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1. Introduction

A subset of a topological space which is both closed and open is referred
to as a clopen subset. Here, a O-dimensional space is a Hausdorff space
which has a basis of clopen sets. By a compactification <x.X of a completely
regular Hausdorff space X, we mean any compact space which contains X
as a dense subspace. Two compactifications ctX and yX are regarded as
being equivalent if there exists a homeomorphism from a.X onto yX which
keeps X pointwise fixed. We will not distinguish between equivalent
compactifications. With this convention, we can partially order any family
of compactifications of X by defining a.X 5S yX if there exists a continuous
mapping from yX onto a.X which leaves X pointwise fixed. This paper is
concerned with the study of the partially ordered family $[X] of all
O-dimensional compactifications of a O-dimensional space X.

In section 4, we have the result that 3 {X~\ is always a complete upper
semi-lattice and it is a complete lattice if and only if X is locally compact.
The analogous result for ®[X], the family of all compactifications of a
completely regular Hausdorff space X, was proven in [3] (page 465; Theorem
20.4). The fact that in order for ®[X] to be a complete lattice, it is sufficient
that X be locally compact, was later rediscovered by Boboc and Siretchi
[1] (page 7, Theoreme 2.2). :

It will be convenient to make the convention that from this point on
any topological space is assumed to be O-dimensional unless something is
specifically stated to the contrary. In view of the fact that 3 [-X1 is a complete
lattice if and only if X is locally compact, several questions immediately
present themselves. First, even though X is not locally compact, is it
possible that Q[X] might still be a lattice? The answer to this question is
yes. An example due to Visliseni and Flaksmaier serves to verify this.
Secondly, do there exist spaces X for which $[X] is not a lattice? The
answer to this question is also yes. If X contains a countable, metrizable
dense-in-itself clopen subset, then 3 [X] fails quite badly at being a lattice.
Indeed, Q[X] contains a family ^F consisting of c (the cardinality of the
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continuum) compactifications with the property that no two-element
subset of IF has a lower bound much less a greatest lower bound.

Perhaps a few words about the techniques used to obtain the previously
mentioned results are in order. The problem of investigating $[X] is
reduced to what seems to be the easier problem of investigating a partially
ordered family of Boolean rings. Specifically, let 93 [X] denote the family of
all Boolean rings of clopen subsets of X which form a basis for the open
subsets of X and partially order 93 [X] by set inclusion. It is shown that
Q[X] is order isomorphic to 93[X]. Consequently, an investigation of the
order structure of Q[X] may be made via a study of the order structure
of 33 [X].

2. Boolean rings of clopen sets

Let @(X) be any family of clopen subsets of X which is closed under
finite unions, complementation and contains X as an element. Note that
@(X) is then closed under finite intersections since for any A, B eS>(X),
A n B — Q(QA u CB) (C.A denotes the complement of A in X). It is
known that £&(X) is a ring if we define sums and products by A-\-B =
(A v B)—(A r\ B) and AB — A n B. We will refer to such a ring as a
Boolean ring of clopen sets or sometimes more simply as a ring of clopen
sets. We note that the empty set 0 is the additive identity of this ring and
X is the multiplicative identity.

The following lemma, together with the fact that A -\-X = QA for
any clopen subset A implies that in order to prove that a family & of clopen
subsets is a Boolean ring as defined here, it is sufficient to show that l e f
and A+B and ABe^ when A,Be^.

LEMMA (2.1). For any finite family {Af}^ of clopen subsets of X,

• • -\-A1A2A3 • • • AN.

The proof of this result follows easily using finite induction and will
not be given. The proof of the following result will also be omitted for the
same reason.

LEMMA (2.2). / / {/IJ^! are elements of a Boolean ring and AjQBi
for each i, then N N

DEFINITION (2.3). The symbol s/(X) denotes the Boolean ring of all
clopen subsets of X. The symbol &(X) denotes the Boolean ring consisting
of all compact clopen subsets together with their complements.
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We recall that 23 [X] denotes the partially ordered family of all Boolean
rings of clopen sets whose elements form a basis for the open subsets of X.
sf{X) belongs to 23[X], in fact, s/(X) is the largest element of 23[X].
However, &(X) need not form a basis for the open subsets of X. The next
result shows precisely when 3§(X) belongs to 23[X].

LEMMA (2.4). 3${X) belongs to 23[-X"] if and only if X is locally compact.

