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Abstract
Several relational program logics have been introduced for integrating reasoning about relational prop-
erties of programs and measurement of quantitative difference between computational effects. Toward
a general framework for such logics, in this paper, we formalize the concept of quantitative difference
between computational effects as divergences on monads, then develop a relational program logic called
approximate computational relational logic (acRL for short). It supports generic computational effects and
divergences on them. The semantics of the acRL is given by graded strong relational liftings constructed
from divergences on monads. We derive two instantiations of the acRL: (1) for the verification of various
kinds of differential privacy of higher-order functional probabilistic programs and (2) the other for mea-
suring difference of distributions of cost between higher-order functional probabilistic programs with a
cost counting operator.

Keywords: Relational Hoare logics; graded monads; relational liftings

1. Introduction
Comparing behavior of programs is one of the fundamental activities in verification and analysis
of programs, and many concepts, techniques, and formal systems have been proposed for this
purpose, such as product program construction (Barthe et al., 2011, 2004; Zaks and Pnueli, 2008),
relational Hoare logic (Benton, 2004), higher-order relational refinement types (Barthe et al., 2015),
and so on.

Several recent relational program logics integrate compositional reasoning about relational
properties of programs and over-approximating quantitative differences between computational
effects of programs; the latter is done in the style of effect system (Lucassen and Gifford, 1988).
One successful logic of this kind is Barthe et al.’s approximate probabilistic relational Hoare logic
(apRHL for short) designed for verifying differential privacy of probabilistic programs (Barthe
et al., 2012). A judgment of apRHL is of the form c∼ε,δ c′ :�⇒� , and its intuitive meaning is
that for any pair of initial states (ρ, ρ′) related by �, the ε-distance between two probability dis-
tributions of final states [[c]]ρ and [[c′]]ρ′ is below δ, and final states are related by � . Another
relational program logic that measures differences between computational effects of programs
is Çiçek et al.’s RelCost (Çiçek et al., 2017). The target of the reasoning is a higher-order func-
tional programming language equipped with cost counting effect. When we derive a judgment
�;� ;� �M1 �M2 � n : � in RelCost, its sound semantics ensures that the difference of cost
counts byM1 andM2 is bound by n.
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A high-level view on these relational program logics is that they integrate the feature of measur-
ing quantitative differences between computational effects into relational program logic. We aim
to mathematically formulate this perspective in this paper. The central concept in our formula-
tion is a divergence on a monad. It specifies quantitative differences between computational effects
modeled by a monad, and it may be seen as a generalization of various statistical divergences,
such as the Kullback–Leibler divergence and the total variation distance, to general computa-
tional effects. We then present a construction of the semantics of a relational program logic
that integrates the measurement of quantitative differences between computational effects from
a divergence on a monad. This construction works with general monads and divergences on
them and can be applied to derive the semantics of the approximate relational program logic for
differential privacy as an instance. The detail of the development of our formulation is as follows:

• We introduce a structure called the divergence on a monad for measuring quantitative dif-
ferences between computational effects in Section 4. Divergences on monads are a mild
generalization of Barthe and Olmedo’s composable divergences on probability distributions,
such as the Kullback–Leibler divergence and the total variation distance on probability distri-
butions (Barthe and Olmedo, 2013). We visit examples of divergences on monads in Section
5 and give a method to transfer divergences on a monad to those on another monad through
monad opfunctors.

• We study mathematical aspects of divergences on monads in Section 6. We first reformulate
them as structures in the category of divergences. We show that divergences on monads can
be lifted to the category of divergences asmonads, and that these liftings yield relativemonads
corresponding to the original divergences on monads. We next introduce the concept of
generatedness of divergences on monads. It is a direct generalization of the same concept
studied for differential privacy by Balle et al. (2020).We then associate them to the concept of
quantitative equational theories studied byMardare et al. (2016).We show that unconditional
quantitative equational theories on a set X of variables bijectively correspond to X-generated
pseudometrics on free monads.

• The key structure to integrate divergences on monads and relational program logics is some-
thing called the graded strong relational liftings of amonad.We present a general construction
of such liftings from divergences on monads in Section 7. This construction makes it possible
to give semantics of relational program logics with quantitative measurement of differences
between computational effects for various monads and divergences on them.

• We introduce a generic relational program logic (called acRL) over Moggi’s computational
metalanguage (the simply typed lambda calculus with monadic types) in Section 8. Inside
acRL, we can use graded strong relational liftings constructed from divergences on a monad
and reason about relational properties of programs together with quantitative differences
of computational effects. To illustrate how the reasoning works in acRL, we instantiate it
with the computational metalanguage having effectful operations for continuous random
sampling (Section 9) and cost counting operation (Section 10).

2. Preliminaries
We assume basic knowledge about category theory (Mac Lane, 1998) and Moggi’s model of com-
putational effects (Moggi, 1991). The definition of monad (Mac Lane, 1998, Chapter VI) and
Kleisli category (Mac Lane, 1998, Section VI.5) are omitted.

In this paper, a Cartesian category (CC for short) is specified by a categoryC with a designated
terminal object 1 and a binary product functor (× ) : C2→C. The associated pairing operation
and projection morphisms are denoted by 〈−,−〉, π1, π2, respectively. The unique morphism to
the terminal object is denoted by !I : I→ 1. A Cartesian closed category (CCC for short) is a
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CC (C, 1, (× )) with a specified exponential functor (⇒ ) : Cop ×C→C. The associated eval-
uation morphism and currying operation is denoted by ev, λ(− ), respectively. There are plenty
of examples of C(C)Cs. For the models of probabilistic computation, we will use the CCMeas of
measurable spaces and the CCCQBS of quasi-Borel spaces (Heunen et al., 2017), which we briefly
recall in Section 2.1.

Let (C, 1, (× )) be a CC. A global element of I ∈C is a morphism of type 1→ I. For a category
C, we define the functor UC :C→ Set by UC =C(1,−). When C is obvious, UC is denoted by
U. Morphisms in C act on global elements by the composition. To emphasize this action, we
introduce a dedicated notation ( • ) whose type is C(I, J)×UI→UJ. Of course, f • x� f ◦ x=
(Uf )(x). We also define the partial application of a binary morphism f : I × J→K to a global
element i ∈UI by fi � f ◦ 〈i◦!J , idJ〉 : J→K. When C is a CCC, there is an evident isomorphism
�−
: U(I⇒ J)∼=C(I, J). We write �−� for its inverse.

A monad (T, η,μ) on a category C determines the operation (− )� :C(I, TJ)→C(TI, TJ)
called Kleisli extension. It is defined by f � �μJ ◦ Tf . A monad may be equivalently given by a
Kleisli triple (Moggi, 1991, Definition 1.2) that axiomatizes the triple (T, η, (− )�). A strong monad
on a CC (C, 1, (× )) is a pair of a monad (T, η,μ) and a natural transformation θI,J : I × TJ→
T(I × J) called strength. It should satisfy four axioms; see (Moggi, 1991, Definition 3.2) for detail.

A Cartesian category with a strong monad (CC-SM for short) is a pair of a CC and a strong
monad on it. A Cartesian closed category with a strong monad (CCC-SM for short) is similarly
defined. In a CC-SM (C, 1, (× ), T, η,μ, θ), the application of the strength to a global element can
be expressed by the unit and the Kleisli extension of T (Moggi, 1991, Proof of Proposition 3.4):

θI,J • 〈i, c〉 = ((ηI×J)i)� • c (i ∈UI, c ∈U(TJ)). (1)

We will use this fact in Proposition 7, Proposition 17, and Theorem 39.

2.1 Measurable spaces and quasi-Borel spaces
Measurable spaces. For the treatment of continuous probability distributions, we employ the
category Meas of measurable spaces and measurable functions. For a measurable space I, we
write |I| and �I for the underlying set and σ -algebra of I, respectively. The category Meas is a
(well-pointed) CC, and it has all small limits and small colimits that are strictly preserved by the
forgetful functor |−| : Meas→ Set, which is naturally isomorphic to the global element functor
Meas(1,−).
Standard Borel spaces. A standard Borel space is a special measurable space (|�|,��) whose σ -
algebra�� is the coarsest one including the topology σ� of a Polish space (|�|, σ�). In particular,
the real line R forms a standard Borel space. In fact, a measurable space � is standard Borel if
and only if there are γ : �→R and γ ′ : R→� in Meas forming a section–retraction pair, that
is, γ ′ ◦ γ = id�. For example, [0, 1], [0,∞], N, and Rk (k ∈N) are standard Borel.

TheGirymonad. We recall the GirymonadG (Giry, 1982). For everymeasurable space I,GI is the
measurable space given by the following data: the underlying set |GI| is the set of all probability
measures over I, and the σ -algebra is the coarsest one induced by functions evA : |GI|→ [0, 1]
(A ∈�X) defined by evA(μ)=μ(A). The unit ηI : I→GI assigns to each x ∈ I the Dirac measure
dx centered at x. For every f : I→GJ, the Kleisli extension f � : GI→GJ is given by (f �(μ))(A)=∫
x f (x)(A) dμ(x) for each μ ∈GI. By Gs, we mean the subprobabilistic variant of G (called sub-
Giry monad), where the underlying set |GsI| of GsI is relaxed to the set of subprobaility measures
over I.

The Giry monad G (resp. the sub-Giry monad Gs) carries a (commutative) strength θI,J : I ×
GJ→G(I × J) over the CC (Meas, 1, (× )). It computes the product of measures ((x,μ) �→ dx ⊗
μ). Therefore, (Meas,G) and (Meas,Gs) are (well-pointed) CC-SMs.

https://doi.org/10.1017/S0960129523000245 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000245


430 T. Sato and S. Katsumata

Quasi-Borel spaces. The category Meas is not suitable for the semantics of higher-order pro-
gramming languages since it is not Cartesian closed (Aumann, 1961)1. For the treatment of
higher-order probabilistic programs with continuous distributions, we employ the Cartesian
closed categoryQBS of quasi-Borel spaces and morphisms between them, together with the prob-
ability monad P on QBS (Heunen et al., 2017). A quasi-Borel space is a pair I = (|I|,MI) of a set
|I| and a subsetMI of the function space R⇒|I| satisfying

(1) for α ∈MI and a measurable function f : R→R, α ◦ f ∈MI .
(2) for any x ∈ I, (λr ∈R.x) ∈MI .
(3) for all P : R→N and a family {αi}i∈N of functions αi ∈MI , (λr ∈R.αP(r)(r)) ∈MI .

A morphism f : (|I|,MI)→ (|J|,MJ) is a function f : |I|→ |J| such that f ◦ α ∈MJ holds for all
α ∈MI . The categoryQBS is a (well-pointed) CCC and has all countable products and coproducts
that are strictly preserved by the forgetful functor |−| : QBS→ Set. It is naturally isomorphic to
the global element functorQBS(1,−).
Connection to measurable spaces: An adjunction We can convert measurable spaces and quasi-
Borel spaces using an adjunction L�K : Meas→QBS. They are given by:

LI � (|I|, {U ⊆ |I| | ∀α ∈MX .α−1(I) ∈�R}) Lf � f
KI � (|I|,Meas(R, I)) Kf � f

For any standard Borel space � ∈Meas, we have LK�=�. The right adjoint K is full-faithful
when restricted to the standard Borel spaces (Heunen et al., 2017, Proposition 15-(2)). The
right adjoint K preserves countable coproducts and function spaces (if exists) of standard Borel
spaces (Heunen et al., 2017, Proposition 19).

Probability Measures and the Probability Monad. A probability measure on a quasi-Borel space I
is a pair (α,μ) ∈MI ×GR. We introduce an equivalence relation ∼I over probability measures
on I by:

(α,μ)∼I (β , ν) ⇐⇒ μ(α−1(− ))= ν(β−1(− )).
Using this, we introduce a probability monad P onQBS as follows:

• On objects, we define P :Obj(QBS)→Obj(QBS) by

|P(I)|� (MI ×GR)/∼I , MP(I) � {λr.[(α, g(r))]∼I | α ∈MI , g ∈Meas(R,GR)}.
• The unit is defined by ηI(x)� [λr.x,μ]∼I for an arbitrary μ ∈GR.
• The Kleisli extension of f : I→ P(J) is defined by f �[α,μ]∼I � [β , g�μ] where there are β ∈
MJ and g ∈Meas(R,GR) satisfying f ◦ α = λr ∈R.[β , g(r)]∼J by definition ofMP(J).

The monad P is (commutative) strong with respect to the C(C)C (QBS, 1, (× )).

2.2 Category of binary relations
We define the category BRel(C) of binary relations over C-objects. This category is equivalent
to subscones of C2 (Mitchell and Scedrov, 1992). It offers an underlying category for relational
reasoning about programs interpreted in C.

• An object in BRel(C) is a triple (I1, I2, R) where R⊆UI1 ×UI2.
• A morphism from (I1, I2, R) to (J1, J2, S) in BRel(C) is a pair ofC-morphisms f1 : I1→ J1 and
f2 : I2→ J2 such that for any (i1, i2) ∈ R, we have (f1 • i1, f2 • i2) ∈ S.
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When X is a name of a BRel(C)-object, by X1, X2 we mean its first and second component, and
by RX we mean its third component, so X= (X1, X2, RX). By (x1, x2) ∈ X, we mean (x1, x2) ∈ RX .
For objects X, Y ∈ BRel(C) and a morphism (f1, f2) : (X1, X2)→ (Y1, Y2) in C2, by

(f1, f2) : X →̇ Y
we mean that (f1, f2) ∈ BRel(C)(X, Y), that is, for any (x1, x2) ∈ X, we have (f1 • x1, f2 • x2) ∈ Y .
We say that X ∈ BRel(C) is an endorelation (over I) if X1 = X2(= I).

We next define the forgetful functor pC : BRel(C)→C2 by:

pCX� (X1, X2), pC(f1, f2)� (f1, f2).
For (I1, I2) ∈C2, by BRel(C)(I1,I2) we mean the complete boolean algebra {X ∈ BRel(C) | X1 =
I1 ∧ X2 = I2} with the order given by X ≤ Y ⇐⇒ RX ⊆ RY .

When C is a C(C)C, so is BRel(C) (Mitchell and Scedrov, 1992, Proposition 4.3). We specify
a terminal object, a binary product functor and an exponential functor (in case C is a CCC) on
BRel(C) by:

1̇� (1, 1, {(id1, id1)})
X ×̇ Y � (X1 × Y1, X2 × Y2, {(〈x1, y1〉, 〈x2, y2〉) | (x1, x2) ∈ X, (y1, y2) ∈ Y})
X ⇒̇ Y � (X1⇒ Y1, X2⇒ Y2, {(f1, f2) | ∀(x1, x2) ∈ X . (ev ◦ 〈f1, x1〉, ev ◦ 〈f2, x2〉) ∈ Y}).

3. Divergences on Objects
We introduce the concept of divergence on objects in a CC C. Major differences between diver-
gences and metrics are threefold: (1) divergences are defined over objects in C, (2) no axiom is
imposed on divergences, and (3) divergences take values in a partially ordered monoid called
divergence domain, which we define below.

Definition 1. A divergence domain Q= (Q,≤, 0, (+ )) is a partially ordered commutative
monoid whose poset part is a complete lattice.

The monoid addition (+ ) is only required to be monotone; no interaction with the sup/inf is
required. We reserve the letter Q to denote a general divergence domain. Examples of divergence
domains are as follows:

N = (N∪ {∞},≤, 0, (+ )), R+ = ([0,∞],≤, 0, (+ )),
R× = ([0,∞],≤, 1, (× )), R+

1 = ([0,∞],≤, 0, λ(p, q) . p+ q+ pq),
Z = (Z∪ {∞,−∞},≤, 0, ( +̄ )), R = ([−∞,∞],≤, 0, ( +̄ ))

Here, +̄ is an extension of the addition by r +̄ (−∞)= (−∞) +̄ r=−∞.

Definition 2. Let C be a CC. A Q-divergence on an object I ∈C is a function d : (UI)2→Q. For
two Q-divergences d, d′ on I, by d�I d′, we mean ∀x1, x2 ∈UI . d′(x1, x2)≤ d(x1, x2).

The binary relation �I is a partial order on the set of Q-divergences on I.
A suitable notion of morphism betweenC-objects with divergences is nonexpansive morphism.

Definition 3. Let C be a CC. We define the category DivQ(C) of Q-divergences on C-objects and
nonexpansive morphisms between them by the following data.

• An object is a pair (I, d) of an object I ∈C and a Q-divergence d on I.
• A morphism from (I, d) to (J, e) is a C-morphism f : I→ J such that for any x1, x2 ∈UI,
e(f • x1, f • x2)≤ d(x1, x2) holds.
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For an object X ∈DivQ(C), by dX we mean its Q-divergence part. We also define the forgetful
functor VQ,C :DivQ(C)→C by VQ,C(I, d)� I and VQ,C(f )� f .

We remark that the forgetful functor VQ,Set :DivQ(Set)→ Set is a (Grothendieck) fibration,
and the functor U : DivQ(C)→DivQ(Set) defined by U(I, d)� (UI, d) and U(f )� f makes the
following commutative square a pullback in CAT (the large category of categories and functors
between them):

DivQ(C)

VQ,C
��

��
U �� DivQ(Set)

VQ,Set
��

C
U

�� Set

Therefore, this pullback diagram asserts that VQ,C :DivQ(C)→C arises from the change-of-base
(Jacobs, 1999, Lemma 1.5.1) of the fibration VQ,Set along the global section functor U :C→ Set.

4. Divergences on Monads
We introduce the concept of divergence on monad as a quantitative measure of difference between
computational effects. This mildly generalizes Barthe and Olmedo’s composable divergences on
probability distributions (Barthe and Olmedo, 2013). Divergences on monads are defined upon
two extra data called grading monoid and basic endorelation.

Definition 4. A grading monoid is a partially ordered monoid (M,≤, 1, ( · )).

Definition 5. A basic endorelation is a functor E : C→ BRel(C) such that for each I ∈C, EI is an
endorelation.

Grading monoids will be used when formulating (ε, δ)-differential privacy as a divergence on
a monad. Basic endorelations specify which global elements are regarded as identical. Any CC C

has at least two basic endorelations given by equality relations and total relations:

Eq I � (I, I, {(i, i) | i ∈UI}) Top I � (I, I,UI ×UI).

Other examples of basic endorelations can be found in concrete categories.

• The category DivQ(C) of Q-divergences on C-objects has a basic relation Eδ parameterized
by δ ∈Q. It collects all pairs of global elements whose divergence is bound by δ. That is,
Eδ(I, d)� ((I, d), (I, d), {(x1, x2) | d(x1, x2)≤ δ}).

• The category Pre of preorders and monotone functions has the basic endorelation Eeq
collecting equivalent global elements: Eeq(I,≤ )� ((I,≤ ), (I,≤ ), {(x, y) | x≤ y∧ y≤ x}).

Definition 6. Let (C, 1, (× ), T, η,μ, θ) be a CC-SM, Q= (Q,≤, 0, (+ )) be a divergence domain,
(M,≤, 1, ( · )) be a grading monoid and E : C→ BRel(C) be a basic endorelation. An E-relative
M-graded Q-divergence (when M= 1, we drop “M-graded”) on the monad T is a doubly indexed
family of Q-divergences�= {�m

I : (U(TI))2→Q}m∈M,I∈C satisfying the following conditions:

• (Monotonicity) For any m≤m′ in M and I ∈C,

�m
I �TI �

m′
I (see Definition 2 for �).
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• (E-unit reflexivity) For any I ∈C,

sup
(x1,x2)∈EI

�1
I (ηI • x1, ηI • x2)≤ 0.

• (E-composability) For any m1,m2 ∈M, I, J ∈C, c1, c2 ∈U(TI) and f1, f2 : I→ TJ,

�
m1·m2
J (f �1 • c1, f �2 • c2)≤�m1

I (c1, c2)+ sup
(x1,x2)∈EI

�
m2
J (f1 • x1, f2 • x2).

We write Div(T, E,M,Q) for the collection of E-relative M-graded Q-divergences on T. We intro-
duce a partial order � (reusing the notation for the partial order between divergences in Definition
2) on Div(T, E,M,Q) by:

�1 ��2 ⇐⇒ ∀m ∈M, I ∈C . (�1)mI �TI (�2)mI .

The E-composability condition is a generalization of the composability of differential privacy
stated as Theorem 1 in Barthe and Olmedo (2013). What is new in the present paper is that 1)
we introduce a condition on the monad unit (E-unit reflexivity), and that 2) the sup computed in
E-unit reflexivity and E-composability scans global elements related by E, while Barthe and
Olmedo (2013) only considers the case where E= Eq. We will later show that both E-unit reflex-
ivity and E-composability play an important role when connecting divergences, relational liftings
of T, and the monad structure of T – these conditions are necessary and sufficient to construct
strong graded relational liftings of T satisfying fundamental property with respect to divergences
(Proposition 2).

We end this section by stating an interaction between the strength of T and divergences on T.

Proposition 7. Let (C, T) be a CC-SM, E :C→ BRel(C) be a basic endorelation, (M,≤, 1, ( · ))
be a grading monoid, and Q be a divergence domain. Suppose also that EI ×̇ EJ ≤ E(I × J) holds
for all I, J ∈C. Then each divergence� ∈Div(T, E,M,Q) satisfies: for all m ∈M, (x1, x2) ∈ EI and
c1, c2 ∈U(TJ),

�m
I×J(θI,J • 〈x1, c1〉, θI,J • 〈x2, c2〉)≤�m

J (c1, c2).

5. Examples of Divergences on Monads
5.1 Cost difference for deterministic computations
We introduce examples of divergence on the cost count monad T �N×− on Set (which is iso-
morphic to the writer monad over a single alphabet {∗}). The divergence is inspired by the work
on relational cost analysis (Çiçek et al., 2017; Radiček et al., 2017) measuring the difference of
costs between two programs by subtraction. Through these examples we also discuss the roles of
the E-unit reflexivity and E-composability conditions.

The unit and Kleisli extension of the cost count monad T are defined by:

ηI(x)� (0, x) f �(i, x)� (i+ π1(f (x)), π2(f (x))) (x ∈ I, i ∈N, f : I→ TJ).
This monad T can be used to record the cost incurred by deterministic computations. For
instance, consider the quicksort algorithm qsort and the insertion sort algorithm isort, both of
which are modified so that they tick a count whenever they compare two elements to be sorted.
These two modified sort programs are interpreted as functions [[qsort]], [[isort]] : N∗ → T(N∗) so
that the first component of [[qsort]](x) and that of [[isort]](x) report the number of comparisons
performed during sorting x.

We first define an N -divergence CI on TI, for each I ∈ Set, by:

CI((i, x), (j, y))� |i− j|.
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Table 1. (1-graded) Top-relativeQ-divergences for cost counting monads

� ∈ Div(T, Top, 1,Q) T Q Definition of�I(c1, c2)

C N×− N CI((i, x), (j, y))= |i− j|
NCI P(N×−) Z NCII(A, B)= sup(i,x)∈A,(j,y)∈B i− j
NC P(N×−) N NCI(A, B)= sup(i,x)∈A,(j,y)∈B |i− j|

This divergence CI computes the difference of costs between two computations (i, x), (j, y) ∈ TI,
ignoring their return values. The family C= CI I∈Set forms a Top-relativeN -divergence on T. The
Top-unit reflexivity of Cmeans that the difference of costs between pure computations is zero:

CI(ηI(x), ηI(y))= CI((0, x), (0, y))= 0.

The Top-composability of C says that we can limit the cost difference of two runs of programs
f �(i, x) and g�(j, y) by the sum of cost difference of the preceding computations (i, x), (j, y) and
that of two programs f , g : I→ TJ. The latter is measured by taking the sup of cost difference of
f (x) and g(y), where (x, y) range over the basic correlation Top I.

CJ(f �(i, x), g�(j, y))= CJ((i+ π1(f (x)), π2(f (x))), (j+ π1(g(y)), π2(g(y))))
≤ |i− j| + sup

x,y∈I
|π1(f (x))− π1(g(y))|

= CI((i, x), (j, y))+ sup
(x,y)∈Top I

CJ(f (x), g(y)).

We remark that C is not an Eq-relative N -divergence on T because the Eq-composability
fails: If I = {x, y, z}, J = {v,w} and f : I→ CJ is defined by f (x)= (0,w), f (y)= (1,w) and
f (z)= (0, v), then we have CI((0, x), (0, y))= 0 and sup(x,y)∈Eq I CJ(f (x), f (y))= 0, but we have
CJ(f �(0, x), f �(0, y))= CJ((0,w), (1,w))= 1.

Alternatively, we may consider the following N -divergence C′I on TI for each I ∈ Set:

C′I((i, x), (j, y))�
{
|i− j| x= y
∞ x �= y

.

This divergence is sensitive on return values of computations. When return values of two compu-
tations agree, C′ measures the cost difference as done in C, but when they do not agree, the cost
difference is judged as∞. This divergence is an Eq-relative N -divergence on T.

5.2 Cost difference for nondeterministic computations
We may model the cost counting effect and nondeterministic choice by the monad P(N×−) on
Set, where P is the powerset monad. We extend the divergence on the cost count monad in the
previous section to this combined monad as follows. For two results of nondeterministic compu-
tations A, B ∈ P(N× I) with cost counting effects, the least upper bound of the difference i− j for
all possible choices of (i, x) ∈A and (j, y) ∈ B forms the divergence on P(N×−):

NCII(A, B)� sup
(i,x)∈A,(j,y)∈B

i− j.

