator
T` (for prime ` 6= p), within the precision of the computation.

The experiments were carried out on a 2.60 GHz machine with 64 GB RAM. The
computations for Example 4.3 took over one day for each choice of ka (and up to around
500 MB of RAM), Example 4.2 took about 4 hours for each ki, Examples 4.6 and 4.9 took
around one minute, and Example 4.10 about five minutes. The remaining examples took a
matter of seconds to compute.
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