PROOF. It follows easily that if X is locally compact, then SS{X) e 23 [X]
so we prove only the converse. Suppose then 8${X) e 23 [X] and let x be
any element of X. We must show that x belongs to a compact neighborhood.
This is obviously the case if X is compact. Let us consider the case where
X is not compact. Then there exists an open set G containing x whose
complement is not compact. Since the sets in 8&'(X) form a basis for
the open sets of X, x e H QG for some He&(X). Furthermore, since
QG Q QH and C ^ is not compact, QH cannot be compact. Thus H must
be compact.

DEFINITION (2.5). An ideal / of a Boolean ring @{X) is said to be fixed
if there exists an element x e X such that x $ A for each A el. Otherwise,
/ is said to be free.

THEOREM (2.6). The following statements are equivalent for any O-dimen-
sional space X:

(2.6.1). X is compact.
(2.6.2) Every ideal of &?{X) is fixed.
(2.6.3) Every maximal ideal of s&{X) is fixed.

PROOF. Suppose X is compact and / is any ideal of s/(X). Then X $ I
(since X is the identity of <s/(X)) and it follows from Lemma (2.1) that
no finite union of sets from I is equal to X. Thus u {A : A e 1} =£ X since
X is compact, i.e., there exists an element x e X such that x $ A for each
A el. Thus / is a fixed ideal.

It is evident that (2.6.2) implies (2.6.3) so we show (2.6.3) implies
(2.6.1). Let J5" be any family of clopen sets with property that no finite
union of members of 3F is equal to X. Let

(N denotes the set of positive integers). In view of Lemma (2.2), the assump-
tion that X el results in X = J i l i ^ i - ^ t C {Jf=1Bt which is a contradiction.
Thus X $ I and it follows that / is an ideal of s/(X). Then I is contained in
a maximal ideal M of ^(X) which, by (2.6.3), is fixed. This implies that
X ^ u {B : B e &} and it follows that X is compact.
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LEMMA (2.7). For each maximal ideal M of the Boolean ring 3>{X),
there exists a unique epimorphism q>M which maps S>(X) onto the two element
field % = {0, 1} such that M is the kernel of q>M.

PROOF. Since 2>{X)\M is a Boolean field, there exists an isomorphism
tpx mapping @i{X)IM onto %. Let <p2 be the canonical epimorphism from
@{X) onto 3>{X)jM and define <pM = q>x o cp2. Then q>M is an epimorphism
from 3>(X) onto %. The uniqueness of the epimorphism follows easily.

LEMMA (2.8). Suppose A is a clopen subset of X which is not compact.
Then q>M(A) = 1 for some free maximal ideal M of s#{X).

PROOF. Since A is not compact, there exists a family {Ha : a e A} of
clopen subsets of A with the finite intersection property such that
n {Ha : cue A} — 0. Let / denote the ideal of s/(X) generated by QA
together with the family {QHa : a e A}. Now X el implies that

X = B(QA)+ f Bt(CHa) C a u [ U CHai]
i = l »=1

which, in turn, implies f]f=1Ha. = 0. This is a contradiction and we must
conclude that X $1, i.e., / is a proper ideal of s/(X). Then / is contained
in a maximal ideal M of s#(X). The assumption that M is fixed leads to the
conclusion that for some x e X and each B eM,x £ B. This implies that
x e n {Ha : a e A} which is a contradiction. Thus, M is free. Since
QA e M, ^^ (C^) = 0 which implies that q>M(A) = 1.

LEMMA (2.9). Let £>{X) e 93[X] and let M and N be two free maximal
ideals of 9){X). Then

®{X; M,N) = {A e®(X) : <pM(A) = <pN(A)}

belongs to 93 [X].

PROOF. For any A, B e 3>{X; M, N), <pM(A+B) = <pN(A+B) and
<pM{AB) = yN{AB). Furthermore, q>M{X) = 1 = q>N{X). Thus, 9{X;M,N)
is a Boolean ring of clopen sets. To complete the proof, we must show that
3>{X; M, N) is a basis for the open subsets of X. Suppose G is any open
subset of X and x e G. Since M and N are free ideals, there exist Axe M
and A2 eN such that x e Axr\ A%. Moreover, since 2#(X) is a basis for the
open subsets of X, x e A§ Q G for some A3 e 3){X). Hence, x e A1A2A3 Q G
which completes the proof since <pM(A1A2A3) = 0 = qiN(A1A2A3).