If either A or B is empty, we fail to get an information of costs. We then have NCII(A, B)=−∞.
Similary, we can define the divergence NC in Table 1 measuring the absolute difference of costs.
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5.3 Divergences for differential privacy
Differential privacy (DP for short) is a quantitative definition of privacy of randomized queries in
databases. DP is based on the idea of noise-adding anonymization against background knowledge
attacks. In the study of DP, a query is modeled by a measurable function c : I→GJ, where I and
J are measurable spaces of inputs and outputs, respectively, and GJ is the measurable space of all
probability measures over J; here, G itself refers to the Giry monad (Giry, 1982); see also Section
2.1).

Definition 8. Differential privacy, (Dwork et al., 2006). Let c : I→GJ be a morphism in Meas,
representing a randomized query. The query c satisfies (ε, δ)-differential privacy (ε, δ ≥ 0 are reals)
if for any adjacent datasets (d1, d2) ∈ Radj2, the following holds

∀S⊆measurable J. Pr [c(d1) ∈ S]≤ exp (ε) Pr [c(d2) ∈ S]+ δ.

To express this definition in terms of divergence on monad, we introduce a doubly indexed
family of R+-divergence DP= {DPεJ }ε∈[0,∞],J∈Meas on GJ by:

DPεJ (μ1,μ2)� sup
S∈�J

(μ1(S)− exp (ε)μ2(S)) (μ1,μ2 ∈GJ).

Then the query c : I→GJ satisfies (ε, δ)-DP if and only if

∀(d1, d2) ∈ Radj . DPεJ (c(d1), c(d2))≤ δ.
The pair (ε, δ) indicates the difference between output probability distributions c(d1) and c(d2) of
the query c for given datasets d1 and d2. Intuitively, the parameter ε is an upper bound of the ratio
Pr [c(d1)= s]/ Pr [c(d2)= s] of probabilities which indicates the leakage of privacy. If ε is large,
attackers can distinguish the datasets d1 and d2 from the outputs of the query c. The parameter δ
is the probability of failure of privacy protection.

The family DP forms an Eq-relative R+-graded R+-divergence on the Giry monad G (Sato
et al., 2019, Lemma 6). This is proved by extending the composability of the divergence for DP on
discrete probability distributions shown as Lemmas 3 and 6 in Barthe et al. (2012) and Proposition
5 in Barthe and Olmedo (2013), based on the composition theorem of DP (Dwork and Roth, 2013,
Section 3.5).

The conditions in Definition 6 on DP corresponds to the following basic properties of DP:

• (monotonicity) The monotonicity of DP corresponds to weakening the differential privacy
of queries: if c satisfies (ε, δ)-DP and ε≤ ε′ and δ ≤ δ′ holds, then c satisfies (ε′, δ′)-DP.

• (Eq-unit reflexivity) The Eq-unit reflexivity of DP implies DP0J (ηJ ◦ h(x), ηJ ◦ h(x))= 0
for any measurable function h : I→ J and x ∈ I. This, together with the composability
below, ensures the robustness of DP of a query c : I→GJ with respect to deterministic
postprocessing:

∀h : J→K . c is (ε, δ)-DP =⇒ Gh ◦ c is (ε, δ)-DP. (2)

In fact, the divergence DP is reflexive: we have DP0J (μ,μ)= 0 for every μ ∈GJ. Therefore,
h : J→K and Gh in (2) can be replaced by h : J→GK and h�; the replaced condition states
the robustness of DP of a query with respect to probabilistic postprocessing.

• (Eq-composability) The Eq-composability of DP corresponds to the known property of
DP called the sequential composition theorem (Dwork and Roth, 2013). If c1 : I→GJ′ and
c2 : J′ →GJ are (ε1, δ1)-DP and (ε2, δ2)-DP, respectively, then the sequential composition
c�2 ◦ c1 : I→GJ of the queries c1 and c2 is (ε1 + ε2, δ1 + δ2)-DP.
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A non-example: Pointwise differential privacy. We stated above that a parameter (ε, δ) of DP
intuitively gives an upper bound of the probability ratio Pr [c(d1)= s]/ Pr [c(d2)= s] and the
probability of failure of privacy protection. However, strictly speaking, there is a gap between
the definition of (ε, δ)-DP and this intuition of ε and δ. Pointwise differential privacy in Prasad
and Smith (2014, Definition 3.2) and Hall (2012, Proposition 1.2.3) is a finer definition of DP that
is faithful to this intuition.

Definition 9. A measurable function c : I→GJ (regarded as a query) is pointwise (ε, δ)-
differentially private if whenever d1 and d2 are adjacent, there exists a measurable subset A ∈�J
satisfying Pr [c(d1) /∈A]≤ δ and the following inequality:

∀s ∈A. Pr [c(d1)= s]≤ exp (ε) Pr [c(d2)= s],

which is equivalent to3

∀S⊆measurable A. Pr [c(d1) ∈ S]≤ exp (ε) Pr [c(d2) ∈ S].

To express this definition in terms of divergence on monad, we introduce a doubly indexed
family of R+-divergences pwDP= {pwDPεJ}ε∈R+,J∈Meas called pointwise indistinguishability:

pwDPεJ (μ1,μ2)� inf
{
μ1(J \A) |A ∈�X ∧ (∀S ∈�J .S⊆A =⇒ μ1(S)≤ exp (ε)μ2(S))

}
.

Then, c : I→GJ is pointwise (ε, δ)-differentially private if and only if

∀(d1, d2) ∈ Radj . pwDPεJ (c(d1), c(d2))≤ δ.
The family pwDP is obviously reflexive: pwDPεJ (μ,μ)= 0 holds for any μ ∈GJ and ε≥ 0.

Hence, it is Eq-unit reflexive. However, it is not Eq-composable. We let I = {0, 1, 2} and J = {0, 1}
be discrete spaces, and let α = exp (ε). We define two probability distributions μ1,μ2 ∈GI by:

μ1 �
1
10

d0 + 9
10

d1, μ2 �
9

10α
d1 +

(
1− 9

10α

)
d2.

We then have pwDPεI (μ1,μ2)= 1/10 with A= {1, 2} because

μ1({0})= 1
10
> exp (ε) · 0 = exp (ε)μ2({0}),

μ1({1})= 9
10
≤ exp (ε) · 9

10α
= exp (ε)μ2({1}),

μ1({2})= 0 ≤ exp (ε) · (1− 9
10α

) = exp (ε)μ2({2}).
Next, we define f : I→GJ by:

f (0)� 1
10

d0 + 9
10

d1, f (1)� 9
10

d0 + 1
10

d1, f (2)� d1.

We then have

f �(μ1)= 82
100

d0 + 18
100

d1, f �(μ2)= 81
100α

d0 +
(
100α− 90+ 9

100α

)
d1.

Hence, we obtain pwDPεJ (f �(μ1), f �(μ2))= 82/100 with A= {1} because

f �(μ1)({0})= 82
100

> exp (ε) · 81
100α

= exp (ε)f �(μ2)({0}),

f �(μ1)({1})= 18
100

≤ exp (ε) ·
(
100α− 90+ 9

100α

)
= exp (ε)f �(μ2)({1}).
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Table 2. Eq -relativeM-gradedQ- (Qs-)divergences on G (Gs)

� M Q Qs Definition of�m
I (μ1,μ2) Composability proof

DP R+ R+ R+ supS∈�I (μ1(S)− exp (ε)μ2(S)) Barthe and Olmedo (2013)
αRe 1 R+ R 1

α−1 log
∫
I

(
μ1(x)
μ2(x)

)α
μ2(x) dx. Mironov (2017)

zCDP R+ R+ R sup1<α
1
α
(αReI(μ1,μ2)−m) Bun and Steinke (2016)

wtCDP 1 R+ R sup1<α<w
1
α
(αReI(μ1,μ2)) Bun et al. (2018)

Table 3. Statistical divergences that are Eq -relativeQ- (resp.Qs-) divergences on G (resp. Gs)

Name � Q Qs Definition of�m
I (μ1,μ2)

Total variation distance TV R+ R+ 1
2
∫
I |μ1(x)−μ2(x)| dx

Kullback–Leibler divergence KL R+ ?
∫
I μ1(x) log

(
μ1(x)
μ2(x)

)
dx

Hellinger distance HD R+ ? 1
2
∫
I

(√
μ1(x)−

√
μ2(x)

)2
dx

χ2-divergence Chi R+
1 ?

∫
I
(μ1(x)−μ2(x))2

μ2(x)
dx

By the reflexivity of pwDP, we have sup(x,y)∈Eq I pwDP0J (f (x), f (y))= 0. Therefore, we have
obtained a counterexample to the Eq-composability of pwDP:

pwDPεJ (f
�(μ1), f �(μ2))= 82

100
>

1
10
= pwDPεI (μ1,μ2)+ sup

(x,y)∈Eq I
pwDP0J (f (x), f (y)).

Various relaxations of differential privacy. Since the seminal work on DP by Dwork et al. (2006),
various relaxations of differential privacy have been proposed: Rényi DP (Mironov, 2017), zero-
concentrated DP (Bun and Steinke, 2016), and truncated zero-concentrated DP (Bun et al., 2018).
They give tighter bounds of differential privacy. These relaxations of differential privacy can be
expressed by suitable divergences on the Giry monad G and sub-Giry monad Gs; see Table 2 for
their definitions. Therefore, α,w ∈ (1,∞) are nongrading parameters for Re and tCDP. Each row
of the table represents that� is an Eq -relativeQ- (resp.Qs-) divergences on G (resp. Gs), and the
definition of�I(μ1,μ2) follows.

5.4 Statistical divergences and composablity of f -divergences
Apart from differential privacy, various distances between (sub-)probability distributions are
introduced in probability theory. They are called statistical divergences. Examples include total
variation distance TV, Hellinger distance HD, Kullback–Leibler divergence KL, and χ2-divergence
Chi; they are defined in Table 3. These statistical divergences are Eq-relative divergences on the
Giry monadG (andGs for TV); see the same table for their divergence domains. Questionmarks in
the column of Qs means that we do not know with which monoid structure the Eq-composability
holds.We remark that these divergences are also reflexive, that is,�(c, c)= 0. Eq-composability of
these divergences in discrete form are proved in Barthe and Olmedo (2013) and Olmedo (2014).
Later, Sato et al. (2019) extends their results to the composability of divergences in continuous
form.

Each of four divergences in Table 3 can be expressed as an f -divergence fDiv (Csiszár, 1963,
1967; Morimoto, 1963):

fDivI(μ1,μ2)�
∫
I
μ2(x)f

(
μ1(x)
μ2(x)

)
dx.

Here, f is a parameter called weight function and has to be a convex function f : [0,∞)→R,
continuous at 0 and satisfying limx→+0 xf (x)= 0. To support general μ1,μ2 ∈GsI, we suppose
af (0/a)= af ∗(0) for a ∈ [0,∞) where f ∗(0)� limx→∞ f (x)/x (see also Liese and Vajda (2006,
Definition 2)). Weight functions for four divergences TV, KL,HD, Chi are in Table 4. In fact, DPε
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Table 4. Parameters for Proposition 10
fDiv Weight function f γ α β β ′

TV f (t)= |t− 1|/2 0 0 1 0

KL f (t)= f log (t)− t+ 1 0 −1 1 1

HD f (t)= (√t− 1)2/2 0 −1/4 1/2 1/2

Chi f (t)= (t− 1)2 1 −2 2 2

is also an f -divergence with weight function f (t)=max (0, t− exp (ε)); see Barthe and Olmedo
(2013, Proposition 2). We also remark that Rényi divergence αRe of order α is the logarithm of
the f -divergence with weight function f (t)= tα .

f -divergences have several nice properties such as reflexivity, postprocessing inequality,
joint-convexity, duality, and continuity (Csiszár, 1967; Liese and Vajda, 2006). However, the
Eq-composability of f -divergences is not guaranteed in general. Here, we provide a sufficient
condition for the Eq-composability of fDiv over a specific form of divergence domain.

Proposition 10. Let γ ≥ 0 be a nonnegative real number, R+
γ = ([0,∞],≤, 0, λ(p, q) . p+ q+

γ pq) be the divergence domain, and f be a weight function such that f ≥ 0 and f (1)= 0. If there
exists α, β , β ′ ∈R such that, for all x, y, z,w ∈ [0, 1], the following hold

0≤ (β ′z+ (1− β ′)x)+ γ xf (z/x)
xyf
(
zw/xy

)≤ (βw+ (1− β)y)xf (z/x)+ (β ′z+ (1− β ′)x)yf (w/y)
+ γ xyf (z/x) f (w/y)+ α(x− z)(w− y),

then fDiv is an Eq -relative R+
γ -divergence on the Giry monad G. When α= 0 and β , β ′ ∈ [0, 1],

G can be replaced with the sub-Giry monad Gs.

The proof of this proposition generalizes and integrates the proofs given in Olmedo (2014,
Section 5.A.2). This proposition is applicable to prove the composability of divergences in Table 3
by choosing suitable parameters; see Table 4.

5.5 Divergences on the probability monad on QBS via monad opfunctors.
We have seen various divergences on the Giry monad G. It would be nice if they are transferred
to the probability monad P on QBS (Section 2.1). For this, we first develop a generic method for
transferring divergences on monads.

Let (C, S) and (D, T) be two CC-SMs. A monad opfunctor (Street, 1972, Section 4) is a func-
tor p : C→D together with a natural transformation λ : p ◦ S→ T ◦ p making the following
diagrams commute:

p

p◦ηS
��

ηT◦p

���
��

��
��

�� p ◦ S ◦ S λ◦S ��

p◦μS

��

T ◦ p ◦ S T◦λ �� T ◦ T ◦ p
μT◦p
��

p ◦ S
λ

�� T ◦ p p ◦ S
λ

�� T ◦ p

Proposition 11. Let (C, S), (D, T) be two CC-SMs, (p : C→D, λ : p ◦ S→ T ◦ p) be a monad
opfunctor and assume that UD ◦ p=UC holds, and basic endorelations F : C→ BRel(C)
and E : D→ BRel(D) satisfy RFpI = REI for all I ∈C (we here use UD ◦ p=UC). Then for
any � ∈Div(T, E,M,Q), the following doubly indexed family of Q-divergences 〈p, λ〉∗�=
{(〈p, λ〉∗�)mI }m∈M,I∈C on SI is an F-relative M-graded Q-divergence on S:

(〈p, λ〉∗�)mI (ν1, ν2)��m
pI(λI • ν1, λI • ν2)=�m

pI((U
DλI)(ν1), (UDλI)(ν2)).
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The left adjoint L : QBS→Meas of the adjunction L�K : Meas→QBS and the natural trans-
formation l : LP⇒GL defined by lX([α,μ]∼X )=μ(α−1(− )) forms a monad opfunctor from the
probability monad P on QBS to the Giry monad G on Meas (Heunen et al., 2017, Prop. 22 (3)).
Through this monad opfunctor (L, l), we can convert Eq -divergences on G to those on P. This
conversion can be applied to all the statistical divergences in Table 2 and 3.

In addition, for any standard Borel space, we can view such converted divergences 〈L, l〉∗�
as the same thing as the original �. When � ∈Meas is standard Borel, we have an equality
LK�=�, and lK� is an isomorphism. Therefore, we obtain an isomorphism lK� : LPK�∼=
GLK�=G� (Heunen et al., 2017, Prop. 22 (4)). A concrete description of its inverse is l−1K� •
μ= [γ ′,μ(γ−1(− ))]∼K� , where γ ′ : R→� and γ : �→R are a section–retraction pair (i.e.
γ ′ ◦ γ = id�) that exists for any standard Borel�.

Theorem 12. For any� ∈Div(G, Eq,Q,M) and standard Borel� ∈Meas,

(〈p, λ〉∗�)L,lm K�(l−1K� •μ1, l−1K� •μ2)=�m
�(μ1,μ2) (μ1,μ2 ∈U(G�)).

5.6 Divergences on state monads
The state monad TS � S⇒ (−×S) with a state space S is used to represent programs that update
the state.We construct divergences on TS using divergences dS on the state space S in several ways.

5.6.1 Lipschitz constant on states
We first consider the state monad TS on Set. We also consider a function dS : S2→ [0,∞] sat-
isfying dS(s, s)= 0. The following R×-divergence �lip,dS

I (f1, f2) on TSI measures how much the
function pair (π2 ◦ f1, π2 ◦ f2) extends the distance between two states before updated. In short,
�lip,dS measures the Lipschitz constant on state transformers.

Proposition 13. The family�lip,dS = {�lip,dS
I }I∈Set of R×-divergences on TSI defined by:

�
lip,dS
I (f1, f2)� sup

s1,s2∈S
dS(π2(f1(s1)), π2(f2(s2)))

dS(s1, s2)
(f1, f2 ∈ TSI, we suppose 0/0= 1)

is a Top-relative R×-divergence on TS.

For state transformers f1, f2 ∈ TSI, their state-updating part is given as functions π2 ◦ f1, π2 ◦
f2 ∈ S⇒ S. When f1 = f2 = g,�lip,dS

I (g, g) is exactly the Lipschitz constant of π2 ◦ g.
5.6.2 Distance between state transformers with the same inputs
Suppose that the function dS also satisfies the triangle inequality. The following R+-divergence
�
met,dS
I (f1, f2) on TSI estimates the distance between updated states after the state transformers f1

and f2 are applied to the same input.

Proposition 14. Suppose that the function dS also satisfy the triangle inequality. The family
�met,dS = {�met,dS

I }I∈Set of R+-divergences on TSI defined by:

�
met,dS
I (f1, f2)�

⎧⎪⎨⎪⎩
sups∈SdS(π2(f1(s)), π2(f2(s))) π1 ◦ f1 = π1 ◦ f2 and

π2 ◦ f1, π2 ◦ f2 : nonexpansive
∞ otherwise

is an Eq -relative R+-divergence on TS.
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5.6.3 Sup-metric on the state monad on the category of generalized ultrametric spaces
The category Gum of generalized ([0, 1]-valued) ultrametric spaces4 and nonexpansive functions
is Cartesian closed (Rutten, 1996, Section 2.2). We consider the state monad TS = S⇒ (−×S) on
Gum for a fixed space (S, dS) ∈Gum. From the definition of exponential objects inGum, TS(I, dI)
consists of the set of nonexpansive state transformers with the sup-metric between them. In fact,
the metric part of all TS(I, dI) forms a divergence on TS.

Proposition 15. The family {dTSI : (TS(I, dI))2→ [0, 1]}(I,dI)∈Gum consisting of the metric part of
the spaces TS(I, dI), given by:

dTSI(f1, f2)� sup
s∈S

max
(
dI(π1(f1(s)), π1(f2(s))), dS(π2(f1(s)), π2(f2(s)))

)
forms an Eq -relative ([0, 1],≤, max, 0)-divergence on TS.

In the category Gum, instead of Eq, there is another basic endorelation Dist0:

Dist0(I, dI)� {(x1, x2) | dI(x1, x2)= 0}.

By modifying the divergence dTS(−), we obtain a Dist0-relative ([0, 1],≤, max, 0)-divergence as
below:

Proposition 16. The following forms a Dist0-relative ([0, 1],≤, max, 0)-divergence on TS:

�
Dist0
(I,dI)(f1, f2)� sup

dS(s1,s2)=0
max (dS(π1(f1(s1)), π1(f2(s2))), dI(π2(f1(s1)), π2(f2(s2)))).

5.7 Combining divergence with cost
In Section 5.2, we have introduced divergences on the monad P(N×−) modeling nondetermin-
istic choice and cost counting. These divergences are based on the distance/subtractions of costs
represented by natural numbers. In this section, we provide an alternative divergences on the
combination of a general computational effect T and cost counting. The basic idea is the follow-
ing: given two computations c1, c2 ∈ T(N × I), we discard the value part of ci by Tπ1 : T(N × I)→
T(N) and measure their difference by the divergence assumed on T.

Let (C, T) be a CC-SM and � ∈Div(T, Eq, 1,Q) be a divergence and (N, 1N : 1→N, ( � ) :
N ×N→N) be a monoid object in C for cost counting. Then the composite T(N ×−) of the
monadT and themonoid actionmonadN × (− ) again carries amonad structure.We now define
a family C(�,N)= {C(�,N)I : (U(T(N × I)))2→Q}I∈C of Q-divergences by:

C(�,N)I(c1, c2)�
{
�N(Tπ1 • c1, Tπ1 • c2) �N×I(c1, c2)≤�N(Tπ1 • c1, Tπ1 • c2)
 Q otherwise

.

Proposition 17. The family C(�,N) is an Eq-relative Q-divergence on T(N ×−).

For example, the divergence C(KL,R) on the composite monad G(R×−) on Meas describes
Kullback–Leibler divergence between distributions of costs in the probabilistic computations with
real-valued costs. Intuitively, the side condition KLR×I(μ1,μ2)≤ KLR(Gπ1 •μ1,Gπ1 •μ2) in the
definition of C(KL,R) means that the difference between μ1 and μ2 lies only in the costs.
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5.8 Preorders onmonads
To explore the generality of our framework, we look at the case where the divergence domain is
B= ({0≥ 1}, 1,×); here, × is the numerical multiplication. We identify an indexed family �=
{�I : (U(TI))2→B}I∈C of B-divergences and a family of adjacency relations �̃(1)I � {(c1, c2) |
�I(c1, c2)≤ 1}I∈Set.

We point out a connection between Eq-relative B-divergences and preorders on monads stud-
ied in Katsumata and Sato (2013) and Sato (2014). A preorder on a monad T on Set assigns a
preorder#I on TI for each I ∈ Set, and this assignment satisfies:

• (Substitutivity) For any function f : I→ TJ and c1, c2 ∈ TI, c1 #I c2 implies f �(c1)#J f �(c2).
• (Congruence) For any function f1, f2 : I→ TJ, if f1(x)#J f2(x) holds for any x ∈ I, then
f �1 (c)#J f �2 (c) holds for any c ∈ TI.

Proposition 18. A preorder on a monad T on Set bijectively corresponds to an Eq-relative B-
divergence� on T such that each �̃(1)I is a preorder.

For a preorder # on a monad T on Set, by �# we mean the divergence corresponding to # by
Proposition 18 (in fact, we have �̃#(1)I =#I and �̃#(0)I = TI × TI for all set I).

6. Properties of Divergences on Monads
6.1 Divergences onmonads as structures in DivQ(C)
In this section, we examine divergences on monads from the view point of the monoidal structure
of DivQ(C). For any CC C, the category DivQ(C) has a symmetric monoidal structure, whose
unit and tensor product are given by:

I� (1, λ(x1, x2) . 0),
(I, d)⊗ (J, e)� (I × J, λ((x1, y1), (x2, y2)) . d(x1, x2)+ e(y1, y2)).

The coherence isomorphisms of this symmetric monoidal structure are inherited from the
Cartesian monoidal structure on C. Moreover, VQ,C :DivQ(C)→C becomes a symmetric strict
monoidal functor of type (DivQ(C), I, (⊗ ))→ (C, 1, (× )).

6.1.1 Enrichments of Kleisli categories induced by divergences
Let (C, T) be a CC-SM. We first show that a nongraded divergence on a monad T attaches a
DivQ(Set)-enrichment on the Kleisli category CT of T. Attaching an enrichment to an ordinary
category is formulated as follows.

Definition 19. A DivQ(Set)-enrichment of a category D is a family {dI,J :D(I, J)2→Q}I,J∈D of
Q-divergences on the homset D(I, J) such that the following inequalities hold

dI,I(idI , idI)≤ 0, (3)
dI,K(g1 ◦ f1, g2 ◦ f2)≤ dJ,K(g1, g2)+ dI,J(f1, f2). (4)

Such an enrichment determines a DivQ(Set)-enriched category Dd, whose object collection
and homobjects are given by:

Obj(Dd)�Obj(D), Dd(I, J)� (D(I, J), dI,J).

The identity and composition morphisms of Dd:

jI : I→Dd(I, I), mI,J,K :Dd(J,K)⊗Dd(I, J)→Dd(I,K)
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are inherited from D; they are guaranteed to be nonexpansive by conditions (3) and (4).
We characterizeDivQ(Set)-enrichments ofD asDivQ(Set)-enriched categories whose change-

of-enriching-category along VQ,Set coincides with D.

Proposition 20. Let D be a category. There is a bijective correspondence between 1) a DivQ(Set)-
enrichment {dI,J}I,J∈D of D and 2) a DivQ(Set)-enriched category E such that the change-of-
enriching-category of E by VQ,Set :DivQ(Set)→ Set is equal to D.

We relate conditions (3) and (4) with the unit reflexivity and composability conditions in the
definition of divergence on monad (Definition 6).

Theorem 21. Let (C, T) be a CC-SM, E :C→ BRel(C) be a basic endorelation such that RE1 �= ∅
5 , Q be a divergence domain and �= {�I : (U(TI))2→Q}I∈C be a family of Q-divergences on
TI. Define a family d� = {d�I,J :CT(I, J)2→Q}I,J∈C of Q-divergences on the homset CT(I, J) of the
Kleisli category CT by:

d�I,J(f1, f2)� sup
(x1,x2)∈EI

�J(f1 • x1, f2 • x2). (5)

Then d� is a DivQ(Set)-enrichment of CT if and only if� is an E-relative Q-divergence on T.

6.1.2 Internalizing divergences in DivQ(C)
We seek a further characterization of the Q-divergence (5) given to each homset of CT . Under a
strengthened assumption, we relate it with the closed structure with respect to the tensor product
ofDivQ(C). This allows us to internalize divergences on monads as structures in DivQ(C).

