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Abstract
Compliant interaction between robots and the environment is crucial for completing contact-rich tasks. However,
obtaining and implementing optimal interaction behavior in complex unknown environments remains a chal-
lenge. This article develops a hybrid impedance and admittance control (HIAC) scheme for robots subjected to
the second-order unknown environment. To obtain the second-order target impedance model that represents the
optimal interaction behavior without the accurate environment dynamics and acceleration feedback, an impedance
adaptation method with virtual inertia is proposed. Since impedance control and admittance control have comple-
mentary structures and result in unsatisfactory performance in a wide range of environmental stiffness due to their
fixed causality, a hybrid system framework suitable for the second-order environment is proposed to generate a
series of intermediate controllers which interpolate between the responses of impedance and admittance controls
by using a switching controller and adjusting its switching duty cycle. In addition, the optimal intermediate con-
troller is selected using a mapping of the optimal duty cycle to provide the optimal implementation performance
for the target impedance model. The proposed HIAC scheme can achieve the desired interaction and impedance
implementation performance while ensuring system stability. Simulation and experimental studies are performed
to verify the effectiveness of our scheme with a 2-DOF manipulator and a 7-DOF Franka EMIKA panda robot,
respectively.

1. Introduction
With the rapid increase of robots landing in various fields, robots inevitably interact with the external
environment in contact-rich applications such as assembly automation and human–robot collaboration
[1, 2]. However, the environment is usually unknown and uncertain in these scenarios, making it quite
challenging to ensure safe and effective interactions during the tasks. In the existing research, two meth-
ods have been widely used to achieve compliant interaction behaviors between manipulators and the
environment. The first method is hybrid position/force control proposed by Raibert and Craig [3], which
decomposes the task space into position-controlled and force-controlled subspaces but will easily result
in the instability of the interaction when the modeling accuracy of the environment or robot dynamics is
insufficient. The second method is impedance control proposed by Hogan [4], whose goal is to establish
a dynamical relationship between the motion of the manipulator and the interaction force, rather than
controlling these variables separately. Moreover, impedance control has proven to be easier to implement
and more robust [5].

In impedance control, obtaining the target impedance model which describes the desired inter-
action behavior is necessary. A basic approach is to impose a passive impedance model on the
manipulator, which can guarantee the interaction stability under any passive environment [6]. Further,
the environment dynamics were considered since the model’s passivity cannot guarantee that the
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manipulator can adapt to the environment [7]. The adaptive impedance controllers using polynomial
universal approximators and q-Chlodowsky operators to approximate the system uncertainties, unmod-
eled dynamics, and external disturbances were designed in refs. [8, 9]. However, obtaining an impedance
model that matches the environment is difficult since the environment dynamics are usually unknown.
Moreover, a fixed target impedance model is not applicable in many flexible tasks such as human–robot
collaboration [10, 11], so a variable admittance control approach was proposed by ref. [12] to tune
the inertia and provide the robot with the adaptive ability to cope with different task states in human–
robot cooperation. In ref. [13], a sensorless optimal switching impact/force controller with impedance
adaptive mechanism was proposed to realize stable free-space/contact phase control of the robot. In
ref. [14], a sensorless model-based method was proposed to estimate the environmental stiffness and
tune impedance gains online. A Q-Learning-based model predictive variable impedance controller was
developed, which can learn the human–robot interaction dynamics and uncertainties and optimize the
impedance parameters [15]. Therefore, iterative learning was utilized to update the impedance parame-
ters iteratively through repeated contact operations of the manipulator, leading to the desired impedance
model adapted to the unknown environment [16]. The reference adaptation approach was used to param-
eterize the desired trajectory and iteratively search for the optimal parameter to obtain the desired
interaction performance [17]. However, the repeated operations in iterative learning are inflexible and
time-consuming, so the impedance adaptation which has the potential to obviate the repeated operations
of the manipulator has been focused on. In ref. [18], a bioinspired approach derived from human motor
learning was proposed to adapt the impedance and feedforward torque in the unknown and dynamic
environment to meet the requirements of interaction. In ref. [19], the advanced research on human-
inspired intelligent robots was summarized and a significant insight into the principle of human-like
impedance adaptation for robots was provided. Further, a brain-inspired intelligent robotic system was
established in ref. [20], which strongly proved the effectiveness of human-like impedance adaptation for
improving the performance of robots.

In general, the target impedance model discussed above corresponds to a good trade-off between
trajectory tracking and interaction force regulation obtained by optimization. When the environment
dynamics are known, the optimal impedance parameters can be easily obtained using the well-known
linear quadratic regulator (LQR). However, LQR is not suitable for unknown linear systems caused by
unknown environment dynamics [21]. Hence, adaptive dynamic programming (ADP), as a method to
design the optimal controller with only partial information of the controlled system model, has attracted
wide attention [22]. Based on the ADP approach in ref. [23], an impedance adaptation method was pro-
posed to obtain the target impedance parameters that guarantee the optimal interaction in the unknown
environment without repeated operations of the manipulator [24]. As an improvement of ref. [24], an
auxiliary function was designed in the impedance adaptation to make the feedback gain change smoothly,
and the broad fuzzy neural network and the barrier Lyapunov function were used to deal with the uncer-
tainty of robot dynamics and the state constraint problem [25]. In ref. [26], an admittance adaptation
method was proposed for the unknown environment, where a torque observer was employed and an
advanced adaptive controller was designed to ensure trajectory tracking performance. However, in the
second-order environment, namely the mass–spring–damper environment, the methods in refs. [24–26]
can only obtain a first-order target impedance model, namely spring–damper model, which has a limited
range to describe the interaction behavior and thus is not suitable for many tasks.

In practice, not only the acquisition of the target impedance model but also its implementation should
be considered carefully, both of which ensure the desired interaction behavior of the manipulator inter-
acting with the environment. According to the different causality, impedance control can be implemented
in two ways, which are referred to as “impedance control” and “admittance control.” In essence, these
two controllers have complementary stability and performance due to their fixed causality [27, 28],
which is qualitatively shown in Fig. 1. To be specific, due to the inability of impedance control to provide
stiff behavior, impedance control results in poor position accuracy in free motion and soft environments
affected by uncompensated frictions, but it can guarantee stability and provide good performance in
interaction with stiff environments. On the contrary, admittance control results in poor robustness and
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Figure 1. Qualitative representation of impedance and admittance controllers performance. Neither
of these two controllers is well adapted to a wide range of environmental stiffness, so it is necessary to
design an ideal controller that can provide good performance in any environment stiffness [28].

even instability in stiff environments due to its stiff characteristic but can compensate for unmodeled
frictions and provide high position accuracy in free motion and soft environments.

