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We consider the task completion time of a repairable server system in which a server experiences randomly occur-
ring service interruptions during which the server works slowly. Every service-state change preempts the task that
is being processed. The server may then resume the interrupted task, it may replace the task with a different one, or
it may restart the same task from the beginning, under the new service-state. The total time that the server takes to
complete a task of random size including interruptions is called completion time. We study the completion time of
a task under the last two cases as a function of the task size distribution, the service interruption frequency/severity,
and the repair frequency.We derive closed form expressions for the completion time distribution in Laplace domain
under replace and restart recovery disciplines and present their asymptotic behavior. In general, the heavy tailed
behavior of completion times arises due to the heavy tailedness of the task time. However, in the preempt-restart
service discipline, even in the case that the server still serves during interruptions albeit at a slower rate, completion
times may demonstrate power tail behavior for exponential tail task time distributions. Furthermore, we present an
M/G/∞ queue with exponential service time and Markovian service interruptions. Our results reveal that the sta-
tionary first order moments, that is, expected system time and expected number in the system are insensitive to the
way the service modulation affects the servers; system-wide modulation affecting every server simultaneously vs
identical modulation affecting each server independently.

1. Introduction

For applications in computer science and telecommunications, it is of interest to study the time it takes
for a processor to complete a task of random size when the service can be interrupted or slowed down
by the occurrence of random failures or higher priority task arrivals to processor sharing systems. This
line of research on interrupted service times that leads to our study started in the sixties with the work
of Gaver [18] that investigates the completion time distribution of a task experiencing complete ser-
vice breakdowns during which times the server stops processing the task. Either the interruption can
be postponed until the current task is completed or the current task is preempted whenever an inter-
ruption occurs and then the server decides on a preemption scheme/discipline. The preemption scheme
determines the course of action for the server when a task has been interrupted. Gaver [18] is the first
to consider postponable interruptions in addition to the following types of preemption strategies: (1)
Preempt-RESUME, once the interruption is cleared the server continues with the unfinished task from
where it left. (2) Preempt-REPLACE (repeat different), the server discards the unfinished task to revisit
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later and selects a different task, assuming that such similar tasks are always available. (3) Preempt-
RESTART (repeat identical), the server starts the unfinished task from the beginning. The author derives
the Laplace–Stieltjes transform (Laplace–Stieltjes transform) of the completion time distribution under
each interruption/recovery type by counting the number of interruptions until task completion. In [18],
the service times are generally distributed while the interruptions arrive as a Poisson process with
generally distributed down times.

Such service completion systems have found many opportunities in queuing applications.
Researchers investigate the Laplace–Stieltjes transform of the stationary number of customers in the
system of an M/M/1 queue under server breakdowns [4, 38], and of an M/M/c queue under inde-
pendent server breakdowns [27]. Coffman et al. [11] study a processor-sharing M/M/1 queue. The
authors obtain the Laplace–Stieltjes transform and the first two moments of the stationary waiting time
distribution. Others extend this research to the partial failure case [13, 33, 39]. Such service systems
are called Markovian service process (MSP). Nicola [30] considers a mixture of interruption types
affecting a single server as Poisson arrivals. He obtains the Laplace–Stieltjes transform of task com-
pletion time distribution under various types of interruptions. Kulkarni et al. [25] investigate a server
affected by a Markov modulated environment in which the service rate in each environmental state is
different, that is, the service deteriorates. The authors derive the Laplace–Stieltjes transform of the com-
pletion time distribution under each type of recovery schemes using renewal arguments. Furthermore the
authors assume that associated to each environmental state a recovery scheme is fixed as either preempt-
resume or preempt-restart discipline. They generalize their results to the semi-Markovian environment
in [24]. Furthermore, the authors apply their results for preempt-resume service discipline to a proces-
sor sharing M/M/1 queue. Nicola et al. [31] analyze a single server queue with Markov modulated
service process, and demonstrate that the queue has a block M/G/∞ structure and provide a procedure
to evaluate the moment generating function for the stationary distribution of the number of jobs in the
system. Again under preempt-resume service discipline, Boxma and Kurkova [10] consider an M/M/1
queue served under alternating speed and generally distributed low-speed times, and investigate the
tail behavior of the workload distribution. Baykal-Gürsoy and Xiao [7] study an infinite server queue
with two-state Markovian arrival and service processes. Using transform methods, they show that the
stationary distribution of the number of jobs in the system is a mixture of two randomized Poisson
distributions. Thus show the validity of the stochastic decomposition property. However, this property
is not valid for M/M/c queues under two-state service system [8, 28, 29]. Following Neuts [28], oth-
ers [23, 32] use matrix-analytic methods to solve for the stationary distribution of multi-dimensional
queues.

For the complete service breakdown case, Gaver [18] is the first to notice that under the restart strat-
egy the first two moments of the task completion time may not always exist. Later Fiorini et al. [16] and
Sheahan et al. [34] show that under the restart strategy and the same exponential up time assumption, the
total time it takes to execute a task not including failures follows a power tailed distribution even when
the task service time has exponential tail. Asmussen et al. [2] further extend the asymptotic analysis of
the restart case in Sheahan et al. [34] to more general up time and task time distributions. They notice
that the relationship between the up time and task time distributions play an important role impacting
the distribution of completion times. In [3], Asmussen, Lipsky, and Thompson show that task comple-
tion time is heavy-tailed if the task time has unbounded support. Jelenković and Tan [21] independently
study the same restart strategy and approach the analysis by first proving that the number of restarts
is power tailed, and then using large deviation theory show that the completion times also have power
law distribution irrespective of how heavy or light the distributions of task times and up times may be.
Jelenković and Tan [22] extend these results to analyze further how a certain functional relationship
between the tail distributions of the up time and task time distributions impacts the distributions of the
number of restarts and the completion times.

In this paper, we study the completion time distribution of a task processed by a server experienc-
ing service interruptions. The processor starts working on a task at a random time, and during the
interruptions the server works at a lower service rate. Firstly, we derive the Laplace–Stieltjes transform
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of the completion time distributions under both replace and restart service disciplines using counting
arguments. The approach that we present here yields more detailed results than Kulkarni et al. [24]
and Asmussen et al. [3] for our specific cases. Secondly, we show the asymptotic behavior of these
distributions and prove that under the RESTART service discipline the completion time has power tail
more directly than Asmussen et al. [3]. Finally, we apply our results to an infinite server queue in which
the servers experience Markovian partial failures. Using Little’s law, we compare the stationary system
size and system time distributions of customers in a two server state M/MSP/∞ queue, and in a M/G/∞
queue in which each server experiencing Markovian service interruptions independently of the others.

Section 2 presents the service model for both cases in detail, introducing the corresponding notation
and giving the main analytical results for general and specific task-size distributions. Section 3 deals
with the asymptotic classification of the resulting completion-time distributions for both the replace and
restart cases. It demonstrates that for the restart case not all moments may exists. Section 4 considers
the application of our results to an infinite server queue with Poisson arrivals, and service interruptions,
and exhibits the insensitivity of the stationary first moments of the system size and system time random
variables to system-wide or independent interruptions. Finally, in Section 5, we draw the conclusions
of the study and discuss some directions to extend the research.

2. Service model

We consider an unreliable server which from time to time experiences partial failures that reduce the
service speed. Upon completion of a repair the server resumes its normal operation speed. We call the
periods that the server works with normal speed as up periods, and the periods that the server works
with low speed as down periods. It is so that the server state follows an alternating renewal process of
up and down periods.

In general, for a continuous random variable C, we denote its probability density function (pdf) fC (t),
cumulative distribution function (cdf) by FC (t), tail distribution by FC (t), and its Laplace–Stieltjes
transform by LC (s).

We denote by FS (t) the cdf for the task size, with pdf fS (t), tail distribution FS (t), Laplace–Stieltjes
transform LS (s), and mean task size 1/`, ` > 0. The task size random variable denoted by S is generally
distributed. In literature, this quantity is also called as service time requirement.

The up period duration random variable U is exponentially distributed, except noted otherwise, with
mean 1/f , f ≥ 0. However, down period duration D is generally distributed with fD(t), FD(t), FD(t),
LD(s), and mean duration 1/r, r ≥ 0. Notice that f and r can be interpreted as failure and repair rates
of the server, respectively.

When technical reasons require its definition we will denote the remaining down time for a customer
who arrives during down time by Y. It is clear that Y is generally distributed unless D is an exponential
random variable.

Finally, without loss of generality the server’s normal service speed is considered to be 1, and when
a failure happens, the service speed drops to U with 0 < U < 1. As U does not necessarily take the value
of zero this kind of service interruption is called partial failure. Note that in this system, a task may be
finished during an up period or a down period.

The objective is to derive closed form expressions for the distribution of the task completion time ran-
dom variable, which is denoted by T for both preempt-replace and preempt-restart service disciplines.
Although, for the replace case, a general procedure to calculate the distribution of T in the frequency
domain can be found in the works by Kulkarni et al. [24, 25], we use a much simpler counting argument
for our particular class of service systems yielding more detailed results. In fact, the same argument
will also be utilized to analyze the restart service discipline.