Let (C, T) be a CCC-SM and Q= (Q,≤, 0, (+ )) be a divergence domain whose monoid
operation (+ ) preserves the largest element  ∈Q, that is, x+ = . A consequence of this
strengthened assumption is the following:

Lemma 22. Let X ∈DivQ(C) be an object such that itsQ-divergence dX takes values in {0, }⊆Q.
Define a functor X� (− ) :DivQ(C)→DivQ(C)

X� Y � (VQ,CX⇒VQ,CY , dX�Y )
dX�Y (f1, f2)� sup

x1,x2∈U(VQ,CX),dX(x1,x2)=0
dY (�f1
 • x1, �f2
 • x2); (6)

here �−
 :U(I⇒ J)→C(I, J) is the bijection given in Section 2. Then it is a left adjoint to the
functor (− )⊗ X :DivQ(C)→DivQ(C) tensoring with X. Moreover, VQ,C :DivQ(C)→C is a
map of adjunction (Mac Lane, 1998, Section IV.7) in the following sense:

DivQ(C)
(−)⊗X ��

⊥��
X�(−)

VQ,C
��

DivQ(C)

VQ,C
��

C
(−)×VQ,CX ��

⊥��
VQ,CX⇒(−)

C

The Q-divergence dX�Y in (6) is similar to the sup part of the composability condition in
Definition 6.We exploit this similarity to express the unit reflexivity and composability conditions
of divergence on monad (Definition 6) using the internal hom functor X� (− ). First, we define
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the uncurried bind morphism ubI,J : TI × (I⇒ TJ)→ TJ by:

ubI,J � TI × (I⇒ TJ)
〈π2,π1〉 �� (I⇒ TJ)× TI

θI⇒TJ,I �� T((I⇒ TJ)× I) ev# �� TJ . (7)

Next, for a basic endorelation E :C→ BRel(C), we define the functor : EQC→DivQ(C) by:

EQI � (I, dEQI), EQf � f , where dEQI(x1, x2)�
{
0 (x1, x2) ∈ E
 (x1, x2) �∈ E.

Theorem 23. Let (C, T) be a CCC-SM, (M,≤, 1, ( · )) be a grading monoid, Q= (Q,≤, 0, (+ ))
be a divergence domain whose monoid operation (+ ) satisfies x+ = , and E :C→ BRel(C)
be a basic endorelation. Let �= {�m

I :U(TI)2→Q}m∈M,I∈C be a doubly indexed family of Q-
divergences on TI, regarded as a family of DivQ(C)-objects. Then

(1) � satisfies the E-unit reflexivity condition if and only if for any I ∈C, the following non-
expansivity holds on the global element �ηI� : 1→ I⇒ TI corresponding to the monad
unit:

�ηI� ∈DivQ(C)(I, EQI��1
I ).

(2) � satisfies the E-composablity condition if and only if for any I, J ∈C and m, n ∈M, the
following nonexpansivity holds on the uncurried bind morphism ubI,J : TI × (I⇒ TJ)→ TJ:

ubI,J ∈DivQ(C)(�m
I ⊗ (EQI��n

J ),�
m·n
J ).

Azevedo de Amorim et al. (2019) formalized families of composable divergences as param-
eterized assignments in weakly closed monoidal refinements. Roughly speaking, they adopted
the equivalence (2) of Theorem 23 as the definition of parameterized assignment. However,
divergence on monads and parameterized assignments are built on slightly different categori-
cal foundations, and their generalities are incomparable. Notable differences from parameterized
assignments are: 1) divergences on monads are defined with respect to basic endorelations, and 2)
the underlying category of divergences on monads is any CCs, while parameterized assignments
requires a closed structure on their underlying category.

6.1.3 Divergences onmonads and divergence liftings of monads
We next relate graded divergences on monads and monad-like structures on the category
DivQ(C) ofQ-divergences onC-objects.What wemean bymonad-like structures is graded diver-
gence liftings of monads on C, which we introduce below. It is a graded monad on DivQ(C)
(Katsumata, 2014; Smirnov, 2008) whose unit and multiplication are inherited from a monad
on C.

Definition 24. Let (C, T) be a CC-SM, (M,≤, 1, ( · )) be a grading monoid and Q be a diver-
gence domain. An M-graded Q-divergence lifting of T is a mapping Ṫ :M×Obj(DivQ(C))→
Obj(DivQ(C)) such that (below V stands for the forgetful functor VQ,C :DivQ(C)→C)

(1) V(ṪmX)= T(VX)
(2) m≤ n implies ṪmX �T(VX) ṪnX
(3) ηVX ∈DivQ(C)(X, Ṫ1X)
(4) μVX ∈DivQ(C)(Ṫm(ṪnX), Ṫ(m · n)X).
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Let E :C→ BRel(C) be a basic endorelation. We say that an M-graded Q-divergence lifting Ṫ of T
is E-strong if the strength θ of T satisfies

θVX,J ∈DivQ(C)(X⊗ Ṫm(EQJ), Ṫm(X⊗ EQJ)).

We write SGDLift(T, E,M,Q) for the collection of E-strong M-graded Q-divergence liftings of T.
We introduce a partial order � (reusing the notation for the partial order between divergences in
Definition 2) on SGDLift(T, E,M,Q) by:

Ṫ � Ṡ ⇐⇒ ∀m ∈M, X ∈DivQ(C) . ṪmX �T(VX) ṠmX.

We will later see a similar concept of strong graded relational lifting of monad in Definition 37.
Divergence liftings and relational liftings are actually instances of a common general definition of
strong graded lifting of monad (Katsumata, 2014), but in this paper we omit this general definition.

In the following theorem, we show that every divergence on a monad can be expressed as the
composite of a graded divergence lifting and the divergence corresponding to a basic endorelation.

Theorem 25. Let (C, T) be a CC-SM, (M,≤, 1, ( · )) be a grading monoid, Q be a divergence
domain, and E :C→ BRel(C) be a basic endorelation. For any � ∈Div(T, E,M,Q), define a
mapping [�] :M×Obj(DivQ(C))→Obj(DivQ(C)) by:

[�]mX � (TI, d[�]mX) (X= (I, d))

where

d[�]mX(c1, c2)� sup
J∈C,n∈M,f∈DivQ(C)(X,�n

J )
�m·n

J (f � • c1, f � • c2).

Then [�] is an M-graded Q-divergence lifting such that�m
I = [�]m(EQI).

When M= 1, Theorem 25 implies that the assignment I �→�I extends to the EQ-relative
monad [�]◦ : EQC→DivQ(C) in the sense of Altenkirch et al. (2015).

When we strengthen the assumptions on (C, T) and Q as done in Section 6.1.2, we obtain a
sharper correspondence between divergences on monads and strong graded divergence liftings of
monads.

Theorem 26. Let (C, T) be a CCC-SM, M be a grading monoid, Q be a divergence domain such
that (+ ) satisfies x+ = and E :C→ BRel(C) be a basic endorelation. Then there exists an
adjunction between partial orders:

(SGDLift(T, E,M,Q),� )
〈−〉 ��
⊥��
[−]

(Div(T, E,M,Q),� )

where 〈Ṫ〉mI � Ṫm(EQI).

6.2 Generation of divergences
It has been shown that DP can be interpreted as hypothesis testing (Kairouz et al., 2015;
Wasserman and Zhou, 2010). Given a query c : I→GJ and adjacent datasets (d1, d2) ∈ Radj ⊆ I2,
we consider the following hypothesis testing with the null and alternative hypotheses:

H0 : The output y comes from the dataset d1,
H1 : The output y comes from the dataset d2.
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For any rejection region S ∈�J , the Type I and Type II errors are then represented by Pr [c(d1) ∈
S] and Pr [c(d2) /∈ S], respectively. Kairouz et al. (2015) showed that c is (ε, δ)-DP if and only if for
any adjacent datasets (d1, d2) ∈ Radj ⊆ I2, the pair of Type I error and Type II error lands in the
privacy region R(ε, δ):

∀S ∈�J . ( Pr [c(d1) ∈ S], Pr [c(d2) /∈ S]) ∈ {(x, y) ∈ [0, 1]2|(1− x)≤ exp (ε)y+ δ}︸ ︷︷ ︸
�R(ε,δ)

.

They also showed that this is equivalent to the testing using probabilistic decision rules (Kairouz
et al., 2015, Corollary 2.3):

∀k : J→G{Acc, Rej} . ( Pr [k�c(d1)= Acc], Pr [k�c(d2)= Rej]) ∈ R(ε, δ).
Later Balle et al. (2020) generalized this probabilistic variant of hypothesis testing to gen-
eral statistical divergences and arrived at a notion of k-generatedness of statistical divergences
(k ∈N∪ {∞}). Following their generalization, we introduce the concept of �-generatedness of
divergences on monads.

Definition 27. Let � ∈C. A divergence � ∈Div(T, E,M,Q) is �-generated if for any m ∈M,
I ∈C and c1, c2 ∈U(TI),

�m
I (c1, c2)= sup

k : I→T�
�m
�(k

� • c1, k� • c2).

An equivalent definition of� ∈Div(T, E,M,Q) being �-generated is: the following holds for
anym ∈M, I ∈C, c1, c2 ∈U(TI), v ∈Q:

�m
I (c1, c2)≤ v ⇐⇒ ∀k : I→ T� . (k� • c1, k� • c2) ∈ �̃(m, v)�.

Here, �̃(m, v)� is the binary relation {(c1, c2) |�m
�(c1, c2)≤ v}; see also (14). For an �-generated

divergence �, its component �m
� at � is an essential part that determines all components �m

I of
�. When a divergence is shown to be �-generated, the calculation of the codensity lifting T[�]

given in Section 7 will be simplified (Section 7.1).
We illustrate �-generatedness of various divergences. First, we show the �-generatedness of

divergences on the Giry monad G in Tables 2 and 3.

• Divergence DP is generated over the two-point discrete space 2 (Balle et al., 2020, Section
B.7). The binary relation (D̃P(ε, δ)2) coincides with the privacy region R(ε, δ).

• Divergence TV is also generated over 2 (Balle et al., 2020, Section C.1).
• Divergences Reα , Chi, HD, and KL are generated over the countably infinite discrete space
N. In contrast, they are not N-generated for every finite discrete space N (Balle et al., 2020,
Sections B.5 and B.9).

On the sub-Giry monad Gs, the divergence DP is 1-generated, and the total variation distance TV
is 2-generated.

Proposition 28. The divergence DP ∈Div(Gs, Eq,R+,R+) is 1-generated.

Proposition 29. The divergence TV ∈Div(Gs, Eq, 1,R+) is not 1-generated but 2-generated.

�-Generatedness of preorders on monads. We relate �-generatedness of divergences and pre-
orders on monads studied in Katsumata and Sato (2013). Let T be a monad on Set and � be a
set. Katsumata and Sato (2013) introduced the concept of congruent and substitutive preorders on
T� as those satisfying:
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• (Substitutivity) For any function f : �→ T� and c1, c2 ∈ T�, c1 ≤ c2 implies f �(c1)≤ f �(c2).
• (Congruence) For any function f1, f2 : J→ T�, if f1(x)≤ f2(x) holds for any x ∈ J, then
f �1 (c)≤ f �2 (c) holds for any c ∈ T�.

For instance, any component of a preorder on T at� forms a congruent and substitutive preorder
on T�. We write CSPre(T,�) for the set of all congruent and substitutive preorders on T�, and
Pre(T) for the collection of all preorders on T. Katsumata and Sato (2013) gave a construction
[− ]� : CSPre(T,�)→ Pre(T) of preorders on T from congruent and substitutive preorders on
T�:

c1[≤ ]�J c2 ⇐⇒ ∀g : J→ T� . g�(c1)≤ g�(c2)

The constructed preorders on T are�-generated in the following sense:

Proposition 30. For any≤∈CSPre(T,�), the B-divergence�[≤]� corresponding to the preorder
[≤ ]� on T is�-generated (see Proposition 18 for the correspondence).

Applying this proposition, we can determine�-generatedness of preorders on monads:

• If the monad T has a rank α, the construction [− ]α is bijective (Katsumata and Sato, 2013,
Theorem 7). Hence for such a monad, each preorder on T corresponds to an α-generated
B-divergence.

• For the subprobability distribution monad Ds on Set, Sato (2014) identified all preorders
on Ds: there are 41 preorders on Ds. Among them, 25 preorders are 1-generated, while 16
preorders are 2-generated (Sato, 2014, Proposition 6.3).

6.3 An adjunction between quantitative equational theories and divergences
Mardare et al. (2016) introduced a concept of quantitative equational theory as an algebraic presen-
tation of monads on the category of pseudometric spaces. A quantitative equational theory is an
equational theory with indexed equations t=ε u having the axioms of pseudometric spaces, plus
suitable axioms reflecting properties of quantitative algebras. A quantitative equational theory
determines a pseudometric on the set of�-terms.

Consider a set� of function symbols of finite arity. If n is the arity of a function f ∈�, we write
f : n ∈�. Let� be a set of variables, and let T�� be the�-term algebra over�. For f : n ∈� and
t1, . . . , tn ∈ T��, we write f (t1, . . . , tn) for the term obtained by applying f to t1, . . . , tn. The
construction � �→ T�� forms a (strong) monad on Set whose unit is given by η�(x)= x, and
whose Kleisli extension h� : T�I→ T�� of function h : I→ T�� is given inductively by:

h�(x)� h(x), h�(f (t1, . . . , tn))� f (h�(t1), . . . , h�(tn)).

A substitution of �-terms over � is a function σ : �→ T��. For t ∈ T��, we call σ�(t) the
substitution of σ to t. We define the set of indexed equations of terms by:

V(T��)� {t=ε u | t, u ∈ T��, ε ∈Q+}.
Here, the index ε runs over nonnegative rational numbers. A conditional quantitative equation is
a judgment of the following form:

{ti =εi ui | i ∈ I} � t=ε u (I : countable, ti =εi ui, t=ε u ∈V(T��));

the left-hand side of turnstile (�) is called hypothesis and the right-hand side conclusion. By
E(T��), we mean the set of conditional quantitative equations. For any countable subset � of
V(T��) and any substitution σ : �→ T��, we define σ (�)� {σ�(t)=ε σ �(u) | t=ε u ∈ �}.
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∅ � t=0 t ∈U (Ref)
{t=ε u} � u=ε t ∈U (Sym)

{t=ε u, u=ε′ v} � t=ε+ε′ v ∈U (Tri)
∀ε′ ∈Q+ . {t=ε u} � t=ε+ε′ u ∈U (Max)

∀ε ∈Q+ .
{
t=ε′ u

∣∣ ε < ε′}� t=ε u ∈U (Arch)
∀f : n ∈� . {ti =ε ui | 1≤ i≤ n} � f (t1, . . . , tn)=ε f (u1, . . . , un) ∈U (Nonexp)
∀σ : �→ T�� . � � t=ε u ∈U =⇒ σ (�)� σ�(t)=ε σ �(u) ∈U (Subst)

�′ � t=ε u ∈U ∧ ∀ψ ∈ �′ . � �ψ ∈U =⇒ � � t=ε u ∈U (Cut)
t=ε u ∈ � =⇒ � � t=ε u ∈U (Assumpt)

Figure 1. Quantitative equational theory rules.

Definition 31. Quantitative Equational Theory (Mardare et al., 2016, Definition 2.1). A quanti-
tative equational theory (QET for short) of type � over � is a set U ⊆E(T��) closed under the
rules summarized as Figure 1. We writeQET(�,�) for the set of QETs of type� over�. We regard
it as a poset (QET(�,�),⊆ ) by the set inclusion order. Given a set U0 of conditional quantitative
equations of type � over�, by U0

QET(�,)
� we mean the least QET of type� over� including U0.

The goal of this section is to establish an adjunction between the poset of quantitative equa-
tional theories and the poset of pseudometrics6 on free-algebra monads on Set. More specifically,
we construct the following adjunction and isomorphism between posets:

(QET(�,�),⊆ ) (CSPMet(T� ,�),� )
U[−]

�� ⊥
��D[−] Gen ��∼= (PMet(T� ,�),� )

(−)�
�� , (8)

which are subsequently defined (Definition 32 for CSPMet, Definition 33 for PMet and equations
(9)–(12) for morphisms).

The poset in the middle is that of congruent and substitutive pseudometrics, which are a
quantitative analog of congruent and substitutive preorders appeared in Section 6.2.

Definition 32. Let T be a monad on Set and � ∈ Set. A congruent and substitutive pseudometric
(CS-PMet for short) on T� is a pseudometric d : (T�)2→R+ on T� satisfying

• (Substitutivity) For all functions f : �→ T� and c1, c2 ∈ T�, d(f �(c1), f �(c2))≤ d(c1, c2).
• (Congruence) For all sets I, functions f1, f2 : I→ T� and c ∈ TI, d(f �1 (c), f

�
2 (c))≤

supi∈I d(f1(i), f2(i)).

By CSPMet(T,�), we mean the set of CS-PMets on T�. We then make it into a poset
(CSPMet(T,�),� ) where� is the restriction of the partial order�T� in Definition 2 to CS-PMets.

Definition 33. Let T be a monad on Set and � ∈ Set. By PMet(T,�) we mean the collection of
�-generated Eq-relative R+-divergences � on T such that each component �I is a pseudometric.
We restrict the partial order � on Div(T, Eq, 1,R+) to PMet(T,�).

We next introduce monotone functions appearing in (8):

D[U](t, u)� inf
{
ε ∈Q+

∣∣ ∅ � t=ε u ∈U
}

(9)
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U[d]�
{∅ � t=ε u

∣∣ ε ∈Q+, d(t, u)≤ ε}QET(�,)
� (10)

Gen(d)I(c1, c2)� sup
k : I→T�

d(k�(c1), k�(c2)) (11)

(�)� ��� (12)

Proposition 34. The functions D[− ],U[− ], Gen, (− )� defined as (9)-(12) are all well-defined
monotone functions having types given in (8).

ThatD[U] is a pseudometric is shown in the beginning ofMardare et al. (2016, Section 5). Here,
we additionally show that it enjoys congruence and substitutivity of Definition 32. The function
Gen is taken from the right-hand side of the definition of �-generatedness (Definition 27). The
function (− )� simply extracts the� component of a given divergence.

Theorem 35. For any set � of function symbols with finite arity and set �, the following holds for
the monotone functions in (8):

(1) Gen is the inverse of (− )�.
(2) We have an adjunction U[− ]�D[− ] satisfying D[U[− ]]= id:

(QET(�,�),⊆ ) (CSPMet(T� ,�),� ).
U[−]

�� ⊥
��D[−]

(13)

Intuitively, the right adjoint D[− ] extracts the pseudometric on T�� from a given QET. The
left adjoint U[− ] constructs the least QET containing all information of a given pseudometric
on T��. The range of U[− ] is characterized as the set of unconditional QETs of type � over �
defined below (see also Mardare et al. (2017, Section 3)):

UQET(�,�)�
{
SQET(�,�)

∣∣∣ S⊆ {∅ � t=ε u | t, u ∈ T��, ε ∈Q+}
}
.

Therefore, the adjunction (13) cuts down to the following isomorphism between posets, stating
that unconditional QETs of type � over� are equivalent to�-generated pseudometrics on T� :

Theorem 36. (UQET(�,�),⊆ )∼= (CSPMet(T� ,�),� )∼= (PMet(T� ,�),� ).

7. Graded Strong Relational Liftings for Divergences
We have introduced the concept of divergence on monad for measuring quantitative difference
between two computational effects. To integrate this concept with relational program logic, we
employ a semantic structure called graded strong relational lifting of monad. It is introduced for
the semantics of approximate probabilistic relational Hoare logic for the verification of differential
privacy (Barthe et al., 2012), then later used in various program logics (Barthe et al., 2014, 2015;
Barthe and Olmedo, 2013; Sato, 2016; Sato et al., 2019). Independently, it is also introduced as a
semantic structure for effect system (Katsumata, 2014). Liftings introduced in the study of differ-
ential privacy are designed to satisfy a special property called fundamental property (Barthe et al.,
2012, Theorem 1): when we supply the equivalence relation to the lifting, it returns the adjacency
relation of the divergence. This special property is the key to express the differential privacy of
probabilistic programs in relational program logics.

In this paper, we present a general construction of graded strong relational liftings from
divergences on monads. First, we recall its definition (Gaboardi et al., 2021; Katsumata, 2014).
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Definition 37. Let (C, T) be a CC-SM and (M,≤, 1, ( · )) be a grading monoid. An M-graded
strong relational lifting Ṫ of T is a mapping Ṫ :M×Obj(BRel(C))→Obj(BRel(C)) satisfying the
following conditions:

(1) pC(ṪmX)= (TX1, TX2), and m≤m′ implies ṪmX ≤ Ṫm′X.
(2) (ηX1 , ηX2 ) : X →̇ Ṫ1(X).
(3) (f1, f2) : X →̇ Ṫm(Y) implies (f �1 , f

�
2 ) : Ṫm′X →̇ Ṫ(m ·m′)Y.

(4) (θX1,Y1 , θX2,Y2 ) : X ×̇ ṪmY →̇ Ṫm(X ×̇ Y).

Our interest is in the graded strong relational lifting that carries the information of a
given divergence � ∈Div(T, E,M,Q). We formulate such liftings by the following fundamental
property. First, we define the adjacency relation of� by:

�̃(m, v)I � (TI, TI, {(c1, c2) |�m
I (c1, c2)≤ v}) (m ∈M, v ∈Q, I ∈C). (14)

Remark that �̃ is monotone onm and v.

Definition 38. We say that an M×Q-graded strong relational lifting Ṫ of T satisfies the
fundamental property with respect to� ∈Div(T, E,M,Q) if the following holds

Ṫ(m, v)(EI)= �̃(m, v)I (m ∈M, v ∈Q, I ∈C).

Theorem 39. Let (C, T) be a CC-SM, (M,≤, 1, ( · )) be a grading monoid, Q= (Q,≤, 0, (+ )) be
a divergence domain and �= {�m

I : (U(TI))2→Q}m∈M,I∈C be a doubly indexed family of Q-
divergences on TI satisfying monotonicity on m (Definition 6). Define the following mapping T[�] :
(M×Q)×Obj(BRel(C))→Obj(BRel(C)):

T[�](m, v)X� (TX1, TX2, {(c1, c2) |∀I ∈C, n ∈M,w ∈Q, (k1, k2) : X →̇ �̃(n,w)I .

(k�1 • c1, k�2 • c2) ∈ �̃(m · n, v+w)I})

(1) The mapping T[�] is an M×Q-graded strong relational lifting of T.
(2) Let E :C→ BRel(C) be a basic endorelation. Then,

� is E-unit-reflexive ⇐⇒ ∀I ∈C, (m, v) ∈M×Q . T[�](m, v)(EI)≤ �̃(m, v)I (S)
� is E-composable ⇐⇒ ∀I ∈C, (m, v) ∈M×Q . T[�](m, v)(EI)≥ �̃(m, v)I. (C)

Intuitively, T[�] is a graded version of the codensity lifting (Katsumata et al., 2018) of T along
the specific fibration pC : BRel(C)→C2. We extend the codensity lifting with the grading mech-
anism in the same way as the graded  -lifting in Katsumata (2014). The graded codensity lifting
is also a generalization of the graded relational lifting for DP given in Sato (2016).
Proof. (Proof of (1)) Proving conditions 1–3 of graded strong relational lifting (Definition 37) are
routine generalization of Katsumata et al. (2018) and Katsumata (2014, Section 5); thus omitted
here (see Lemma 50 in appendix).

Condition 4 of Definition 37 needs a special attention because in general codensity lifting does
not automatically lift strength. The current setting works because of our particular choice of the
category of binary relations over C. We prove condition 4 as follows. Since fi • j= f • 〈i, j〉 holds
for any j ∈UJ, we have the equivalence:

(f , g) : X ×̇ Y →̇ Z ⇐⇒ ∀(x, x′) ∈ X, (y, y′) ∈ Y .(f • 〈x, y〉, g • 〈x′, y′〉) ∈ Z
⇐⇒ ∀(x, x′) ∈ X, (y, y′) ∈ Y .

((
fx
) • y, (gx′) • y′) ∈ Z

⇐⇒ ∀(x, x′) ∈ X.(fx, gx′) : Y →̇ Z.
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From this, condition 3 (law of graded Kleisli extension), and the equation (1) on the strength of a
CC-SM, we prove condition 4 from condition 2 (unit law): for allm ∈M and v ∈Q, we have

(ηX1×Y1 , ηX2×Y2 ) : X ×̇ Y →̇ T[�](1, 0)(X ×̇ Y)
⇐⇒ ∀(x, x′) ∈ X . ((ηX1×Y1 )x, (ηX2×Y2 )x′) : Y →̇ T[�](1, 0)(X ×̇ Y)
=⇒ ∀(x, x′) ∈ X . (((ηX1×Y1 )x)�, ((ηX2×Y2 )x′)�) : T[�](m, v)Y →̇ T[�](m, v)(X ×̇ Y)

⇐⇒
( ∀(x, x′) ∈ X, (c1, c2) ∈ T[�](m, v)Y .

(((ηX1×Y1 )x)� • c1, ((ηX2×Y2 )x′)� • c2) ∈ T[�](m, v)(X ×̇ Y)

)

⇐⇒
( ∀(x, x′) ∈ X, (c1, c2) ∈ T[�](m, v)Y .

(θX1,Y1 • 〈x, c1〉, θX2,Y2 • 〈x′, c2〉) ∈ T[�](m, v)(X ×̇ Y)

)
⇐⇒ ∀(x, x′) ∈ X . ((θX1,Y1 )x, (θX2,Y2 )x′) : T[�](m, v)Y →̇ T[�](m, v)(X ×̇ Y)
⇐⇒ (θX1,Y1 , θX2,Y2 ) : X ×̇ T[�](m, v)Y →̇ T[�](m, v)(X ×̇ Y).

(Proof of (2)-(S)) We show the equivalence of� being E-unit-reflexive and the implication:
∀I ∈C,m ∈M, v ∈Q, c, c′ ∈U(TI) .