To cope with this problem, Ott, Mukherjee, and Nakamura proposed a hybrid system framework to
achieve the performance of the ideal controller in Fig. 1 [28, 29]. By utilizing the switching controller
according to the switching period and duty cycle, the framework interpolates between the responses of
impedance control and admittance control and provides good performance in a wide range of environ-
mental stiffness. As an improvement of ref. [29], a hybrid controller that can adapt the switching period
and duty cycle was developed to improve the control performance [30]. In ref. [31], a hybrid control
strategy was proposed, where the switch between impedance and admittance controllers was triggered
by the position error, which led to good performance under any impedance condition. To obtain the opti-
mal implementation performance of the target impedance model in different environments, an adaptive
hybrid system framework was proposed by ref. [32] using the neural network based on ref. [29], which
directly established the mapping of the states and force of the robot to the optimal duty cycle to obtain the
intermediate controller that provided the optimal performance in a fixed or time-varying environment.
It is worth noting that although environmental stiffness is the main factor affecting the performance of
impedance and admittance controllers, environmental inertia and damping in the second-order envi-
ronment also need to be considered since they greatly affect the system stability. However, the above
approaches consider neither the acquisition of the optimal impedance model nor the interaction with the
second-order environment.

According to the above discussion, this article proposes a hybrid impedance and admittance control
(HIAC) scheme to address two problems. The first problem is that existing impedance adaptation meth-
ods [24–26] can only obtain insufficient first-order impedance models in the second-order unknown
environment. The second problem is that existing hybrid control methods [28–32] do not consider the
interaction with the second-order environment. Therefore, this inspires us to propose a unified scheme
to optimally obtain and implement the target impedance model for the manipulator subjected to the
second-order unknown environment. It should be noted that although the uncertainties and environment
dynamics lead to differences in the performance of impedance control and admittance control due to
their different causality, our goal is not to compensate for system uncertainties like conventional adaptive
impedance control but to utilize the hybrid system framework to provide optimal consistent impedance
implementation performance independent of the environmental stiffness under unknown uncertainties
and the second-order environment. Compared with the existing research, the main contributions of this
article are summarized below:

1. An impedance adaptation method with virtual inertia is proposed to obtain the second-order tar-
get impedance model representing the optimal interaction behavior in the second-order unknown
environment without the accurate environment dynamics and acceleration feedback.
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2. A hybrid system framework suitable for the second-order environment is proposed to implement
the target impedance model with its stability analyzed.

3. A mapping of the optimal duty cycle is built to select the optimal intermediate controller to
provide the optimal implementation performance for the obtained target impedance model.

The rest of this article is organized as follows. In Section 2, the preliminaries including the robot and
environment dynamics, LQR, and impedance control and admittance control are introduced. Section 3
introduces the methodologies containing the adaptive optimal control, impedance adaptation, and hybrid
system framework with its stability analysis and mapping of the optimal duty cycle. Simulation and
experimental studies are conducted in Section 4 and 5 to verify the effectiveness of the proposed HIAC
scheme, respectively. Section 6 gives the conclusions.

2. Preliminaries
2.1. System model
For the system, we consider that an n-DOF rigid robot manipulator is in interaction with an environment.
The forward kinematics of the manipulator is given first:

x = φ(q) (1)

where x and q ∈R
n denote the end-effector’s coordinates in Cartesian space and joint angle vector in

joint space, respectively. Differentiating (1) along time yields

ẋ = J(q)q̇ (2)

where J(q) is the Jacobian matrix. Differentiating (2) along time, we have

ẍ = J̇(q)q̇ + J(q)q̈. (3)

The nominal dynamics of the robot manipulator without considering the uncertainties and frictions
in joint space are given by ref. [18]:

H(q)q̈ + C(q, q̇)q̇ + G(q) = τ c + JT(q)Fe (4)

where H(q) ∈R
n×n is the inertia matrix. C(q, q̇)q̇ ∈R

n is the Coriolis and Centrifugal force vector. G(q) ∈
R

n is the gravitational force vector. τ c ∈R
n is the control torque input vector, and Fe ∈R

n denotes the
force applied by the external environment. Since the interaction is conducted in Cartesian space, the
robot dynamics in joint space is transformed to Cartesian space to simplify the analysis. Integrating (2)
and (3) into (4), the nominal robot dynamics in Cartesian space can be described by:

Hx(q)ẍ + Cx(q, q̇)ẋ + Gx(q) = Fc + Fe (5)

where

Hx(q) = J−T(q)H(q)J−1(q),

Cx(q, q̇) = J−T(q)(C(q, q̇) − H(q)J−1(q)J̇(q))J−1(q),

Gx(q) = J−T(q)G(q)

and Fc = J−T(q)τ c denotes the control force input vector. To proceed, we consider the environment
model. Without the loss of generality, the environment dynamics can be described by a mass–spring–
damper system as below [24]:

Hmẍ + Cmẋ + Gmx = −Fe (6)

where Hm, Cm, and Gm are unknown environmental inertia, damping, and stiffness matrices, respectively.
A typical mass–spring–damper environment model is shown in Fig. 2.
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Figure 2. Model of the mass–spring–damper environment.
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Figure 4. Diagram of admittance control.

Remark 1. As a second-order system, the mass–spring–damper model can describe a wider range of
environments than the damper–spring model. For example, (6) can describe the environment dynamics
in human–robot interaction. To simplify the analysis, the environmental inertia, damping, and stiffness
are assumed to be fixed.

2.2. Impedance control and admittance control
Impedance control and admittance control are two complementary implementations of regulating the
mechanical impedance of manipulators to the target impedance model described by:

Fe = f (x, x0) (7)

where x0 is the virtual equilibrium trajectory and f (·) is a target impedance function. Equation (7) is a
general impedance model which describes a dynamical relationship between the motion and the con-
tact force. In this article, we adopt the impedance model Fe = Hdẍ + Cdẋ + Kdx − K ′

dx0 as the target,
where Hd , Cd , Kd , and K ′

d are the desired inertia, damping, stiffness, and auxiliary stiffness matrices,
respectively.