If work on a task starts at a random instance, the completion time can be obtained by conditioning
it on the instance the work starts on a task. Let us call G1, the event in which the work starts during an
up period, and G2, the event in which the work starts during a down period. In particular, by renewal
arguments it holds that:
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Figure 1. Sample path of the service system under G1.

P
{
G1} =

r
f + r

, P
{
G2} =

f
f + r

. (2.1)

The Laplace–Stieltjes transform of the conditional completion time is calculated separately for each
one of these events, and then the Laplace–Stieltjes transform of the unconditional completion time is
derived. Note that, one can assume that work always starts when the server is working under normal
speed, then the conditional completion time under G1 gives the full task completion time information.

We start by studying the completion time of a task under G1.
Consider that the work on a task starts at an up period, and denote the subsequent up and down

periods as Ui and Di, respectively, for i = 1, 2, 3, . . .. The service requirement on each period is denoted
as Si, i = 1, 2, 3, . . .. Figure 1 shows a sample path of how the system may evolve. Since up period
durations are exponentially distributed, one can assume that the work starts at time zero, and we denote
with crosses on the time-axis some possible departure times (realizations of the completion time).

Hence, the conditional completion time given that the work starts during up period, {T |G1}, can be
written as

{T |G1} =

∑n

i=1 (Ui + Di) + S2n+1, event An,∑n+1
i=1 Ui +

∑n
i=1 Di + 1

U
S2n+2, event En,

n = 0, 1, 2, . . . , (2.2)

in terms of events An and En. Given that the works starts during an up period, An denotes the case that
the completion time is composed of n complete up and down periods with an incomplete up period
finishing the task, and event En denotes the case with n+ 1 up periods and n down periods with an
incomplete down period finishing the task. In general, A denotes the case that the work on a task starts
and ends at the same regime, while E denotes the case that the work starts and ends at different regimes.

Similarly, the conditional completion time given that the work starts at a down period, {T |G2}, will
be:

{T |G2} =


1
U

S1, event A0,

Y + ∑n
i=2 Di +

∑n
i=1 Ui + 1

U
S2n+1, event An, n = 1, 2, . . .

Y + ∑n+1
i=2 Di +

∑n
i=1 Ui + S2n+2, event En, n = 0, 1, 2, . . .

, (2.3)

with event An representing the case that the completion time is composed of one residual down time
denoted by Y, and n− 1 complete down and n complete up periods with an incomplete down period
finishing the task, and En representing the case that the completion time is composed of one residual
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down period, and n complete down and up periods with an incomplete up period finishing the task.
Next, we will first analyze preempt-replace and then study preempt-restart service disciplines.

2.1. Preempt-REPLACE service discipline

In the case that the service times (task size) are generally distributed, we assume that any state change
reinitiates the service for the current task with the same service requirement distribution, that is, all Sn’s
for n = 1, 2, . . . are i.i.d. This last consideration corresponds to the preemption discipline called repeat
different or replace, since the service requirement is resampled at each service-speed change. This is
also equivalent to replacing the task with a similar one with the same task size distribution.

Proposition 2.1 shows the resulting completion time pdf in the frequency domain.

Proposition 2.1. Consider a two-service-speed server as described above. Then, the Laplace–Stieltjes
transform of the completion time random variable T is given in Eqs. (2.4)–(2.5).

LT (s) = E [e−sT ]

=
1

1 − V (s)

{ (
LS (s + f ) + f

s + f
[1 − LS (s + f )]

[
LS (s/U) −

∫ ∞

0
e−(s/U)tFD(t/U)dFS (t)

] )
·
(

r
r + f

+ f
r + f

[
LY (s) −

∫ ∞

0
e−stFS (Ut)dFY (t)

] ) }
+ f

r + f

[
LS (s/U)

−
∫ ∞

0
e−(s/U)tFY (t/U)dFS (t)

]
, (2.4)

where

V (s) = f
s + f

[1 − LS (s + f )] ·
[
LD(s) −

∫ ∞

0
e−stFS (Ut)dFD(t)

]
. (2.5)

The proof of Proposition 2.1 is constructive and can be found in detail in Appendix A. A special case
of interest is detailed in Corollary 2.2, which is stated without proof.

Corollary 2.2. (Exponential service time) Assume that the service requirement is exponentially dis-
tributed with mean 1/`. Then, the Laplace–Stieltjes transform of the completion time distribution given
in (2.4)–(2.5) reduces to (2.6)–(2.7).

LT (s) = E
[
e−sT ]

=
f

(f + r)
`U [s + `U − r(1 − LD(s + `U))]

(s + `U)2

+ 1
1 − V (s)

{
r

(f + r)
` [s + `U + f (1 + U) (1 − LD(s + `U))]

(s + f + `) (s + `U)

+ f
(f + r)

fr`U [1 − LD(s + `U)]2

(s + f + `) (s + `U)2

}
(2.6)

where

V (s) = f
s + f + `

· LD(s + `U). (2.7)
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The following specialized result for exponential up and down durations was proved byBaykal-Gursoy
et al. [5].

Corollary 2.3. (Exponential down periods) Assume that the down period duration D is exponentially
distributed with mean 1/r. Then, the Laplace–Stieltjes transform of the completion time distribution
given in (2.4)–(2.5) reduces to (2.8)–(2.9).

LT (s) = E [e−sT ]
= E [e−sT |G1]P{G1} + E [e−sT |G2]P{G2}

=
r

f + r
· 1
1 − V (s) LS (s + f )

(
1 + f

s + r

[
1 − LS

( s + r
U

)] )
+ f

f + r
· 1
1 − V (s) LS

( s + r
U

) (
1 + r

s + f
[1 − LS (s + f )]

)
, (2.8)

where

V (s) =
rf [1 − LS (s + f )]

[
1 − LS ( s+r

U
)
]

(s + f ) (s + r) , (2.9)

and with mean

E [T] =

1
r
(1 − LS (r/U))

[
1 − r

r + f
LS (f )

]
+ 1

f
(1 − LS (f ))

[
1 − f

r + f
LS (r/U)

]
LS (r/U) + LS (f ) − LS (f )LS (r/U)

. (2.10)

Under very special circumstances the completion time distribution Laplace–Stieltjes transform given
in (2.8)–(2.9) can be inverted analytically. In general, it is necessary to resort to numerical Laplace inver-
sion methods (see, e.g., [1], [37], [36]). We have experience with De Hoog’s algorithm [12] and found
it to be efficient when implemented with accelerated convergence for the continued fraction expansion
that is developed byHollenbeck [20]. It is worth mentioning that no single method for Laplace transform
inversion is guaranteed to give good results as this depends greatly on the specific application [14].

The case in which all random variables, that is, up and down time durations, and service time
requirement, are exponential was also discussed in [5].

Corollary 2.4. (Exponential down periods and service times) Consider the server described in
Section 2, assume that the down period duration D is exponentially distributed with mean 1/r, and
that the service requirement is exponentially distributed with mean 1/`. Then, the Laplace–Stieltjes
transform of completion time r.v. is given as

LT (s) =
`

f + r
· r(s + f + r + `U) + fU(s + f + r + `)

(s + f + `) (s + r + `U) − fr
. (2.11)

Using Eq. (2.11), the completion time T distribution can be written as shown below by defining
two random variables, T1 and T2, which are independent, denoting the completion time of customers
arriving during up and down periods, respectively,

T =
r

f + r
T1 +

f
f + r

T2. (2.12)
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The density functions of T1 and T2 can be obtained in closed form by inverting the Laplace–Stieltjes
transform as shown in (2.13)–(2.14),

fT1 (t) =
`(s1 + f + r + `U)

s1 − s2
es1t − `(s2 + f + r + `U)

s1 − s2
es2t , (2.13)

fT2 (t) =
`U(s1 + f + r + `)

s1 − s2
es1t − `U(s2 + f + r + `)

s1 − s2
es2t , (2.14)

where s1 and s2 are the solutions of Eq. (2.15),

(s + f + `) (s + r + `U) − fr = 0, (2.15)

and are given in Eqs. (2.16) and (2.17):

s1 =
−(f + r + `(1 + U)) +

√
(f + r + `(1 + U))2 − 4`(U` + fU + r)

2
, (2.16)

s2 =
−(f + r + `(1 + U)) −

√
(f + r + `(1 + U))2 − 4`(U` + fU + r)

2
. (2.17)

It holds that s1 and s2 are both negative real numbers and it is clear that s1 ≥ s2.
The expected completion time for this case is:

E [T] = 1
`

(
1 + 1 − U

U
· f

f + r
· f + r + `

f + r/U + `

)
, (2.18)

which is higher than the mean service time, 1/`.