(∀J ∈C,m′ ∈M, v′ ∈Q, (k, l) : EI →̇ �̃(m′, v′)J .�m·m′
J (k� • c, l� • c′)≤ v+ v′) (15)

=⇒ �m
I (c, c

′)≤ v.
We suppose that the above implication holds. We fix I ∈C. Let (i, j) ∈ EI. By instantiating the
whole implication withm= 1, v= 0, c= ηI • i, c′ = ηI • j, the middle part of (15) becomes

∀J ∈C,m′ ∈M, v′ ∈Q, (k, l) : EI →̇ �̃(m′, v′)J .�m′
J (k • i, l • j)≤ v′,

which is trivially true. Therefore, we conclude �m
I (ηI • i, ηI • j)≤ 0 for any (i, j) ∈ EI, that is, E-

unit reflexivity holds.
Conversely, we suppose that� satisfies the unit reflexivity. We take I,m, v, c, c′ of appropriate

type and assume the middle part of (15). By instantiating it with J = I,m′ = 1, v′ = 0, k= l= ηI ,
we conclude�m

I (c, c′)≤ v.
(Proof of (2)-(C)) We show the equivalence of � being E-composable and the implication

∀I ∈C,m ∈M, v ∈Q . �̃(m, v)I ≤ T[�](m, v)(EI) as follows:
∀I ∈C,m ∈M, v ∈Q . �̃(m, v)I ≤ T[�](m, v)(EI)

⇐⇒

⎛⎜⎜⎜⎜⎝
∀I ∈C,m ∈M, v ∈Q, c, c′ ∈U(TI) .

�m
I (c, c

′)≤ v =⇒
∀J ∈C,m′ ∈M, v′ ∈Q, (k, l) : EI →̇ �̃(m′, v′)J .

(k� • c, l� • c′) ∈ �̃(m ·m′, v+ v′)J

⎞⎟⎟⎟⎟⎠

⇐⇒
⎛⎜⎝ ∀I, J ∈C,m ∈M, v ∈Q, c, c′ ∈U(TI),m′ ∈M, v′ ∈Q, k, l ∈C(I, TJ) .

�m
I (c, c

′)≤ v =⇒
(∀(i, j) ∈ EI . (k • i, l • j) ∈ �̃(m′, v′)J) =⇒ �m·m′

J (k� • c, l� • c′)≤ v+ v′

⎞⎟⎠

⇐⇒
⎛⎜⎝ ∀I, J ∈C,m ∈M, v ∈Q, c, c′ ∈U(TI),m′ ∈M, v′ ∈Q, k, l ∈C(I, TJ) .

�m
I (c, c

′)≤ v =⇒
sup(i,j)∈EI �m′

J (k • i, l • j)≤ v′ =⇒ �m·m′
J (k� • c, l� • c′)≤ v+ v′

⎞⎟⎠
⇐⇒

( ∀I, J ∈C,m ∈M, c, c′ ∈U(TI),m′ ∈M, k, l ∈C(I, TJ) .

�m·m′
I (k� • c, l� • c′)≤�m

I(c,c′) + sup(i,j)∈EI �m′
J (k • i, l • j).

)
.
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The first two equivalences are obtained by expanding the definitions of BRel(C), T[�], and �̃, and
the last two equivalences hold because Q is a divergence domain.

The construction ofT[�] gives the greatest relational lifting ofT with the fundamental property.

Proposition 40. Let (C, T) be a CC-SM, E :C→ BRel(C) be a basic endorelation, (M,≤, 1, ( · ))
be a grading monoid, Q be a divergence domain,� ∈Div(T, E,M,Q) be a divergence, and Ṫ be an
M×Q-graded relational lifting satisfying the fundamental property with respect to�. Then, for all
m ∈M, q ∈Q, and X ∈ BRel(C), the following inequality holds

Ṫ(m, v)X ≤ T[�](m, v)X.

7.1 Simplifying codensity liftings by�-generatedness of divergences
We show that the calculation of the codensity lifting T[�] can be simplified when � is �-
generated. For an object I ∈C, we define T[�],I by:

(c1, c2) ∈ T[�],I(m, v)X

⇐⇒ ∀n,w, (k1, k2) : X →̇ �̃(n,w)I . (k�1 • c1, k�2 • c2) ∈ �̃(m · n, v+w)I.

The original calculation of T[�] is a large intersection T[�] =∧I∈C T[�],I where I runs over all
C-objects, while if� is�-generated, the parameter I can be fixed to�.

Proposition 41. For any�-generated divergence� ∈Div(T, E,M,Q), we have T[�] = T[�],�.

Proof. We show the equivalence T[�]X= T[�],�X for each X ∈ BRel(C).
(≤) Immediate from T[�] =∧I∈C T[�],I .
(≥) By the�-generatedness of�, for all I ∈C and c′1, c′2 ∈U(TI), we have

(c′1, c′2) ∈ �̃(m′, v′)I ⇐⇒ ∀k : I→ T� . (k� • c′1, k� • c′2) ∈ �̃(m′, v′)�
Therefore, for any (c2, c2) ∈U(TX1)×U(TX2), we have

(c1, c2) ∈ T[�],�X

⇐⇒ ∀n ∈M,w ∈Q, (k1, k2) : X →̇ �̃(n,w)� . (k�1 • c1, k�2 • c2) ∈ �̃(m · n, v+w)�

=⇒
( ∀I ∈C, n ∈M,w ∈Q, (l1, l2) : X →̇ �̃(n,w)I, k : I→ T� .

(k� ◦ l�1 • c1, k� ◦ l�2 • c2) ∈ �̃(m · n, v+w)�

)
⇐⇒ ∀I ∈C, n ∈M,w ∈Q, (l1, l2) : X →̇ �̃(n,w)I . (l�1 • c1, l�2 • c2) ∈ �̃(m · n, v+w)I
⇐⇒ (c1, c2) ∈ T[�]X.

This completes the proof.

For example, the generatedness of DP shown in Section 6.2 implies that G[DP] =G[DP],2 and
G[DP]
s =G[DP],1

s . In fact, the simplification G[DP,1]
s is equal to the (R+)2-graded relational lift-

ing G  s for DP given in Sato (2016, Section 2.2), which is defined by, for each (X1, X2, RX) ∈
BRel(Meas):

G  s (ε, δ)(X1, X2, RX)
� (Gs(X1),Gs(X2), {(ν1, ν2) | ∀A ∈�X1 , B ∈�X2 . RX(A)⊆ B =⇒ ν1(A)≤ exp (ε)ν2(B)+ δ}).

For detail, see the proof of equalities (†) and (‡) in the proof of Theorem 2.2 (iv) in Sato (2016).
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7.2 Two lifting approaches: Codensity and coupling
We briefly compare two lifting approaches: graded codensity lifting and coupling-based lifting,
and the latter of which is employed in Barthe et al. (2012), Barthe and Olmedo (2013), Barthe
et al. (2014), Barthe et al. (2015), and Sato et al. (2019).

We compare the role of the unit reflexivity and composability in each lifting approaches.
Consider the CCC-SM (Set,D), where D is the probability distribution monad. Given an
Eq-relativeM-graded Q-divergence� on D, the coupling-based graded lifting is defined by:

Ḋ�(m, v)X� (DX1,DX2, {(Dp1 •μ1,Dp2 •μ2) | (μ1,μ2) ∈ (DRX)2,�m
RX (μ1,μ2)≤ v}) (16)

where pi : RX→ Xi is the projection (i= 1, 2) from the binary relation. The pair (μ1,μ2) of
probability distributions collected in the right-hand side of (16) is called a coupling.

The fundamental property Ḋ�( Eq I)= �̃(m, v)I immediately follows from the definition of
Ḋ�, while the composability and unit reflexivity of� are used tomake Ḋ� a strongM×Q-graded
lifting (Barthe and Olmedo, 2013, Proposition 9). On the other hand, the codensity graded lifting
D[�] is always anM×Q-graded lifting; this does not rely on the unit reflexivity and composabil-
ity of � (Proposition 1). These properties are used to show that D[�] satisfies the fundamental
property (Proposition 2).

The coupling-based lifting (16) can be naturally generalized to any Set-monad T. However, at
this momen, we do not know how to generalize the coupling technique to any CC-SM (C, T). As
the prior study by Sato et al. (2019) pointed out, there is already a difficulty in extending it to the
CC-SM (Meas,G), where G is the Giry monad.

We illustrate how the problem arises. Let X ∈ BRel(Meas). We would like to pick two probabil-
ity measures over RX as couplings, but RX is merely a set. We therefore equip it with the subspace
σ -algebra of X1 × X2, and let HX be the derived measurable space (hence |HX| = RX). We write
pi :HX→ Xi for measurable projections (i= 1, 2). We then define a candidate M×Q-graded
lifting of G by:

Ġ(m, v)X= (GX1,GX2, {(Gp1 •μ1,Gp2 •μ2) | (μ1,μ2) ∈ (U(GHX))2,�m
HX (μ1,μ2)≤ v}).

We now verify that Ġ also lifts the Kleisli extension of G, that is,

(f , g) : Y →̇ Ġ(m′, v′)X =⇒ (f �, g�) : Ġ(m, v)Y→ Ġ(mm′, v+ v′)X.

Let (f , g) : Y →̇ Ġ(m′, v′)X be pair of measurable functions. Then for each (x, y) ∈ RY , we have
(f • x, g • y) ∈ RĠ(m,v)X . Therefore, there exists (μ

(x,y)
1 ,μ(x,y)

2 ) ∈ (UGHX)2 such that Gπ1 •μ(x,y)
1 =

f • x and Gπ2 •μ(x,y)
2 = g • y. Using the axiom of choice, we turn this relationship into functions

μ1,μ2 : RY →UGHX . If they weremeasurable functions of typeHY →GHX , then from the com-
posability of �, we would have �mm′

HX
(μ�1 •w1,μ�2 •w2)≤ v+ v′ for w1,w2 ∈U(GHY ) such that

�m′
HY

(w1,w2)≤ v′. This gives (f �, g�) : Ġ(m, v)Y →̇ Ġ(mm′, v+ v′)X. However, in general, ensur-
ing the measurability of μ1,μ2 is not possible, especially because they are picked up by the axiom
of choice. A solution given in Sato et al. (2019) is to use the category Span(Meas) of spans that
guarantees the existence of good measurable functions h1, h2 : HY →GHX .

8. Approximate Computational Relational Logic
We introduce a program logic called approximate computational relational logic (acRL for short).
It is a combination of Moggi’s computational metalanguage and a relational refinement type sys-
tem (Barthe et al., 2015). The strong graded relational lifting of a monad constructed from a
divergence will be used to relationally interpret monadic types, and gradings give upper bounds
of divergences between computational effects caused by two programs. acRL is similar to the
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Typ(B) & τ ::=b | 1 | τ × τ | 0 | τ + τ | τ ⇒ τ | Tτ (b ∈ B)

M::=x | o(M) | c(M) | () | (M,M) | π1(M) | π2(M) (o ∈Ov, c ∈Oe)
|ι1(M) | ι2(M) |M with ι1(x : τ ).M ι2(x : τ ).M
|(λx : τ .M) | (MM) | ret (M) | let x : τ =M inM

Figure 2. Syntax of types and raw terms of the computational metalanguage.

relational refinement type system HOARe2 (Barthe et al., 2015), which is designed for verify-
ing differential privacy of probabilistic programs. Compared to HOARe2, acRL supports general
monads and divergences, while it does not support dependent products nor nontermination.

The relational logic acRL adopts the extensional approach (Nielson and Nielson, 2007,
Chapter 9.2):

• Relational assertions between contexts� and� are defined as binary relations betweenU[[�]]
and U[[�]], or equivalently BRel(C)-objects φ such that pC(φ)= ([[�]], [[�]]). Logical con-
nectives and quantifications are defined as operations on such BRel(C)-objects. This is in
contrast to the standard design of logic where assertions are defined by a BNF.

• Let � �M : τ and ��N : σ be well-typed terms, φ be a relational assertion between
�,�, and ψ be an assertion between τ , σ . The main concern of acRL is the statement
“∀(γ , δ) ∈ φ.([[M]] • γ , [[N]] • δ) ∈ψ” (equivalently ([[M]], [[N]]) : φ →̇ψ). In this section,
this statement is denoted by φ � (M,M′) :ψ .

• Inference rules of the logic consists of the facts about the statement φ � (M,M′) :ψ . We
remark that in the standard logic, proving these facts corresponds to the soundness of
inference rules.

8.1 Moggi’s computational metalanguage
8.1.1 Syntax of the computational metalanguage
For the higher-order programming language, we adopt Moggi’s computational metalanguage
(Moggi, 1991). It is an extension of the simply typed lambda calculus with monadic types. For
a set B, we define the set Typ(B) of types over B by the first BNF in Figure 2. We then define the
set Typ1(B) of first-order types to be the subset of Typ(B) consisting only of b, 1,×,+.

We next introduce computational signatures for specifying constants in the computational met-
alanguage. A computational signature is a tuple (B,�v,�e) where B is a set of base types, and �v
and �e are functions whose range is Typ1(B)2. The domains of �v,�e are sets of value opera-
tion symbols and effectful operation symbols and are denoted by Ov and Oe, respectively. These
functions assign input and output types to these operations.

Fix a countably infinite set V of variables. A context is a function from a finite subset of V
to Typ(B); contexts are often denoted by capital Greek letters �,�. For contexts �,� such that
dom(�)∩ dom(�)=∅, by �,� we mean the join of � and�.

The set of raw terms is defined by the second BNF in Figure 2. The type system of the com-
putational metalanguage has judgments of the form � �M : τ , where � is a context, M is a raw
term, and τ is a type. It adopts the standard rules for products, coproducts, implications, and
monadic types; see for example, Moggi (1991). The typing rules for value operations and effectful
operations are given by:

o ∈Ov �v(o)= (b, b′) � �M : b
� � o(M) : b′

c ∈Oe �e(c)= (b, b′) � �M : b
� � c(M) : Tb′
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(1) (C, T) is a CCC-SM and C has finite coproducts.
(2) [[b]] ∈C for each b ∈ B
(3) [[o]] : [[b]]→ [[b′]] for each o ∈Ov such that�v(o)= (b, b′)
(4) [[c]] : [[b]]→ T[[b′]] for each c ∈Oe such that�e(c)= (b, b′)

Figure 3. Data for the categorical semantics of metalanguage.

A simultaneous substitution θ from � to �′ (written � � θ : �′) is a function θ from the set
dom(�′) to raw terms that assigns to each variable x ∈ dom(�′) a well-typed raw term � � θ(x) :
�′(x). The application of θ to a term �′ �M : τ is denoted byMθ , which has a typing � �Mθ : τ .
For disjoint contexts �i (i= 1, 2), we define the projection substitutions �1, �2 � π�1,�2i : �i by
π
�1,�2
i (x)= x.

8.1.2 Categorical semantics of the computational metalanguage
The interpretation of the computational metalanguage over a computational signature (B,�v,�e)
is given by the data specified by Figure 3.

We first inductively extend the interpretation of base types to all types using the bi-Cartesian
closed structure and the monad. Next, for each context �, we fix a product diagram ([[�]], {πx :
[[�]]→ [[�(x)]]}x∈dom(�)); when dom(�)= {x}, we assume that [[�]]= [[�(x)]] withπx = id. Lastly,
we interpret a typing derivation of � �M : τ as a morphism [[M]] : [[�]]→ [[τ ]] in the standard
way, using the interpretations of operations given in Figure 3. We further extend this to the
interpretation of each simultaneous substitution � � θ : �′ as a morphisms [[θ]] : [[�]]→ [[�′]].

8.2 Approximate relational computational logic
8.2.1 Relational logic in external form
A relational assertion φ between disjoint contexts � and� is a binary relation between U[[�]] and
U[[�]]. Such a relational assertion is denoted by �� � φ. We identify it as a BRel(C)-object φ such
that pC(φ)= ([[�]], [[�]]). Similarly, a relational assertion between types τ and σ is defined to be a
relational assertion u:τ

d:σ � φ; here u and d are reserved and fixed variables, respectively.
Relational assertions between contexts � and� carry a boolean algebra structure ∧,∨,¬ given

by the set-intersection, set-union, and set-complement (see the boolean algebra BRel(C)([[�]],[[�]])
in Section 2.2). The pseudo-complement φ⇒ψ is defined to be ¬φ ∨ψ . For �,x:τ�,y:σ � φ, by �� �
∀xy . φ and �� � ∃xy . φ we mean the relational assertions defined by the following equivalence:

(γ , δ) ∈ ∀xy . φ ⇐⇒∀γ ′ ∈U[[�, x : τ ]], δ′ ∈U[[�, y : σ ]] .
([[π�,x:τ1 ]] • γ ′ = γ )∧ ([[π�,y:σ

1 ]] • δ′ = δ)⇒ (γ ′, δ′) ∈ φ
(γ , δ) ∈ ∃xy . φ ⇐⇒∃γ ′ ∈U[[�, x : τ ]], δ′ ∈U[[�, y : σ ]] .

([[π�,x:τ1 ]] • γ ′ = γ )∧ ([[π�,y:σ
1 ]] • δ′ = δ)∧ (γ ′, δ′) ∈ φ

The boolean algebra structure and the above quantifier operations allow us to interpret first-
order logical formulas as relational assertions; we omit its detail here. In addition to these standard
logical connectives, we will use graded strong relational lifting T[�] to form relational assertions.
That is, for any basic endorelation E :C→ BRel(C), grading monoid M, divergence domain Q
and divergence� ∈Div(T, E,M,Q), we obtain a relational assertion u:Tτ

d:Tσ � T[�](m, v)φ from any
u:τ
d:σ � φ,m ∈M and v ∈Q.
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For substitutions � � θ : �′,�� θ ′ :�′ and an assertion �
� � φ, by �

′
�′ � φ[θ ;θ ′], we mean the

relational assertion {(γ , δ) | ([[θ]] • γ , [[θ ′]] • δ) ∈ φ}. For disjoint context pairs�, �′ and�,�′ and
relational assertions �� � φ and �′

�′ �ψ , by the juxtaposition �,�′
�,�′ � φ,ψ , we mean the relational

assertion �,�
′

�,�′ � φ[π�,�
′

1 ;π�,�′
1 ]∧ψ[π�,�′2 ;π�,�′

2 ].

8.2.2 Inference rules for acRL
For well-typed computational metalanguage terms � �M : τ and ��N : σ , and relational
assertions �� � φ and u:τ

d:σ �ψ , by the judgment:

φ � (M,N) : ψ
wemean the inclusion φ ⊆ψ[[M/u];[N/d]] of binary relations. This is equivalent to ([[M]], [[N]]) :
φ →̇ψ . We show basic facts about judgments φ � (M,N) : ψ .

Proposition 42. (1) φ � (M,N) : ψ and [[M]]= [[M′]] and [[N]]= [[N′]] implies
φ � (M′,N′) : ψ .

(2) φ � (M,N) : ψ and φ′ ⊆ φ and ψ ⊆ψ ′ implies φ′ � (M,N) : ψ ′.
(3) φ � (M,N) : T[�](m, v)ψ and m≤ n and v≤w and ψ ≤ψ ′

implies φ � (M,N) : T[�](n,w)ψ ′.
(4) φ � (M,N) : ψ implies φ � ( ret (M), ret (N)) : T[�](1, 0)ψ .
(5) φ � (M,N) : T[�](m, v)ψ and φ,ψ[[x/u];[x′/d]]� (M′,N′) : T[�](n,w)ρ

implies φ � ( let x=M inM′, let x′ =N inN′) : T[�](m · n, v ·w)ρ.

We next establish relational judgments on effectful operations. We present a convenient way
to establish such judgments using the fundamental property of the graded relational lifting T[�].

Proposition 43. For any c ∈Oe such that �e(c)= (b, b′), relational assertion u:b
d:b � φ and m ∈M,

putting v= sup{�m
[[b′]]([[c]] • x, [[c]] • y) | (x, y) ∈ φ}, we have φ � (c(u), c(d)) : T[�](m, v)(E[[b′]]).

Proof. Take an arbitrary pair (x, y) ∈ φ. We have �m
[[b′]]([[c]] • x, [[c]] • y)≤ v by definition of v.

Thanks to the fundamental property of T[�] (Theorem 39), it is equivalent to ([[c]] • x, [[c]] • y) ∈
T[�](m, v)(E[[b′]]).

9. Case Study I: Higher-Order Probabilistic Programs
We represent a higher-order probabilistic programming language with sampling commands from
continuous distributions as a computational metalanguage. For now, we assume that the language
supports sampling from Gaussian distributions and Laplace distributions. This computational
metalanguage is specified by the computational signature:

C = ({R},�v, {norm : (R× R, R), lap : (R× R, R)}),
where �v is some chosen signature for value operations over reals. We interpret this computa-
tional metalanguage by filling Figure 3 as follows:

(1) for the CCC-SM, we take (C, T)= (QBS, P) (see Section 2.1),
(2) for the interpretation [[R]] of R, we take the quasi-Borel space KR associated with the

standard Borel space R, where K : Meas→QBS is defined in Section 2.1,
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(3) the interpretation of value operations is given as expected (we omit it here); for example
when�v contains the real number addition operator+ as type (R× R, R), its interpretation
is the QBS morphism [[+ ]](x, y)= x+ y : [[R× R]]→ [[R]],

(4) for the interpretation of effectful operations, we put

[[norm]](x, σ )= [id,N (x, σ 2)]∼KR , [[lap]](x, λ)= [id, Lap(x, λ)]∼KR .

Here, N (x, σ 2) ∈GR is the Gaussian distribution with mean x and variance σ 2. Lap(x, λ) ∈GR
is the Laplacian distribution with mean x and variance 2λ2 7. Every probability (Borel-)measure
μ ∈GR on R can be converted to the probability measure [id,μ]∼KR ∈ PKR on the quasi-Borel
space KR (see Section 5.5).

9.1 A relational logic for differential privacy
To formulate differential privacy and its relaxations in the quasi-Borel setting, we convert statis-
tical divergences � on the Giry monad G in Table 2 to Eq -relative divergences 〈L, l〉∗� on the
probability monad P on QBS by the construction in Section 5.5. Then, we construct the graded
relational lifting P[〈L,l〉∗�] by Theorem 39. Using this, as an instantiation of acRL, we build a
relational logic reasoning about differential privacy and its relaxations, supporting higher-order
programs and continuous random samplings. Basic proof rules can be given by Proposition 42.

For effectful operations, we import basic proof rules on noise-adding mechanisms given in
prior studies (Bun et al., 2018; Dwork et al., 2006; Dwork and Roth, 2013; Mironov, 2017)
via Theorem 12 and Proposition 43. For example, consider the Eq-relative R+-graded R+-
divergence�= 〈L, l〉∗DP on P. Proposition 43 with an effectful operation c= lap and a relational
assertion (below we identify global elements in KR and real numbers):

u:R×R
d:R×R � φ = {(〈x, 1/ε〉, 〈y, 1/ε〉) | |x− y| ≤ 1},

together with Theorem 12 and the prior result (Dwork et al., 2006, Example 1) yields the following
judgment:

φ � (lap(u), lap) : (d)P[〈L,l〉∗DP](0, ε)( EqKR).
By letting diffr be the relational assertion u:R

d:R � {(x, y) | |x− y| ≤ r}, the above judgment is equiva-
lent to:

diff1 � (lap(u, 1/ε), lap(d, 1/ε))) : P[〈L,l〉∗DP](0, ε)( EqKR). (17)

This rule corresponds to the rule [LapGen] of the program logic apRHL+ (Barthe et al., 2017)
for differential privacy. For another example, by the reflexivity of DP, 〈L, l〉∗DP is also reflexive.
Hence, by letting succr be the relational assertion u:R

d:R � {(x, y) | y= x+ r}, we obtain the following
judgments:

succ1 � (lap(u, λ), lap(d, λ)) : P[〈L,l〉∗DP](0, 0)(succ1) (18)

succ1 � (norm(u, σ ), : norm(d, σ ))P[〈L,l〉∗DP](0, 0)(succ1). (19)

The judgment (18) corresponds to [LapNull] of apRHL+. Similarly, the following judgments about
the DP, Rényi-DP, and zero-concentrated DP of the Gaussian mechanism can be derived as (20)–
(22):

diff1 � (norm(u, σ ), norm(d, σ )) : P[〈L,l〉∗DP](ε, δ)( EqKR) (20)

diffr � (norm(u, σ ), norm(d, σ )) : P[〈L,l〉∗αRe](αr2/2σ 2)( EqKR) (21)

diffr � (norm(u, σ ), norm(d, σ )) : P[〈L,l〉∗zCDP](0, r2/2σ 2)( EqKR) (22)
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In (20), we require σ ≥max ((1+√3)/2,
√
2 log (0.66/δ)/ε). The derivation is done via

Proposition 43, Theorem 12, and prior studies (Bun and Steinke, 2016;Mironov, 2017; Sato, 2016).

10. Case Study II: Probabilistic Programs with Costs
We further extend the computational signature C in the previous section with an effectful oper-
ation tick such that �e(tick)= (R, 1). The intention of tick(r) is to increase cost counter by r
during execution8. To interpret this extended metalanguage, we fill Figure 3 as follows:

(1) for the CCC-SM, we take (C, T)= (QBS, Pc) where Pc � P(KR×−) is the monad for
modeling probabilistic choice and cost counting (see Section 5.7).

(2) interpretation of b ∈ B is the same as Section 9,
(3) interpretation of value operations is also the same as Section 9,
(4) for the interpretation of effectful operations, put

[[norm]](x, σ )= [(0, id),N (x, σ 2)]∼KR×KR ,
[[lap]](x, λ)= [(0, id), Lap(x, λ)]∼KR×KR ,
[[tick]](r)= ηPKR×[[1]](r, ∗)= [const(r, ∗),μ]∼KR×1 .

We derive a closed term ntick : R⇒ R⇒ T1 for ticking with a cost sampled from Gaussian
distribution:

ntick� (λs.λr. let x= in norm(r, s)tick(x)).
The term ntick s r adds cost counter by a random value sampled from the Gaussian distribution
norm(r, s2).