In impedance control, as the controlled plant, robot dynamics (5) acts as an admittance, so the
controller is designed as an impedance accordingly. The control force Fc is designed to eliminate the
difference between the robot dynamics and the target impedance model directly. While in admittance
control, an outer loop controller and an inner loop controller need to be designed. The outer loop con-
troller generates the desired trajectory xd that satisfies the desired interaction behavior. By replacing x
with xd in (7), the form of the outer loop controller becomes Fe = f (xd , x0). The inner loop controller
ensures trajectory tracking, that is, limt→∞ x(t) = xd(t). On the contrary, admittance control regards the
position-controlled system including the inner loop controller as the controlled plant, which acts as
an impedance, so the outer loop controller is designed as an admittance. The diagrams of these two
controllers are illustrated in Fig. 3 and Fig. 4, respectively.
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Figure 5. Diagram of HIAC scheme.

2.3. LQR
Consider a continuous linear time-invariant system described by:

ξ̇ = Aξ + Bu (8)

where ξ ∈R
m and u ∈R

r denote the system state and input, respectively. A ∈R
m×m and B ∈R

m×r denote
the system matrix and input matrix, respectively. The goal is to design the optimal control input:

u = −Kξ (9)

to minimize the cost function:

J =
∫ ∞

0

(
ξ

TQξ + uTRu
)
dt (10)

where Q ∈R
m×m and R ∈R

r×r denote the weights of system state and input satisfying Q = QT ≥ 0
and R = RT > 0. By solving the algebraic Riccati equation (ARE) using known A and B, the unique
symmetric positive definite matrix Y∗ can be obtained [21]:

YA + ATY + Q − YBR−1BTY = 0. (11)

Then, we can calculate the optimal feedback gain K∗ in (9):

K∗ = R−1BTY∗. (12)

3. Methodology
In this section, the HIAC scheme under the second-order unknown environment is illustrated, which
can be divided into the impedance iteration stage and optimal implementation stage, as shown in Fig. 5.
In the impedance iteration stage, the target impedance model is adjusted iteratively by the proposed
impedance adaptation method to minimize the cost function. In the optimal implementation stage, the
obtained target impedance model is implemented optimally by the proposed hybrid system framework
with the mapping of the optimal duty cycle.

3.1. Adaptive optimal control
In this section, an adaptive optimal control method is to solve the optimal feedback gain that minimizes
the cost function (10) when A and B in the system (8) are unknown constant matrices [23]. The required
definitions are first imported as:
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Ŷ = [Y11, 2Y12, · · · , 2Y1m, Y22, 2Y23, · · · , Ymm]T

ξ̄ = [
ξ 2

1 , ξ1ξ2, · · · , ξ1ξm, ξ 2
2 , ξ2ξ3, · · · , ξ 2

m

]T

δξξ = [
ξ̄ (t1) − ξ̄ (t0), ξ̄ (t2) − ξ̄ (t1), · · · , ξ̄ (tl) − ξ̄ (tl−1)

]T

Iξξ =
[∫ t1

t0

ξ ⊗ ξdt,
∫ t2

t1

ξ ⊗ ξdt, · · · ,
∫ tl

tl−1

ξ ⊗ ξdt

]T

Iξu =
[∫ t1

t0

ξ ⊗ udt,
∫ t2

t1

ξ ⊗ udt, · · · ,
∫ tl

tl−1

ξ ⊗ udt

]T

(13)

where 0 ≤ t0 < t1 < · · · < tl, Y ∈R
m×m → Ŷ ∈R

1
2 m(m+1), ξ ∈R

m → ξ̄ ∈R
1
2 m(m+1), δξξ ∈R

l× 1
2 m(m+1), Iξξ ∈

R
l×m2 , Iξu ∈R

l×mr, Pij and ξi denote the elements of Y and ξ , respectively, l is the sampling times, and ⊗
is the Kronecker product.

The initial system input of time interval t ∈ [t0, tl] is designed as u = −K0ξ + ν, where K0 is the
initial feedback gain to stabilize the system and ν is the exploration noise to make the system satisfy the
persistent excitation (PE) condition. The matrices δξξ , Iξξ , and Iξu defined above are computed until the
rank condition is satisfied:

rank
(
[Iξξ , Iξu]

) = 1

2
m(m + 1) + mr. (14)

When the sampling times l is large enough and the rank condition (14) is satisfied, Yk and Kk+1 can
be computed iteratively by: [

Ŷk

vec(Kk+1)

]
= (

�T
k �k

)−1
�T

k �k (15)

where k is the number of iterations. �k and �k are defined as:

�k = [
δξξ , −2Iξξ

(
Im ⊗ KT

k R
) − 2Iξu(Im ⊗ R)

]
�k = −Iξξvec

(
Q + KT

k RKk
)

(16)

where Im ∈R
m×m is an identity matrix and vec(·) is the function that stretches a matrix into a vector. Let

k + 1 → k and repeat the above calculation until ‖Yk − Yk−1‖ ≤ ε where ε > 0 is a preset threshold, and
the optimal feedback gain Kk is obtained. To proceed, we design smooth functions for the feedback gain
and the exploration noise to keep the system input continuous [25]:

K ′
k = Kk + K0

2
+ Kk − K0

2
sin

(
−π

2
+ t − tl

Ts

π

)

ν ′ = ν(tl)

2
− ν(tl)

2
sin

(
−π

2
+ t − tl

Ts

π

)
(17)

where K ′
k is the transitional feedback gain, ν ′ is the transitional exploration noise, ν(tl) is the value of

ν at time tl, and Ts is the transitional time. The transitional system input is designed as u = −K ′
kξ + ν ′

in time interval tl < t ≤ tl + Ts during which K ′
k changes from K0 to Kk and ν ′ changes from ν(tl) to 0

smoothly. When t > tl + Ts, the system input becomes u = −Kkξ . The principle of the above algorithm
is summarized in Algorithm 1.