2.1.1. Approximating mean completion time using renewal arguments

As discussed before, renewal arguments provide the probability of server being up in steady state as
r/(r + f ), and the probability of server being down as f /(r + f ). Then, since the mean completion
time in an up period is the mean service time requirement, 1/`, and correspondingly 1/(U`) for down
periods, one might approximate the mean completion time in steady state as the mixture:

SSMM :=
r

r + f
1
`
+ f

r + f
1
U`

(2.19)

with SSMM standing for steady-state mixture mean.
However, we can show that in the Markovian case in which all random periods are exponential, the

steady state mixture mean over-estimates the expected completion time. In fact, we can calculate the
difference explicitly as in Eq. (2.20) [5]

SSMM − E [T] = fr(1 − U)2
U`(r + f ) (fU + r + `U) ≥ 0. (2.20)

It is worth mentioning that the generating function of the completion time for the complete
breakdown case (which can be obtained by taking the limit U→ 0) coincides with Gaver’s preemptive-
repeat-different interruption case [18].
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Figure 2. Completion time distribution under exponential service requirement.

Table 1. Expected completion time and SSMM for exponential S.
U: 0.2 0.4 0.6 0.8

E [T]: 141.59 86.38 62.22 48.67
SSMM: 182.22 93.33 63.70 48.89

Figure 2 shows an example of the time domain completion time distribution for exponential service
time given in Eqs. (2.13)–(2.14). Here we consider 1/f = 5 < 40 = 1/r time units, which corresponds
to a system in which failures occur more frequently than repairs. The mean service requirement is
1/` = 40, and we vary U to 0.2, 0.4, 0.6, and 0.8.

It is clear that as U decreases the mass of the distribution is increasingly shifted toward the right-
tail. In particular, Table 1 shows the expected completion times for different values of U calculated
using Eq. (2.18), in time units. The expected completion time increases as the server capacity drops to
a smaller proportion, U. We also give the SSMM for comparison.

2.2. Preempt-RESTART service discipline

In this case, the service requirement, S, is sampled once, and every time a state-change occurs the same
service requirement is repeated, that is, Sn = S for n = 1, 2, . . .. Thus, given that the service requirement,
S = t, the completion time given in Eqs. (2.2) and (A.11) are rewritten for an up period, and a down period
as shown in Eqs. (2.21) and (2.22), respectively,

{T |S ≈ t,G1} =


t, event A0

X + ∑n
i=2 Ui +

∑n
i=1 Di + t, event An, n = 1, 2, . . .

X + ∑n+1
i=2 Ui +

∑n
i=1 Di + t

U
, event En, n = 0, 1, 2, . . . ,

(2.21)
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{T |S ≈ t,G2} =


t
U
, event A0

Y + ∑n
i=2 Di +

∑n
i=1 Ui + t

U
, event An, n = 1, 2, . . .

Y + ∑n+1
i=2 Di +

∑n
i=1 Ui + t, event En, n = 0, 1, 2, . . .

(2.22)

where X denoting the remaining up time with cdf FX (t), tail distribution FX (t), conditional mean
E(X |t) = E [X |X < t, and conditional Laplace–Stieltjes transform LX [s|t] = E [e−sX |X < t].

Theorems 2.5–2.8 generalize the results in [16, 34] for the complete breakdown case to the par-
tial breakdown case under the restart preemption strategy. Theorem 2.5 presents the Laplace–Stieltjes
transform of the completion time conditioned on the task size, and Theorem 2.8 gives the expected
completion time conditioned on the task size. The results are stated for general up and down durations
with CDFs FU (t) and FD(t), tail distributions FU (t) and FD( t

U
), and Laplace–Stieltjes transform LU (s)

and LD(s), respectively.

Theorem 2.5. The conditional Laplace–Stieltjes transform of the completion time distribution for a
task of duration t is

LT (s|S ≈ t) = 1
(r + f )

[
re−stFX (t) + fe−s t

U FY (
t
U
)
]

+
e−stFU (t)

[
rFX (t)LX (s|t)FD( t

U
)LD(s| t

U
) + fFY ( t

U
)LY (s| t

U
)
]

(r + f )
[
1 − FU (t)LU (s|t)FD( t

U
)LD(s| t

U
)
]

+
e−s t

U FD( t
U
)
[
rFX (t)LX (s|t) + fFY ( t

U
)LY (s| t

U
)FU (t)LU (s|t)

]
(r + f )

[
1 − FU (t)LU (s|t)FD( t

U
)LD(s| t

U
)
] , (2.23)

with LU (s|t) ≡ E [e−sU |U < t] and LD(s| t
U
) ≡ E [e−sD |D < t

U
] denoting the conditional

Laplace–Stieltjes transform of the up time and down time distributions, respectively, given that the
up and down times end before the completion of a task of duration t.

The proof of Theorem 2.5 can be found in Appendix B.

Remark 2.6. Note that if the up and down durations are exponential, then the conditional
Laplace–Stieltjes transform of the completion time distribution for a task of duration t is

E [e−sT |S ≈ t] =
e−stFU (t)

[
r + fLD(s| t

U
)FD( t

U
)
]
+ e−s t

U FD( t
U
)
[
f + rLU (s|t)FU (t)

]
(r + f )

[
1 − LU (s|t)LD(s| t

U
)FU (t)FD( t

U
)
] . (2.24)

Remark 2.7. Note that the above result also matches the result of Gaver [18] when the server does not
work during down times, that is, U = 0.

Theorem 2.8. The expected completion time for a task of length t is

E [T |S ≈ t] = 1
r + f

[
r
(
tFX (t) + E [X |t]FX (t)

)
+ f

( t
U

)
FY (

t
U
) + E [Y | t

U
]FY (

t
U
)
) ]

+
[
rFX (t)FD ( t

U
) + fFY ( t

U
)
] [

tFU (t) + E [U |t]FU (t)
]
+

[
rFX (t) + fFY ( t

U
)FU (t)

] [ t
U

FD ( t
U
) + E [D | t

U
]FD ( t

U
)
]

(r + f )
(
1 − FU (t)FD ( t

U
)
)

(2.25)
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with E [U |t] ≡ E [U |U < t], E [X |t] ≡ E [X |X < t], E [D| t
U
] ≡ E [D|D < t

U
], and E [Y | t

U
] ≡ E [Y |D <

t
U
] denoting the conditional mean of the up time, remaining up time, down time, and remaining down

time distributions, respectively, given that the up and down times end before the completion of a task of
duration t.

The proof of Theorem 2.8 can be found in Appendix C.

Remark 2.9. Note that if up and down durations are exponential, then the conditional expectation of
the completion for a task of length t is

E [T |S ≈ t] =
(
tFU (t) + E [U |t]FU (t)

) (
r + fFD( t

U
)
)
+

( t
U

FD( t
U
) + E [D| t

U
]FD( t

U
)
) (

f + rFU (t)
)

(r + f )
(
1 − FU (t)FD( t

U
)
) .

(2.26)

The Laplace–Stieltjes transform and mean completion time r.v., T, can be derived by unconditioning
the respective equations (2.23 and 2.25), with respect to the task size, S, that is,

LT (s) =
∫ ∞

t=0
LT (s|S ≈ t)dFS (t),

E [T] =
∫ ∞

t=0
E [T |S ≈ t]dFS (t).

3. Tail behavior of the completion time

We now present some asymptotic properties of the completion time. This amounts to studying the char-
acteristics of the distribution’s right-tail. The right-tail defines the probability of observing abnormally
large completion times, and it is calculated as the complementary cumulative distribution, as shown in
(3.1)

F̄T (t) = P(T > t) = 1 − FT (t) = 1 −
∫ t

0
fT (u)du. (3.1)

We again separate the REPLACE and RESTART cases. We briefly discuss the first case and give
some general insights of the tail behavior. For the second case, we derive more specific results on the
asymptotic classification.

3.1. Repeat different/REPLACE

For the exponential down periods case, the Laplace transform of the tail can be given explicitly as shown
in Eq. (3.2)

L[F̄T ] (s) =
r

(r + f )
(1 − LS (s + f ))

[
s + r + f

(
1 − LS

(
(s + r)/U

) ) ][
(s + f ) (s + r) − rf (1 − LS (s + f ))

(
1 − LS

(
(s + r)/U

) ) ]
+ f
(r + f )

(
1 − LS

(
(s + r)/U

) )
[s + f + r(1 − LS (s + f ))][

(s + f ) (s + r) − rf (1 − LS (s + f ))
(
1 − LS

(
(s + r)/U

) ) ] , (3.2)

where LS (·) is the Laplace–Stieltjes transform of the service time requirement. In general, the Laplace
transform in (3.2) has to be obtained numerically.
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More generally, it can be shown via the counting argument in the proof of Proposition 2.1 (see Eqs.
(A.3) and (A.11)), that T is a stochastic sum of the up and down period random variables (U, D) and
the service time requirement random variable (S). Then, it suffices for the D or S to be heavy tailed for
T to be heavy tailed [17].

3.2. Repeat identical/RESTART

In order to analyze the asymptotic behavior of the completion time, one needs to consider the following
function for an r.v. C with support contained in [0,+∞) and distribution FC (t):

q(\;C) :=
∫ ∞

0
e\ tdFC (t). (3.3)

Let \min(C) := sup{ \ | q(\;C) < ∞}. Using this definition, we can classify any distribution function
on having finite range, a light tail, an exponential tail, or a heavy tail. This corresponds to the cases of
finite support, \min(C) = ∞, 0 < \min(C) < ∞, and \min(C) = 0, respectively [34]. We write \min when
there is no ambiguity on the r.v. C.

