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Abstract

Let S� denote the class of local subexponential distributions and F ∗ν the ν-fold
convolution of distribution F , where ν belongs to one of the following three cases:
ν is a random variable taking only a finite number of values, in particular ν ≡ n for
some n ≥ 2; ν is a Poisson random variable; or ν is a geometric random variable.
Along the lines of Embrechts, Goldie, and Veraverbeke (1979), the following assertion
is proved under certain conditions: F ∗ν ∈ S� ⇐⇒ F ∈ S�. This result is applied to
the infinitely divisible laws and some new results are established. The results obtained
extend the corresponding findings of Asmussen, Foss, and Korshunov (2003).
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1. Introduction

Recently, Asmussen et al. (2003) introduced the notion of a local subexponential distribution
class and investigated its properties systematically. They applied the obtained properties
to risk theory, the compound Poisson process, the compound geometric process, infinitely
divisible laws, and branching processes. They also obtained a series of important results, which
included two equivalent conditions for the local asymptotic behavior of the compound Poisson
process.

The motivation of the present paper comes from the local asymptotic behavior of the
compound Poisson process. Since the compound Poisson process is a special process with
good properties, it is reasonable to believe that its local asymptotic behavior has richer contents
then some general processes, i.e. more equivalent conditions. In fact, the nonlocal asymptotic
behavior of the compound Poisson process had three equivalent conditions (see Theorem 3 of
Embrechts et al. (1979)), which are richer than the local asymptotic behavior (see Theorem 6
of Asmussen et al. (2003)). In Section 3, we will establish a local version of Theorem 3
of Embrechts et al. (1979). Since the compound geometric process can be transformed to the
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The closure of a local subexponential distribution class under convolution roots 1195

compound Poisson process, we will also present three equivalent conditions for local asymptotic
behavior of the compound geometric process in Section 3. In Section 4, we will apply the result
on the compound Poisson process to infinitely divisible laws and discuss the relation between
an infinitely divisible local subexponential distribution and its Lévy measure. The obtained
results extend the corresponding results of Asmussen et al. (2003).

To realize the above goals, we first need solve a crucial problem, as did Embrechts et al.
(1979), that is, proving the closure of a local subexponential distribution class under convolution
roots. We will discuss this explicitly in Section 2.

Before doing this, we introduce some notions, notation, and conventions, which will be
valid in the rest of this paper. We assume that the support of the distribution F is [0, ∞).
If F is proper, i.e. F(∞) = 1, we write F(x) = 1 − F(x), x ∈ (−∞, ∞). If F is not
proper, i.e. F(∞) < ∞ but F(∞) �= 1, we write F0(x) = F(x)(F (∞))−1, x ∈ (−∞, ∞),
i.e. F0 is a proper distribution. We denote by F ∗n the n-fold convolution of distribution F ,
for some n ≥ 2. Let 0 < T ≤ ∞ and � = (0, T ]; when T = ∞, � reduces to (0, ∞).
Write x + � = {x + y, y ∈ �}, x ∈ (−∞, ∞). Unless stated otherwise, all limiting
relationships are for x → ∞, and we write a(x) ∼ b(x) if a(x)/b(x) → 1. If there exists some
b, 0 < b < ∞ such that lim supx→∞ a(x)(b(x))−1 ≤ b, then we write a(x) = O(1)b(x). If
a(x) = O(1)b(x) and b(x) = O(1)a(x), then we write a(x) ≈ b(x).

Asmussen et al. (2003) introduced some important local distribution classes.
We say that a distribution belongs to the class L� if, for all sufficiently large x, F(x+�) > 0

and F(x + y + �) ∼ F(x + �) uniformly in |y| ≤ 1. We say that F belongs to the local
subexponential distribution class S� if F ∈ L� and F ∗2

0 (x + �) ∼ 2F0(x + �).
Let

H�(F) = {h : [0, ∞) → [0, ∞) : h(x) ↑ ∞, x−1h(x) → 0,

F (x + y + �) ∼ F(x + �) uniformly in y, |y| ≤ h(x)}.
Asmussen et al. (2003) contained the following simple but useful fact:

F ∈ L� ⇐⇒ H�(F) �= ∅.