3.2. Impedance adaptation
In this section, we propose a novel impedance adaptation method to obtain the optimal second-order
target impedance model in the second-order unknown environment. Assume that the manipulator is
interacting with a virtual environment that consists of two parts, one is the mass–spring–damper system
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Algorithm 1. Adaptive Optimal Control

described in (6) and the other is the virtual inertia denoted as Hd , which is realized by defining the
virtual interaction force Fev as:

Fev = Fe − Hdẍ. (18)

Substituting (18) into (6), we have

Htẍ + Cmẋ + Gmx = −Fev (19)

where Ht = Hm + Hd denotes the total inertia of the virtual environment. Compare (8) with (19), we
need to rewrite (19) as a linear time-invariant system [24]:

ξ̇ = Aξ + BFev (20)

where ξ = [ẋT , xT , zT]T is the system state and z ∈R
p is generated by:{

ż = Uz
x0 = Vz

(21)

where U ∈R
p×p and V ∈R

n×p are two predefined matrices. Then, we have

A =
⎡
⎢⎣

−H−1
t Cm −H−1

t Gm 0
In 0 0
0 0 U

⎤
⎥⎦ , B =

⎡
⎢⎣

−H−1
t

0
0

⎤
⎥⎦ (22)

where A and B are unknown due to the unknown environment dynamics. A cost function that represents
the trade-off between trajectory tracking and force regulation is defined as:

J1 =
∫ ∞

0

[
ẋTQ1ẋ + (x − x0)

TQ2(x − x0) + FT
evRFev

]
dt (23)

where Q1, Q2 ∈R
n×n are the weights of tracking error and R ∈R

n×n is the weight of the virtual interaction
force. According to the states defined above, (23) can be rewritten as:

J1 =
∫ ∞

0

(
ξ

TQξ + FT
evRFev

)
dt (24)
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Figure 6. Diagram of hybrid system framework.

where

Q =
⎡
⎢⎣

Q1 0 0
0 Q2 −Q2V

0 −VTQ2 VTQ2V

⎤
⎥⎦ .

Therefore, the cost function (24) can be minimized by regarding the virtual interaction force Fev in
(20) as the system input:

Fev = −Kkξ (25)

where Kk = [Kk1, Kk2, Kk3] is obtained according to Algorithm 1 with Kk1, Kk2 ∈R
n×n and Kk3 ∈R

n×p.
Substituting (18) and (21) into (25), we have

Fe = Hdẍ − Kk1ẋ − Kk2x − Kk3
(
VTV

)−1 VTx0. (26)

Comparing (26) with (7), we can rewrite (26) as:

Fe = Hdẍ + Cdẋ + Kdx − K ′
dx0. (27)

Note that (27) denotes the target impedance model equivalent to the system input (25) with Cd =
−Kk1, Kd = −Kk2 and K ′

d = Kk3(VTV)−1VT . So the target impedance model representing the opti-
mal interaction behavior is obtained from the interaction dynamics of the robot and the second-order
unknown environment, and the model is second order due to the introduced virtual inertia Hd .

Remark 2. It can be seen from (25) that the virtual inertia eliminates the acceleration term in the system
input. In addition, the system input in Algorithm 1 is realized by implementing the equivalent second-
order impedance model using impedance control without acceleration feedback. Hence, the proposed
method does not require acceleration feedback which is difficult to obtain in practice and can adapt to a
wider range of environments than the approach in ref. [24].

3.3. Hybrid system framework
In this section, we design a novel hybrid system framework to implement the target impedance model
in the second-order environment. An overview of the proposed framework is shown in Fig. 6. First, the
well-known computed torque control method is utilized to design the control law [33]. For impedance
control, the control law is designed in Cartesian space as:

Fci = Hx(q)vci + Cx(q, q̇)ẋ + Gx(q) − Fe (28)

where Fci and vci are the control force and the equivalent input of impedance control, respectively.
Substituting (28) into (5), yields

ẍ = vci. (29)
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Substituting (29) into (27), we have

vci = H−1
d

(
Fe − Cdẋ − Kdx + K ′

dx0
)

. (30)

It can be seen that impedance control uses interaction force feedback instead of acceleration feedback
due to the second-order inertia term in (27). For admittance control, replacing x in (27) with the desired
trajectory xd , the update law of xd in the outer loop controller is obtained as:

Hdẍd + Cdẋd + Kdxd − K ′
dx0 = Fe. (31)

The inner loop controller is designed as:

Fca = Hx(q)vca + Cx(q, q̇)ẋ + Gx(q) − Fe (32)

where Fca is the control force of admittance control and vca is the equivalent input designed as:

vca = ẍd − Lv(ẋ − ẋd) − Lp(x − xd) (33)

where Lp and Lv are the positive definite gain matrices of the inner loop controller. Substituting (32)
into (5), the closed-loop dynamics of admittance control can be obtained as:

ẍ − ẍd + Lv(ẋ − ẋd) + Lp(x − xd) = 0 (34)

where x and ẋ converge exponentially to xd and ẋd , respectively. Equation (34) implies that the trajectory
tracking of admittance control is guaranteed. Then, we can give the switching controller [29]:

Fc =
{

Fci, tu + cδ ≤ t ≤ tu + (c + 1 − α)δ

Fca, tu + (c + 1 − α)δ < t < tu + (c + 1)δ
(35)

where δ is the switching period, α ∈ [0, 1] is the duty cycle, tu is the initial time, and c is a nonnegative
integer. The controller switches between impedance control and admittance control and becomes an
impedance controller when α = 0 and an admittance controller when α = 1. Besides, when the controller
switches to admittance control, xd and ẋd need to be determined to make the control force Fc continuous.
Hence, by setting Fca = Fci in impedance control phase, we have

vca = vci. (36)

Substituting (29) and (33) into (36), the update law of xd and ẋd can be obtained as:

ẍd − ẍ + Lv(ẋd − ẋ) + Lp(xd − x) = 0. (37)

Although (34) and (37) have the same form, (34) indicates that x and ẋ converge to xd and ẋd in admit-
tance control phase, respectively, while (37) indicates that xd and ẋd converge to x and ẋ in impedance
control phase, respectively. Note that xd and ẋd updated by (31) and (37) are continuous in the control
process.

To proceed, we will give a description of the switched system. Substituting (6) into (27), we can
obtain the closed-loop ideal trajectory that is defined as xref :

Htẍref + (Cd + Cm)ẋref + (Kd + Gm)xref = K ′
dx0 (38)

where Ht = Hd + Hm is defined as above. For impedance control, substituting (6) and (28) into (5), the
closed-loop robot–environment interaction dynamics can be obtained as:

Htẍ + (Cd + Cm)ẋ + (Kd + Gm)x = K ′
dx0. (39)

Comparing (38) with (39), yields

ë = −H−1
t (Cd + Cm)ė − H−1

t (Kd + Gm)e (40)
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where e = x − xref is defined as the error between the actual and ideal trajectories, so we can rewrite
(37) as:

ëd − ë + Lv(ėd − ė) + Lp(ed − e) = 0 (41)

where ed = xd − xref . Comparing (40) with (41), we have

ëd = − Lvėd − Lped + [
Lv − H−1

t (Cd + Cm)
]