Theorem 3.1 shows conditions under which the completion time distribution is power tailed.

Theorem 3.1. Let U and D be exponentially distributed with failure rate f and repair rate r, and call
Δ = min{f , r/U}. Assume that the service-time requirement (task size) has an exponential tail, that is:
0 < \min(S) = ` < ∞, and denote Y := \min(S)/Δ = `/min{f , r/U}. Then,

E [Tm] = ∞, ∀m ≥ Y, (3.4)

and the completion time has power tail,

F̄T (t) ∼
c
tY

. (3.5)

The proof of Theorem 3.1 is shown in Appendix D.
We note that the tail behavior of completion times depends on the ratio of the maximum of the means

of up time and the speed adjusted down time, with the mean task time. If the mean task time is close to
the larger mean then all moments of the completion time are undefined. The details of this derivation
can be found in the proof of Theorem 3.1 in Appendix D.

Although the preemptive-replace and preemptive-repeat service disciplines seem similar, their tail
behaviors are quite different. This happens because in the preemptive-replace case service interruptions
may decrease the completion time over what it would be in the preemptive-repeat case, since each
service change brings a new task that may have shorter time requirement. In a sense, these interruptions
may terminate tasks that require longer time requirement, thus shortening the completion time [18].

4. An application: insensitivity of the stationary first order moments for infinite server queues
with two-state MSP

Several different queueing systems with service degradation can be defined by using the completion
time model described above as a generally distributed service time. Next we discuss a model having
Poisson arrivals with parameter _ and infinitely many servers of M/G/∞ type.

With exponential up and down periods, the process controlling the service rate is a two-state
continuous-time Markov chain, independent of the arrival process, and is considered as the external
environment. In the case of multiple servers, if all servers are controlled simultaneously, which means
that interruptions occur system-wide then the queue is said to have an MSP. On the other hand, similar
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interruption processes may affect each server independently. These interruptions are assumed to be of
preemptive-replace type.

In the case of finitely many servers, system-wide partial failures, and exponential task times, the
system becomes the M/MSP/c queue analyzed in [6] with two service states. The independent server
breakdown case is studied by Mitrany and Avi-Itzhak [27].

In the case of infinitely many servers, system-wide partial failures, and exponential task time distri-
bution, the system coincides with the M/MSP/∞ queue considered in [7]. Baykal-Gürsoy and Xiao [7]
show that the steady-state number in the system, N, is the sum of two independent random variables: a
Poisson r.v. representing the stationary number of customers in an uninterrupted M/G/∞ system, and a
randomized Poisson r.v. representing the extra customers accumulated during interruptions. Then, the
mean steady-state number of customers in the system is derived as

E [N] = _

`
+ _f (1 − U)

f + r
· f + r + `

`(fU + r + `U) . (4.1)

On the other hand, assuming that there are no jockeying between the servers, one can analyze the
independent server interruption case similar to an M/G/∞ system as will be discussed below.

When Markovian service interruptions arrive independently to each of the infinitely many servers,
a job joining the system experiences exactly the same task completion time derived in Corollary 2.3.
Each task completion time is independent and identically distributed. Hence, this system becomes an
M/G/∞ system with the service time equal to the completion time, T, that is given in the frequency
domain by Eqs. (2.8) and (2.9).

Clearly, the stationary number of customers in the M/G/∞ queue is Poisson distributed with param-
eter d = _ · E [T]. Hence, the expected number of customers in the system, N, using the expected
completion time from Eq. (2.18) is given as in (4.1) (see Eq. (3.6) in [7]).

The expected system time for this system, that is, the job completion time, in turn coincides with
the mean system time for the M/MSP/∞ queue obtained via Little’s law from Eq. (4.1) as E [T] =

E [N]/_. For the M/MSP/∞ queue in [7], however, the steady-state variance of the number in the system
is not equal to its expected value, which has to be the case in the M/G/∞ setting with independent
server failures and preempt-replace service discipline. Thus, except the first order moments, the higher
moments do not match in the case of system wide interruptions with the interruptions affecting each
server independently.

5. Conclusion

We study the task completion time of a server experiencing randomly occurring service deterioration.
Focusing on preempt-replace and preempt-repeat service recovery disciplines following each service
interruption, we derive the Laplace–Stieltjes transform of the task completion times using counting
arguments. We observe that in general the resulting distributions are difficult to obtain explicitly in
the time domain and one has to resort to numerical inversion of the transforms. For the specific case
of exponential down period and exponential task time case we can determine the exact form of the
completion time. Furthermore, we show how the steady-state mixture can be compared against the
expected completion time, which can be useful for applications in which a simpler steady state model
is preferred.

The analysis of the tail distribution demonstrates that in the preempt-repeat service discipline even
when the task time distribution has exponential tail, the completion time distribution may have power
tail. Our results provide conditions under which the moments of the completion time exist. Moreover,
the connection between the expected task completion time presented in this study and the expected
system time for the M/MSP/∞ queue studied by Baykal-Gürsoy and Xiao [7], reveals that the first
order moments at an infinite server queue in random environment are insensitive to how the random
environment affects the servers.
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Appendix A. Proof of Proposition 2.1

As mentioned before, we condition the completion time on the epoch that work starts on a task. Let
G1 denote the event in which work starts during an up period, and G2 the event in which work starts
during a down period. Then the occurrence probabilities of events G1 and G2 are given by Eq. (2.1).
The Laplace–Stieltjes transform of conditional completion time is calculated separately for each one of
these events and then unconditioned.

Consider the case that work starts during an up period, and denote the subsequent up and down
periods as Ui and Di, respectively, for i = 1, 2, 3, . . .. The task time at each period is denoted as Si,
i = 1, 2, 3, . . .. Refer to Figure 1 for a sample path of how the system could evolve. Define the following
events:

• An, for n = 0, 1, 2, . . .. There are n complete up and down periods, and another incomplete up
period in the completion time. In general, A denotes the case that the work on a task starts and
ends at the same regime. In G1, work starts while the server is up. The second cross in Figure 1 is
an example of event A2. Notice that the occurrence of event An implies that necessarily:

(1) S2i−1 > Ui, for all i = 1, 2, . . . , n,
(2) 1

U
S2i > Di, for all i = 1, 2, . . . , n,

(3) S2n+1 < Un+1.

• En, for n = 0, 1, 2, . . .. There are n+ 1 complete up and n complete down periods, and another
incomplete down period in the completion time. In general, E denotes the case that the work on
a task starts and ends at different regimes. The first cross in Figure 1 is an example of event E1.
Here, necessarily:

(1) S2i−1 > Ui, for all i = 1, 2, . . . , n + 1,
(2) 1

U
S2i > Di, for all i = 1, 2, . . . , n,

(3) 1
U

S2n+2 < Dn+1.

Since clearly events Si, Ui, and Di, are independent and respectively identically distributed for all i,
then for all n = 0, 1, 2, . . .

P
{
An |G1} = Pn{S > U} · Pn{S > UD} · P{S < U}, (A.1)
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P
{
En |G1} = Pn+1{S > U} · Pn{(1/U)S > D} · P{(1/U)S < D}. (A.2)

Notice that the probabilities defined in (A.1)–(A.2) were obtained by simple enumeration of the
number of state transitions. Then, as already stated in Eq. (2.2), the conditional completion time {T |G1}
under each event stated above is

{T |G1} =

∑n

i=1 (Ui + Di) + S2n+1, event An,∑n+1
i=1 Ui +

∑n
i=1 Di + 1

U
S2n+2, event En,

n = 0, 1, 2, . . . . (A.3)

In order to specify the conditional completion time Laplace–Stieltjes transform under some event H,
we use the indicator variable for H defined as

1{H} =
1, event H,

0, otherwise

then, for all n = 0, 1, 2, . . .

E [e−sT1{An}|G1] = E [e−sT |An,G1] · P{An |G1}

=

(
E [e−sU |S > U]P{S > U}

)n (
E [e−sD |S > UD]P{S > UD}

)n

× E [e−sS |S < U]P{S < U}, (A.4)

where s is a complex number with positive real part, U ∼ Exp(f ), S denotes the generally distributed
task time random variable under normal conditions, and D is the generally distributed down period
random variable.