LEMMA (2.10). 0(X) = n

PROOF. Suppose A is a compact clopen set and @(X) is any element of
93[X]. Then 4̂ = ^ u ^42 u J 3 • • • u AN for a finite number of clopen
subsets A ( e @{X). This implies A e 3>^X) since @(X) is closed under finite
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unions. Since, in addition, 3>(X) is closed under complementation,
QA e9{X). This implies that &(X)Q9{X) and hence that ^(X)Cn58[X].

Now suppose A is a clopen subset of X which does not belong to &(X).
Then neither A nor QA is compact. By Lemma (2.8), there exist free
maximal ideals M and N of s/(X) such that q>M{A) — 1 = q>N{QA). Thus,
<pN(A) = 0 =£ <pM(A) which implies that A $sd(X; M,N). It follows from
Lemma (2.9) that A $ n 58[X].

Now we are in a position to prove the main result of this section.

THEOREM (2.11). The partially ordered family 58[X] is always a complete
upper semi-lattice. It is a complete lattice if and only if X is locally compact.

PROOF. Let & be any subfamily of 58[X] and let 3>(X) be the inter-
section of all rings in 58 [X] which contain each ring in !F. One easily verifies
that @{X) is the least upper bound for &. Thus, 58 [X] is a complete upper
semi-lattice.

Now suppose X is locally compact. Then by Lemma (2.4), 3S(X) e58[X].
This, together with Lemma (2.10), implies that @(X) is the smallest element
of 58 [X]. Since any complete upper semi-lattice containing a smallest
element is a complete lattice, the desired conclusion follows.

On the other hand, if 58 [X] is a complete lattice, it contains a smallest
element which must necessarily be of the form n 58 [X]. This, together with
Lemmas (2.4) and (2.10), implies that X is locally compact.

3. 3[X] and »[X]

Our main goal in this section is to show that 3 [X] is order isomorphic
to 58 [X]. Before proving the first result of this section, it will be convenient
to introduce some notation. One easily shows that for any x eX,
{A s ^/(X) : x <£ A} is a maximal ideal of s/(X). We will denote this ideal
by Mx. It follows from Theorem (2.6) that X is compact if and only if every
maximal ideal of jrf(X) is of the form Mx for some x e X.

THEOREM (3.1). Suppose X and Y are compact. Then a mapping <p
from s#{X) into s/(Y) is a monomorphism with the property that q>(X) = Y
if and only if there exists a continuous function h mapping Y onto X such
that for any clopen set A in st(X), <p(A) — hrx\A~\.

PROOF. First suppose <p is a monomorphism from s#{X) into J&(Y)
with the property that <p(X) = Y and for any point y eY, let
M = {A es/(X) : y£q>(A)}. Suppose A is any element of J / ( X ) . Then

Y = <p(X) = r(A+CA) = <p[A)+<p(CA).
Moreover,

0 = ,,(0) = <p(A • QA) = y(A) • cp(CA).
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Thus, q>(C.A) = Q<p(A). If A $ M, then ye <p{A) which implies that
y $ C<p(A) = <p(CA). Thus, QA e M. Since X = A+QA, there is no ideal
of jtf(X) ( ^ s/(X)) which properly contains M, i.e., M is a maximal
ideal of £#{X). As we observed previously, it follows from Theorem (2.6)
that there exists a point x e X such that M = Mx. This point x is unique
and we define h(y) = x. Thus, MMy) = {A e s#(X) : y £ <p{A)}. Using this
fact, we see that for any A e s/(X), the following statements are successively
equivalent:

y e h~i[A], h{y) eA,A$ Mh{y), y e

Therefore, <p(A) = h^A]. The continuity of h is a consequence of the
previous statement and the fact that s/(X) is a base for the open subsets
of X.

Suppose h[Y] is not dense in X, then there exists a nonempty clopen
subset A of X which does not intersect h[Y]. But then <p(A) = h^A] = 0
which contradicts the fact that y is injective. Hence h[Y] is dense in X.
This implies that h[Y] = X since Y is compact and X is Hausdorff.

Now suppose <p is a mapping from stf(X) into s4{Y) and there exists
a continuous function A from Y onto X such that 9=>(̂4) = h~l[_A~\. It is
immediate that (p{X) = Y and that q> is a homomorphism. Furthermore,
if 0 = <p(̂ 4) = A"1 [.4], then A = 0, i.e., <p is injective.