10.1 Relational reasoning on probabilistic costs
We convert the total valuation distance TV ∈Div(G, Eq, 1,R+) to the divergence �c �
C(〈L, l〉∗TV,KR) ∈Div(Pc, Eq, 1,R+) on Pc by Propositions 11 and 17. We also prove basic facts
on effectful operations. First, the following relational judgments on tick can be easily given:

 � (tick(u), tick(d)) : T[�c](1)( ) (23)
u= d � (tick(u), tick(d)) : T[�c](0)( )

Remark that Eq 1= and [[tick(0)]]= [[ ret ( ∗ )]] holds. Next, in the similar way as (18), by the
reflexivity of TV, we have the reflexivity of 〈L, l〉∗TV, and we obtain, for each real number constant
σ and λ:

succr � (norm(u, σ ), norm) : (d, σ )T[�c](0)(succr)
succr � (lap(u, λ), lap(d, λ)) : T[�c](0)(succr) (24)

We also directly verify the following judgment on ntick using Theorem 12 and Proposition 43:

diff1 � (ntick σ u, ntick σ d) : T[�c](Prr∼N (0,σ 2)[|r|< 0.5])( ). (25)

10.1.1 An example of relational reasoning
We give examples of verification of difference (of distributions) of costs between two runs of a
probabilistic program whose output and cost depend on the input. We consider the following
program:

M� λr : R. λt : R→ T1. let x= in lap(r, 5)let _= in t(r)ret (x− r).
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It first samples a real number x from the Laplacian distribution centered at the input r, call the
(possibly effectful) closure t with r and return x− r. Since the return type of t is T1, it can only
probabilistically tick the counter. We show that the following two judgments in acRL:

� (M 0 (λx.tick(x)),M 1 (λx.tick(x))) : T[�c](1)( Eq [[R]]), (A)
� (M 0 (ntick(2)),M 1 (ntick(2))) : T[�c](0.20)( Eq [[R]]) (B)

In judgment (A), we pass the tick operation t= λx.tick(x) itself to M 0 and M 1. By the fun-
damental property of T[�c], the difference of costs between two runs of M 0 t and M 1 t is 1,
because each of these programs reports cost 0 and 1 deterministically. In contrast, in judgment
(B), we pass toM 0 andM 1 the probabilistic tick function t′ = ntick(2) that ticks a real number
sampled from the Gaussian distribution with variance 22 = 4. Therefore, the cost reported by the
runs of programsM 0 t′ andM 1 t′ follow the Gaussian distributionsN (0, 4) andN (1, 4), whose
difference by TV is bounded by 0.20.

We first show (A). By (23) and 2 of Proposition 42, we have

succ1 � (tick(u), tick(d)) : T[�c](1)( ). (26)
By (26), and 4, 5 of Proposition 42, we obtain

succ1 �( let _= in tick(u)ret (u),
let _= in tick(d)ret (d− 1)) : T[�c](1)( Eq [[R]]). (27)

By (24), (27), and 1 and 5 of Proposition 42 again, we conclude (A).
To show (B), it suffices to replace (26) by the following judgment proved by (25), the inequality

Prr∼N (0,4) [|r|< 0.5]≤ 0.20 and 2 of Proposition 42:

succ1 � (ntick 2 u, ntick 2 d) : T[�c](0.20)( ).
The rest of proof is the same as (A).

11. Related Work
This work is inspired by relational Hoare logics for verifying differential privacy of probabilistic
programs, as summarized in Table 5. Composable divergences employed in these logics include
the one for the standard DP, plus its recent relaxations, such as, Rényi DP, zero-concentrated DP,
and truncated-concentrated DP (Bun et al., 2018; Bun and Steinke, 2016; Mironov, 2017).

The key semantic structure in these logics is graded relational liftings of the probability distri-
bution monad. Barthe et al. gave a graded relational lifting of the probability distribution monad
based on couplings (Barthe et al., 2012). Since then, coupling-based liftings have been refined and
used in several works (Barthe et al., 2014, 2016; Barthe and Olmedo, 2013; Sato et al., 2019). They
can be systematically constructed from composable divergences on the probability distribution
monad (Barthe and Olmedo, 2013). One advantage of coupling-based liftings is that, to relate two
probability distributions, it suffices to exhibit a coupling; this is exploited in themechanized verifi-
cation of differential privacy of programs (Albarghouthi and Hsu, 2018a,b). These coupling-based

Table 5. Relational Hoare logics for verifying divergences

Work Monad Relation Lifting method Supported divergences

Barthe et al. (2014, 2016, 2012) Dist BRel(Set) Coupling DP

Barthe and Olmedo (2013) Dist BRel(Set) Coupling f -Divergences

Sato (2016) Giry BRel(Meas) Codensity DP

Sato et al. (2019) Giry Span(Meas) Coupling Composable ones

This work Generic BRel(C) Codensity Composable ones

https://doi.org/10.1017/S0960129523000245 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000245


Mathematical Structures in Computer Science 459

liftings, however, are developed upon discrete probability distributions, and measure-theoretic
probability distributions, such as Gaussian or Cauchy distributions, were not supported until the
work by Sato et al. (2019).

The relational Hoare logic for differential privacy that supports sampling from continuous
probability measures is given in the study by Sato (2016). In his work, the graded relational lifting
for (ε, δ)-DP is constructed by a technique called codensity lifting (Katsumata et al., 2018), which
does not rely on the existence of coupling. It has been an open question (Sato et al., 2019, Section
VIII) how to extend the codensity lifting technique to support various relaxations of differential
privacy. Theorem 39 of this paper answers to this question. Later, coupling-based liftings has also
been extended to support sampling from continuous probability measures (Sato et al., 2019). This
extension is achieved by redefining binary relations as spans of measurable functions. Comparison
of these approaches is in Section 7.2.

Verification of differential privacy in functional programming languages has also been pur-
sued (Azevedo de Amorim et al., 2019; Barthe et al., 2015; Gaboardi et al., 2013; Reed and Pierce,
2010). Reed and Pierce (2010) introduced a linear functional programming language with graded
comonadic types that supports reasoning about ε-differential privacy of probabilistic programs.
Later, Gaboardi et al. (2013) strengthened the Reed–Pierce type system with dependent types. A
category-theoretic account of the Reed–Pierce type system is given by Azevedo de Amorim et al.
(2019), where general (ε, δ)-differential privacy is also supported. These works basically regard
types as metric spaces, allowing us to reason about sensitivity of programs with respect to inputs.
A coupling-based lifting is also employed in a relational model of a higher-order probabilistic
programming language (Barthe et al., 2015).

The study by Azevedo de Amorim et al. (2019) gives a categorical definition of composable
divergences in a general framework called weakly closed refinements of symmetric monoidal closed
categories (Azevedo de Amorim et al., 2019, Definition 1). A comparison is given in Section 6.1.2.

Mardare et al. (2016) introduced a quantitative refinement of algebraic theory called quanti-
tative equational theory and studied variety theorem for quantitative algebras. Bacci et al. (2021)
discussed tensor products of quantitative equational theories. QETs and divergences on monads
share the common interest of measuring quantitative difference between computational effects.
Divergences onmonads are derived as a generalization of the composability condition of statistical
divergences studied by Barthe and Olmedo (2013). To make a precise connection between these
two concepts, in Section 6.3, we have given an adjunction between QETs of type � over � and
�-generated divergences on the free monad T� . The adjunction cuts down to the isomorphism
between unconditional QETs of type� over� and�-generated divergences on T� .

In this paper, we have constructed strong graded relational liftings of monads from divergences
onmonads. The concept of relational lifting and its fibrational generalization are also key technical
concepts in the categorical studies of bisimulation (Balan et al., 2019; Baldan et al., 2018; Hermida
and Jacobs, 1995; Katsumata et al., 2018; Kurz and Velebil, 2016; Sprunger et al., 2021). It remains
to be seen if the relational liftings obtained in this paper, as well as the divergence liftings in Section
6.1.3, have applications in the coalgebraic study of bisimulations.

Metric-like spaces are used in several recent papers on semantics of programming languages
and systems. Gavazzo (2018) studied a quantitative refinement of Abramsky’s applicative bisim-
ilarity for the Reed–Pierce type system. He introduced a monadic operational semantics of the
type system and formalized the concept of quantitative applicative bisimilarity using monads that
are lifted to the category of quantale-valued relations. Bonchi et al. (2018) also used metric-like
spaces to study bisimulations and up-to techniques in the category of quantale-valued relations.
In this paper, we are interested in relational program verification of effectful programs, and we
carry it out in the relational category BRel(C) rather than DivQ(C). The quantitative difference
of computational effects measured by a divergence � is represented by the binary relation �̃(v)
that relates two computational effects whose distance is bound by v.

The RelCost system by Çiçek et al. (2017) is a formal system for reasoning about relational
properties of higher-order functional programs and measuring cost difference of programs. It
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consists of two subsystems: the relational refinement type system that can measure cost differ-
ence of programs, and the unary logic that can estimate lower and upper bounds of cost (i.e. cost
intervals) of programs. We expect a connection between the semantics of the former system and
the graded relational lifting constructed from the divergence NCI on P(N×−) (or its variant) in
Section 5.2. On the other hand, identifying a semantic structure behind the latter system is not the
scope of this paper, and we leave it to future work to identify it and relate it with divergences on
monads.
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Notes
1 In particular, there is no σ -algebra � over Meas(R,R) that makes the evaluation mapping (x, f ) �→ f (x) a measurable
function of type R× (Meas(R,R),�)→R.
2 Strictly speaking, differential privacy depends on the definition of adjacency of datasets. The adjacency relation Radj is
usually defined as {(d1, d2) | ρ(d1, d2)≤ 1} with a metric ρ over I.
3 Remark that Pr [c(d1)= s] and Pr [c(d2)= s] are Radon–Nikodym derivatives of c(d1) and c(d2) with respect to a mea-
sure ν such that c(d1), c(d2)* ν. [=⇒ ] Obvious. [⇐= ] By Radon–Nikodym theorem, we can take the Radon–Nikodym
derivatives Pr [c(d1)= s] and Pr [c(d2)= s] with respect to ν = c(d1)+ c(d2). The inequality does not depend on the choice
of ν.
4 Recall that an ultrametric space (I, dI) is a set I together with a function dI : I2→ [0, 1] such that dI(x, x)= 0 and dI(x, z)≤
max (dI(x, y), dI(y, z)).
5 RE1 =∅ happens if and only if REI =∅ for any I ∈C. Therefore, nontrivial basic endorelations always satisfy RE1 �= ∅.
6 A pseudometric is a function d : A2→R+ such that d(a, a)= 0 (reflexivity), d(b, a)= d(a, b) (symmetry), and d(a, c)≤
d(a, b)+ d(b, c) (triangle inequality) hold for all a, b, c ∈A. Since d may return the positive infinity∞, it is sometimes called
an extended pseudometric.
7 If σ = 0 (or λ≤ 0), N (x, σ 2) (resp. Lap(x, λ)) is not defined; thus, we replace it by the Dirac distribution dx at x instead.
8 To make examples simpler, we allow negative costs.
9 For a measurable subset A ∈�I , an indicator function χA : I→ [0, 1] of A is defined by χA(x)= 1 if x ∈A and χA = 0
otherwise. A simple function is a linear combination of finite number of indicator functions.

References
Albarghouthi, A. and Hsu, J. (2018a). Constraint-based synthesis of coupling proofs. In Computer Aided Verification – 30th

International Conference, CAV 2018, Proceedings, Part I, vol. 10981. LNCS. Springer, 327–346.
Albarghouthi, A. and Hsu, J. (2018b). Synthesizing coupling proofs of differential privacy. PACMPL 2 (POPL) 58:1–58:30.
Altenkirch, T., Chapman, J., and Uustalu, T. (2015). Monads need not be endofunctors. Logical Methods in Computer

Science 11 (1).
Aumann, R. J. (1961). Borel structures for function spaces. Illinois Journal of Mathematics 5 (4) 614–630.
Azevedo de Amorim, A., Gaboardi, M., Hsu, J., and Katsumata, S. (2019). Probabilistic relational reasoning via metrics. In

34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019. IEEE, 1–19.
Bacci, G., Mardare, R., Panangaden, P., and Plotkin, G. (2021). Tensor of quantitative equational theories. In Gadducci, F.

and Silva, A. (eds.), 9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021), volume 211 of Leibniz
International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
7:1–7:17.

Balan, A., Kurz, A., and Velebil, J. (2019). Extending set functors to generalised metric spaces. Logical Methods in Computer
Science 15 (1).

Baldan, P., Bonchi, F., Kerstan, H., and König, B. (2018). Coalgebraic behavioral metrics. Logical Methods in Computer
Science 14 (3).

Balle, B., Barthe, G., Gaboardi, M., Hsu, J., and Sato, T. (2020). Hypothesis testing interpretations and renyi differential
privacy. In Chiappa, S. and Calandra, R. (eds.), Proceedings of the Twenty Third International Conference on Artificial
Intelligence and Statistics (AISTATS 2020), vol. 108. Proceedings of Machine Learning Research, Online. PMLR, 2496–2506.

https://doi.org/10.1017/S0960129523000245 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000245


Mathematical Structures in Computer Science 461

Barthe, G., Crespo, J. M., and Kunz, C. (2011). Relational verification using product programs. In Butler, M. and Schulte,
W., editors, FM 2011: Formal Methods, Berlin, Heidelberg: Springer Berlin Heidelberg, 200–214.

Barthe, G., D’Argenio, P. R., and Rezk, T. (2004). Secure information flow by self-composition. In Proceedings of the 17th
IEEE Workshop on Computer Security Foundations, CSFW ’04, vol. 100, USA: IEEE Computer Society.

Barthe, G., Gaboardi, M., Arias, E. J. G., Hsu, J., Kunz, C., and Strub, P. (2014). Proving differential privacy in Hoare logic.
In IEEE 27th Computer Security Foundations Symposium, CSF 2014. IEEE Computer Society, 411–424.

Barthe, G., Gaboardi, M., Arias, E. J. G., Hsu, J., Roth, A., and Strub, P. (2015). Higher-order approximate relational
refinement types for mechanism design and differential privacy. In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015. ACM,
55–68.

Barthe, G., Gaboardi, M., Grégoire, B., Hsu, J., and Strub, P. (2016). Proving differential privacy via probabilistic couplings.
In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16. ACM, 749–758.

Barthe, G., Grégoire, B., Hsu, J., and Strub, P.-Y. (2017). Coupling proofs are probabilistic product programs. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, New York, NY,
USA: Association for Computing Machinery, 161–174.

Barthe, G., Köpf, B., Olmedo, F., and Béguelin, S. Z. (2012). Probabilistic relational reasoning for differential privacy. In
Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012. ACM,
97–110.

Barthe, G. and Olmedo, F. (2013). Beyond differential privacy: Composition theorems and relational logic for f-divergences
between probabilistic programs. InAutomata, Languages, and Programming - 40th International Colloquium, ICALP 2013,
Proceedings, Part II, vol. 7966. LNCS. Springer, 49–60.

Benton, N. (2004). Simple relational correctness proofs for static analyses and program transformations. SIGPLAN Notices
39 (1) 14–25.

Bonchi, F., König, B., and Petrisan, D. (2018). Up-To Techniques for Behavioural Metrics via Fibrations. In
29th International Conference on Concurrency Theory (CONCUR 2018), vol. 118. Leibniz International Proceedings in
Informatics (LIPIcs), Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 17:1–17:17.

Bun, M., Dwork, C., Rothblum, G. N., and Steinke, T. (2018). Composable and versatile privacy via truncated CDP. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, New York, NY, USA:
Association for Computing Machinery, 74–86.

Bun, M. and Steinke, T. (2016). Concentrated differential privacy: Simplifications, extensions, and lower bounds. In Theory
of Cryptography, Berlin, Heidelberg: Springer Berlin Heidelberg, 635–658.

Çiçek, E., Barthe, G., Gaboardi, M., Garg, D., and Hoffmann, J. (2017). Relational cost analysis. SIGPLAN Notices 52 (1)
316–329.

Csiszár, I. (1963). Eine informationstheoretische Ungleichung und ihre Anwendung auf den beweis der ergodizitat von
markoffschen ketten. Magyar. Tud. Akad. Mat. Kutato Int. Kozl. 8 85–108.

Csiszár, I. (1967). Information-type measures of difference of probability distributions and indirect observations. Studia
Scientiarum Mathematicarum Hungarica 2 299–318.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Theory
of Cryptography, vol. 3876. LNCS. Springer Berlin Heidelberg, 265–284.

Dwork, C. and Roth, A. (2013). The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical
Computer Science 9 (3-4) 211–407.

Gaboardi,M., Haeberlen, A., Hsu, J., Narayan, A., and Pierce, B. C. (2013). Linear dependent types for differential privacy. In
The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13. ACM, 357–370.

Gaboardi, M., Katsumata, S., Orchard, D., and Sato, T. (2021). Graded hoare logic and its categorical semantics. In Yoshida,
N., editor, Programming Languages and Systems – 30th European Symposium on Programming, ESOP 2021, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27
- April 1, 2021, Proceedings, vol. 12648. Lecture Notes in Computer Science. Springer, 234–263.

Gavazzo, F. (2018). Quantitative behavioural reasoning for higher-order effectful programs: Applicative distances. In
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, New York, NY, USA:
Association for Computing Machinery, 452–461.

Giry, M. (1982). A categorical approach to probability theory. In Banaschewski, B., editor, Categorical Aspects of Topology
and Analysis, vol. 915. LNM. Springer, 68–85.

Hall, R. (2012). New Statistical Applications for Differential Privacy. PhD thesis, Machine Learning Department School of
Computer Science Carnegie Mellon University.

Hermida, C. and Jacobs, B. (1995). An algebraic view of structural induction. In Proceedings of CSL ’94, vol. 933. LNCS.
Springer-Verlag, 412–426.

Heunen, C., Kammar, O., Staton, S., and Yang, H. (2017). A convenient category for higher-order probability theory. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, 1–12.

Jacobs, B. (1999). Categorical Logic and Type Theory. Elsevier.
Kairouz, P., Oh, S., and Viswanath, P. (2015). The composition theorem for differential privacy. In Proceedings of the 32nd

International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, 1376–1385.

https://doi.org/10.1017/S0960129523000245 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000245


462 T. Sato and S. Katsumata

Katsumata, S. (2014). Parametric effect monads and semantics of effect systems. In The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14. ACM, 633–646.

Katsumata, S. and Sato, T. (2013). Preorders on monads and coalgebraic simulations. In Pfenning, F., editor, Foundations
of Software Science and Computation Structures, Berlin, Heidelberg: Springer Berlin Heidelberg, 145–160.

Katsumata, S., Sato, T., and Uustalu, T. (2018). Codensity lifting of monads and its dual. Logical Methods in Computer
Science 14 (4).

Kurz, A. and Velebil, J. (2016). Relation lifting, a survey. Journal of Logical and Algebraic Methods in Programming 85 (4)
475–499. Relational and algebraic methods in computer science.

Liese, F. and Vajda, I. (2006). On divergences and informations in statistics and information theory. IEEE Transactions on
Information Theory 52 (10) 4394–4412.

Lucassen, J. M. and Gifford, D. K. (1988). Polymorphic effect systems. In Conference Record of the Fifteenth Annual ACM
Symposium on Principles of Programming Languages. ACM Press, 47–57.

Mac Lane, S. (1998). Categories for the Working Mathematician (Second Edition), vol. 5. Graduate Texts in Mathematics.
Springer.

Mardare, R., Panangaden, P., and Plotkin, G. (2016). Quantitative algebraic reasoning. In Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA: Association for Computing
Machinery, 700–709.

Mardare, R., Panangaden, P., and Plotkin, G. (2017). On the axiomatizability of quantitative algebras. In 2017 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), Los Alamitos, CA, USA: IEEE Computer Society, 1–12.

Mironov, I. (2017). Rényi differential privacy. In 2017 IEEE 30th Computer Security Foundations Symposium (CSF), 263–275.
Mitchell, J. C. and Scedrov, A. (1992). Notes on sconing and relators. In Computer Science Logic, 6th Workshop, CSL ’92, vol.

702. LNCS. Springer, 352–378.
Moggi, E. (1991). Notions of computation and monads. Information and Computation 93 (1) 55–92.
Morimoto, T. (1963). Markov processes and the H-theorem. Journal of the Physical Society of Japan 18 (3) 328–331.
Nielson, H. R. and Nielson, F. (2007). Semantics with Applications: An Appetizer. Springer-Verlag, Berlin, Heidelberg.
Olmedo, F. (2014). Approximate Relational Reasoning for Probabilistic Programs. PhD thesis, Technical University of Madrid.
Prasad, S. and Smith, K. A. (2014). A note on differential privacy: Defining resistance to arbitrary side information. Journal

of Privacy and Confidentiality 6 (1).
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Appendix A. Proofs for Section 4 (Divergences on Monads)
Proof. (Proof of Proposition 7) Let m ∈M, (x1, x2) ∈ EI, c1, c2 ∈U(TJ). Below η stands for the
I × J-component ηI×J : I × J→ T(I × J) of the unit of T. From the composability of � and ηx •
y= η • 〈x, y〉, we have
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�m
I×J((ηx1 )� • c1, (ηx2 )� • c2)≤�m

I (c1, c2)+ sup
(y1,y2)∈EJ

�1
I×J(ηx1 • y1, ηx2 • y2)

=�m
I (c1, c2)+ sup

(y1,y2)∈EJ
�1

I×J(η • 〈x1, y1〉, η • 〈x2, y2〉).

Since EI ×̇ EJ ≤ E(I × J), we have (〈x1, y1〉, 〈x2, y2〉) ∈ E(I × J) for any (y1, y2) ∈ EJ. Therefore,

∀(y1, y2) ∈ EJ .�1
I×J(η • 〈x1, y1〉, η • 〈x2, y2〉)≤ 0

holds by the E-unit reflexivity. From (ηx)� • c= θ • 〈x, c〉 by (1), we obtain
�m

I×J(θI,J • 〈x1, c1〉, θI,J • 〈x2, c2〉)=�m
I×J((ηx1 )� • c1, (ηx2 )� • c2)≤�m

J (c1, c2).

Appendix B. Proofs for Section 5 (Examples of Divergences on Monads)
Proposition 44. The family C′ = {C′I : (N× I)2→N }I∈Set of N -divergences defined by:

C′I((i, x), (j, y))�
{
|i− j| x= y
∞ x �= y

.

is a Eq-relative N -divergence on the monad N×−.

Proof. The monotonicity of C′ is obvious.
We show the Eq-unit reflexivity of C′. For all (x, y) ∈ Eq I (that is, x= y ∈ I), we have

C′I(ηI(x), ηI(y))= C′I((0, x), (0, y))= 0.
We show the Eq-composability of C′. Let (i, x), (j, y) ∈N× I and f , g : I→N× J. We write

f (z)= (iz, fz) and g(z)= (jz, gz) for each z ∈ Z.

• If x= y and xz = yz for all z ∈ I, we have

C′J(f �(i, x), g�(j, y))= C′J((i+ ix, fx), (j+ jx, gx))
= |(i+ ix)− (j+ jx)| ≤ |i− j| + |ix − jx|
≤ C′I((i, x), (j, y))+ sup

(x,y)∈Eq I(⇐⇒ x=y∈I)
C′J(f (x), g(y))

• If x �= y or fz �= gz for some z ∈ I, we have

C′J(f �(i, x), g�(j, y))≤∞= C′I((i, x), (j, y))+ sup
(x,y)∈Eq I(⇐⇒ x=y∈I)

C′J(f (x), g(y)).

This completes the proof.

Proposition 45. The family NC= {NCI : (P(N× I))2→N }I∈Set of N -divergences defined by:

NCI(A, B)� sup
(i,x)∈A,(j,x)∈B

|i− j|

is a Top-relative N -divergence on the monad P(N×−).

Proof. The monotonicity of NC is obvious.
We show the Top-unit reflexivity of NC . For all (x, y) ∈ Top I (that is, x, y ∈ I), we have

NCI(ηI(x), ηI(y))= NCI({(0, x)}, {(0, y)})= |0− 0| = 0.
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We show the Top-composability ofNC. For all f , g : I→ P(N× J) andA, B ∈ P(N× I), we have

NCJ(f �A, g�B)= sup{|i− j| | (i, x) ∈ f �(A), (j, y) ∈ g�(B)}

= sup

{
|i1 + i2 − j1 − j2|

∣∣∣∣∣ (i1, x) ∈A, (j1, y) ∈ B,
(i2, x′) ∈ f (x), (j2, y′) ∈ g(y)

}
≤ sup{|i1 − j1| | (i1, x) ∈A, (j1, y) ∈ B}

+ sup
(x,y)∈Top I(⇐⇒ x,y∈I)

{|i2 − j2| | (i2, x′) ∈ f (x), (j2, y′) ∈ g(y)}

= NCI(A, B)+ sup
(x,y)∈Top I(⇐⇒ x,y∈I)

NCJ(f (x), g(y)).

This completes the proof.

Proposition 46. The family NCI= {NCII : (P(N× I))2→N }I∈Set of Z -divergences defined by:

NCII(A, B)� sup
(i,x)∈A,(j,y)∈B

i− j

is a Top-relative Z -divergence on the monad P(N×−).

Proof. The monotonicity of NCI is obvious.
We show the Top-unit reflexivity of NCI . For all (x, y) ∈ Top I (that is, x, y ∈ I), we have

NCII(ηI(x), ηI(y))= NCII({(0, x)}, {(0, y)})= 0− 0= 0.