The Laplace–Stieltjes transform of the up period for up times lasting less than the service requirement
is derived below as

E [e−sU |S > U]P{S > U} = E [e−sU1{S > U}] =
∫ ∞

x=0

∫ x

u=0
e−sufe−fudu dFS (x)

=
f

s + f
−

∫ ∞

u=0
fe−(s+f )uFS (u) du =

f
s + f

[1 − LS (s + f )] . (A.5)

The last equality follows directly from the properties of Laplace–Stieltjes transform or by application
of integration by parts to the integral term. Similarly, the following holds

E [e−sD |S > UD]P{S > UD} = LD(s) −
∫ ∞

0
e−stFS (Ut)dFD(t), (A.6)

E [e−sS |S < U]P{S < U} = LS (s + f ). (A.7)

By substituting Eqs. (A.5)–(A.7) into (A.4), the conditional Laplace–Stieltjes transform can be written
for all n = 0, 1, 2, . . . as

E [e−sT1{An}|G1] =
{

f
s + f

[1 − LS (s + f )]
}n

·
{
LD(s) −

∫ ∞

0
e−stFS (Ut)dFD(t)

}n
LS (s + f ). (A.8)
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Similarly for events En, we have for all n = 0, 1, 2, . . .

E [e−sT1{En}|G1] = E [e−sT |En,G1] · P{En |G1}

=

(
E [e−sU |S > U]P{S > U}

)n+1 (
E [e−sD |S > UD]P{S > UD}

)n
E [e−s 1

U
S |S < UD]P{S < UD},

where the last term can be derived as

E [e−s 1
U

S |S < UD]P{S < UD} = E [e−s 1
U

S1{S < UD}]

=

∫ ∞

t=0

∫ Ut

x=0
e−

s
U

xdFS (x)dFD(t) =
∫ ∞

x=0

{∫ ∞

t= x
U

dFD(t)
}

e−
s
U

xdFS (x)

=

∫ ∞

x=0
e−

s
U

x
(
1 − FD

( x
U

))
dFS (x) = LS

( s
U

)
−

∫ ∞

x=0
e−

s
U

xFD

( x
U

)
dFS (x)

giving for all n = 0, 1, 2, . . .

E [e−sT1{En}|G1] =
{

f
s + f

[1 − LS (s + f )]
}n+1

·
{
LD(s) −

∫ ∞

0
e−stFS (Ut)dFD(t)

}n

·
[
LS

( s
U

)
−

∫ ∞

x=0
e−

s
U

xFD

( x
U

)
dFS (x)

]
. (A.9)

Then, from (A.8) and (A.9), we obtain the Laplace–Stieltjes transform of the conditional completion
time, given that the work starts during up period as shown in (A.10)

E
[
e−sT |G1] = ∞∑

n=0
E

[
e−sT |An,G1] P{An |G1} +

∞∑
n=0

E
[
e−sC |En,G1] P{En |G1}

=
1

1 − V (s) ·
{
LS (s + f ) + f

s + f
· [1 − LS (s + f )] ·

[
LS

( s
U

)
−

∫ ∞

x=0
e−

s
U

xFD

( x
U

)
dFS (x)

]}
,

(A.10)

where

V (s) = f
s + f

[1 − LS (s + f )] ·
[
LD(s) −

∫ ∞

0
e−stFS (Ut)dFD(t)

]
.

Consider now that work starts during down period, that is, under G2. Figure A1 shows a sample path
of a run for the system when work starts during down period.

Remember that we denote by Y the remaining down time after work starts. Let, again, An denote the
case that the work on a task starts and ends while the server is down, and there are n up and n down
periods with one of them being the remaining down time, and one incomplete down time. Similarly, let
En denote the case that the work starts while the server is down and ends while the server is up, and
there are (n + 1) down periods and n up period with an incomplete up period. Then, the conditional
completion time given that work starts during a down period will be

{T |G2} =


1
U

S1, event A0

Y + ∑n
i=2 Di +

∑n
i=1 Ui + 1

U
S2n+1, event An, n = 1, 2, . . .

Y + ∑n+1
i=2 Di +

∑n
i=1 Ui + S2n+2, event En, n = 0, 1, 2, . . . .

(A.11)
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Time

Service Speed

1

α

0
× ×

Service Requirement:

Y

S1

U1

S2

D2

S3

U2

S4

D3

S5

Figure A1. Sample path of service system under G2.

The pdf of the remaining down time Y is

fY (t) = r [1 − FD(t)], t > 0, (A.12)

and its Laplace–Stieltjes transform is

LY (s) =
r
s
[1 − LD(s)] . (A.13)

We write the Laplace–Stieltjes transform of the conditional completion time under each event as

E [e−sT1{A0}|G2] = E [e−sT |A0,G2] · P{A0 |G2} = LS (s/U) −
∫ ∞

0
e−

s
U

tFY (t/U) dFS (t), (A.14)

E [e−sT1{E0}|G2] = E [e−sT |E0,G2] · P{E0 |G2} = LS (s + f ) ·
[
LY (s) −

∫ ∞

0
e−stFS (Ut)dFY (t)

]
,

(A.15)

for all n = 1, 2, . . .

E [e−sT1{An}|G2] = E [e−sT |An,G2] · P{An |G2}

=

[
LY (s) −

∫ ∞

0
e−stFS (Ut)dFY (t)

]
·
[
LD(s) −

∫ ∞

0
e−stFS (Ut)dFD(t)

]n−1
·[

f
s + f

(1 − LS (s + f ))
]n [

LS

( s
U

)
−

∫ ∞

x=0
e−

s
U

xFD

( x
U

)
dFS (x)

]
, (A.16)

E [e−sT1{En}|G2] = E [e−sT |En,G2] · P{En |G2}

=

[
LY (s) −

∫ ∞

0
e−stFS (Ut)dFY (t)

]
·
[
LD(s) −

∫ ∞

0
e−stFS (Ut)dFD(t)

]n
·[

f
s + f

(1 − LS (s + f ))
]n

· LS (s + f ). (A.17)
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Using (A.14)–(A.17), we obtain the Laplace–Stieltjes transform of the conditional completion times as

E [e−sT |G2] = 1
1 − V (s) ·

[
LY (s) −

∫ ∞

0
e−stFS (Ut)dFY (t)

]
·{

f
s + f

[1 − LS (s + f )] ·
[
LS

( s
U

)
−

∫ ∞

x=0
e−

s
U

xFD

( x
U

)
dFS (x)

]
+ LS (s + f )

}
+[

LS

( s
U

)
−

∫ ∞

0
e−

s
U

tFY

( t
U

)
dFS (t)

]
. (A.18)

Finally, by combining the conditional completion times (A.10) and (A.18) using the correspond-
ing probabilities P{G1} and P{G2}, the unconditional completion time Laplace–Stieltjes transform is
obtained as shown in (2.4)–(2.5).

Appendix B. Proof of Theorem 2.5

We aim to obtain the conditional Laplace–Stieltjes transform of the completion time distribution for
a service time requirement of size t, so we set S ≈ t. From here, the completion time for work starting
during an up period is as given in Eq. (2.21) with probabilities

P
{
An |S ≈ t,G1} =

FX (t), n = 0

FX (t)
(
FU (t)FD( t

U
)
)n−1 FD( t

U
)FU (t), n = 1, 2, . . .

(B.1)

P
{
En |S ≈ t,G1} = FX (t)

(
FU (t)FD(

t
U
)
)n

FD(
t
U
), n = 0, 1, 2, . . . . (B.2)

Then, we have that the conditional Laplace–Stieltjes transform of the completion time for A0, under
events G1 and S = t as

E [e−sT1{A0}|S ≈ t,G1] = e−stFX (t),

and for An as

E [e−sT1{An}|S ≈ t,G1] = E
[
e−sT |S = t,G1,An

]
P{An |G1, S = t}

= E
[
e−s

(
X+∑n

i=2 Ui+
∑n

i=1 Di+t
)
|S = t,G1,An

]
FX (t)

(
FU (t)FD(

t
U
)
)n−1

× FD(
t
U
)FU (t)

= e−stFX (t)LX (s|t)
(
FU (t)LU (s|t)FD(

t
U
)LD(s|

t
U
)
)n−1

× FD(
t
U
)LD(s|

t
U
)FU (t),∀n = 1, 2, . . . .

For the union of events An, n = 0, 1, 2, . . .,

E
[
e−sT1{∪∞

n=0An}|S ≈ t,G1] = e−st
[
FX (t) +

FX (t)LX (s|t)FD( t
U
)LD(s| t

U
)FU (t)

1 − FU (t)LU (s|t)FD( t
U
)LD(s| t

U
)

]
. (B.3)

Similarly,

E [e−sT1{En}|S ≈ t,G1] = e−s t
U FX (t)LX (s|t)

(
FU (t)LU (s|t)FD(

t
U
)LD(s|

t
U
)
)nFD(t/U)
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and

E
[
e−sT1{∪∞

n=0En}|S ≈ t,G1] = e−st/UFX (t)LX (s|t)FD( t
U
)

1 − FU (t)LU (s|t)FD( t
U
)LD(s| t

U
)
. (B.4)

Summing up (B.3) and (B.4), we obtain the conditional Laplace–Stieltjes transform of the completion
time for customers arriving during an up period:

LT

(
s|S ≈ t,G1

)
= e−stFX (t) +

FX (t)LX (s|t)
(
e−stFD( t

U
)LD(s| t

U
)FU (t) + e−s t

U FD( t
U
)
)

1 − FU (t)LU (s|t)FD( t
U
)LD(s| t

U
)

. (B.5)

For work starting during a down period, we use the interpretation of events An, En, n = 0, 1, . . ., as in
the proof of Proposition 1 under G2. The conditional completion time from Eq. (A.11) becomes

{T |S ≈ t,G2} =


t
U
, event A0,

Y + ∑n
i=2 Di +

∑n
i=1 Ui + t

U
, event An, n = 0, 1, 2, . . .