Now we return to the closure of a local subexponential distribution class under convolution
roots. The question is: under which conditions imposed on F can F ∗n ∈ S� ⇐⇒ F ∈ S�?
Furthermore, let {Xk, k ≥ 1} be a sequence of independent and identically distributed (i.i.d.)
random variables (RVs) with common distribution F on [0, ∞). Write F ∗ν(x) = P(Sν ≤ x),
x ∈ (−∞, ∞), where Sν = ∑ν

k=1 Xk , S0 = 0, and ν is a nonnegative integer RV and is
independent of {Xk, k ≥ 1}. Naturally, we should exclude the case that ν ≡ 0, so we always
assume that P(ν ≥ 1) > 0. The more general question is: under which conditions imposed on
ν and F can F ∗ν ∈ S� ⇐⇒ F ∈ S�? This paper provides some positive answers to this
question in the following cases:

(i) ν is an RV taking only a finite number of values, in particular ν ≡ n for some n ≥ 2,

(ii) ν is a Poisson RV,

(iii) ν is a geometric RV.

For any RV ν with a light-tailed distribution or, more generally, for any RV ν, it is unknown
whether or not

F ∗ν ∈ S� ⇐⇒ F ∈ S�.
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2. Results in case (i)

In this section, we assume that the distribution F is proper and that 0 < T < ∞. We first
discuss a particular case, that is ν ≡ n for some n ≥ 2. We need the following lemma.

Lemma 2.1. Let F ∗ν ∈ L�, and let F ∈ L� or P(ν = 1) = p1 > 0. Then, for any positive
integer m ≥ 1,

F ∗(ν+m) ∈ S� ⇐⇒ F ∗ν ∈ S�,

and either F ∗(ν+m) ∈ S� or F ∗ν ∈ S� implies that

F ∗(ν+m)(x + �) ≈ F ∗ν(x + �).

Proof. By induction, we only need to prove the case m = 1. Take any h ∈ H�(F ∗ν). Then
we obtain

F ∗(ν+1)(x + �) =
(∫ h(x)

0
+

∫ x−h(x)

h(x)

+
∫ x

x−h(x)

)
F ∗ν(x − y + �)F(dy)

+
∫ x+T

x

F ∗ν(x − y + T )F (dy)

=:
4∑

k=1

Ik(x).

Firstly, we prove that F ∗ν ∈ S� ⇒ F ∗(ν+1) ∈ S�. By F ∗ν ∈ L�, we know that

I1(x) ∼ F ∗ν(x + �) = O(1)F ∗(ν+1)(x + �). (2.1)

When F ∈ L�, recall that P(ν ≥ 1) > 0. Then, by Fatou’s lemma and Corollary 1 ofAsmussen
et al. (2003), we have

lim inf
x→∞ F ∗ν(x + �)(F (x + �))−1 ≥ lim inf

x→∞

∞∑
n=1

F ∗n(x + �)(F (x + �))−1 P(ν = n)

≥
∞∑

n=1

lim inf
x→∞ F ∗n(x + �)(F (x + �))−1 P(ν = n)

≥
∞∑

n=1

n P(ν = n)

≥ P(ν ≥ 1)

> 0.

Hence,

F(x + �) = O(1)F ∗ν(x + �). (2.2)
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If p1 > 0, then (2.2) clearly holds. Using integration by parts, (2.2), F ∗ν ∈ S�, and
Proposition 2 of Asmussen et al. (2003), we have

I2(x) =
∫ x−h(x)

h(x)

(F ∗ν(x − y) − F ∗ν(x − y + T ))F (dy)

=
∫ x−h(x)

h(x)

F (x − y)F ∗ν(dy) −
∫ x−h(x)+T

h(x)+T

F (x − y + T )F ∗(dy)

− F(x − h(x))F ∗ν(h(x) + �) + F(h(x))F ∗ν(x − h(x) + �)

=
∫ x−h(x)

h(x)

F (x − y + �)F ∗ν(dy) +
∫ h(x)+T

h(x)

F (x − y + T )F ∗(dy)

−
∫ x−h(x)+T

x−h(x)

F (x − y + T )F ∗(dy)

− F(x − h(x))F ∗ν(h(x) + �) + F(h(x))F ∗ν(x − h(x) + �)

≤
∫ x−h(x)+T

h(x)

F (x − y + �)F ∗ν(dy)

= O(1)

∫ x−h(x)+T

h(x)

F ∗ν(x − y + �)F ∗ν(dy)

= o(1)F ∗ν(x + �). (2.3)

Using integration by parts again, we obtain

I3(x) = −F(x)F ∗ν(T ) + F(x − h(x))F ∗ν(h(x) + �)

+
∫ h(x)+T

0
F(x − y + �)F ∗ν(dy) −

∫ h(x)+T

h(x)

F (x − y)F ∗ν(dy)

+
∫ T

0
F(x − y + T )F ∗ν(dy) (2.4)

and

I4(x) = F(x)F ∗ν(T ) −
∫ T

0
F(x − y + T )F ∗ν(dy). (2.5)

Write

I5(x) =
∫ h(x)+T

h(x)

F (x − y)F ∗ν(dy) − F(x − h(x))F ∗ν(h(x) + �).

