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ON ABUNDANT-LIKE NUMBERS

BY
PAUL ERDOS

Problem 188, [3], stated: Apart from finitely many primes p show that if n,, is
the smallest abundant number for which p is the smallest prime divisor of 7,, then
n, is not squarefree.

Let 2=p,;<p,<: - - be the sequence of consecutive primes. Denote by n” the
smallest integer for which p; is the smallest prime divisor of n\”’ and o (n{")>cn.”
where o(n) denotes the sum of divisors of n. Van Lint’s proof, [3], gives without any
essential change that there are only a finite number of squarefree integers which are
n"s for some ¢>2. In fact perhaps 6 is the only such integer. This could no doubt
be decided without too much difficulty with a little computation.

Note that n§32)=945=33 - 5 - 7. I will prove that nf) is cubefree for all k>k,, the
exceptional cases could easily be enumerated. The cases 1 <c<2 causes unexpected
difficulties which I have not been able to clear up completely. I will use the methods
developed in the paper of Ramunujan on highly composite numbers [1]. A well
known result on primes states that for every s, [2],
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changes sign infinitely often. I do not know if this question has been investigated.

TaEOREM 1. 1 is cubefree for all k>k,.
Clearly (see [1])
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This, together with the definition of n;’, and a simple computation imply
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and hence by (2) we have
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Let ¢c=2. We show that if ¢>0 is small enough then for every v such that p,, , <
(14¢&)p,. We have

)

(©)] Wy = 2.
If (6) would be false put
@) N= nk pk+upk+u+1pk+u+2pk+lpk-H—l < "(2)

by (5)and py, 2 <2ps. Further for k> kq, pry,2<(1+42¢)p, by the prime number
theorem. Thus for sufficiently small ¢ we have by a simple computation

o(N) _ o(n,)
N 1(62)

(7) and (8) contradict the definition of x,"’ and thus (6) is proved.
Now we prove Theorem 1. Let p,,, be the greatest prime not exceeding (14 ¢)p,.
By the prime number theorem

Prtu > (1+§) Dk

Assume o, >3. Put N;=n{’ pk+,+]p;1p,;1u By (5), N1<n§f) and by a simple

computation o(N,)/N;>a(n)/n\?, which again contradicts the definition of n\”.

This proves Theorem 1.

®)

THEOREM 2. n H1=0pk+1 z—u+1 Pr+i where

©) lim 2 = 1, fim PRt = V2,
k=w Dp k= Dy

The first equation of (9) is (5), the proof of the second is similar to the proof of
Theorem 1 and we leave it to the reader.

Henceforth we assume 1 <c<2. It seems likely that for every c there are infinitely
many values of k for which n{’ is squarefree and also there are infinitely many
values of k for which ny is not squarefree. I can not prove this. Denote by A4
the set of those values ¢ for which 7" is infinitely often not squarefree and B
denotes the set of those ¢’s for which n“) is infinitely often squarefree.

THEOREM 3. A, B and A N B are everywhere dense in (1, 2).
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We only give the proof for the set 4, for the other two sets the proof is similar.
Let 1<u; <v,<2. It suffices to show that there is a ¢ in 4 with u; <c<v,. Let k,
be sufficiently large and let /; be the smallest integer for which

i 1 11 l1
(10) 11 (1+—) = O'(H pk1+i) 11 Piysi >
i=0 Dier+i =0 =0
Put x; =ik, Pr,+i- We show that for every o satisfying
a(x (P, X
(11) u < ( 1) <a< (pkl 1) < v
X1 Dri%1
we have
(12) @
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To prove (12) write

i a
nl(;) = ].—.[pk‘1+i’ Qg 2> 0y 2>t 2>
We show «y=2, o;=1, j=I, which implies (12). Assume first o, >2. For suffi-
ciently large k, we have from (5)

(a) G(T) 0’(" )
T= "m Plc1+:+1Pk1 Pk1+1 <n, and @
T Ny
which contradicts the definition of #\*. Thus «;=1, j</, follows from (5) and (11)
and «y<3 follows like o;=1. Thus by (10) j=/ and (12) is proved. Thus for the
interval (11) n{® is not squarefree. Now put

o(x1) 0(Pr1X1)
Uy = , Vg = .
X1 PriXa

Let p,, be sufficiently large and repeat the same argument for (u,, v;) which we
just need for (uy,v;). We then obtaln xz—H, 0 Pr i SO that for every « in
Uy <0(X5)[ X3 << O (Pr, Xo) [Prry X2 <Vs n,cz =py,%s and is thus not squarefree. This
construction can be repeated indefinitely and let ¢ be the unique common point of
the intervals (u;, v,), i=1, 2, . ... Clearly n,(fl’ =py,X; is not squarefree for infinitely
many integers k; or ¢ is in 4 which completes the proof of Theorem 3.

I can prove that B has measure 1 and that for a certain « every 1 <c<l+aisin
B. Ican not prove the same for 4. I do not give these proofs since it seems very
likely that every ¢, 1 <c<2isin 4 N B.

Letr>2bean integer It is not difficult to prove by the method used in the proof
of Theorem 1 that pf, | n’ for all k>kq(r), but for k>ke(r), pi™* | ny ie. n is

divisible by an rth power but not an (r+-1)st power.
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