Y + ∑n+1
i=2 Di +

∑n
i=1 Ui + t, event En, n = 0, 1, 2, . . .

(B.6)

with probabilities,

P
{
A0 |S ≈ t,G2} = FY (

t
U
), (B.7)

P
{
An |S ≈ t,G2} =

(
FU (t)FD(

t
U
)
) (n−1)FY (

t
U
)FU (t)FD(

t
U
), n = 1, 2, . . . (B.8)

P{En |S ≈ t,G2} =
(
FU (t)FD(

t
U
)
)nFY (

t
U
)FU (t), n = 0, 1, . . . . (B.9)

From here,

E [e−sT1{An}|S ≈ t,G2]

=

e−st/UFY ( t
U
), n = 0,

e−st/U (
FU (t)LU (s|t)FD( t

U
)LD(s| t

U
)
)n−1FY ( t

U
)LY (s| t

U
)FU (t)LU (s|t)FD( t

U
), n = 1, 2, . . .

and

E [e−sT1{En}|S ≈ t,G2] = e−st (FU (t)LU (s|t)FD(
t
U
)LD(s|

t
U
)
)nFY (

t
U
)LY (s|

t
U
)FU (t), n = 0, 1, 2, . . . .

Taking the union of events,

E
[
e−sT1{∪∞

n=0An}|S ≈ t,G2] = e−s t
U

[
FY (

t
U
) +

FY ( t
U
)LY (s| t

U
)FU (t)LU (s|t)FD( t

U
)

1 − FU (t)LU (s|t)FD( t
U
)LD(s| t

U
)

]
and

E
[
e−sT1{∪∞

n=0En}|S ≈ t,G2] = e−stFY ( t
U
)LY (s| t

U
)FU (t)

1 − FU (t)LU (s|t)FD( t
U
)LD(s| t

U
)
,
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and combining all events under G2,

LT

(
s|S ≈ t,G2

)
= e−st t

U FY (
t
U
) +

FY ( t
U
)LY (s| t

U
)
(
e−stFU (t) + e−s t

U FU (t)LU (s|t)FD( t
U
)
)

1 − FU (t)LU (s|t)FD( t
U
)LD(s| t

U
)

. (B.10)

Finally combining Laplace–Stieltjes transform for events G1 and G2 from (B.5) and (B.10), and
considering the probabilities in (2.1), we obtain

LT (s|S ≈ t) = r
(r + f )

[
e−stFX (t) +

FX (t)LX (s|t)
(
e−stFD( t

U
)LD(s| t

U
)FU (t) + e−st/UFD( t

U
)
)

1 − FU (t)LU (s|t)FD( t
U
)LD(s| t

U
)

]
+ f
(r + f )

[
e−s t

U FY (
t
U
) +

FY ( t
U
)LY (s| t

U
)
(
e−stFU (t) + e−s t

U FU (t)LU (s|t)FD( t
U
)
)

1 − FU (t)LU (s|t)FD( t
U
)LD(s| t

U
)

]
,

gives the result in Eq. (2.23).

Appendix C. Proof of Theorem 2.8
As in Theorem 2.5, we condition the service time to a task length S = t. Recalling the events in Eq. (2.21),
and the probabilities in Eqs. (B.1)–(B.2), it can be shown that

E [T · 1{An} |S ≈ t,G1 ] = E [T |An, S ≈ t,G1 ]P{An |G1}

=


tFX (t) , n = 0[
t + E [X |t] + E [D | t

U
] + (n − 1)

(
E [U |t] + E [D | t

U
]
) ]

FX (t)
(
FU (t)FD ( t

U
)
)n−1FD ( t

U
)FU (t) , n = 1, 2, . . .

E [T · 1{En} |S ≈ t,G1 ] =
[ t
U

+ E [X |t] + n
(
E [U |t] + E [D | t

U
]
) ]

FX (t)
(
FU (t)FD ( t

U
)
)nFD ( t

U
) , n = 0, 1, 2, . . . .

From here,

E [T · 1{∪∞
i=0An}|S ≈ t,G1] =

[
t + E [X |t] + E [D| t

U
]
]
FX (t)FD( t

U
)FU (t)

1 − FU (t)FD( t
U
)

+
(
E [U |t] + E [D| t

U
]
)
FX (t)FU (t)

(
FD( t

U
)
)2FU (t)

(1 − FU (t)FD( t
U
))2

, (C.1)

E [T · 1{∪∞
i=0En}|S ≈ t,G1] =

( t
U
+ E [X |t]

)
FX (t)FD( t

U
)

1 − FU (t)FD( t
U
)

+
(
E [U |t] + E [D| t

U
]
)
FX (t)FD( t

U
)FU (t)FD( t

U
)

(1 − FU (t)FD( t
U
))2

. (C.2)

Summing up (C.1) and (C.2) and simplifying we obtain

E [T |S ≈ t,G1] = tFX (t) + FX (t)
[
E [X |t]

+
(
tFD( t

U
)FU (t) + t

U
FD( t

U
)
)
+ FD( t

U
)
(
E [U |t]FU (t) + E [D| t

U
]
)

1 − FU (t)FD( t
U
)

]
. (C.3)
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Consider now the events from Eq. (2.22), and the probabilities in (B.8)–(B.9). Then it holds that

E [T · 1{A0}|S ≈ t,G2] = t
U

FY (
t
U
),

E [T · 1{An}|S ≈ t,G2] =
[ t
U
+ E [Y | t

U
] + (n − 1)

(
E [U |U < t] + E [D| t

U
]
)

+ E [U |t]
]
FY (

t
U
)FU (t)

(
FU (t)FD(

t
U
)
)n−1FD(

t
U
),

E [T · 1{En}|S ≈ t,G2] =
[
t + E [Y | t

U
] + n

(
E [U |t] + E [D| t

U
]
) ]

FY (
t
U
)
(
FU (t)FD(

t
U
)
)nFU (t).

Taking the union of events, we get

E [T · 1{∪∞
i=0An}|S ≈ t,G2] = t

U
FY (

t
U
) +

t
U

FY ( t
U
)FU (t)FD( t

U
)

1 − FU (t)FD( t
U
)

+
(
E [Y | t

U
] + E [U |t]

)
FD( t

U
)FU (t)FD( t

U
)

(1 − FU (t)FD( t
U
))

+
(
E [U |t] + E [D| t

U
]
)
FY ( t

U
) (FU (t))2FD( t

U
)FD( t

U
)

(1 − FU (t)FD( t
U
))2

, (C.4)

E [T · 1{∪∞
i=0En}|S ≈ t,G2] =

(
t + E [Y | t

U
]
)
FY ( t

U
)FU (t)

1 − FU (t)FD( t
U
)

+
(
E [U |t] + E [D| t

U
]
)
FY ( t

U
)FU (t)FD( t

U
)FU (t)

(1 − FU (t)FD( t
U
))2

(C.5)

and summing up (C.4) and (C.5) we obtain,

E [T |S ≈ t,G2] = t
U

FY (
t
U
) + FY (

t
U
)
[
E [Y | t

U
]

+
( t
U

FU (t)FD( t
U
) + tFU (t)

)
+ FU (t)

(
E [U |t] + E [D| t

U
]FD( t

U
)
)

1 − FU (t)FD( t
U
)

]
. (C.6)

Finally, combining (C.3) and (C.6) with the probabilities (2.1), we obtain the result in (2.25).

Appendix D. Proof of Theorem 3.1

Proof. As in Fiorini et al. [16], we calculate the moments of the completion time distribution to assess
the heaviness of the tail. We assume here that the task size has an exponential tail, which amounts to
\min(S) = ` from Eq. (3.3), and denote Δ = min{f , r/U} > 0 and Δ+ = f + r/U − Δ = max{f , r/U} >

0. Let U and D be exponentially distributed with failure rate f and repair rate r, respectively. Their
distributions are FU (t) = 1 − e−ft , and FD(t) = 1 − e−rt .

Notice that the task-size-conditioned Laplace–Stieltjes transform can be expressed as in (D.1)–(D.2)

LU (s|t) = E [e−sU |t > U] =
∫ t

x=0
e−sxdFU (x |t) =

∫ t

x=0
e−sx fe−fx

FU (t)
dx =

f
s + f

1 − e−(s+f )t

1 − e−ft , (D.1)
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LD(s|t/U) = E [e−sD |t > D] =
∫ t/U

x=0
e−sxdFD(x |t/U) =

∫ t/U

x=0
e−sx re−rx

FD(t/U)
dx =

r
s + r

1 − e−(s+r)t/U

1 − e−rt/U .