Then, by (2.2) and F ∗ν ∈ L�, we have

0 ≤ I5(x)

≤ F(x − h(x) − T + �)F ∗ν(h(x) + �)

= o(1)F ∗ν(x + �). (2.6)

By (2.2) and (2.4)–(2.6), we know that

I3(x) + I4(x) = O(1)F ∗ν(x + �). (2.7)
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By (2.1), (2.3), and (2.7), we know that F ∗(ν+1)(x + �) ≈ F ∗ν(x + �). By (2.1), (2.3), (2.6),
and F ∈ L�, we know that

F ∗(ν+1)(x + �) ∼ F ∗ν(x + �) +
∫ h(x)+T

0
F(x − y + �)F ∗ν(dy)

∼ F ∗ν(x + �) + F(x + �),

so that F ∗(ν+1) ∈ L�. Hence, by Lemma 1 of Asmussen et al. (2003) and F ∗ν ∈ S�,
F ∗(ν+1) ∈ S� follows.

Next, we prove that F ∗(ν+1) ∈ S� ⇒ F ∗ν ∈ S�. By F ∗ν ∈ L� and F ∈ L� or p1 > 0,
we know that (2.1), (2.2), and (2.7) still hold. By virtue of (2.1), integration by parts, (2.2),
F ∗(ν+1) ∈ S�, and Proposition 2 of Asmussen et al. (2003), it follows that

I2(x) = O(1)

∫ x−h(x)

h(x)

F ∗(ν+1)(x − y + �)F(dy)

= O(1)

∫ x−h(x)+T

h(x)

F (x − y + �)F ∗(ν+1)(dy)

= O(1)

∫ x−h(x)+T

h(x)

F ∗(ν+1)(x − y + �)F ∗(ν+1)(dy)

= o(F ∗(ν+1)(x + �)). (2.8)

By (2.1), (2.7), and (2.8), we know that F ∗(ν+1)(x +�) ≈ F ∗ν(x +�). Hence, by F ∗ν ∈ L�,
we have F ∗ν ∈ S�.

Corollary 2.1. If F ∈ L� then, for any positive integer n ≥ 2, F ∗n ∈ S� ⇐⇒ F ∈ S�, and
either F ∗n ∈ S� or F ∈ S� implies that F ∗n(x + �) ≈ F(x + �).

Proof. The result follows by substituting ν = 1 and m = n − 1 into Lemma 2.1.

The result in case (i) is implied by the following lemma.

Lemma 2.2. If F ∈ L�, F ∗ν ∈ L�, and the distribution of ν is P(ν = i) = pi , i =
1, 2, . . . , s, then, for any positive integer m ≥ s + 1, F ∗m ∈ S� ⇐⇒ F ∗ν ∈ S�, and either
F ∗m ∈ S� or F ∗ν ∈ S� implies that F ∗(ν+m)(x + �) ≈ F ∗ν(x + �).

Proof. By Lemma 2.1, we only need to prove the case m = s + 1. By F ∈ L� and
Proposition 1 of Asmussen et al. (2003), we get F ∗i ∈ L� for all i ≥ 1. By ps > 0 and

F ∗ν(x + �) =
s∑

i=1

piF
∗i (x + �), (2.9)

we know that F ∗s(x + �) = O(1)F ∗ν(x + �). By F ∈ L�, we have F ∗i ∈ L�, i =
2, 3, . . . , s. Hence, there exists an h ∈ ⋂s−1

i=2 H�(F ∗i ) such that

F ∗s(x + �) ≥
∫ h(x)

0
F ∗i (x − y + �)F ∗(s−i)(dy) ∼ F ∗i (x + �), i = 2, . . . , s − 1.

So
max{F ∗i (x + �), i = 1, 2, . . . , s} = O(1)F ∗ν(x + �). (2.10)
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Take any h ∈ ⋂s
i=1 H�(F ∗i ) ∩ H�(F ∗ν). Then we obtain

F ∗(m+1)(x + �) =
s∑

i=1

(
pi

(∫ h(x)

0
+

∫ x−h(x)

h(x)

+
∫ x

x−h(x)

)
F ∗i (x − y + �)F ∗(m+1−i)(dy)

+
∫ x+T

x

F ∗i (x − y + T )F ∗(m+1−i)(dy)

)

=:
4∑

k=1

Ik(x).