ė
+ [Lp − H−1

t (Kd + Gm)]e. (42)

For admittance control, (34) can be rewritten according to the above definition:

ë − ëd + Lv(ė − ėd) + Lp(e − ed) = 0. (43)

Substituting (6) into (31), we have

Hdẍd + Cdẋd + Kdxd − K ′
dx0 + Hmẍ + Cmẋ + Gmx = 0. (44)

Comparing (38) with (44), we can obtain

Hdëd + Cdėd + Kded + Hmë + Cmė + Gme = 0. (45)

Comparing (43) with (45), we have

ë = − H−1
t (HdLv + Cm) ė − H−1

t

(
HdLp + Gm

)
e

+ H−1
t (HdLv − Cd) ėd + H−1

t

(
HdLp − Kd

)
ed (46)

and

ëd = − H−1
t (HmLv + Cd)ėd − H−1

t (HmLp + Kd)ed

+ H−1
t (HmLv − Cm)ė + H−1

t (HmLp − Gm)e. (47)

The switched system can be described as:

Ė =
⎧⎨
⎩

AiE, tu + cδ ≤ t ≤ tu + (c + 1 − α)δ

AaE, tu + (c + 1 − α)δ < t < tu + (c + 1)δ
(48)

where E = [eT , ėT , eT
d , ėT

d ]T . From (40) and (42), we have

Ai =
[

Ai1 0
Ai1 − Ai2 Ai2

]
(49)

where

Ai1 =
[

0 In

−H−1
t (Kd + Gm) −H−1

t (Cd + Cm)

]
,

Ai2 =
[

0 In

−Lp −Lv

]
.

From (46) and (47), we have

Aa =
[

Aa1 Aa2

Aa3 Aa1 + Aa2 − Aa3

]
(50)
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where

Aa1 =
[

0 In

−H−1
t (HdLp + Gm) −H−1

t (HdLv + Cm)

]
,

Aa2 =
[

0 0
H−1

t

(
HdLp − Kd

)
H−1

t (HdLv − Cd)

]
,

Aa3 =
[

0 0
H−1

t (HmLp − Gm) H−1
t (HmLv − Cm)

]
.

Remark 3. Compared with [29], the proposed hybrid system framework is suitable for the second-order
environment, and the states of the two subsystems of the switched system are of the same dimension and
keep continuous during the control process without the state mappings and periodic resetting operation.
Therefore, more general analysis methods of switched systems can be applied, which enables more
advanced impedance or admittance controllers to be added to the proposed framework, showing its
wider scope of application.

Remark 4. Impedance control required by the proposed impedance adaptation method can be easily
realized by setting α = 0 in the proposed hybrid system framework, which shows the flexibility of the
proposed control scheme.

3.4. Stability analysis
To prove the stability of the switched system, the definition of discrete equivalent (DE) proposed by Das
and Mukherjee [34] is given first. The time-invariant linear system

Ė = AeqE (51)

is a DE of a switched linear system if the states of both systems are assumed to take the same values at
regular time intervals and evolve from the same initial condition.

Then, we analyze the switched system (48) calculated from the nominal robot–environment inter-
action dynamics, and the relation between the states of the switched system at time t = tu + cδ and
t = tu + (c + 1)δ can be obtained from (48), c = 0, 1, 2, · · · :

E(tu + (c + 1 − α)δ) = eAi(1−α)δE(tu + cδ)

⇒ E(tu + (c + 1)δ) = eAaαδE(tu + (c + 1 − α)δ)

= eAaαδeAi(1−α)δE(tu + cδ). (52)

According to (51) and (52), the system (51) becomes a DE of the switched system (48) with

Aeq = 1

δ
ln

[
eAaαδeAi(1−α)δ

]
(53)

where Aeq is the logarithm of a matrix with a specific form, whose existence and uniqueness problems
are fully discussed in ref. [34]. It can be observed that if the states of the corresponding DE system
(51) converge to the equilibrium point and the states of the switched system (48) are bounded within all
time intervals, then the stability of the switched system at the same equilibrium point can be proven. To
proceed, a more straightforward proof of the stability condition of the switched system than ref. [29] is
given as follows:

Theorem 3.1. Exponential Stability: The switched system (48) is exponentially stable at the equilibrium
point E = 0 if Aeq of the DE system (51) is Hurwitz.

https://doi.org/10.1017/S0263574723001601 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001601


522 Dexi Ye et al.

Proof. First, we assume the norm of the initial state of the DE system satisfies ‖E(tu)‖ = β. Using the
Hurwitz property of Aeq and the DE system (51), we have

E(t) = eAeq(t−tu)E(tu)

⇒ ‖E(t)‖ ≤ ‖eAeq(t−tu)‖‖E(tu)‖
≤ γ e−σ (t−tu)β (54)

where γ , σ > 0. Since the states of the switched system and its DE are assumed to take the same values
at time t = tu + cδ, c = 0, 1, 2, · · · , the states of the switched system (48) satisfy

‖E(tu + cδ)‖ ≤ γβe−σcδ. (55)

Consider the time interval tu + cδ ≤ t ≤ tb + (c + 1)δ, in which the subinterval tu + cδ ≤ t ≤ tb +
cδ + (1 − α)δ for impedance control is considered first. Using (55) and the relation t = tu + cδ + λi,
0≤λi≤(1 − α)δ, we have

E(tu + cδ + λi) = eAiλiE(tu + cδ)

⇒ ‖E(tu + cδ + λi)‖ ≤ ‖eAiλi‖‖E(tu + cδ)‖
≤ eηiλiγβe−σcδ

⇒ ‖E(t)‖ ≤ eηiλiγβe−σ (t−tu−λi)

≤ γβe(ηi+σ )(1−α)δe−σ (t−tu) (56)

where ηi = ‖Ai‖. From (56), we can obtain

‖E(tu + cδ + (1 − α)δ)‖ ≤ γβeηi(1−α)δe−σcδ. (57)

Then consider the subinterval tu + cδ + (1 − α)δ ≤ t ≤ tb + (c + 1)δ for admittance control. Using
(57) and the relation t = tu + cδ + (1 − α)δ + λa, 0≤λa≤αδ, we have

E(tu + cδ + (1 − α)δ + λa)

= eAaλaE(tu + cδ + (1 − α)δ)

⇒ ‖E(tu + cδ + (1 − α)δ + λa)‖
≤ ‖eAaλa‖‖E(tu + cδ + (1 − α)δ)‖
≤ eηaλaγβeηi(1−α)δe−σcδ

⇒ ‖E(t)‖ ≤ eηaλaγβeηi(1−α)δe−σ (t−tu−(1−α)δ−λa)

≤ γβe(ηi+σ )(1−α)δe(ηa+σ )αδe−σ (t−tu) (58)

where ηa = ‖Aa‖. From (56) and (58), in the time interval tu + cδ ≤ t ≤ tb + (c + 1)δ, c = 0, 1, 2, · · · ,
the states of the switched system satisfy

‖E(t)‖ ≤ γβρe−σ (t−tu),

ρ = max[e(ηi+σ )(1−α)δ, e(ηi+σ )(1−α)δe(ηa+σ )αδ]

= e(ηi+σ )(1−α)δe(ηa+σ )αδ (59)

which proves the exponential stability of E = 0 for the switched system.
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Figure 7. Simulation scenario: the manipulator interacts with the second-order unknown environment
in the X-direction.