THEOREM (3.2) Suppose X and Y are compact. A mapping q> from
onto £0{Y) is an isomorphism if and only if there exists a homeo-

morphism k from X onto Y such that cp(A) = k[A] for each A

PROOF. Sufficiency follows easily. To prove necessity we use the
previous theorem. First of all we note that <p(X) = Y and therefore there
exists a continuous function h mapping Y onto X such that <p (A) = h~x [A ]
for each A e s#(X). Similarly, there exists a continuous function k mapping
X onto Y such that <p~l{B) = k^lB] for each Bes/(Y). For any clopen
subset A of X, A =<p-1((p(A)) = k-1[h~1[A']] = [hok)-r[A]. We can use
this fact to prove that k is a bijection. Suppose a and b are distinct points
of X. Then some clopen subset A of X contains a but not b. Then
a e (h o ky^A] and b $ (h o ky^A], i.e., h(k(a)) eA and h(k(b)) $A. Thus
k(a) ^ k(b). Similarly, h is a bijection from Y onto X. This proves that both
h and k are homeomorphisms. To see that k = h"1, let any x e X be given.
For any clopen subset A of X containing x, we have x e A = (h o k)~1[A'],
i.e., h(k(x)) eA. Since the clopen subsets of X form a basis for the open
subsets of X, this implies that h(k(x)) = x, that is, k(x) — h~l(x). This
completes the proof.

Now let ccX be a (0-dimensional) compactification of X. We define a
mapping q>a from jt/(<x.X) into J / ( X ) by ya(4) = 4 n l . We will denote
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the image of <s/(xX) under cpa by F(xX). The proof of the following result
is routine and is omitted.

LEMMA (3.3). The mapping <pa is a monomorphism from s/{xX) into
s/{X) and F(xX) belongs to 23[X].

Before stating the next result, we recall that for any two compactifica-
tions xX and yX, xX ^ yX if there exists a continuous function mapping
yX onto xX which keeps X pointwise fixed.

THEOREM (3.4). xX <; yX if and only if F(xX) Q r{yX).

PROOF. First suppose xX ^ yX. Then there exists a continuous function
h mapping yX onto xX which keeps X pointwise fixed. Since X is dense in
yX and yX is Hausdorff, it follows that h must map yX—X onto xX—X.
Let A be any element of F(xX). Then A = X n A* where A* is a clopen
subset of OLX and it follows that X n h~x[A*] e r(yX). But

X n h~x[A*] = A-![X] n h-^A*] = h~x\X n A*] = A"1 [̂ 4] = A

This proves that F(xX) C r(yX).
Now suppose r(<xX) Q F(yX). Then 9) = 9?"1 o <pa is a monomorphism

from s/(xX) into j/(yX) with the property that <p(aX) = yX. By Theorem
(3.1), there exists a continuous function A mapping yX onto <xX such that
<p(A) = A-1 [4] for each J e aX. Then

*-i[>4] = y(4) = ^ o Va(A) = <Py\X n A)

which implies that ^ ( / r 1 ^ ] ) = X n ^4. Therefore,

(3.4.1) InA

Now suppose x eX and 4̂ is any clopen subset of xX which contains x.
Then i c e l n i and it follows from (3.4.1) that x e hrx\_A\ i.e., h{x) also
belongs to A This implies that h(x) = x since <xX is O-dimensional. Thus
xX ;£ yX and the theorem is proved.

Suppose r{xX) = r(yX). Then by Theorem (3.4), xX ^ yX and
yX <; aX. This means that there exists a continuous function h mapping
yX onto xX which keeps X pointwise fixed and a continuous function k
mapping xX onto yX which keeps X pointwise fixed. Both h ok and k oh
are the identity maps when restricted to the dense subspace X. Thus,
h o k is the identity on xX and k o h is the identity on yX. This means
k = h~x and h is a homeomorphism from yX onto xX. Hence, xX and yX
are equivalent. Since we do not distinguish between equivalent compactifica-
tions, it follows that the mapping F is injective. This fact, together with
Theorem (3.4), results in

COROLLARY (3.5). The mapping F is an order isomorphism from Q[X]
into 93[X].
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We are now in a position to state and prove the main result of this
section.

THEOREM (3.6). Q[X] and 23[X] are order isomorphic.