Firstly, we prove that F ∗ν ∈ S� ⇒ F ∗(m+1) ∈ S�. By F ∗i ∈ L�, for all i ≥ 1, and (2.10),
we know that

I1(x) ∼
s∑

i=1

piF
∗i (x + �) = F ∗ν(x + �) = O(1)F ∗(m+1)(x + �). (2.11)

By (2.10), integration by parts, F ∗ν ∈ S�, Proposition 2 of Asmussen et al. (2003), and (2.11),
we have

I2(x) = O(1)

s∑
i=1

pi

∫ x−h(x)

h(x)

F ∗ν(x − y + �)F ∗(m+1−i)(dy)

= O(1)

s∑
i=1

pi

∫ x−h(x)+T

h(x)

F ∗(m+1−i)(x − y + �)F ∗ν(dy)

= O(1)

s∑
i=1

pi

∫ x−h(x)+T

h(x)

F ∗ν(x − y + �)F ∗ν(dy)

= o(F ∗ν(x + �)). (2.12)

In a similar manner to (2.7), by (2.10) we know that

I3(x) + I4(x) ∼
s∑

i=1

piF
∗(m+1−i)(x + �) = O(1)F ∗ν(x + �). (2.13)

By (2.11)–(2.13), we have F ∗(m+1)(x + �) ≈ F ∗ν(x + �); hence F ∗(m+1) ∈ S� follows.
Next, we prove that F ∗(m+1) ∈ S� ⇒ F ∗ν ∈ S�. By Corollary 2.1 and F ∗(m+1) ∈ S�, we

know that F ∈ S�; hence F ∗ν ∈ S� follows from (2.9).

From the proof of Lemma 2.2, we immediately obtain the following theorem.

Theorem 2.1. With the conditions of Lemma 2.2, we obtain F ∗ν ∈ S� ⇐⇒ F ∈ S�, and
either F ∗ν ∈ S� or F ∈ S� implies that F ∗(ν+m)(x + �) ≈ F ∗ν(x + �).

3. Results in cases (ii) and (iii)

In this section, we discuss results in cases (ii) and (iii), by applying Corollary 2.1 to the study
of local asymptotic behavior for the compound Poisson process and the compound geometric
process.
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3.1. The compound Poisson process

Let F be a proper distribution. Assume that ν is the Poisson RV with parameter µ and let
G = F ∗ν be the compound Poisson distribution

G(B) = e−µ
∞∑

n=0

µn

n! F ∗n(B).

It is well known that the compound Poisson process has many important applications in
queueing, networks, finance and insurance, and other fields, so it has been extensively and
deeply studied. Theorem 6 of Asmussen et al. (2003) described local asymptotic behavior
for G.

Theorem 3.1. (Asmussen et al. (2003).) Assume that T ≤ ∞. Furthermore, if T < ∞, then
assume that F ∈ L�. Then the following assertions are equivalent:

(i) F ∈ S�,

(ii) G(x + �) ∼ µF(x + �).

This result is a direct corollary of Theorem 2 of Asmussen et al. (2003). Just as it is pointed
out in Section 1, the compound Poisson process is expected, as a special process, to have richer
content than some general processes. As a matter of fact, when T = ∞, (i) and (ii) are also
equivalent to G ∈ S (see Embrechts et al. (1979, Theorem 3)). So, in the local version, with
T < ∞, it is reasonable to expect that the corresponding equivalence holds. To demonstrate
that it does so, define

G∗k−1
(B) ≡ H(B) = e−µk−1

∞∑
n=0

(µk−1)n

n! F ∗n(B), for all k ≥ 1.

Theorem 3.2. Let the conditions of Theorem 3.1 be valid. If there exists an integer k =
k(µ) > 0, such that µk−1 < ln 2 and G∗k−1 ∈ L�, then (i) , (ii), and the following assertion
are equivalent:

(iii) G ∈ S�.

We point out that our new conditions of Theorem 3.2 are similar to conditions used in
Theorem 4.2 of Embrechts and Goldie (1982).