3.5. Mapping of the optimal duty cycle
To provide the optimal implementation performance for the obtained target impedance model, the opti-
mal intermediate controller corresponding to the optimal duty cycle α∗ needs to be selected to minimize
the cost function [32]:

J2 = 1

2

∫ tf

tu

eTedt = 1

2

∫ tf

tu

(x − xref )
T(x − xref )dt (60)

where tu and tf are the initial and end time of control, respectively. However, an explicit expression of
the optimal duty cycle is difficult to obtain, since the duty cycle does not explicitly appear in the state
equation of the switched system but affects the system by changing the switching time. Moreover, not
only the different environments but also the different target impedance models make an impact on the
performance of the switching controller. Therefore, we utilize the strong relation between the environ-
mental stiffness and the optimal duty cycle and we only consider one dimension for analysis without the
loss of generality. For the system (20) and the cost function (24), we define the optimal feedback gain
and the corresponding desired stiffness obtained by LQR as k∗ = [k∗

1, k∗
2, k∗

3] and k∗
d = −k∗

2 , respectively,
which is similar to (25). Substituting (12) and (22) into (11), we can extract the environmental stiffness
ke from the desired stiffness k∗

d directly:

ke = −1

2

(
k∗

d − Q2

Rk∗
d

)
(61)

where the weights Q2 and R become scalars in one dimension. Hence, the mapping of the desired stiffness
k∗

d to the optimal duty cycle α∗ can be achieved. Given a desired stiffness k∗
d , the optimal target impedance

model can be solved by LQR according to the environmental stiffness ke from (61), so the values of
the above cost function are calculated for the duty cycle α ∈ [0, 1] and the optimal duty cycle which
minimizes the cost function can be found.

4. Simulation studies
To verify the interaction and optimal impedance implementation capabilities of the proposed HIAC
scheme, simulations are performed on a 2-DOF manipulator in this section. For the simulation setup,
the manipulator is considered to interact with the second-order unknown environment, and the external
force is applied along the X-direction and can be measured by a force sensor mounted on the end effec-
tor, as shown in Fig. 7. In practice, the actual robot dynamics including uncompensated joint friction,
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Table I. Parameters of the simulated manipulator.

Parameters Description Value
m1 Mass of link 1 1.0 kg
m2 Mass of link 2 1.0 kg
m̂1 Estimated mass of link 1 0.95 kg
m̂2 Estimated mass of link 2 0.95 kg
l1 Length of link 1 0.8 m
l2 Length of link 2 0.8 m
cv Coefficient of viscous friction 0.4 Nms/rad
τc Coefficient of Coulomb friction 0.1 Nm

model uncertainties, time delays, and noises in the external force measurement are considered in the
simulation:

Ĥ(q)q̈ + Ĉ(q, q̇)q̇ + Ĝ(q) = τ c + τ f + Ĵ
T
(q)F̂e (62)

where Ĥ(q), Ĉ(q, q̇), and Ĝ(q) are the estimated inertia matrix, estimated Coriolis and Centrifugal
force matrix, and estimated gravitational force vector in joint space, respectively. Ĵ, F̂e, and τ f are the
estimated Jacobian matrix, estimated interaction force, and uncompensated joint friction, respectively.
Then, the above kinematic and dynamics parameters are given as:

Ĥ(q) =
[

m̂2l2
2 + 2m̂2l1l2c2 + (m̂1 + m̂2)l2

1 m̂2l2
2 + m̂2l1l2c2

m̂2l2
2 + m̂2l1l2c2 m̂2l2

2

]

Ĉ(q, q̇) =
[−m̂2l1l2s2q̇2 −m̂2l1l2s2(q̇1 + q̇2)

m̂2l1l2s2q̇1 0

]
, Ĝ(q) =

[
m̂2l2gc12 + (m̂1 + m̂2)l1gc1

m̂2l2gc12

]

Ĵ =
[−(l1s1 + l2s12) + gn −l2s12 + gn

l1c1 + l2c12 + gn l2c12 + gn

]
, τ f = −

[
cvq̇1 + sign(q̇1)τc

cvq̇2 + sign(q̇2)τc

]

F̂e(t) = Fe(t − 6ts) + [gn, gn]T (63)

where the sampling time of the simulations is set as ts = 1 ms and gn ∼N (0, 0.01) is the Gaussian
noise. Table I presents the parameters of the simulated manipulator. The parameters of the second-order
environments are described by:

Hm =
[

0.1 0

0 0

]
, Cm =

[
1 0

0 0

]
, Gm =

[
ke 0

0 0

]
(64)

where ke is the environmental stiffness in the X-direction. The soft, medium, and stiff environments
corresponding to the environments with low stiffness ke = 20 N/m, medium stiffness ke = 150 N/m, and
high stiffness ke = 1000 N/m, respectively, are considered and assumed to have the same inertia and
damping. Note that the environmental parameters are unknown in the simulation.

4.1. Interaction capability
In this part, the effectiveness of the proposed impedance adaptation method is verified and the parameters
are considered only in the X-direction. The parameters in (21) are set as U = −0.5 and V = 0.3. The
weights in (24) are set as Q1 = 1, Q2 = 30, 000, and R = 1 to cope with the environments (64) which
cover a wide range of stiffness. The initial feedback gain is chosen as K0 = [−1, −1500, 1500]T , and the
initial Yk is set as Y0 = 10Im. The exploration noise is designed as ν = − ∑4

ω=1 (180/ω) sin(ωt). The
preset threshold is set as ε = 0.001, and the transitional time is set as Ts = 2s.
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Figure 8. Virtual equilibrium and actual trajectories in the (a) soft, (b) medium, and (c) stiff environ-
ments. For the proposed method, in stage 1 (yellow region), the system input is set as u = −K0ξ + ν and
the system information is collected until the rank condition (14) is satisfied. In stage 2 (blue region), the
optimal feedback gain Kk is solved, and the system input is set as u = −K′

kξ + ν ′ to keep the system input
continuous until t > tl + Ts. In stage 3 (green region), the system input becomes u = −Kkξ .