(D.2)

From Theorem 2.5, the conditional Laplace–Stieltjes transform of the completion time in Eq. (2.23)
becomes

LT (s|t) =
re−(s+f )t

[
1 + f

s + r
(1 − e−(s+r)t/U)

]
+ fe−(s+r)t/U

[
1 + r

s + f
(1 − e−(s+f )t)

]
(r + f )

[
1 − rf

(s + r) (s + f ) (1 − e−(s+f )t) (1 − e−(s+r)t/U)
] ,

where we call

hr (s, t) :=
f

s + r
(1 − e−(s+r)t/U),

hf (s, t) :=
r

s + f
(1 − e−(s+f )t),

obtaining

LT (s|t) =
1

r + f
·

re−(s+f )t (1 + hr (s, t)) + fe−(s+r)t/U (1 + hf (s, t))
1 − hr (s, t)hf (s, t)

. (D.3)

To calculate the mth moment E [Tm] of the completion time T, we resort to the derivatives of the
Laplace–Stieltjes transform of the completion time distribution evaluated at s= 0 as shown in Eq. (D.4)

E [Tm] = (−1)m dm

dsm LT (s)
����
s=0

. (D.4)

In particular, however, we calculate the mth partial derivative with respect to s of the conditioned
Laplace–Stieltjes transform for the completion time in (D.3), evaluate at s= 0, and uncondition with
respect to the task size whenever is possible.

Consider the following function definitions and notation for the partial derivatives of the conditional
Laplace Stieljest Transform (LSTm):

(1) Main term for the nth derivative:

LT (s; n|t) :=
1

r + f
·

re−(s+f )t (1 + hr (s, t)) + f
Un e−(s+r)t/U (1 + hf (s, t))

1 − hr (s, t)hf (s, t)
, n = 0, 1, 2, . . . .

Notice LT (s; 0|t) := LT (s|t).
(2) First recurrent factor of higher-order term for nth derivative:

an(s, t) :=
re−(s+f )t + f

Un−1 e−(s+r)t/U

r + f
, n = 1, 2, . . . . (D.5)

It holds that mn

msn a1(s, t) = (−1)ntnan+1(s, t).
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(3) Recurrent rational exponential functions and terms:

\i (s, t; a, b) :=
e−i(s+a)t/b

1 − e−i(s+a)t/b . (D.6)

It can be shown that for n ≥ 1,

mn

msn \1(s, t; a, b) = (−1)n
( t
b

)n n+1∑
i=1

W (n, i) e−i(s+a)t/b

(1 − e−(s+a)t/b)i

:= (−1)n
( t
b

)n n+1∑
i=1

W (n, i)\i (s, t; a, b), (D.7)

where W (n, i) denotes the nth row and ith column’sWorpitzky number from theWorpitzky triangle
[35], as defined in (D.8)

W (n, i) = 1
i

i∑
j=0

(−1)i−j
(
i
j

)
jn, n ≥ 1, 1 ≤ i ≤ n. (D.8)

In order to simplify the formulas, we also give the following notation:

Θ1(s, t; a, b) :=
t
b
· e−(s+a)t/b

1 − e−(s+a)t/b − 1
s + a

=
t
b
\1(s, t; a, b) −

1
s + a

. (D.9)

From here, similarly, for n ≥ 0,

mn

msnΘ1(s, t; a, b) = (−1)n

(
tn+1

bn+1

n+1∑
i=1

W (n, i)\i (s, t; a, b) −
n!

(s + a)n+1

)
:= Θn+1(s, t; a, b). (D.10)

Finally, we call

ln (s, t) := Θn(s, t; f , 1) + Θn(s, t; r,U), n = 1, 2, . . . (D.11)

and by definition, mn

msn l1(s, t) = ln+1(s, t).

Now we calculate de first derivative of the conditioned Laplace–Stieltjes transform in Eq. (D.3).
Henceforth, functional dependencies of hr (s, t) and hf (s, t) may be omitted for cleaner notation
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m

ms
LT (s|t) =

m

ms
LT (s; 0|t)

= − tLT (s; 1|t) + a1(s, t)
m
ms (hrhf )

(1 − hrhf )2

+ s + f
r + f

\1(s, t; f , 1)
(
Θ1(s, t; r,U) + hrhfΘ1 (s, t; f , 1)

) hrhf

(1 − hrhf )2

+ s + r
r + f

\1(s, t; r,U)
(
Θ1(s, t; f , 1) + hrhfΘ1 (s, t; r,U)

) hrhf(
1 − hrhf

)2
:= − tLT (s; 1|t) + a1(s, t)

m
ms (hrhf )

(1 − hrhf )2

+
[
s + f
r + f

\1(s, t; f , 1)A(s, t) +
s + r
r + f

\1(s, t; r,U)B(s, t)
]

hrhf

(1 − hrhf )2
, (D.12)

with A(s, t) = Θ1(s, t; r,U) + hrhfΘ1 (s, t; f , 1) and B(s, t) = Θ1(s, t; f , 1) + hrhfΘ1(s, t; r,U).
It can be shown that

m

ms
(hrhf ) = hrhfl1(s, t). (D.13)

Then, calling

u1(s, t) :=
hrhf

(1 − hrhf )2
, (D.14)

we have from (D.12),

m

ms
LT (s|t) = −tLT (s; 1|t) + u1 (s, t)

[
a1(s, t)l1(s, t) +

s + f
r + f

\1(s, t; f , 1)A(s, t)

+ s + r
r + f

\1(s, t; r,U)B(s, t)
]
. (D.15)

Moreover,

m

ms
LT (s; n|t) = −tLT (s; n + 1|t) + u1(s, t)

[
an+1 (s, t)l1(s, t) +

s + f
r + f

\1(s, t; f , 1)A(s, t)

+ s + r
r + f

\1 (s, t; r,U)B(s, t)
]
. (D.16)

To calculate the higher order partial derivatives of LT (s|t) we have to use the general Leibniz rule on
the second term in (D.15). For this, we have to study the partial derivatives of the factor u(s, t), and the
functions A(s, t) and B(s, t). We start with u(s, t). From (D.13), we observe that

hr (s, t)hf (s, t) = C(t)e
∫
l1 (s,t)ds, (D.17)

where C(t) := rf e−t (f+r/U) .
Consider now t fixed and the two following one-dimensional functions:

g(x(s)) := C(t)e
∫

x (s)ds, f (y) := y
(1 − y)2

. (D.18)
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Using the functions defined above Eqs. (D.14) and (D.17) can be rewritten as

hr (s, t)hf (s, t) = g(w1(s, t)), (D.19)

u1 (s, t) = f (g(w1(s, t))), (D.20)

thus, u1(s, t) is a nested composite function.
The derivatives of composite functions can be written using Faà di Bruno’s formula [15] as shown

in Eq. (D.21):

dn

dxn f (g(x)) =
n∑

k=1
f (k) (g(x)) · Bn,k

(
g′ (x), g′′ (x), . . . , g(n−k+1) (x)

)
, (D.21)

where Bn,k are the incomplete (or partial) exponential Bell polynomials [9, 26] defined below

Bn,k (x1, x2, . . . , xn−k+1) =
∑ n!

j1!j2! · · · jn−k+1!

( x1
1!

) j1 ( x2
2!

) j2
· · ·

(
xn−k+1

(n − k + 1)!

) jn−k+1

, (D.22)

where the summation is carried over all sequences j1, j2, j3, . . . , jn−k+1 of non-negative integers such that
conditions below are satisfied

j1 + j2 + · · · + jn−k+1 = k, (D.23)

j1 + 2j2 + 3j3 + · · · + (n − k + 1)jn−k+1 = n. (D.24)

The nth complete exponential Bell polynomial is given by the sum of the incomplete polynomials as:

Bn(x1, . . . , xn) =
n∑

k=1
Bn,k (x1, x2, . . . , xn−k+1). (D.25)

The derivatives of composite functions in Eq. (D.21) are similar to the complete exponential Bell poly-
nomials, of which the variables x1, . . . , xn are replaced by the successive derivatives of the inner function
g(x), and the coefficients of the polynomials are factored by the derivatives of the outer function. Since
u(s, t) = f (g(w1(s, t))) is a double composite function, its partial derivatives are given by nested Bell
polynomials.

From (D.11), we know that the partial derivatives of the innermost function l1(s, t) with respect to
s are

mn

msnl1(s, t) = ln+1(s, t). (D.26)

The partial derivatives of the first composite function g(w1(s, t)) are calculated using (D.21) where
the variable coefficients are the derivatives of g(x(s)) = C(t)e

∫
x (s)ds evaluated in l1(s, t), and the

incomplete Bell polynomials are evaluated on the partial derivatives of l1(s, t) from Eq. (D.26). The
general derivative is given below, we omit the functional dependency on li (s, t) to keep the notation
uncluttered

Gn(s, t) :=
mn

msn
(
hr (s, t)hf (s, t)

)
= hr (s, t)hf (s, t)Bn(l1,l2, . . . ,ln).

The similarities of the derivatives to the complete Bell polynomials are due to the exponential nature
of g(x(s)), which makes the successive derivatives of the outer function self-similar, and hence it can
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be factored out from the coefficients of the partial polynomials. Notice that derivatives of low order for
g(x(s)) may also be easily calculated recursively following from Eq. (D.13).