Proof of Theorem 3.2. We only need to prove the case T < ∞. Obviously, conditions (i)
and (ii) imply condition (iii). Now, we follow the line of Embrechts et al. (1979) to prove that
condition (iii) implies condition (i). We assume, in the first part of the proof, that 0 < µ < ln 2.
Consider the proper distribution

R(B) = (eµ − 1)−1
∞∑

n=1

µn

n! G∗n(B).

By the proof of Theorem 3 of Embrechts et al. (1979), we have eµG(x) = (eµ − 1)R(x).
Hence, for any T , 0 < T < ∞,

eµG(x + �) = (eµ − 1)R(x + �),
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giving R ∈ S�. Again by the proof of Theorem 3 of Embrechts et al. (1979), we know that
µF(x) = − ∑∞

n=1 n−1(1 − eµ)nR∗n(x) and, hence, for any T , 0 < T < ∞,

µ
F(x + �)

R(x + �)
= −

∞∑
n=1

n−1(1 − eµ)n
R∗n(x + �)

R(x + �)
. (3.1)

Since 0 < eµ − 1 < 1, we can choose an ε > 0 such that (eµ − 1)(1 + ε) < 1. Then, by
R ∈ S� and Proposition 4 of Asmussen et al. (2003), there exist an x0 = x0(ε) > 0 and a
V (ε) > 0 such that, for any x ≥ x0 and any n ≥ 1, R∗n(x + �)/R(x + �) ≤ V (ε)(1 + ε)n.
Hence, using the dominated convergence theorem in (3.1), we obtain

F(x + �) ∼ µ−1(1 − e−µ)R(x + �),

so F ∈ S� follows.
Now consider an arbitrary µ > 0. Then there exists an integer k = k(µ) > 0 such that

µk−1 < ln 2 and H ∈ L�. Again by the proof of Theorem 3 of Embrechts et al. (1979), we
know that H ∗k = G ∈ S�, giving H ∈ S�, by H ∈ L� and Corollary 2.1. The first part of
the proof (since µk−1 < ln 2) gives F ∈ S�.

3.2. The compound geometric process

Embrechts et al. (1979) pointed out that the compound geometric process could be rewritten
as a compound Poisson process, so a similar result should also hold for the compound geometric
process; we will state this without proof. Let F be a proper distribution. Assume that ν is the
geometric RV with parameter α and let W = F ∗ν be the compound geometric distribution

W(B) = (1 − α)

∞∑
n=0

αnF ∗n(B).

Theorem 3.3. Assume that T ≤ ∞, and if T < ∞ then assume that F ∈ L�. Then the
following assertions are equivalent:

(i) F ∈ S�,

(ii) W(x + �) ∼ α(1 − α)−1F(x + �).

Furthermore, if there exists an integer k = k(µ) > 0 such that 2k(1 − α) > 1 and
W ∗k−1 ∈ L�, then (i) and (ii) are equivalent to the following assertion:

(iii) W ∈ S�.

We should point out that, as in Theorem 3.2, the only new result in Theorem 3.3 is that
assertion (iii) implies assertion (i).

4. Applications to infinitely divisible laws

In this section, we will apply Theorem 3.2 to infinitely divisible laws to investigate the
local relations between the infinitely divisible subexponential law and the corresponding Lévy
measure.

The Laplace transform of an infinitely divisible law F can be expressed as
∫ ∞

0
e−λxF (dx) = exp

(
−aλ −

∫ ∞

0
(1 − e−λx)ν(dx)

)
.
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Here, a ≥ 0 is a constant and the Lévy measure ν is a Borel measure on (0, ∞) with the
properties µ = ν((1, ∞)) < ∞ and

∫ 1
0 xν(dx) < ∞. Put G(B) = ν(B ∩ (0, ∞))µ−1 and

F2(B) = e−µ
∞∑

n=0

µn

n! G∗n(B); (4.1)

then G and F2 are proper distributions, and F = F1 ∗ F2, where F1(x) = o(e−εx) for every
ε > 0 (see Feller (1971)).

Theorem 7 of Asmussen et al. (2003) discussed the relation between ν(x+�) and F(x+�).

Theorem 4.1. (Asmussen et al. (2003).) Assume that T ≤ ∞. Furthermore, if T < ∞ then
assume that G ∈ L�. Then the following assertions are equivalent:

(i) G ∈ S�,

(ii) ν(x + �) ∼ F(x + �).