PROOF. In view of the previous corollary, it will be sufficient to show
that for any ring @(X) e 23 [X], there exists a compactification xX such
that r(a.X) = 2{X). Let JK be the family of all maximal ideals of 3>{X).
Let OLX be an index set for ^ with the convention that if a maximal ideal
M is fixed (i.e., M = {A e @>(X) : x $ A} for some x e X), then its index
is that unique point x which belongs to the complement of each clopen set
in M. Throughout this proof, the index of an ideal will appear as a super-
script. Following this convention, we define, for each A e

HA = {pexX:Ae Mp}.

It follows easily that HA u HB — HAB. We topologize xX by taking
{HA : A e 3>{X)} as a basis for the closed subsets of xX. This is the structure
space of the ring £&(X). It is known [2, p. I l l , 7M] that the structure space
of any commutative ring with identity is a compact 7\ space.

Suppose A e @{X) and Mp is a maximal ideal of @>{X) which does not
contain A. Then the ideal generated by Mp together with A is all of @{X)
and we have X = B+AC for suitable B e M ' a n d C e 3>{X). Thus

C{AC) = X+AC = BeMp.

But then, QA QQ{AC) implies that

QA = QA- (C(AC)) e M».

Consequently, for any maximal ideal Mv of !2>{X) and any A eSi(X),
either A or QA belongs to Mp. It follows from this that for any
A e 3>{X), HA u HCA = xX. Since, in addition, HA n HQA = 0, it follows
that for every A e 2{X), HA is a clopen subset of xX. Since {HA : A e @{X)}
is a basis for the closed sets of xX, it follows that xX is O-dimensional.
Moreover, it is Hausdorff since any O-dimensional 7\ space is Hausdorff.
One easily shows that HA n X = X—A for each clopen subset A of X.
From this it follows that X is indeed a subspace of xX. To show that X is
dense in xX, suppose HA ^ 0. Then p e HA for some p e xX which is
equivalent to saying that A e Mp for some maximal ideal Mp of !3(X).
Then A ^ X and there exists a point xeX—A. It follows that
Mx = {B e 9i{X) : x e X~B) is a maximal ideal of 9>{X) which contains
A. Thus, x e HA which proves that X is dense in xX.

We have established the fact that xX is a O-dimensional compactifica-
tion of X. To complete the proof, we need only show that F{xX) =
Let (px be the monomorphism (Lemma (3.3)) mapping s#(xX) into
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which is defined by q>a(A) = X n A. Since <pa{HA) = X—A for each
Ae@{X), it follows that 9(X) Q <pa[#?(xX)] = r(aX). Since, in any
Boolean ring, A u B = A-\-B-\-AB, we have <p(A u B) = <p{A) u <p{B)
for any homomorphism q> from one such ring into another. Now let
A eT(xX). Then A = X r\ A* for some A*e^{xX) and since A* is
compact, A* = u {HB)ti for {BjEa £ # ( * ) • Thus,

A = cpx(A*) = ^ ( U ^ l t i ) = U K(#B<)?=i}

Thus, f ( a l ) = ^(X) and the proof is complete.

4. The partially ordered family $[X]

Because of Theorem (3.6), the problem of investigating the order
structure of Q[X] has been reduced to the problem of investigating the
order structure of 23[X], As an immediate consequence of Theorems (3.6)
and (2.11), we obtain

THEOREM (4.1). The partially ordered family Q{X] of all O-dimensional
compactifications of X is always a complete upper semi-lattice. It is a complete
lattice if and only if X is locally compact.

Suppose we consider the case where X is not locally compact. In view
of Theorem (4.1), %[X] is not a complete lattice. It is reasonable, however,
to ask if 3[X] might, at least, be a lattice. An example due to J. Visliseni
and J. Flaksmaier [6] shows that there are cases where the answer is
affirmative. We will discuss briefly this example which they construct in
the proof of their Theorem 1. For more detail, one may consult [6].

Let D be an infinite discrete space and, as is customary, let fiD denote
the Stone-Cech compactification of D. Then /3D—D contains a copy T of
D whose closure in fiD is homeomorphic to fiD and is contained in fiD—D.
Let X = f3D—T. Then fiX = fiD and fiX—X = T. The space X is O-dimen-
sional. Furthermore, every compactification of X is obtained by taking a
finite number of finite subsets of (}X—X and identifying each of these
subsets with a point. It follows that Q[X] is a lattice. It also follows that
every compactification of X is O-dimensional, i.e., Q[X] = $[X] (the
family of all compactifications of X) in this case. In general, Q[Y] is a
proper subset of S[Y]. In fact, Theorem (2.2) of [4] states that if Y is any
locally compact normal Hausdorff (not necessarily O-dimensional) space
which contains an infinite discrete closed subset and K is any Peano space,
then there exists a compactification <xY of Y such that <xY—Y is homeo-
morphic to K. If K is not the space consisting of one point, then such a
compactification will not be O-dimensional.