We show the Top-composability of NCI. For all f , g : I→ P(N× J) and A, B ∈ P(N× I), we
have

NCIJ(f �A, g�B)= sup{i− j | (i, x) ∈ f �(A)∧ (j, y) ∈ g�(B)}

= sup

{
i1 + i2 − j1 − j2

∣∣∣∣∣ (i1, x) ∈A, (j1, y) ∈ B,
(i2, x′) ∈ f (x), (j2, y′) ∈ g(y)

}
≤ sup{i1 − j1 | (i1, x) ∈A, (j1, y) ∈ B}

+ sup
(x,y)∈Top I(⇐⇒ x,y∈I)

{i2 − j2 | (i2, x′) ∈ f (x), (j2, y′) ∈ g(y)}

= NCII(A, B)+ sup
(x,y)∈Top I(⇐⇒ x,y∈I)

NCIJ(f (x), g(y)).

This completes the proof.

Proof. (Proof of Proposition 10) We recall the continuity of f -divergence fDiv in Liese and Vajda
(2006, Theorem 16) and Sato et al. (2019, Theorem 3):

fDivI(μ1,μ2)= sup

{ n∑
i=0

μ2(Bi)f
(
μ1(Bi)
μ2(Bi)

)∣∣∣∣∣{Bj}ni=0 : measurable partition of I

}
.

Here, a measurable partition of I is a finite family {Bi}ni=0 of measurable subsets Bi ∈�I satisfying
i �= j =⇒ Bi ∩ Bj =∅ and⋃n

i=0 Bi = I.
We have the Eq -unit reflexivity because the reflexivity fDivI(μ,μ)= 0 is obtained from f (1)=

0. We show the Eq -composability. To show this, we prove a bit stronger statement.
Consider three positive weight functions f , f1, f2 ≥ 0 with f (1)= f1(1)= f2(1)= 0. Assume that

there are some α, β , β ′ ∈R satisfying the following conditions:
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(A’)� �
for all x, y, z,w ∈ [0, 1], 0≤ (β ′z+ (1− β ′)x)+ γ xf1 (z/x) and

xyf
(
zw/xy

)≤ (βw+ (1− β)y)xf1 (z/x)+ (β ′z+ (1− β ′)x)yf2
(
w/y
)

+ γ xyf1 (z/x) f2
(
w/y
)+ α(x− z)(w− y).

� �
Let μ1,μ2 ∈GsI, and h, k : I→GsJ. We suppose that at least one of the following two

conditions holds

(1) μ1(I)=μ2(I)= 1 and ∀x ∈ I. h(x)(J)= k(x)(J)= 1,
(2) α = 0 and β , β ∈ [0, 1].

We then prove the composability in the sense of Olmedo (2014, Definition 5.2):
fDivJ(h�μ1, k�μ2)

≤ f1DivI(μ1,μ2)+ sup
x∈I

f2DivJ(h(x), k(x))+ γ f1DivI(μ1,μ2) · sup
x∈I

f2DivJ(h(x), k(x)).
(28)

We fix a measurable partition {Ai}ni=0 of J. For each 0≤ i≤ n, by definition of the σ -algebra
�GJ , the functions h(− )(Ai) : I→ [0, 1] and k(− )(Ai) : I→ [0, 1] are measurable, and hence we
have two monotone increasing sequences {hil}∞l=0 and {kil}∞l=0 of (nonnegative) simple functions9

that converge uniformly to h(− )(Ai) and k(− )(Ai), respectively. Since the sequences {hil}∞l=0 and
{kil}∞l=0 converge uniformly and are bounded above, we obtain

n∑
i=0

k�(μ2)(Ai)f
(
h�(μ1)(Ai)
k�(μ2)(Ai)

)
=

n∑
i=0

(
∫
X
k(x)(Ai) dμ2(x))f

(∫
X h(x)(Ai) dμ1(x)∫
X k(x)(Ai) dμ2(x)

)

=
n∑

i=0
(
∫
X
lim
l→∞

kil dμ2)f

(∫
X liml→∞ hil dμ1∫
X liml→∞ kil dμ2

)

=
n∑

i=0
( lim
l→∞

∫
X
kil dμ2)f

(
liml→∞

∫
X hil dμ1

liml→∞
∫
X kil dμ2

)

= lim
l→∞

n∑
i=0

(
∫
X
kil dμ2)f

(∫
X hil dμ1∫
X kil dμ2

)
.

We remark that the above computation is consistent even if k�(μ2)(Ai)= 0 for some 0≤ i≤ n.
We here recall 0f (a/0)= af ∗(0) for any a ∈ [0,∞). If k�(μ2)(Ai)= 0, then

∫
X kil dμ2 = 0 for

all l ∈N because it is a nonnegative monotone increasing sequence whose limit is 0. Then
(
∫
X kil dμ2)f

(
(
∫
X hil dμ1)/(

∫
X kil dμ2)

)= (
∫
X hil dμ1)f ∗(0) holds for all l ∈N. It is monotonically

increasing, and converges to (h�(μ1)(Ai))f ∗(0).
We thus show the following inequality:

lim
l→∞

n∑
i=0

(
∫
X
kil dμ2)f

(∫
X hil dμ1∫
X kil dμ2

)
≤ f1DivI(μ1,μ2)+ sup

x∈I
f2DivJ(h(x), k(x))+ γ f1DivI(μ1,μ2) sup

x∈I
f2DivJ(h(x), k(x)).

(29)

We fix l ∈N. We can write hil =
∑m

j=0 αijχBj and kil =
∑m

j=0 β ijχBj with some coefficients αij , β
i
j ∈

[0, 1] (0≤ j≤m) and measurable partition {Bj}mj=0 of I.
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By Jensen’s inequality and the second inequality of (A’), we calculate as follows:
n∑

i=0
(
∫
X
kil dμ2)f

(∫
X hil dμ1∫
X kil dμ2

)

=
n∑

i=0
(

m∑
j=0

β ijμ2(Bj))f

(∑m
j=0 αijμ1(Bj)∑m
j=0 β ijμ2(Bj)

)

≤
n∑
i=0

m∑
j=0

β ijμ2(Bj)f

(
αijμ1(Bj)
β ijμ2(Bj)

)

≤
n∑

i=0

m∑
j=0

(βαij + (1− β)β ij ) μ2(Bj)f1
(
μ1(Bj)
μ2(Bj)

)
︸ ︷︷ ︸

�V1

+
n∑

i=0

m∑
j=0

(
β ′μ1(Bj)+ (1− β ′)μ2(Bj))+ γμ2(Bj)f1

(
μ1(Bj)
μ2(Bj)

))
β ij f2

(
αij

β ij

)
︸ ︷︷ ︸

�V2

+
n∑

i=0

m∑
j=0

α(μ2(Bj)−μ1(Bj))(αij − β ij )︸ ︷︷ ︸
�V3

We will evaluate the three expressions V1,V2,V3.
First, we obtain liml→∞ V1 ≤ f1DivI(μ1,μ2) as follows:

V1 ≤
(

sup
0≤j≤m

n∑
i=0

(βαij + (1− β)β ij )
)
·

m∑
j=0

μ2(Bj)f1
(
μ1(Bj)
μ2(Bj)

)

= sup
x∈I

(
β

n∑
i=0

hil(x)+ (1− β)
n∑
i=0

kil(x)

)
·

m∑
j=0

μ2(Bj)f1
(
μ1(Bj)
μ2(Bj)

)

≤ sup
x∈I

(
β

n∑
i=0

hil(x)+ (1− β)
n∑

i=0
kil(x)

)
· f1DivI(μ1,μ2)

l→∞−−−−→ sup
x∈I
(
βh(x)(J)+ (1− β)k(x)(J)) · f1DivI(μ1,μ2)

≤ f1DivI(μ1,μ2)

Here, the first inequality is given from the nonnegativity of each μ2(Bj)f1
(
μ1(Bj)
μ2(Bj)

)
derived from

0≤ f1; the equality is given by definition of αij and β
i
j ; the second inequality can be given by the

continuity of f1Div; the last inequality is derived by βh(x)(J)+ (1− β)k(x)(J) ∈ [0, 1] from the
assumption that either β ∈ [0, 1] or h(x)(J)= k(x)(J) for all x ∈ I holds.

Second, we obtain liml→∞ V2 ≤ γ · f1DivI(μ1,μ2) · supx∈I f2DivJ(h(x), k(x)) as follows:

V2 ≤
(

sup
0≤j≤m

n∑
i=0

β ij f2

(
αij

β ij

)) m∑
j=0

(
β ′μ1(Bj)+ (1− β ′)μ2(Bj))+ γμ2(Bj)f1

(
μ1(Bj)
μ2(Bj)

))
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=
(
sup
x∈I

n∑
i=0

kil(x)f2

(
hil(x)
kil(x)

))⎛⎝β ′μ1(I)+ (1− β ′)μ2(I)+ γ
m∑
j=0

μ2(Bj)f1
(
μ1(Bj)
μ2(Bj)

)⎞⎠
≤
(
sup
x∈I

n∑
i=0

kil(x)f2

(
hil(x)
kil(x)

)) (
β ′μ1(I)+ (1− β ′)μ2(I)+ γ · f1DivI(μ1,μ2)

)
l→∞−−−−→

(
sup
x∈I

n∑
i=0

k(x)(Ai)f2
(
h(x)(Ai)
k(x)(Ai)

)) (
β ′μ1(I)+ (1− β ′)μ2(I)+ γ · f1DivI(μ1,μ2)

)
≤ sup

x∈I
f2DivJ(h(x), k(x))

(
β ′μ1(I)+ (1− β ′)μ2(I)+ γ · f1DivI(μ1,μ2)

)
≤ sup

x∈I
f2DivJ(h(x), k(x)) · γ · f1DivI(μ1,μ2)

= γ · f1DivI(μ1,μ2) · sup
x∈I

f2DivJ(h(x), k(x)).

Here, the first inequality is proved by the nonnegativity of each

(β ′μ1(Bj)+ (1− β ′)μ2(Bj))+ γμ2(Bj)f1
(
μ1(Bj)
μ2(Bj)

)
,

which is derived from the first inequality of (A’); the first equality is given by definition of αij and β ij
and the countable additivity of μ1 and μ2; the second inequality is given by the continuity of f1Div
and 0≤ γ ; the last inequality is derived by β ′μ1(I)+ (1− β ′)μ2(I) ∈ [0, 1] from the assumption
that either β ′ ∈ [0, 1] or μ1(I)=μ2(I) holds.

We prove the third inequality. We recall that the sequences {hil(x)}∞l=0 and {kil(x)}∞l=0
are monotone increasing at each x ∈ I. Since f2 is convex, by Jensen’s inequality, the
sequence

{∑n
i=0 kil(x)f2

(
hil(x)/k

i
l(x)
)}∞

l=0 is monotone increasing at each x ∈ I. Then,
the sequence

{
supx∈I

∑n
i=0 kil(x)f2

(
hil(x)/k

i
l(x)
)}∞

l=0 is monotone increasing, because∑n
i=0 kil+1(x)f2

(
hil+1(x)/k

i
l+1(x)

)
is always greater than

∑n
i=0 kil(x)f2

(
hil(x)/k

i
l(x)
)

for all
l ∈N and x ∈ I . Hence, from the continuity of f2Div, we obtain

lim
l→∞

sup
x∈I

n∑
i=0

kil(x)f2

(
hil(x)
kil(x)

)
= sup

l∈N
sup
x∈I

n∑
i=0

kil(x)f2

(
hil(x)
kil(x)

)

= sup
x∈I

sup
l∈N

n∑
i=0

kil(x)f2

(
hil(x)
kil(x)

)

= sup
x∈I

n∑
i=0

k(x)(Ai)f2
(
h(x)(Ai)
k(x)(Ai)

)
≤ sup

x∈I
f2Div(h(x), k(x)).

Finally, we obtain liml→∞ V3 = 0 as follows:

V3 =
m∑
j=0

α(μ2(Bj)−μ1(Bj))(
n∑
i=0

αij − β ij )

= α
(∫

I
hil dμ2 −

∫
I
kil dμ2 +

∫
I
kil dμ1 −

∫
I
hil dμ1

)
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l→∞−−−−→ α

(∫
I
h(− )(J) dμ2 −

∫
I
k(− )(J) dμ2 +

∫
I
k(− )(J) dμ1 −

∫
I
h(− )(J) dμ1

)
= 0.

Here, the last equality is derived from the assumption that either α = 0 or h(x)(J)= k(x)(J) for any
x ∈ I holds.

From the above evaluations of V1, V2, and V3, we obtain the inequality (29). Since the measur-
able partition {Ai}ni=0 of J is arbitrary, we conclude (28) by the continuity of fDiv. This completes
the proof.

Parameters for Proposition 10 for for weight functions of TV, KL, HD, and Chi are shown in
Table 4. Below, we check the conditions in Proposition 10.

• For the weight function f (t)= |t− 1|/2 of TV, the tuple (γ , α, β , β ′)= (0, 0, 1, 0) satisfies for
all x, y, z,w ∈ [0, 1], we have

0≤w+ xf (z/x),
xyf (zw/xy)= |zw− xy|/2≤ (|zw−wx| + |xw− xy|)/2=wxf (z/x)+ xf (w/y).

• For the weight function f (t)= t log (t)− t+ 1 of KL, the tuple (γ , α, β , β ′)= (0,−1, 1, 1)
satisfies for all x, y, z,w ∈ [0, 1], we have

0≤ z+ xf (z/x),
xyf (zw/xy)= xy((zw/xy) log (zw/xy)− zw/xy+ 1)

= zw log (w/y)+ zw log (z/x)− zw+ xy
= xw((z/x) log (z/x)−z/x+1)+zy((w/y) log (w/y)−w/y+ 1)−(x− z)(w− y).

• For the weight function f (t)= (
√
t− 1)2/2 of HD, the tuple (γ , α, β , β ′)=

(0,−1/4, 1/2, 1/2) satisfies for all x, y, z,w ∈ [0, 1],
0≤ (z+ x)/2+ xf (z/x),

xyf (zw/xy)= (zw+ xy)/2−√xyzw
= (zw+ xy)/2− ((x+ z)− (

√
x−√z)2)((y+w)− (√y−√w)2)/4

= (zw+ xy)/2− ((x+ z)− 2xf (z/x))((y+w)− 2yf (w/y))/4
= (zw+ xy)/2− ((x+ z)/2− xf (z/x))((y+w)/2− yf (w/y))
≤ (y+w)/2 · xf (z/x)+ (x+ z)/2 · yf (w/y)+ (zw+ xy)/2− (x+ z)(y+w)/4
= (y+w)/2 · xf (z/x)+ (x+ z)/2 · yf (w/y)− (x− z)(w− y)/4.

• For the weight function f (t)= (t− 1)2 of Chi, The tuple (γ , α, β , β ′)= (1,−2, 2, 2) satisfies
for all x, y, z,w ∈ [0, 1],

0≤ z2/x= (2z− x)+ ((z/x)− 1)(z− x)= (2z− x)+ xf (z/x),
xyf (zw/xy)= z2w2/xy− 2zw+ xy

= (xf (z/x)+ 2z− x)(yf (w/y)+ 2w− y)− 2zw+ xy
= (2w− y)xf (z/x)+ (2z− x)yf (w/y)+ xyf (z/x)f (w/y)− 2(x− z)(w− y).

Proof. (Proof of Proposition 11)
We first show the monotonicity of 〈p, λ〉∗�. Assume m≤m′. From the monotonicity of the

original�, we obtain for each ν1, ν2 ∈UC(SI)),

(〈p, λ〉∗�)mI (ν1, ν2)=�m
pI((U

DλI)(ν1), (UDλI)(ν2))

≥�m′
pI ((U

DλI)(ν1), (UDλI)(ν2))

= (〈p, λ〉∗�)m
′

I (ν1, ν2).
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Second, we show the F-unit reflexivity of 〈p, λ〉∗�. For FI = (I, I, RFI), we have EpI = (p=
(pI, pI, RFI) for all I ∈C. We can calculate for all (x, y) ∈ RF ,

(〈p, λ〉∗�)1MI (ηSI • x, ηSI • y)=�1M
pI ((U

DλI)(UCηSI ◦ x), (UDλI)(UCηSI ◦ y))
=�1M

pI (U
DλI ◦UDpηSI ◦ x),UDλI ◦UDpηSI ◦ y)

=�1M
pI ((λI ◦ pηSI ) • x, (λI ◦ pηSI ) • y)

=�1M
pI (η

T
pI • x, ηTpI • y)≤ 0.

Finally, we show the F-composability of 〈p, λ〉∗�. For all J ∈C, c1, c2 ∈UCSI, and f1, f2 : I→ SJ
we can calculate

(〈p, λ〉∗�)mn
J (f �1 • c1, f �2 • c2)=�mn

pJ ((U
DλJ)(UC(f �1 ) ◦ c1), (UDλJ)(UC(f �2 ) ◦ c2))

=�mn
pJ (U

DλJ ◦UDp(f �1 ) ◦ c1,UDλJ ◦UDp(f �2 ) ◦ c2)
( ∗ )=�mn

pJ (U
D((λJ ◦ pf1)�) ◦UDλI ◦ c1,UD((λJ ◦ pf2)�) ◦UDλI ◦ c2)

=�mn
pJ ((λJ ◦ pf1)� • (λI • c1), (λJ ◦ pf2)� • (λI • c2))

≤�m
pI(λI • c1, λI • c2)+ sup

(x,y)∈EpI
�n

pJ((λJ ◦ pf1) • x, (λJ ◦ pf2) • y)

= (〈p, λ〉∗�)mI (c1, c2)+ sup
(x,y)∈FI

(〈p, λ〉∗�)nJ (f1 • x, f2 • y).

To prove the equality (∗), we calculate
UDλJ ◦UDp(f �i )=UD(λJ ◦ pμS

J ◦ pSfi)=UD(μT
pJ ◦ TλJ ◦ λSJ ◦ pSfi)

=UD(μT
pJ ◦ TλJ ◦ Tpfi ◦ λI)=UD((λJ ◦ pfi)� ◦ λI).

This completes the proof.

Proof. (Proof of Proposition 13)
It suffices to show Top-unit reflexivity and Top-composability:

�
lip,dS
I (ηI(x), ηI(y))= sup

s′,s∈S
dS(π2(x, s), π2(y, s′))

dS(s, s′)
= dS(s, s′)

dS(s, s′)
= 1,

�
lip,dS
J (F�1(f1), F

�
2(f2))

= sup
s′,s∈S

dS(π2(F1(π1f1(s))(π2f1(s))), π2(F2(π1f2(s′))(π2f2(s′))))
dS(s, s′)

= sup
s′,s∈S

dS(π2f1(s), π2f2(s′))
dS(s, s′)

· dS(π2(F1(π1f1(s))(π2f1(s))), π2(F2(π1f2(s
′))(π2f2(s′))))

dS(π2f1(s), π2f2(s′))

≤ sup
s′,s∈S

dS(π2f1(s), π2f2(s′))
dS(s, s′)

· sup
t′,t∈S

dS(π2(F1(π1f1(s))(t)), π2(F2(π1f2(s′))(t′)))
dS(t, t′)

≤�lip,dS
I (f1, f2) · sup

x,y∈I
�
lip,dS
J (F1(x), F2(y))

Here, F1, F2 : I→ TSJ and f1, f2 ∈ TSI.
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Proof. (Proof of Proposition 14)
It suffices to show Eq-unit reflexivity and Eq-composability:

�
met,dS
I (ηI(x), ηI(x))= sup

s∈S
dS(π2(x, s), π2(x, s))= sup

s∈S
dS(s, s)= 0.

�
met,dS
J (F�1(f1), F

�
2(f2))= sup

s∈S
dS(π2(F1(π1f1(s))(π2f1(s))), π1(F2(π1f2(s))(π2f2(s))))

≤ sup
s∈S

dS(π2(F1(π1f1(s))(π2f1(s))), π2(F2(π1f1(s))(π2f1(s))))

+ sup
s∈S

dS(π2(F2(π1f1(s))(π2f1(s))), π2(F2(π1f1(s))(π2f2(s))))

≤ sup
x∈I

�
met,dS
J (F1(x), F2(x))+�met,dS

I (f1, f2)

Here, F1, F2 : I→ TSJ and f1, f2 ∈ TSI. Without loss of generality, we may assume π1f1 = π1f2
holds and π2f1 and π2f2 are nonexpansive, and for every x ∈ I, π1F1(x)= π1F2(x) holds and
π2F1(x) and π2F2(x) are nonexpansive.

Proof. (Proof of Proposition 15) We first show the Eq -unit reflexivity of dTS(−). For any s ∈ S, we
calculate

dTSI(ηI(x), ηI(x))= sup
s∈S

max
(
dI(π1(x, s), π1(x, s)), dS(π2(x, s), π2(x, s)

)
= sup

s∈S
max (dI(x, x), dS(s, s))= 0.

We next show the Eq -composability of dTS(−). For any f1, f2 ∈ TS(I, dI) and nonexpansive
functions F1, F2 : (I, dI)→ TS(J, dJ), we compute

dTSJ(F�1(f1), F
�
2(f2))= sup

s∈S
max

( dJ(π1(F1(π1f1(s))(π2f1(s))), π1(F2(π1f2(s))(π2f2(s))),
dS(π2(F1(π1f1(s))(π2f1(s))), π2(F2(π1f2(s))(π2f2(s)))

)

≤ sup
s∈S

max

⎛⎜⎜⎜⎝
dJ(π1(F1(π1f1(s))(π2f1(s))), π1(F2(π1f1(s))(π2f1(s))),
dJ(π1(F2(π1f1(s))(π2f1(s))), π1(F2(π1f2(s))(π2f2(s))),
dS(π2(F1(π1f1(s))(π2f1(s))), π2(F2(π1f1(s))(π2f1(s))),
dS(π2(F2(π1f1(s))(π2f1(s))), π2(F2(π1f2(s))(π2f2(s)))

⎞⎟⎟⎟⎠

= sup
s∈S

max

⎛⎜⎜⎜⎝
dJ(π1(F2(π1f1(s))(π2f1(s))), π1(F2(π1f2(s))(π2f2(s))),
dS(π2(F2(π1f1(s))(π2f1(s))), π2(F2(π1f2(s))(π2f2(s))),
dJ(π1(F1(π1f1(s))(π2f1(s))), π1(F2(π1f1(s))(π2f1(s))),
dS(π2(F1(π1f1(s))(π2f1(s))), π2(F2(π1f1(s))(π2f1(s)))

⎞⎟⎟⎟⎠

≤ sup
s∈S

max

⎛⎜⎜⎜⎜⎝
dI(π1(f1(s)), π1(f2(s))),
dS(π2(f1(s)), π2(f2(s))),

sup
x∈I

sup
s′∈S

max

(
dJ(π1(F1(x)(s′)), π1(F2(x)(s′)),
dS(π2(F1(x)(s′)), π2(F2(x)(s′))

)
⎞⎟⎟⎟⎟⎠

=max

⎛⎜⎜⎝
sup
s∈S

max (dI(π1(f1(s)), π1(f2(s))), dS(π2(f1(s)), π2(f2(s)))),

sup
x∈I

sup
s′∈S

max

(
dJ(π1(F1(x)(s′)), π1(F2(x)(s′)),
dS(π2(F1(x)(s′)), π2(F2(x)(s′))

)
⎞⎟⎟⎠

=max (dTSI(f1, f2), sup
x∈I

dTSJ(F1(x), F2(x)).
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We note here that the nonexpansivity of F2 : (I, dI)→ (S, dS)⇒ (S, dS)× (J, dJ) is equivalent to
the one of its uncurrying F2 : (S, dS)× (I, dI)→ (S, dS)× (J, dJ).

Proof. (Proof of Proposition 16) We first show the Dist0-unit reflexivity of �Dist0 . For (x1, x2) ∈
Dist0(I, dI) (i.e. dI(x1, x2)= 0), we calculate

�
Dist0
(I,dI)(ηI(x1), ηI(x2))= sup

dS(s1,s2)=0
max

(
dI(π1(x1, s2), π1(x2, s2)), dS(π2(x1, s1), π2(x2, s2)

)
= sup

dS(s1,s2)=0
max (dI(x1, x2), dS(s1, s2))= 0.

Next, we show the Dist0-composability of �Dist0 . For any f1, f2 ∈ TS(I, dI) and nonexpansive
functions F1, F2 : (I, dI)→ TS(J, dJ), we compute

�
Dist0
J (F�1(f1), F

�
2(f2))

= sup
dS(s1,s2)=0

max
( dJ(π1(F1(π1f1(s1))(π2f1(s1))), π1(F2(π1f2(s2))(π2f2(s2))),

dS(π2(F1(π1f1(s1))(π2f1(s1))), π2(F2(π1f2(s2))(π2f2(s2)))

)

≤ sup
dS(s1,s2)=0

max

⎛⎜⎜⎜⎝
dJ(π1(F1(π1f1(s1))(π2f1(s1))), π1(F2(π1f1(s1))(π2f1(s1))),
dJ(π1(F2(π1f1(s1))(π2f1(s1))), π1(F2(π1f2(s2))(π2f2(s2))),
dS(π2(F1(π1f1(s1))(π2f1(s1))), π2(F2(π1f1(s1))(π2f1(s1))),
dS(π2(F2(π1f1(s1))(π2f1(s1))), π2(F2(π1f2(s2))(π2f2(s2)))

⎞⎟⎟⎟⎠

= sup
dS(s1,s2)=0

max

⎛⎜⎜⎜⎝
dJ(π1(F2(π1f1(s1))(π2f1(s1))), π1(F2(π1f2(s2))(π2f2(s2))),
dS(π2(F2(π1f1(s1))(π2f1(s1))), π2(F2(π1f2(s2))(π2f2(s2))),
dJ(π1(F1(π1f1(s1))(π2f1(s1))), π1(F2(π1f1(s1))(π2f1(s1))),
dS(π2(F1(π1f1(s1))(π2f1(s1))), π2(F2(π1f1(s1))(π2f1(s1)))

⎞⎟⎟⎟⎠

≤ sup
dS(s1,s2)=0

max

⎛⎜⎜⎜⎜⎝
dI(π1(f1(s1)), π1(f2(s2))),
dS(π2(f1(s1)), π2(f2(s2))),

sup
(x1,x2)∈Dist0(I,dI)

sup
dS(s′1,s′2)=0

max

(
dJ(π1(F1(x)(s′1)), π1(F2(x)(s′2)),
dS(π2(F1(x)(s′1)), π2(F2(x)(s′2))

)
⎞⎟⎟⎟⎟⎠

=max

⎛⎜⎜⎜⎝
sup

dS(s′1,s′2)=0
max (dI(π1(f1(s1)), π1(f2(s2))), dS(π2(f1(s1)), π2(f2(s2)))),

sup
(x1,x2)∈Dist0(I,dI)

sup
dS(s′1,s′2)=0

max

(
dJ(π1(F1(x1)(s′1)), π1(F2(x2)(s′2)),
dS(π2(F1(x1)(s′1)), π2(F2(x2)(s′2))

)
⎞⎟⎟⎟⎠

=max (�Dist0
I (f1, f2), sup

(x1,x2)∈Dist0(I,dI)
�
Dist0
J (F1(x), F2(x)).