When T = ∞, Theorem 4.1 reduces to part of Theorem 1 of Embrechts et al. (1979), and the
other equivalent condition is F ∈ S. Here, we give a local version of Theorem 1 of Embrechts
et al. (1979).

Theorem 4.2. Let the conditions of Theorem 4.1 be valid. Furthermore, if T < ∞ then
assume that there exists an integer k = k(µ) > 0 such that µk−1 < ln 2 and F ∗k−1

2 ∈ L�.
Then assertions (i) and (ii) and the following assertion are equivalent:

(iii) F ∈ S�.

To prove this theorem, we need the following lemma, which is a local version of Proposition 2
of Embrechts et al. (1979).

Lemma 4.1. Let F = F1 ∗ F2 be the convolution of two distributions F1 and F2. Assume
that F2 ∈ L� or 0 < F2(x + �) ↓ 0 for some T < ∞. Assume further that F1(x + �) =
o(1)F2(x + �). Then F ∈ S� ⇐⇒ F2 ∈ S�, and either F ∈ S� or F2 ∈ S� implies that
F(x + �) ∼ F2(x + �).

Proof. By Proposition 3 of Asmussen et al. (2003), we easily obtain F2 ∈ S� ⇒ F ∈ S�.
Now, we prove that F ∈ S� ⇒ F2 ∈ S�. By F ∈ S�, F1(x + �) = o(1)F2(x + �), and
Proposition 3 of Asmussen et al. (2003), we get F1 ∗F ∈ S� and F1 ∗F(x +�) ∼ F(x +�).
Take any h ∈ H�(F) ∩ H�(F2). Then, by F1 ∗ F(x + �) ∼ F(x + �), we have

F1 ∗ F(x + �) =
(∫ h(x)

0
+

∫ x

h(x)

)
F(x − y + �)F1(dy) +

∫ x+T

x

F (x − y + T )F1(dy)

∼ F(x + �) +
∫ x

h(x)

F (x − y + �)F1(dy);

hence ∫ x

h(x)

F (x − y + �)F1(dy) = o(1)F (x + �). (4.2)

If F2 ∈ L� then

F(x + �) ≥
∫ h(x)

0
F2(x − y + �)F1(dy) ∼ F2(x + �),
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giving

lim sup
x→∞

F2(x + �)

F(x + �)
≤ 1. (4.3)

If 0 < F2(x + �) ↓ 0, then (4.3) holds too.
Now we assume that F2(x + �) ∼ F(x + �) does not hold. Then, by (4.3), there exist

some ε, 0 < ε < 1
2 , and xn, satisfying 0 < xn ↑ ∞ as n → ∞, such that

lim
n→∞

F2(xn + �)

F(xn + �)
≤ 1 − 2ε. (4.4)

By F2 ∈ L� (or 0 < F2(x + �) ↓ 0), F ∈ S�, h ∈ H�(F2), (4.4), (4.3), and integration by
parts (see (2.4) and (2.5)), we know that, when n is sufficiently large,

1 = F(xn + �)

F(xn + �)

=
∫ h(xn)

0

F2(xn − y + �)

F(xn + �)
F1(dy) +

∫ xn−h(xn)

h(xn)

F2(xn − y + �)

F(xn + �)
F1(dy)

+
∫ xn

xn−h(xn)

F2(xn − y + �)

F(xn + �)
F1(dy) +

∫ xn+T

xn

F2(xn − y + T )

F (xn + �)
F1(dy)

≤ (1 − ε)F1(h(xn)) + (1 + ε)

∫ xn−h(xn)

h(xn)

F (xn − y + �)

F(xn + �)
F1(dy) + o(1).

Letting n → ∞ and using (4.2) leads to 1 ≤ 1 − ε.
Therefore, it must be true that F2(x + �) ∼ F(x + �) and F2 ∈ S�.

Proof of Theorem 4.2. By Proposition 3 of Asmussen et al. (2003), we find that assertion (i)
implies assertion (iii). Next, we go on to prove that assertion (iii) implies assertion (i). By
F1(x) = o(e−εx) and G ∈ L�, we have F1(x + �) ≤ F1(x) = o(G(x + �)) and, from this
together with (4.1), we know that F1(x + �) = o(F2(x + �)). Hence, F2 ∈ S� follows from
Lemma 4.1, F2 ∈ L�, and F ∈ S�. Then G ∈ S� follows by virtue of Theorem 3.2 and
F2 ∈ S�.
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