At this point we still have not exhibited a space X where $ [X] is not
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a lattice. The next result indicates that such spaces are rather abundant
and that some of then fail quite badly at being lattices.

THEOREM (4.2). Let X be a space which contains a countable dense-in-
itself metrizable clopen subset. Then there exists a subfamily £F of Q[X] of
cardinality c with the property that no two-element subset of J5" has a lower
bound much less a greatest lower bound.

PROOF. In view of Theorem (3.6), it is sufficient to prove the analogous
statement for 93[X]. By hypothesis, X = Q u Y where Q is a countable
dense-in-itself metrizable clopen subset of X. According to the statement
following the corollary on page 107 of [5], we may take Q to be the space
of all rational numbers. Define two real numbers k and t to be equivalent
of k—t is rational. Choose precisely one element from each of the equivalence
classes and denote the resulting set by K. Then K has cardinality c and the
difference of any two elements of K is irrational.

Now for each k eK, we construct a Boolean ring 3Jk{X). For rational
numbers, r and s, let

Lkr = {qeQ:q< k+r},

Rkr={qeQ:q> k+r},

hrs =={?£<?: k+r < q < k+s}.

The family consisting of all L^, Rkr and Ikrs is a basis for Q consisting of
clopen sets. Let 8>k{X) consist of all sets of the form G u H where G is a
clopen subset of Y and H is either empty, equal to Q or is a finite union of
sets of the form Lkr, Rkr and Ikrs. Then S>k{X) is closed under finite unions,
complementation and contains X. Moreover, the sets in 3>k{X) form a
basis for the open subsets of X. Thus 2>k{X) e 93[X].

Suppose h and t are two distinct elements of K. We want to
show that 2k(X) and 3Jt(X) have no common lower bound. Suppose
A e ®k(X) n 9t{X). Then A = Gk u Hk = Gt u Ht where Gk and Gt are
clopen subsets of Y, Hk is either empty, equal to Q or is a finite union of
mutually disjoint sets of the form Lkr, Rkr and Ikrs and Ht is either empty,
equal to Q or is a finite union of mutually disjoint sets of the form Ltr,
Rtr and Itrs. Since Hk n Gt = 0 = Ht n Gk, it follows that Hk = Hf. The
assumption that Q ^ Hk^ 0 leads to one of the following conclusions:

(i) There exist rational numbers rx and r2 such that Lkr = LtT .
(ii) There exist rational numbers rx and r2 such that Rkr = Rtr^.

(iii) There exist rational numbers rlt r2, s1, s2 such that rx < s1,
r2 < s2 and Ikr = Itr .

Each of these leads to the contradiction that k—t = r2—r1> i.e., that k—t
is rational. Therefore, we must conclude that Hk = Ht is either 0 or Q.
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It follows that 2k(X) n @t(X) consists of all clopen subsets A of X such
that either Q n A = 0 or Q QA. Consequently, no proper nonempty clopen
subset of Q is the union of members of S>k{X) n &>t{X). Since any element
9{X) e 95 [X] is a basis for X, it follows that there exists no @{X) which
is smaller than both @)k(X) and 3>t(X). This completes the proof.

References

[1] N. Boboc and Gh. Siretchi, 'Sur la compactification d'un espace topologique', Bull. Math.
Sci. Math. Phys. R. P. Roumaine (N.S.) 5 (53) (1961), 155-165 (1964).

[2] L. Gillman and M. Jerison, Rings of continuous functions (D. Van Nostrand, New York,
1960).

[3] R. G. Lubben, 'Concerning the decomposition and amalgamation of points, upper semi-con-
tinuous collections and topological extensions', Trans. Amer. Math. Soc. 49 (1961),
410-466

[4] K. D. Magill, Jr.," A note on compactifications'. Math. Zeit. 94 (1966), 322 — 325.
[5] W. Sierpinski, Introduction to general topology (The University of Toronto Press, 1934).
[6] J. Visliseni and J. Flaksmaier, 'The power and structure of the lattice of all compact exten-

sions of a completely regular space', Dohlady 165, (1965), 1423 — 1425.

State University of New York at Buffalo
and

Rochester Institute of Technology

https://doi.org/10.1017/S1446788700006571 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006571