This completes the proof.

Proof. (Proof of Proposition 17) SinceM= 1, the monotonicity of C(�,N) is obvious.
We first show the Eq-unit reflexivity of C(�,N). We recall that for all x ∈UI, we have

Tπ1 • (ηT(N×−)I • x)= (Tπ1 ◦ ηT(N×−)I ) • x = (Tπ1 ◦ ηTN×I ◦ η(N×−)I ) • x
= (ηTN ◦ π1 ◦ 〈1N◦!I , idI〉) • x= (ηTN ◦ 1N◦!I) • x
= ηT • ((1N◦!I) • x) = ηT • (1N • (!I • x))
= ηT • (1N • id1) = ηT •U1N .
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Hence,
C(�,N)I(ηT(N×−) • x, ηT(N×−) • x)= C(�,N)I(ηT(N×−) • x, ηT(N×−) • x)

=�N(Tπ1 • (ηT(N×−) • x), Tπ1 • (ηT(N×−) • x)
=�N(η

T •U1N , ηT •U1N)
≤ 0Q .

We next show the Eq-composability of C(�,N). For any f : I→ T(N × I), we define hf : N ×
I→ T(N) by hf = T( � ) ◦ θN,N ◦ (idN × (Tπ1 ◦ f )). Then, we have Tπ1 • f �(T(N×I)) • ν = h�Tf • ν
for any ν ∈U(T(N × I)). First, for allm, n ∈UN, we have

(T( � ) ◦ (ηN×N)n) •m= T( � ) • (ηN×N • 〈n,m〉)= (T( � ) ◦ ηN×N) • 〈n,m〉)
= (ηN ◦ �) • 〈n,m〉) = ηN • ( � •〈n,m〉)
= ηN • ( �n •m) = (ηN ◦ �n) •m.

From this and the equality (1), we can calculate as follows:
hf • 〈n, i〉
= (T( � ) ◦ θN,N ◦ (idN × (Tπ1 ◦ f ))) • 〈n, i〉 = (T( � ) ◦ θN,N) • ((idN × (Tπ1 ◦ f )) • 〈n, i〉)
= (T( � ) ◦ θN,N) • (U(idN × (Tπ1 ◦ f ))(n, i)) = (T( � ) ◦ θN,N) • ((U(idN)×U(Tπ1 ◦ f ))(n, i))
= (T( � ) ◦ θN,N) • 〈U(idN)(n),U(Tπ1 ◦ f )(i)〉 = (T( � ) ◦ θN,N) • 〈n, (Tπ1 ◦ f ) • i〉
= T( � ) • (θN,N • 〈n, (Tπ1 ◦ f ) • i〉) = T( � ) • ((θN,N)n • ((Tπ1 ◦ f ) • i))
= T( � ) • (((ηN×N)n)� • ((Tπ1 ◦ f ) • i)) = (T( � ) ◦ ((ηN×N)n)�) • ((Tπ1 ◦ f ) • i)
= (T( � ) ◦ (ηN×N)n)� • ((Tπ1 ◦ f ) • i) = (ηN ◦ ( �n ))� • ((Tπ1 ◦ f ) • i).

From the assumption �N×I(c1, c2)≤ C(�,N)I(c1, c2), the Eq-unit reflexivity and Eq-
composability of the original divergence �, we obtain the Eq-composability of C(�,N) as
follows:

C(�,N)J(f �(T(N×I))1 • c1, f �(T(N×I))2 • c2)
=�N(Tπ1 • f �(T(N×I))1 • c1, Tπ1 • f �(T(N×I))2 • c2)
=�N(h

�T
f1 • c1, h

�T
f2 • c2)

≤�N×I(c1, c2)+ sup
〈n,i〉∈U(N×I)

�N(hf1 • 〈n, i〉, hf2 • 〈n, i〉)

=�N×I(c1, c2)
+ sup
〈n,i〉∈U(N×I)

�N((ηN ◦ ( � )n)�T • ((Tπ1 ◦ f ) • i), (ηN ◦ ( � )n)�T • ((Tπ1 ◦ f ) • i))

≤�N×I(c1, c2)

+ sup
〈n,i〉∈U(N×I)

(
�N((Tπ1 ◦ f ) • i, (Tπ1 ◦ f ) • i)

+ sup
m∈UN

�N(ηN ◦ ( � )n) •m, (ηN ◦ ( � )n) •m)

)
≤�N×I(c1, c2)+ sup

〈n,i〉∈U(N×I)
�N((Tπ1 ◦ f ) • i, (Tπ1 ◦ f ) • i)

=�N×I(c1, c2)+ sup
i∈UI

�N((Tπ1 ◦ f1) • i, (Tπ1 ◦ f2) • i)
≤ C(�,N)I(c1, c2)+ sup

i∈UI
C(�,N)J(f1 • i, f2 • i).

This completes the proof.
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Proof. (Proof of Proposition 18)
We consider a preorder# on a monad T. We define the B-divergence�# on TI by:

�
#
I (c1, c2)�

{
0 c1 �#I c2
1 c1 #I c2

Each �̃(1)I is a preorder because �̃(1)I =#I holds for each I.
The Eq-unit reflexivity of�# is derived from the reflexivity of#. For all set I and c ∈ TI,

(�#I (c, c)≤ 1) ⇐⇒ (c#I c).

Since# is a preorder on T, for any I, J ∈ Set, c1, c2 ∈ TI and f , g : I→ TJ,

(�#I (c1, c2)× sup
x∈I

�
#
J (f (x), g(x)))= 1

⇐⇒ (�#I (c1, c2)= 1)∧ ( sup
x∈I

�
#
J (f (x), g(x))= 1)

⇐⇒ (c1 #I c2)∧ (∀x ∈ I. f (x)#J g(x))
=⇒ (f �(c1)#J f �(c2))∧ (f �(c2)#J g�(c2))
=⇒ (f �(c1)#J g�(c2))
⇐⇒ (�#J (f

�(c1), g�(c2))= 1)

Hence, we have the Eq-composability:

�
#
J (f

�(c1), g�(c2))≤�#I (c1, c2)× sup
x∈I

�
#
J (f (x), g(x)).

Conversely, we consider an Eq-relative B-divergence � on T such that each �̃(1)I is a pre-
order. We show that the family #�= {#�I }I∈Set defined by #�I � �̃(1)I forms a preorder on
monad T.

Each component#�I of#� at set I is a preorder on the set TI. We here note that the divergence
�must be reflexive (i.e.�I(c, c)≤ 1 for all I ∈ Set, c ∈ TI) because of the reflexivity of#�I :

(�I(c, c)≤ 1) ⇐⇒ (c#�I c), for all I ∈ Set, c ∈ TI.

From the reflexivity and Eq-composability of�, we have for all c1, c2, c ∈ TI and f , g : I→ TJ,

∀c1, c2 ∈ TI, f : I→ TJ .�J(f
�(c1), f �(c2))≤�I(c1, c2), (30)

∀c ∈ TI, f , g : I→ TJ .�J(f
�(c), g�(c))≤ sup

x∈I
�J(f (x), g(x)). (31)

They are equivalent to the substitutivity and congruence of#�, respectively:
(30) ⇐⇒ ∀c1, c2 ∈ TI, f : I→ TJ . (c1 #�I c2 =⇒ f �(c1)#�J f �(c2)),
(31) ⇐⇒ ∀c ∈ TI, f , g : I→ TJ . (∀x ∈ I. f (x)#�J g(x) =⇒ f �(c)#�J g�(c)).

Finally, the above conversions�(−) and#(−) are mutually inverse:

�
#�′
I (c1, c2)≤ 1 ⇐⇒ c1 #�′I c2 ⇐⇒ �′I(c1, c2)≤ 1,

c1 #�#
′

I c2 ⇐⇒ �
#′
I (c1, c2)≤ 1 ⇐⇒ c1 #′I c2.

This completes the proof.
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Appendix C. Proofs for Section 5 (Properties of Divergences on Monads)
Proof. (Proof of Theorem 21) First, it is easy to see that the inequality (3) is equivalent to �
satisfying E-unit reflexivity.

We next show that the inequality (4) is equivalent to� satisfying E-composability.
(only if) Since U1= {id1}, we have RE1 = {(id1, id1)}. Therefore, it holds d�1,J(c1, c2)=

�J(c1, c2). By letting I = 1 in the inequality (4), we obtain the E-composability:

d�1,K(f1 ◦CT c1, f2 ◦CT c2)≤ d�J,K(f1, f2)+ d�1,J(c1, c2)

⇐⇒ �K(f
�
1 ◦ c1, f �2 ◦ c2)≤ sup

(x1,x2)∈EI
�K(f1 • x1, f2 • x2)+�J(c1, c2).

(if) From the E-composability, for any f1, f2 : I→ TJ and g1, g2 : J→ TK and (x1, x2) ∈ EI, we have

�K(g
�
1 • (f1 • x1), g�2 • (f2 • x2))≤ d�J,K(g1, g2)+�J(f1 • x1, f2 • x2).

Next, for any (x1, x2) ∈ EI, we have�J(f1 • x1, f2 • x2)≤ d�I,J(f1, f2). Thus, by monotonicity of (+ )
we have

�K(g
�
1 • f1 • x1, g�2 • f2 • x2)≤ d�J,K(g1, g2)+ d�I,J(f1, f2).

By discharging (x1, x2) ∈ EI, we conclude

d�I,K(g
�
1 ◦ f1, g�2 ◦ f2)≤ d�J,K(g1, g2)+ d�I,J(f1, f2).

Proof. (Proof of Lemma 22) We write V for VQ,C. From x+ = , we obtain the following
equivalence (below z1, z2 ∈U(VZ) and x1, x2 ∈U(VX)):

f ∈DivQ(C)(Z⊗ X, Y)
⇐⇒ ∀z1, z2, x1, x2 . dY (f • 〈z1, x1〉, f • 〈z2, x2〉)≤ dZ(z1, z2)+ dX(x1, x2)
⇐⇒ ∀z1, z2, x1, x2, dX(x1, x2)= 0 . dY (f • 〈z1, x1〉, f • 〈z2, x2〉)≤ dZ(z1, z2)
⇐⇒ ∀z1, z2 . sup

x1,x2,dX(x1,x2)=0
dY (f • 〈z1, x1〉, f • 〈z2, x2〉)≤ dZ(z1, z2)

⇐⇒ ∀z1, z2 . dX�Y (λ(f ) • z1, λ(f ) • z2)≤ dZ(z1, z2)
⇐⇒ λ(f ) ∈DivQ(C)(Z, X� Y).

This shows that the currying bijection λ :C(VZ×VX,VY)→C(VZ,VX⇒VY) restricts to the
one fromDivQ(C)(Z⊗ X, Y) toDivQ(C)(Z, X� Y), showing that VQ,C is a map of adjunction.

Proof. (Proof of Theorem 25) [�] is a graded variant of the codensity lifting performed along the
fibration VQ,C :DivQ(C)→C (Katsumata et al., 2018, see also Definition 37). Proving that it is
a graded lifting of T is routine. We show �m

I = [�]m(EQI). The direction [�]m(EQI)�TI �
m
I

is easy. We show the converse. From the composability of �, for any c1, c2 ∈U(TI), J ∈C, n ∈M
and f ∈DivQ(C)(EQI,�n

J ), we have

�m·n
J (f � • c1, f � • c2)≤�m

I (c1, c2)+ sup
(x1,x2)∈EI

�n
J (f • x1, f • x2).

Next, the nonexpansivity of f is equivalent to
sup

(x1,x2)∈EI
�n

J (f • x1, f • x2)≤ 0.

Therefore, we conclude�m·n
J (f � • c1, f � • c2)≤�m

I (c1, c2). By discharging J, n, f , we conclude the
inequality�m

I �TI [�]m(EQI).
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Proof. (Proof of Theorem 26) Let � ∈Div(T, E,M,Q). We have already shown that [�] is an
M-graded Q-divergence lifting of T. We show that [�] is E-strong (this proof does not need the
closedness of C). Let X � (I, d) ∈DivQ(C) and J ∈C be objects. We first rewrite the goal:

θ ∈DivQ(C)(X⊗ [�]m(EQJ), [�]m(X⊗ EQJ))

⇐⇒
( ∀x1, x2 ∈UI, c1, c2 ∈U(TJ) .

d[�]m(X⊗EQJ)(θ • 〈x1, c1〉, θ • 〈x2, c2〉)≤ d(x1, x2)+ d[�]m(EQJ)(c1, c2)

)
⇐⇒

( ∀x1, x2 ∈UI, c1, c2 ∈U(TJ),K ∈C, n ∈M, f ∈DivQ(C)(X⊗ EQJ,�n
K) .

�m·n
K (f � • θ • 〈x1, c1〉, f � • θ • 〈x2, c2〉)≤ d(x1, x2)+ d[�]m(EQJ)(c1, c2)

)
†⇐⇒
( ∀x1, x2 ∈UI, c1, c2 ∈U(TJ),K ∈C, n ∈M, f ∈DivQ(C)(X⊗ EQJ,�n

K) .
�m·n

K ((fx1 )� • c1, (fx2 )� • c2)≤ d(x1, x2)+ d[�]m(EQJ)(c1, c2)

)
.

In the step †⇐⇒ , we use the equality (1). To show this goal, we proceed as follows. Let x1, x2 ∈
UI, c1, c2 ∈U(TJ),K ∈C, n ∈M and f ∈DivQ(C)(X⊗ EQJ,�n

K). First, from the composability of
�, we obtain

�m·n
K ((fx1 )� • c1, (fx2 )� • c2)≤�m

J (c1, c2)+ sup
(y1,y2)∈EJ

�n
K(fx1 • y1, fx2 • y2).

We look at summands of the right-hand side. First, we have �m
J (c1, c2)≤ d[�]m(EQJ)(c1, c2) by

Theorem 25. Next, from the nonexpansivity of f , for any x1, x2 ∈UI, y1, y2 ∈UJ, we have

�n
K(fx1 • y1, fx2 • y2)=�n

K(f • 〈x1, y1〉, f • 〈x2, y2〉)≤ d(x1, x2)+ EQJ(y1, y2).
Because x+ = , we obtain

∀x1, x2 ∈UI . sup
(y1,y2)∈EJ

�n
K(fx1 • y1, fx2 • y2)≤ d(x1, x2).

Therefore, we obtain the goal:

�m·n
K ((fx1 )� • c1, (fx2 )� • c2)≤ d(x1, x2)+ d[�]m(EQJ)(c1, c2).

Next, let Ṫ ∈ SGDLift(T, E,M,Q). We show 〈Ṫ〉 ∈Div(T, E,M,Q).
The unit law of Ṫ immediately entails

ηI ∈DivQ(C)(EQI, Ṫ1(EQI)).
Next, under the assumption on (C, T) and Q, in DivQ(C) the functor (− )⊗ EQI has a right
adjoint EQI� (− ) above the adjunction (− )× I � I⇒ (− ) (Lemma 22). Therefore, each
component of the uncurried bind morphism ub given in (7) are nonexpansive morphisms in
DivQ(C):

〈Ṫ〉m(EQI)⊗ (EQI� 〈Ṫ〉n(EQJ))

〈π2,π1〉
��

(EQI� 〈Ṫ〉n(EQJ))⊗ 〈Ṫ〉m(EQI)

θ

��
〈Ṫ〉m((EQI� 〈Ṫ〉n(EQJ))⊗ EQI)

ev�
��

〈Ṫ〉(m · n)(EQJ)
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Therefore, we conclude

ub ∈DivQ(C)(〈Ṫ〉m(EQI)⊗ (EQI� 〈Ṫ〉n(EQJ)), 〈Ṫ〉(m · n)(EQJ)).

We also easily have monotonicity: 〈Ṫ〉m(EQI)≤ 〈Ṫ〉n(EQI) for m≤ n by condition 1 of graded
divergence lifting. We thus conclude that 〈Ṫ〉mEQI ∈Div(T, E,M,Q).

We finally show Ṫ � [〈Ṫ〉]. Let c1, c2 ∈U(TI). We show

sup
n∈M,J∈C,f∈DivQ(C)(X,Ṫn(EQJ))

dṪ(m·n)(EQJ)(f
�(c1), f �(c2))≤ dṪmX(c1, c2). (32)

Let n ∈M, J ∈C, f ∈DivQ(C)(X, Ṫn(EQJ)). Since Ṫ is anM-gradedQ-divergence lifting of T, we
obtain

f � ∈DivQ(C)(ṪmX, Ṫ(m · n)(EQJ)).

This implies the inequality dṪ(m·n)(EQJ)(f �(c1), f �(c2))≤ dṪmX(c1, c2) in Q. By taking the sup for
n, J, f , we obtain the inequality (32).

Proof. (Proof of Proposition 28) We write |1| = {∗}. We first check the measurable isomor-
phism Gs1∼= [0, 1]. The measurable functions ev{∗} : Gs1→ [0, 1] (ν �→ ν( ∗ )) and the function
H : |[0, 1]|→ |Gs1| (r �→ r · d∗) are mutually inverse. For any (Borel-)measurable U ∈�[0,1],
we have H−1(ev−1{∗}(U))=U and H−1(ev−1∅ (U))= [0, 1] if 0 ∈U and H−1(ev−1∅ (U))=∅ other-
wise. Since all generators of �Gs1 are ev−1{∗}(U) and ev−1∅ (U) where U ∈�[0,1], we conclude the
measurability of H : [0, 1]→Gs1. Thus, f : I→ [0, 1] corresponds bijectively to H ◦ f : I→Gs1,
and ∫

I
fdν1 =

∫
I
ev{∗} ◦H ◦ fdν1 = ((H ◦ f )�ν1)({∗}).

We then obtain, for all I ∈Meas, ν1, ν2 ∈GsI

DPεI (ν1, ν2)= sup
S∈�I

(ν1(S)− exp (ε)ν2(S))

= sup
S∈�I

(∫
I
χSdν1 − exp (ε)

∫
I
χSdν2

)
≤ sup

f : I→[0,1]

(∫
I
fdν1 − exp (ε)

∫
I
fdν2

)
= sup

f : I→[0,1]
(((H ◦ f )�ν1)( ∗ )− exp (ε)((H ◦ f )�ν2)( ∗ ))

≤ sup
f : I→[0,1]

sup
S′∈�1(⇐⇒ S′={∗},∅)

((H ◦ f )�ν1)(S′)− exp (ε)((H ◦ f )�ν2)(S′))

= sup
f : I→[0,1]

DPε1((H ◦ f )�ν1, (H ◦ f )�ν2)

= sup
g : I→Gs1

DPε1(g
�ν1, g�ν2)

≤ DPεI (ν1, ν2).
The first inequality is given by ν(S)= ∫I χSdν where χS : I→ [0, 1] is the indicator function of S
defined by χS(x)= 1 when x ∈ S and χS(x)= 0 otherwise. The last inequality is given by the data
processing inequality which is given by the reflexivity and Eq -composability of DP.
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Proof. (Proof of Proposition 29) We first prove that TV is not 1-generated. We write |2| = {0, 1}.
We define ν1, ν2 ∈Gs2 by:

ν1 = 1
2
· d0 + 1

2
· d1, ν2 = 1

3
· d0 + 2

3
· d1.

Then the total variation distance between them is calculated by:

TV2(ν1, ν2)= 1
2

(∣∣∣∣12 − 1
3

∣∣∣∣+ ∣∣∣∣12 − 2
3

∣∣∣∣)= 1
6
.

On the other hand, for any f : 2→Gs1, we have

TV1(f �(ν1), f �(ν2))= 1
2

∣∣∣∣12 f (0)+ 1
2
f (1)− 1

3
f (0)− 2

3
f (1)

∣∣∣∣
= 1

2

∣∣∣∣16 f (0)− 1
6
f (1)

∣∣∣∣
= 1

12
∣∣f (0)− f (1)

∣∣
≤ 1

12
.

This implies that TV is not 1-generated.
Next, we prove that TV is 2-generated. From the data processing inequality TV which is given

by the reflexivity and Eq -composability of TV, we obtain for any ν1, ν2 ∈GsI,

TVI(ν1, ν2)≥ sup
g : I→Gs2

TV2(g�ν1, g�ν2).

We show that the above inequality becomes the equality for some g.
We fix ν1, ν2 ∈GsI, a base measure μ over I satisfying the absolute continuity ν1, ν2*μ

and the Radon–Nikodym derivatives (density functions) dν1
dμ ,

dν2
dμ of ν1, ν2 with respect to μ,

respectively.
Let A= ( dν1dμ − dν2

dμ )
−1([0,∞)) and B= I \A. We define g : I→Gs2 by g(x)= d0 if x ∈ B and

g(x)= d1 otherwise. Then for any ν ∈GsI, we have

(g�ν)({0})=
∫
I
g(− )({0})dν =

∫
A
g(− )({0})dν +

∫
B
g(− )({0})dν =

∫
A
1dν +

∫
B
0dν = ν(A).

Similarly, we have (g�ν)({1})= ν(B). Therefore, we obtain
1
2
TVI(μ1,μ2)= 1

2

∫
I

∣∣∣∣dν1dμ
(x)− dν2

dμ
(x)
∣∣∣∣ dμ(x)

= 1
2

∫
A

dν1
dμ

(x)− dν2
dμ

(x) dμ(x)+ 1
2

∫
B

dν2
dμ

(x)− dν1
dμ

(x) dμ(x)

= 1
2
(ν1(A)− ν2(A)+ ν2(B)− ν1(B))

= 1
2
((g�ν1)({0})− (g�ν2)({0})+ (g�ν2)({1})− (g�ν2)({1}))

= 1
2
(|(g�ν1)({0})− (g�ν2)({0})| + |(g�ν2)({1})− (g�ν2)({1})|)

= TV2(g�(μ1), g�(μ2))

We then conclude that�TV is 2-generated.
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Proof. (Proof of Proposition 30) For all set J and c1, c2 ∈ TJ, we have

�
[≤]�
J (c1, c2)= 1 ⇐⇒ c1[≤ ]�J c2

⇐⇒
∧

g : J→T�
g�(c1)≤ g�(c2)

⇐⇒
∧

g : J→T�
g�(c1) [≤ ]�� g�(c2)

⇐⇒ sup
g : J→T�

�([≤ ]�)�(g�(c1), g�(c2))= 1.

This implies that�[≤]� is�-generated.

Lemma 47. For any U ∈QET(�,�), t, u ∈ T�� and ε ∈Q+, we have

D[U](t, u)≤ ε ⇐⇒ ∅� t=ε u ∈U.

Proof. (=⇒ ) Assume D[U](t, u)≤ ε. We first fix an arbitrary ε′ ∈Q+ such that ε < ε′. By the
definition ofD[U], there is ε∗ ∈Q+ such thatD[U](t, u)≤ ε∗ < ε′ and ∅ � t=ε∗ u ∈U. Here (ε−
ε∗) ∈Q+ and ε′ = ε∗ + (ε′ − ε∗). Therefore, by (Max) and (Cut), we conclude ∅ � t=ε′ u ∈U.
Since ε′ is arbitrary, we obtain

{∅ � t=ε′ u
∣∣ ε′ ∈Q+, ε < ε′

}⊆U. Hence, by (Arch) and (Cut),
we have ∅ � t=ε u ∈U. (⇐= ) Obvious.

Lemma 48. For any U ∈QET(�,�), the function D[U] : (T��)2→R+ defined by (9) is a CS-
PMet on T��.

Proof. ThatD[U] is a pseudometric is shown in the beginning of (Mardare et al., 2016, Section 5).
We check the substitutivity. Let t, u ∈ T�� and h : �→ T��. By (Subst), we have

∀ε ∈Q+ . ∅ � t=ε u ∈U =⇒ ∅� h�(t)=ε h�(u) ∈U.

Since ε is arbitrary, we conclude the substitutivity as follows:

D[U](h�(t), h�(u))= inf
{
ε ∈Q+

∣∣ ∅ � h�(t)=ε h�(u) ∈U
}

≤ inf
{
ε ∈Q+

∣∣ ∅ � t=ε u ∈U
}

=D[U](t, u).

We check the congruence. Let t ∈ T�I and h1, h2 : I→ T��. By unfolding the structure of t
and applying (Nonexp) and (Cut) repeatedly, we have the implication:

∀i ∈ I, ε ∈Q+ . ∅ � h1(i)=ε h2(i) ∈U =⇒ ∅� h�1(t)=ε h�2(t) ∈U. (33)

From (33) and Lemma 47, we conclude the congruence as follows:

D[U](h�1(t), h
�
2(t))= inf

{
ε ∈Q+

∣∣∣ ∅ � h�1(t)=ε h�2(t) ∈U
}

≤ inf
{
ε ∈Q+

∣∣ ∀i ∈ I . ∅ � h1(i)=ε h2(i) ∈U
}

= inf
{
ε ∈Q+

∣∣∣∣ sup
i∈I

D[U](h1(i), h2(i))≤ ε
}

= sup
i∈I

D[U](h1(i), h2(i)).