The derivatives of the outermost function f (y) are

dn

dyn f (y) = dn

dyn
y

(1 − y)2
=

n!
(1 − y)2

y + n
(1 − y)n . (D.27)

With this we give below the general form of the partial derivatives of u(s, t) where we drop the functional
dependencies of Gn(s, t) to keep the notation uncluttered

un+1(s, t) :=
mn

msn u1(s, t)

=

n∑
k=1

k!
(k + hrhf )
(1 − hrhf )k+2 · Bn,k

(
G1,G2, . . . ,Gn−k+1

)
, n = 1, 2, . . . . (D.28)

The derivatives of A(s, t) and B(s, t) are also written in terms of Bell polynomials. This is due to the
fact that, from Eq. (D.17) and by definition both functions are composite functions:

A(s, t) = Θ1(s, t; r,U) + C(t)e
∫
(Θ1 (s,t;f ,1)+Θ1 (s,t;r,U) )dsΘ1(s, t; f , 1),

B(s, t) = Θ1(s, t; f , 1) + C(t)e
∫
(Θ1 (s,t;f ,1)+Θ1 (s,t;r,U) )dsΘ1(s, t; r,U).

Denote by Θ1:k (s, t; a, b) the ordered list Θ1(s, t; a, b), . . . ,Θk (s, t; a, b). It can be shown by induction
that

mn

msn A(s, t) = Θn+1 (s, t; r,U) + hr (s, t)hf (s, t)
n∑

k=0

(
n
k

)
Bn−k+1

(
Θ1:(n−k+1) (s, t; f , 1)

)
Bk

(
Θ1:k (s, t; r,U)

)
,

(D.29)

mn

msn B(s, t) = Θn+1 (s, t; f , 1) + hr (s, t)hf (s, t)
n∑

k=0

(
n
k

)
Bn−k+1

(
Θ1:(n−k+1) (s, t; r,U)

)
Bk

(
Θ1:k (s, t; f , 1)

)
,

(D.30)

where the summations are binomial expansions on the indices ofΘk (s, t; a, b), with the first index shifted
to the right by one. Getting back to Eq. (D.15), we had that

m

ms
LT (s|t) = −tLT (s; 1|t) + u1 (s, t)

[
a1(s, t)l1(s, t) +

s + f
r + f

\1(s, t; f , 1)A(s, t)

+ s + r
r + f

\1(s, t; r,U)B(s, t)
]
. (D.31)
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It can be shown from successive differentiation of Eq. (D.31) and considering (D.16) that the nth partial
derivative of the conditioned Laplace transform of the completion time is given as:

mn

msn LT (s|t) = (−t)nLT (s; n|t)

+
n∑

k=1
(−t)n−k mk−1

msk−1

(
u1(s, t) [an−k+1(s, t)l1(s, t)

+A(s, t)
(

s+f
r+f \1(s, t; f , 1)

)
+ B(s, t)

(
s+r
r+f \1(s, t; r,U)

)] )
, (D.32)

where the partial derivatives in the right hand side are calculated with the General Leibniz rule, which
is given in (D.33) for the product of three functions f1(x), f2(x), f3(x):

dn

dxn (f1 (x)f2(x)f3(x)) =
∑

k1+k2+k3=n

n!
k1! k2! k3!

dk1

dxk1
f1(x)

dk2

dxk2
f2(x)

dk3

dxk3
f3(x), (D.33)

with the summation extending over all triplets (k1, k2, k3) of non-negative integers that are such that
3∑

t=1
kt = n.

Finally, the mth moment of the completion time T is obtained by unconditioning (D.32) with respect
to the task size t whenever the improper integral converges

E [Tm] = (−1)m
∫ ∞

0

(
mm

msm LT (s|t)
��
s=0

)
dFS (t)

= (−1)m`

∫ ∞

0

(
mm

msm LT (s|t)
��
s=0

)
e−`tdt. (D.34)

To study the convergence of the integral in (D.34) we look at the asymptotic behavior of the different
terms and factors in (D.32) evaluated at s= 0.Wewill use the definition of asymptotic equivalence given
in (D.35). Recall also that we denote Δ = min{f , r/U} > 0 and Δ+ = f + r/U − Δ = max{f , r/U} > 0

k1(t) ∼ k2(t) if and only if lim
t→∞

k1(t)
k2(t)

= 1. (D.35)

We classify according to the asymptotic order.

(1) Constant factors:
(a) Main factor of the first term: LT (0; n|t)

LT (0; n|t) ∼ C1(n) :=


1, f < r/U,
1/Un, f > r/U,
1
2 (1 + 1/Un), f = r/U

, n = 0, 1, 2, . . . .
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(b) Recurrent factor Θn (0, t; a, b):

Θ1(0, t; a, b) =
t
b

e−at/b

1 − e−at/b − 1/a ∼ −1/a,

Θn(0, t; a, b) = (−1)n−1

(
tn

bn

n∑
i=1

W (n, i) e−i·at/b

(1 − e−at/b)i −
(n − 1)!

an

)
∼ (−1)n (n − 1)!

an , n = 2, 3, . . . .

(c) Recurrent factor ln (0, t):

ln(0, t) = Θn(0, t; f , 1) + Θn(0, t; r,U) ∼ (−1)n(n − 1)!
(
1
f n + 1

rn

)
, n = 1, 2, . . . .

(d) Recurrent factorsA(s, t) andB(s, t), and derivatives: from (D.29)–(D.30), and by the continuity
of Bell polynomials, we have that for every n ≥ 0 there exist constants CA(n) > 0 and CB(n) >
0 such that

mn

msn A(s, t) ∼ (−1)n+1CA(n),

mn

msn B(s, t) ∼ (−1)n+1CB(n).

(2) Polynomial factors with exponential damping:
(a) Recurrent factor an (0|t):

an(0|t) ∼ e−Δt · Ca (n) := e−Δt ·


r

r+f , f < r/U,
f

(r+f )
1

Un−1 , f > r/U,
1

r+f

(
r + f

Un−1

)
, f = r/U

, n = 1, 2, . . . .

(b) Recurrent factors \k (0, t; a, b) and derivatives of \1 (0, t; a, b):

\k (s, t; a, b) ∼ e−k ·at/b,

mn

msn \1(s, t; a, b)
����
s=0

= (−1)n
( t
b

)n n+1∑
i=1

W (n, i)\i (0, t; a, b) ∼ (−1)n
( t
b

)n
e−at/b, n = 1, 2, . . . .

(c) Accompanying factors of A(0, t) and B(0, t), and derivatives:

mn

msn

(
s + a
r + f

\1(s, t; a, b)
)����

s=0
∼ 1

r + f

[
n + a(−1)n−1 tn−1

bn−1

]
e−at/b, n = 1, 2, . . . .

(3) Exponential growth factors: recurrent factor un(0, t).
Again due to the continuity of the Bell polynomials, for every n ∈ N there exists a constant

CG (n) > 0 such that Gn (0, t) ∼ (−1)nCG (n), and since the dominant term in (D.28) is for k = n,
there exists a constant CB(n − 1) > 0 such that Bn−1,n−1(G1)

��
s=0 ∼ (−1)n−1CB(n − 1). From here,

given that
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n + hr (0, t)hf (0, t)

)(
1 − hr (0, t)hf (0, t)

)n+2 ∼ (n + 1)e(n+2)Δt ,

we obtain

un(0, t) ∼ (−1)n−1n!CB(n − 1) · e(n+1)Δt , n = 1, 2, . . . .

Notice that un(0, t) is the only factor that has an asymptotic behavior that is not decaying nor con-
stant for large t, and also that the asymptotic order increases with n, which is the order of the partial
derivative.

It is easy to see from the first derivative in Eq. (D.15) that m
msLT (s|t)

��
s=0 ∼ −CeΔt , for some constant

C > 0, and that the expected completion time E [T] only exists when Δ = min{f , r/U} < `. For higher
order derivatives in Eq. (D.32), we only have to observe the last term in the summation, which will
yield the higher order terms overall. Additionally, since the partial derivatives of u1(s, t) dominate the
asymptotic behavior, we only have to look at the term coming from the Leibniz rule for which u1 (s, t)
has the partial derivative of order n− 1 and the remaining factors are not differentiated. Then, for n ≥ 1,

mn

msn LT (s|t)
����
s=0

∼ un(0, t)
[
a1(0, t)l1(0, t) + A(0, t)

(
f

r+f \1 (0, t; f , 1)
)

+B(0, t)
(

r
r+f \1(0, t; r,U)

)]
∼ C (n)enΔt , (D.36)

where C (n) is a constant that depends on n. Then, from (D.34), the mth moment E [Tm] is not finite
whenever mΔ − ` ≥ 0 which is m ≥ `/Δ = `/min{f , r/U} = Y, and the completion time distribution
is power-tailed [19], that is, there exists a positive constant c such that

FT (t) ∼
c
tY

. (D.37)
�
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