Figure 9. Impedance parameters in the (a) soft, (b) medium, and (c) stiff environments. Cd, Kd, and K′
d

are adapted by the proposed method. C∗
d, K∗

d, and K′∗
d are solved by LQR.

The simulation results are presented in Figs. 8 and 9. LQR is regarded as the comparison method
which can solve ARE using the known matrices A and B to obtain the optimal target impedance model,
while the proposed method is suitable for the case where the environment dynamics are unknown, that
is, the matrices A and B are unknown. The virtual equilibrium trajectories and actual trajectories of LQR
and the proposed method in the soft, medium, and stiff environments are shown in Fig. 8. In any case,
an obvious error exists in the actual trajectories between LQR and the proposed method in phase 1
(yellow region) due to the obvious difference between the target impedance model Fe = ẍ + ẋ +
1500(x − x0) + ν equivalent to the initial system input and the optimal target impedance model obtained
by LQR. In addition, the exploration noise results in trajectory jitters of the proposed method, which is
inevitable because rich state and input information is required to ensure that the system meets the PE
condition so that the rank condition (14) is satisfied. In phase 2 (blue region), the transitional system
input works so that the trajectory error rises slightly for a short time and then decreases smoothly. In
phase 3 (green region), the actual trajectory of the proposed method converges to a small neighborhood
of the actual trajectory of LQR.

The impedance parameters of LQR and the proposed method in the soft, medium, and stiff envi-
ronments are shown in Fig. 9. The impedance parameters adapted by the proposed method change
smoothly during stage 2 and converges to a small neighborhood of the impedance parameters of LQR
in stage 3. Table II presents the target impedance models obtained by LQR and the proposed method
in the soft, medium, and stiff environments. It can be seen that the models obtained by the proposed
method are second-order and are quite close to the corresponding optimal models obtained by LQR
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Table II. Simulated target impedance models.

Environments LQR Proposed method
Soft Fe = ẍ + 17.48ẋ + 154.36x − 48.95x0 Fe = ẍ + 16.93ẋ + 154.43x − 48.74x0

Medium Fe = ẍ + 12.27ẋ + 79.13x − 38.13x0 Fe = ẍ + 11.50ẋ + 78.46x − 34.91x0

Stiff Fe = ẍ + 4.90ẋ + 14.89x − 8.84x0 Fe = ẍ + 3.82ẋ + 14.16x − 6.59x0

in the second-order environments, which proves the ability of the proposed method to obtain the tar-
get impedance model representing the optimal interaction behavior without the accurate environment
dynamics. Moreover, it is noteworthy that as the environmental stiffness increases, the desired stiffness
and damping of the target impedance model obtained by the proposed method decrease. In other words,
as the environment becomes stiffer, the desired interaction behavior obtained by the proposed method
becomes softer, which shows good adaptability of the proposed method to different environments.

4.2. Impedance implementation capability
In this part, a fixed target impedance model is implemented in the environments (64) to illustrate the
effectiveness of the proposed hybrid system framework. Specifically, the switching control law (35) is
implemented using (28) and (32), and the desired trajectory xd is updated using (37) and (31) during
impedance and admittance control phases, respectively. Note that the ideal trajectory xref is not used in
the control process. The parameters of the fixed target impedance model to be implemented are chosen as
Hd = 1.0I2, Cd = 4I2, Kd = 10I2, and K ′

d = 5I2. The switching period is designed as δ = 0.02 s, and the
control gains of the inner loop controller of admittance control are designed with high gain as Lp = 106I2

and Lv = 500I2 to be robust to the system uncertainties and make Aeq Hurwitz. The virtual equilibrium
trajectory in the X-direction is designed as x0 = 1 + sin(8t) m.

The ideal trajectories xref for the fixed target impedance model in different environments are calcu-
lated by (38) and shown in Fig. 10(a). The trajectory errors of different controllers for the fixed target
impedance model in the soft, medium, and stiff environments are shown in Fig. 10(b)–(d), respectively,
where impedance, admittance, and the intermediate controllers with different duty cycle parameters
are introduced. In the soft environment, impedance control results in relatively large tracking error and
steady-state error due to the uncompensated friction, while admittance control has better performance,
which is shown as high position accuracy. As the environmental stiffness increases, the performance
of impedance control improves, shown as the decrease in steady-state error, while the performance of
admittance control deteriorates, shown as the increase in oscillations, due to the time delay of the exter-
nal force measurement and the high gains of the inner loop controller. Finally, for the stiff environment,
admittance control leads to large oscillations, while impedance control imparts good robustness to the
system, which is shown as small oscillations and negligible steady-state error.

Moreover, it can be seen from Fig. 10 that the response of the intermediate controller corresponding
to a smaller duty cycle is closer to the response of impedance control, and as the duty cycle increases,
it tends to the response of admittance control. Therefore, the proposed framework can generate inter-
polation between the responses of impedance control and admittance control by properly selecting the
duty cycle, showing its applicability to the second-order environments and its potential to provide good
control performance independent of the environmental stiffness, which is illustrated in the following
section.

4.3. Optimal implementation capability
In this part, the proposed hybrid system framework’s capability to provide the optimal implementation
performance for the target impedance models using the mapping of the optimal duty cycle is evaluated.
The initial time and end time of control are set as tu = 0 s and tf = 2 s, respectively. The target impedance
models to be implemented are obtained by the proposed impedance adaptation method and shown in
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Figure 10. (a) Virtual equilibrium and ideal trajectories. Trajectory errors of different controllers for
the fixed target impedance model in the (b) soft, (c) medium, and (d) stiff environments.

Table II. The remaining parameters are the same as above. Considering the desired stiffness k∗
d in range

[10, 170], the mapping is built offline and shown in Fig. 11(a), where we can see that the optimal duty
cycle becomes larger as the desired behavior becomes stiffer, and the optimal duty cycle has a minimum
interval of ts/δ = 0.05 between [0, 1]. The optimal duty cycles corresponding to the desired stiffness in
the soft, medium, and stiff environments can be obtained as α∗ = 0.85, α∗ = 0.55, and α∗ = 0.3 from the
mapping, respectively. It should be noted that the estimated environmental stiffness is implicitly used as
an intermediate variable during this process as shown in (61), and the target impedance models remain
constant after impedance adaptation.