Here, the last equality follows from the density ofQ+.
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The monotonicity of D[− ] : (QET(�,�),⊆ )→ (CSPMet(T� ,�),� ) is shown as:

U ⊆V =⇒ ∀t, u ∈ T�� . inf
{
ε ∈Q+

∣∣ ∅ � t=ε u ∈U
}≥ inf

{
ε ∈Q+

∣∣ ∅ � t=ε u ∈V
}

⇐⇒ ∀t, u ∈ T�� . D[U](t, u)≥D[V](t, u)
⇐⇒ D[U]�D[V].

Lemma 49. Let T be amonad on Set and� ∈ Set. For any d ∈CSPMet(T,�), the familyGen(d)=
{Gen(d)I : (TI)2→R+}I∈Set defined by (11) is an �-generated Eq-relative R+-divergence on T
where each Gen(d)I is a pseudometric.

Proof. From the reflexivity of d, we have the reflexivity of Gen(d)I : for each c ∈ TI,

Gen(d)I(c, c)= sup
k : I→T�

d(k�(c), k�(c))= 0.

Hence, the Eq-unit reflexivity of Gen(d) follows. From the symmetry of d, we have the symmetry
of Gen(d)I : for each c1, c2 ∈ TI,

Gen(d)I(c1, c2)= sup
k : I→T�

d(k�(c1), k�(c2))= sup
k : I→T�

d(k�(c2), k�(c1))=Gen(d)I(c2, c1).

From the triangle inequality of d, we have the triangle inequality of Gen(d)I : for all c1, c2, c3 ∈ TI,

Gen(d)I(c1, c3)= sup
k : I→T�

d(k�(c1), k�(c3))

≤ sup
k : I→T�

d(k�(c1), k�(c2))+ d(k�(c2), k�(c3))

≤ sup
k : I→T�

d(k�(c1), k�(c2))+ sup
k : I→T�

d(k�(c2), k�(c3))

=Gen(d)I(c1, c2)+Gen(d)I(c2, c3).

Using the reflexivity, congruence, and substitutivity of d and the triangle inequality of Gen(d)I ,
we next show the composability. Let c1, c2 ∈ TI and f1, f2 : I→ TJ. We obtain

Gen(d)J(f �1 (c1), f
�
2 (c2))

≤Gen(d)J(f �1 (c1), f
�
1 (c2))+Gen(d)J(f �1 (c2), f

�
2 (c2))

= sup
k : J→T�

d((k� ◦ f1)�(c1), (k� ◦ f1)�(c2))+ sup
k : J→T�

d((k� ◦ f1)�(c2), (k� ◦ f2)�(c2))

≤ sup
l : I→T�

d(l�(c1), l�(c2))+ sup
k : J→T�

sup
i∈I

d(k� ◦ f1(i), k� ◦ f2(i))

= sup
l : I→T�

d(l�(c1), l�(c2))+ sup
i∈I

sup
k : J→T�

d(k� ◦ f1(i), k� ◦ f2(i))

=Gen(d)I(c1, c2)+ sup
i∈I

Gen(d)J(f1(i), f2(i)).

We show the�-generatedness of Gen(d):

Gen(d)I(c1, c2)= sup
l : I→T�

d(l�(c1), l�(c2))

( ∗ )= sup
h : �→T�,k : I→T�

d((h� ◦ k)�(c1), (h� ◦ k)�(c2))

= sup
k : I→T�

sup
h : �→T�

d(h�(k�(c1)), h�(k�(c2)))
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= sup
k : I→T�

Gen(d)�(k�(c1), k�(c2)).

The step (*) uses the equality
{
l
∣∣ l : I→ T�

}= {h� ◦ k ∣∣ h : �→ T�, k : I→ T�
}
.

Gen is indeed a monotone function of type (CSPMet(T,�),� )→ (PMet(T,�),� ) because

d� d′ =⇒ ∀I ∈ Set . ∀c1, c2 ∈ TI . sup
k : I→T�

d(k�(c1), k�(c2))≥ sup
k : I→T�

d′(k�(c1), k�(c2))

⇐⇒ ∀I ∈ Set . ∀c1, c2 ∈ TI . Gen(d)I(c1, c2)≥Gen(d′)I(c1, c2)
⇐⇒ Gen(d)�Gen(d′).

Proof. (Proof of Theorem 34) This is proved by Lemma 47, 48, 49.

Proof. (Proof of Theorem 35) Let d ∈CSPMet(T� ,�). We show (Gen(d))� = d. Let t, u ∈ T��.
From the substitutivity of d, we have

sup
k:�→T��

d(k�(t), k�(u))≤ d(t, u).

On the other hand, d(t, u)= d(η��(t), η
�
�(u)). Therefore, we conclude

(Gen(d))�(t, u)= sup
k : �→T��

d(k�(t), k�(u))= d(t, u).

Let � ∈ PMet(T� ,�). We show Gen(��)=�. By the �-generatedness of �, we have, for all
sets I and t, u ∈ T�I,

Gen((�)�)I(t, u)= sup
k : I→T��

��(k�(t), k�(u))=�I(t, u).

We show the adjointness: U[d]⊆V ⇐⇒ d�D[V] for any V ∈QET(�,�) and d ∈
CSPMet(T� ,�).

U[d]⊆V ⇐⇒ {∅ � t=ε u
∣∣ ε ∈Q+, d(t, u)≤ ε}QET(�,�) ⊆V

⇐⇒ ∀t, u ∈ T��, ε ∈Q+ . d(t, u)≤ ε =⇒ ∅� t=ε u ∈V
( ∗ ) ⇐⇒ ∀t, u ∈ T��, ε ∈Q+ . d(t, u)≤ ε =⇒ inf

{
ε′ ∈Q+

∣∣ ∅ � t=ε′ u ∈V
}≤ ε

⇐⇒ ∀t, u ∈ T�� . inf
{
ε′ ∈Q+

∣∣ ∅ � t=ε′ u ∈V
}≤ d(t, u)

⇐⇒ d�D[V]
The step (*) uses Lemma 47.

Let d ∈CSPMet(T� ,�). We finally show D[U[d]]= d. By the adjunction U[− ]�D[− ], we
have d�D[U[d]]. We thus show D[U[d]]� d. We unfold this goal:

D[U[d]]� d ⇐⇒ ∀t, u ∈ T�� . d(t, u)≤D[U[d]](t, u)
⇐⇒ ∀t, u ∈ T�� . d(t, u)≤ inf

{
ε ∈Q+

∣∣ ∅ � t=ε u ∈U[d]
}

⇐⇒ ∀t, u ∈ T��, ε ∈Q+ . ∅ � t=ε u ∈U[d] =⇒ d(t, u)≤ ε
⇐⇒ {∅ � t=ε u ∈U[d]} ⊆ {∅ � t=ε u

∣∣ d(t, u)≤ ε} .
Since U[d] is the least QET including

{∅ � t=ε u
∣∣ d(t, u)≤ ε}, it suffices to have a QET V ∈

QET(�,�) such that
{∅ � t=ε u ∈V} = {∅ � t=ε u

∣∣ d(t, u)≤ ε} .
Inspired from the definition of models of QET (Bacci et al., 2021), we define V as follows:
� � t=ε u ∈V
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⇐⇒ ∀σ : �→ T�� .
((∀t′ =ε′ u′ ∈ � . d(σ�(t′), σ�(u′))≤ ε′) =⇒ d(σ�(t), σ�(u))≤ ε) .

By the substitutivity of d and the definition of V , we obtain, for all t, u ∈ T�� and ε ∈Q+,

∅ � t=ε u ∈V ⇐⇒ (∀σ : �→ T�� . d(σ�(t), σ�(u))≤ ε) ⇐⇒ d(t, u)≤ ε.
We check that V satisfies all rules of QET:

(Ref) From the reflexivity of d, we have ∅ � t=0 t ∈V :

∀σ : �→ T�� .
( =⇒ d(σ�(t), σ�(t))≤ 0

)
.

(Sym) From the symmetry of d, we have {t=ε u} � u=ε t ∈V :

∀σ : �→ T�� .
((
d(σ�(t), σ�(u))≤ ε) =⇒ d(σ�(u), σ�(t))≤ ε) .

(Tri) From the triangle inequality of d, we have {t=ε u, u=ε′ v} � t=ε+ε′ v ∈V :

∀σ : �→ T�� .
((
d(σ�(t), σ�(u))≤ ε ∧ d(σ�(u), σ�(v))≤ ε′) =⇒ d(σ�(t), σ�(v))≤ ε+ ε′) .

(Max) Since (Q+,≤, 0,+) is a preorderedmonoid where the unit 0 is the least element, we have
{t=ε u} � t=ε+ε′ u ∈V :

∀σ : �→ T�� .
((
d(σ�(t), σ�(u))≤ ε+ 0

) =⇒ d(σ�(t), σ�(u))≤ ε+ ε′) .
(Arch) From the density ofQ+, we have

∀σ : �→ T�� .
(
d(σ�(t), σ�(u))> ε =⇒ (∃ε′ ∈Q+ s.t. ε < ε′ . d(σ�(t), σ�(u))> ε′

))
.

It is equivalent to
{
t=ε′ u

∣∣ ε < ε′}� t=ε u ∈V :

∀σ : �→ T�� .
((∀ε′ ∈Q+ s.t. ε < ε′ . d(σ�(t), σ�(u))≤ ε′) =⇒ d(σ�(t), σ�(u))≤ ε) .

(Nonexp) Let f : n ∈� be a function and {ti =ε ui | 1≤ i≤ n} ⊆V(T��) be a set of quan-
titiative equations. Let I = {1, . . . , n}. We then take tf = f (1, . . . , n) ∈ T�I. We define t, s : I→
T�� by t(i)= ti and s(i)= si (i ∈ I). We now fix an arbitrary σ : �→ T��, and assume
d(σ�(ti), σ�(si))≤ ε for all i ∈ I. Then this asserts supi∈I d(σ�(t(i)), σ�(s(i)))≤ ε. From the con-
gruence of d, we obtain

d(σ�(f (t1, . . . , tn)), σ�(f (s1, . . . , sn)))= d(σ�(t�(tf )), σ�(s�(tf )))
≤ sup

i∈I
d(σ�(t(i)), σ�(s(i)))≤ ε.

Since σ is arbitrary, we conclude {ti =ε ui | 1≤ i≤ n} � f (t1, . . . , tn)=ε f (s1, . . . , sn) ∈V .
(Subst) Immediate by definition of V :

� � t=ε u ∈V
⇐⇒ ∀σ : �→ T�� .

((∀t′ =ε′ u′ ∈ � . d(σ�(t′), σ�(u′))≤ ε′) =⇒ d(σ�(t), σ�(u))≤ ε)
=⇒ ∀σ ′, σ : �→ T�� .

( (∀t′ =ε′ u′ ∈ � . d((σ� ◦ σ ′)�(t′), (σ� ◦ σ ′)�(u′))≤ ε′)
=⇒ d((σ� ◦ σ ′)�(t), (σ� ◦ σ ′)�(u))≤ ε

)

⇐⇒ ∀σ ′ : �→ T�� . ∀σ : �→ T�� .

⎛⎝ (∀t′ =ε′ u′ ∈ � . d(σ�(σ ′�(t′)), σ�(σ ′�(u′)))≤ ε′
)

=⇒ d(σ�(σ ′�(t)), σ�(σ ′�(u)))≤ ε

⎞⎠
=⇒ ∀σ ′ : �→ T�� . ∀σ : �→ T�� .

( (∀t′′ =ε′ u′′ ∈ σ ′(�) . d(σ�(t′′), σ�(u′′))≤ ε′)
=⇒ d(σ�(σ ′�(t)), σ�(σ ′�(u)))≤ ε

)
⇐⇒ ∀σ ′ : �→ T�� . σ ′(�)� σ ′�(t)=ε σ ′�(u) ∈V .
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(Cut) Assume �′ � t=ε u and � �ψ ∈V holds for all ψ ∈ �′. Fix an arbitrary σ : �→ T��,
and assume

(∀t′ =ε′′ u′′ ∈ � . d(σ�(t′′), σ�(u′′))≤ ε′′). By definition of V , for any t′ =ε′ u′ ∈ �′, we
obtain d(σ�(t′), σ�(u′))≤ ε′ from � � t′ =ε′ u′ ∈V . Hence, by definition of V again, we obtain
d(σ�(t), σ�(u))≤ ε from �′ � t=ε u ∈V . Since σ is arbitrary, we conclude � � t=ε u ∈V .

(Assumpt) Assume t=ε u ∈ �. Fix an arbitrary σ : �→ T��. Regardless of the value of
d(σ�(t), σ�(u)), the following predicare is true:(∀t′ =ε′ u′ ∈ � . d(σ�(t′), σ�(u′))≤ ε′) =⇒ d(σ�(t), σ�(u))≤ ε
because the premise (∀t′ =ε′ u′ ∈ � . d(σ�(t′), σ�(u′))≤ ε′) is false whenever d(σ�(t), σ�(u))> ε.
Since σ is arbitrary, we conclude � � t=ε u ∈V .

Proof. (Proof of Theorem 36) It is clear that U[d] is an unconditional QET from its defini-
tion. Therefore, we take arbitrary V ∈UQET(�,�) and show U[D[V]]=V . We assume V =
SQET(�,�) for some S⊆ {∅ � t=ε u | t, u ∈ T��, ε ∈Q+}. The adjunction U[− ]�D[− ] implies
U[D[V]]⊆V . We thus show V ⊆U[D[V]]. For any t, u ∈ T�� and ε ∈Q+, we have

∅ � t=ε u ∈ S
=⇒ ∅� t=ε u ∈V

( ∗ ) =⇒ D[V](t, u)= inf{ε′ ∈Q+ | ∅ � t=ε′ u ∈V} ≤ ε
Here, (*) uses Lemma 47. From the monotonicity of the closure (− )QET(�,�), we conclude

V = SQET(�,�) ⊆ {∅ � t=ε u |D′[V](t, u)≤ ε}QET(�,�) =U[D[V]].

Appendix D. Proofs for Section 7 (Graded Strong Relational Liftings for Divergences)
Lemma 50. Let (C, T) be a CC-SM and �= {�m

I : (U(TI))2→Q}m∈M,I∈C be a doubly indexed
family of Q-divergences on TI satisfying monotonicity on m (Definition 6). Then T[�] is an M×
Q-graded relational lifting of T (satisfies conditions 1–3 of Definition 37).

Proof. (Condition 1) We first show that (idTX1 , idTX2 ) ∈ BRel(C)(T[�](m, v)X, T[�](n,w)X) for
all X whenever m≤ n and v≤w. From the monotonicity of �, for all I ∈C, c′1, c′2 ∈U(TI), n′ ∈
M,w′ ∈Q, we have

(c′1, c′2) ∈ �̃(m · n′, v+w′)I
⇐⇒ �m·n′

I (c′1, c′2)≤ v+w′ =⇒ �n·n′
I (c′1, c′2)≤ v+w′ =⇒ �n·n′

I (c′1, c′2)≤w+w′

⇐⇒ (c′1, c′2) ∈ �̃(n · n′,w+w′)I.

Therefore, for any (c1, c2) ∈ T[�](m, v)X, we obtain (c1, c2) ∈ T[�](n,w)X as follows:

(c1, c2) ∈ T[�](m, v)X

⇐⇒ ∀I ∈C, n′ ∈M,w′ ∈Q, (k1, k2) : X →̇ �̃(n′,w′)I . (k�1 • c1, k�2 • c2) ∈ �̃(m · n′, v+w′)I
=⇒ ∀I ∈C, n′ ∈M,w′ ∈Q, (k1, k2) : X →̇ �̃(n′,w′)I . (k�1 • c1, k�2 • c2) ∈ �̃(n · n′,w+w′)I
⇐⇒ (c1, c2) ∈ T[�](n,w)X.

(Condition 2) We next show (ηX1 , ηX2 ) : X →̇ T[�](1, 0)X. From the definition of morphisms
in BRel(C), for all (x1, x2) ∈ X, we have (ηX1 • x1, ηX2 • x2) ∈ T[�](1, 0)X as follows:
(x1, x2) ∈ X
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=⇒ ∀I ∈C, n ∈M,w ∈Q, (k1, k2) : X →̇ �̃(n,w)I . (k1 • x1, k2 • x2) ∈ �̃(n,w)I

⇐⇒ ∀I ∈C, n ∈M,w ∈Q, (k1, k2) : X →̇ �̃(n,w)I . ((k�1 ◦ ηX1 ) • x1), (k�2 ◦ ηX2 ) • x2) ∈ �̃(n,w)I

⇐⇒ ∀I ∈C, n ∈M,w ∈Q, (k1, k2) : X →̇ �̃(n,w)I . (k�1 • (ηX1 • x1), k�2 • (ηX2 • x2)) ∈ �̃(n,w)I
⇐⇒ (ηX1 • x1, ηX2 • x2) ∈ T[�](1, 0)X.

(Condition 3) Finally, we show that (f �1 , f
�
2 ) : T[�](n,w)X →̇ T[�](n ·m,w+ v)Y holds for any

(f1, f2) : X →̇ T[�](m, v)Y and (n,w) ∈M×Q. For all (f1, f2) : X →̇ T[�](m, v)Y , we have

(f1, f2) : X →̇ T[�](m, v)Y
⇐⇒ ∀(x1, x2) ∈ X . (f1 • x1, f2 • x2) ∈ T[�](m, v)Y

⇐⇒
( ∀(x1, x2) ∈ X, I ∈C, n′ ∈M,w′ ∈Q, (k1, k2) : Y →̇ �̃(n′,w′)I .

(k�1 • (f1 • x1), k�2 • (f2 • x2)) ∈ �̃(m · n′, v+w′)I

)

⇐⇒
( ∀(x1, x2) ∈ X, I ∈C, n′ ∈M,w′ ∈Q, (k1, k2) : Y →̇ �̃(n′,w′)I .

((k�1 ◦ f1) • x1), (k�2 ◦ f2) • x2) ∈ �̃(m · n′, v+w′)I

)

⇐⇒
( ∀I ∈C, n′ ∈M,w′ ∈Q, (k1, k2) : Y →̇ �̃(n′,w′)I .

(k�1 ◦ f1, k�2 ◦ f2) : X →̇ �̃(m · n′, v+w′)I

)
. (a)

For all (c1, c2) ∈ T[�](n,w)X, we have

(c1, c2) ∈ T[�](n,w)X

⇐⇒
( ∀I ∈C, n′ ∈M,w′ ∈Q, (l1, l2) : X →̇ �̃(n′,w′)I .

(l�1 • c1, l�2 • c2) ∈ �̃(n · n′,w+w′)I

)
. (b)

We here fix (f1, f2) : X →̇ T[�](m, v)Y . We show (f �1 , f
�
2 ) : T[�](n,w)X →̇ T�(n ·m,w+ v)Y .

We also fix I ∈C, n′′ ∈M, w′′ ∈Q and (k1, k2) : Y →̇ �̃(n′′,w′′)I. From (a), we obtain

(k�1 ◦ f1, k�2 ◦ f2) : X →̇ �̃(m · n′′, v+w′′)I.

Therefore, by instantiating (b) with (n′,w′)= (m · n′′, v+w′′) and (l1, l2)= (k�1 ◦ f1, k�2 ◦ f2), for all
(c1, c2) ∈ T[�](n,w)X, we have

((k�1 ◦ f1)� • c1, (k�2 ◦ f2)� • c2) ∈ �̃(n ·m · n′′,w+ v+w′′)I.

Since (c1, c2) ∈ T[�](n,w)X, I ∈C, n′′ ∈M, w′′ ∈Q and (k1, k2) : Y →̇ �̃(n′′,w′′)I are arbitrary,
we conclude (f �1 , f

�
2 ) : T[�](n,w)X →̇ T�(n ·m,w+ v) as follows:( ∀(c1, c2) ∈ T[�](n,w)X, I ∈C,m′′ ∈M, v′′ ∈Q, (k1, k2) : Y →̇ �̃(m′′, v′′)I .

((k�1 ◦ f1)� • c1, (k�2 ◦ f2)� • c2) : X →̇ �̃(n ·m ·m′′,w+ v+ v′′)I

)

⇐⇒
( ∀(c1, c2) ∈ T[�](n,w)X, I ∈C,m′′ ∈M, v′′ ∈Q, (k1, k2) : Y →̇ �̃(m′′, v′′)I .

(k�1 • (f �1 • c1), k�2 • (f �2 • c2)) : X →̇ �̃(n ·m ·m′′,w+ v+ v′′)I

)
⇐⇒ ∀(c1, c2) ∈ T[�](n,w)X . (f �1 • c1, f �2 • c2) ∈ T[�](n ·m,w+ v)Y

⇐⇒ (f �1 , f
�
2 ) : T[�](n,w)X →̇ T�(n ·m,w+ v).

This completes the proof.
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Proof. (Proof of Proposition 40) Since Ṫ lifts the Kleisli extension (Condition 3 of Definition 37),
and satisfy the fundamental property, we obtain

(c1, c2) ∈ Ṫ(m, v)X

=⇒ ∀I ∈C, n ∈M, q ∈Q, (k1, k2) : X →̇ Ṫ(n,w)(EI) . (k�1c1, k
�
2c2) ∈ Ṫ(mn, v+w)(EI)

⇐⇒ ∀I ∈C, n ∈M, q ∈Q, (k1, k2) : X →̇ �̃(n,w)I . (k�1c1, k
�
2c2) ∈ �̃(mn, v+w)I

⇐⇒ (c1, c2) ∈ T[�](m, v)X.

Appendix E. Proofs for Section 9 (Case Study I: Higher-Order Probabilistic Programs)
Lemma 51. The mapping

(x, σ ) �→
{

N (x, σ 2) σ �= 0
dx σ = 0

forms a measurable function of type R×R→GR.

Proof. We show that for all A ∈�R, the mapping fA(x, σ )=N (x, σ 2)(A) forms a measurable
function of type R×R�=0→ [0, 1] where R�=0 is the subspace of R whose underlying set is {r ∈
R | r �= 0}. We have

N (x, σ 2)(A)=
∑
k∈Z

N (x, σ 2)(A∩ [k, k+ 1])=
∑
k∈Z

∫
A∩[k,k+1]

1√
2πσ 2

exp
(
− (x− r)2

σ 2

)
dr

The mapping h(x, σ , r)= 1√
2πσ 2

exp
(
− (x−r)2

σ 2

)
forms a continuous function of type R×R�=0 ×

R→R; hence, it is uniformly continuous on the compact set I1 × I2 × [k, k+ 1] where I1 and I2
are arbitrary closed intervals inR andR�=0, respectively. Then, for all 0< ε, there exists 0< δ such
that |h(x, σ , r)− h(x′, σ ′, r′)|< ε holds wherever |x− x′| + |σ − σ ′| + |r− r′|< δ. Hence, for all
0< ε, there is 0< δ such that whenever |x− x′| + |σ − σ ′|< δ,∣∣∣∣∫

A∩[k,k+1]
h(x, σ , r)dr−

∫
A∩[k,k+1]

h(x′, σ ′, r)dr
∣∣∣∣≤ | ∫

[k,k+1]
|h(x, σ , r)− h(x′, σ ′, r′)|dr≤ ε.

Since the closed intervals I1 and I2 are arbitrary, we conclude that the function fA∩[k,k+1] : R×
R�=0→ [0, 1] is continuous, hence measurable. Hence, the mapping fA =∑k∈Z fA∩[k,k+1] is mea-
surable. Since A is arbitrary and fA(x, σ 2)= evA ◦N (x, σ 2), the mapping g(x, σ )�N (x, σ 2)
forms a measurable function of type R×R�=0→GR. Next, it is obvious that the mapping
g′(x, σ )� dx forms a measurable function of type R× {0}→GR. Finally, the following mapping
g′′ forms a measurable function of type R×R→ (R×R�=0 +R× {0}):

g′′(x, σ )�
{
ι1(x, σ ) σ �= 0
ι2(x, 0) σ = 0

.

LetA ∈�R×R �=0+R×{0}. By definition of g′′, we have (g′′)−1(A)= ι−11 (A)∪ ι−12 (A). Since the copro-
jections are measurable, we have ι−11 (A) ∈�R×R �=0 and ι−12 (A) ∈�R×{0}. Since R�=0 and {0}
are measurable subsets of R, we have �R×R �=0 ,�R×{0} ⊆�R×R. Thus, (g′′)−1(A) ∈�R×R. Since
A is arbitrary, g′′ is measurable. Therefore, we conclude the measurability of the composition
[g, g′] ◦ g′′ : R×R→GR, which is exactly the mapping in the statement.
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Corollary 52. [[norm]] ∈QBS(KR×KR, PKR).

Lemma 53. The mapping

(x, λ) �→
{
Lap(x, λ) λ> 0
dx λ≤ 0

forms a measurable function of type R×R→GR.

Proof. We have, for all A ∈�R,

Lap(x, λ)(A)=
∫
A

1
2λ

exp
(
−|x− r|

λ

)
dr

The density function h(x, λ, r)= 1
2λ exp

(
−|x−r|

λ

)
is continuous function of typeR×R0≤ ×R→

R where R0≤ is the subspace of R whose underlying set is {r ∈R | 0≤ r}. The measurability of
Lap(x, λ) is proved in the same way as N (x, σ 2). The rest of proof is the same routine as Lemma
51.

Corollary 54. [[lap]] ∈QBS(KR×KR, PKR).
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