Figure 11(b) shows the virtual equilibrium and ideal trajectories for the corresponding target
impedance models in different environments. The trajectory errors of different controllers for the
corresponding target impedance model in the soft, medium, and stiff environments are shown in
Fig. 11(c)–(e), where impedance, admittance, and the intermediate controllers corresponding to differ-
ent duty cycles are introduced. In Fig. 11(c)–(e), impedance control and admittance control show similar
characteristics to those in the previous section for the same environment. In the soft environment, the
response of the optimal intermediate controller is close to the response of admittance control, and a
higher position accuracy than that of admittance control is obtained. In the medium environment, the
response of the optimal intermediate controller tends to be the average of the responses of impedance and
admittance controls, resulting in better tracking performance than both controllers. In the stiff environ-
ment, the response of the optimal intermediate controller tends to the response of impedance control,

https://doi.org/10.1017/S0263574723001601 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001601


528 Dexi Ye et al.

Figure 11. (a) Mapping of the optimal duty cycle in the simulation. (b) Virtual equilibrium and ideal
trajectories. The trajectory errors of different controllers for the corresponding target impedance models
in the (c) soft, (d) medium, and (e) stiff environments.

showing its good robustness. In addition, compared with the other two intermediate controllers, the
optimal intermediate controller shows better tracking performance in different environments.

5. Experimental studies
In this section, the performance of the robot–environment interaction using the proposed HIAC scheme
is demonstrated by experiments conducted on a 7-DOF Franka EMIKA panda robot, as shown in Fig. 12.
For the experimental setup, the robot is connected to a workstation PC via Ethernet, and the Franka
Control Interface (FCI) is used to achieve the real-time control loop running at 1 kHz. Meanwhile,
the current status of the robot including the interaction force between the robot and the objects are
obtained from FCI at 1 kHz. In the experiment, the robot will contact with the soft and stiff sponge
objects along the z-axis using the proposed HIAC scheme and the comparison method. On the z-axis,
the soft object’s inertia, damping, and stiffness parameters are 0.1 kg, 2 Ns/m, and 500 N/m, respec-
tively. The stiff object’s inertia, damping, and stiffness parameters are 0.1 kg, 5 Ns/m, and 1500 N/m,
respectively. First, the end-effector position of the robot is moved to [0.36, 0, 0.08] m, then it will contact
with the objects by specifying the virtual equilibrium trajectory as:

x0 = [
0.36, 0, 0.08 − 0.05(1 − exp ( − t))

]T (65)

To proceed, an experimental comparison between the proposed impedance adaptation method and
the commonly used LQR method is conducted to obtain the optimal impedance parameters. In this part,
the weights in (24) are set as Q1 = 1, Q2 = 1000, and R = 0.001. The initial feedback gain is chosen
as K0 = [−100, −2500, 2500]T , and the initial Yk is set as Y0 = Im. The parameters in (21) are set as
U = −0.3 and V = 0.6, and the exploration noise is designed as ν = − ∑8

ω=1(10/ω) sin(ωt). For the pro-
posed method, the impedance iteration will stop when ‖Yk − Yk−1‖ ≤ 0.001 and the transition begins
with the transitional time Ts = 2 s. However, for the LQR method, an accurate environment dynam-
ics model is required to obtain the optimal impedance parameters through the Riccati equation [21].
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Figure 12. Experimental scenario: Franka EMIKA panda robot interacts with the soft and stiff objects.

Figure 13. Virtual equilibrium and actual experimental trajectories for the (a) soft and (b) stiff objects.
The introduction of each stage is the same as Fig. 8.

The experimental results are presented in Figs. 13–17. It can be seen that after impedance adapta-
tion, the interaction behavior of the proposed method, including actual trajectory, interaction force, and
impedance parameters, are close to those of the LQR method, which is consistent with the simulation
results.

To further show the convergence performance of the impedance parameters obtained by the proposed
method to the optimal values obtained by LQR more clearly, the errors of impedance parameters defined
as ‖Kk − K∗‖ are illustrated in Fig. 16, where the error decreases to around 5.92 after seven iterations for
the soft object and decreases to around 6.45 after eight iterations for the stiff object. Table III presents the
target impedance models obtained by LQR and the proposed method for the soft and stiff objects. It can
be seen that the experimental error of damping parameters of the proposed method increases compared
to simulation, which is mainly due to the influence of external noises on the velocity and force data
collected in the experiment. In addition, Fig. 17 shows the control torques of seven robot joints during
impedance adaptation for the soft and stiff objects. The maximum and average control torques for the

https://doi.org/10.1017/S0263574723001601 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001601


530 Dexi Ye et al.

Figure 14. Experimental interaction forces for the (a) soft and (b) stiff objects.

Figure 15. Experimental impedance parameters for the (a) soft and (b) stiff objects.

Figure 16. Errors of experimental impedance parameters for the (a) soft and (b) stiff objects.

interaction with the stiff object are larger than the soft object, and the second, fourth, and sixth joints
bear the main output in the interaction.

Then, the proposed hybrid system framework is utilized to obtain the optimal implementation per-
formance for the target impedance models using the mapping of the optimal duty cycle and compared
with the hybrid controller in ref. [32]. For both the proposed and the comparison method, the initial time
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Table III. Experimental target impedance models.

Objects LQR Proposed method
Soft Fe = ẍ + 46.62ẋ + 618.03x − 529.70x0 Fe = ẍ + 41.84ẋ + 619.06x − 533.04x0

Stiff Fe = ẍ + 36.12ẋ + 302.78x − 330.54x0 Fe = ẍ + 31.23ẋ + 306.41x − 332.64x0

Figure 17. Control torques of seven robot joints during impedance adaptation for the
(a) soft and (b) stiff objects.

and end time of control are set as tu = 0 s and tf = 10 s, respectively. The switching period is designed
as δ = 0.02 s, and the inner loop control gains of admittance control are designed as Lp = 2000 and
Lv = 1.4

√
Lp on the z-axis. The virtual equilibrium trajectory is the same as (65). Considering that the

robot–environment interaction dynamics has been decoupled by the designed controller in each direc-
tion, the mapping of the optimal duty cycle on the z-axis for the proposed method in the experiment is
generated through simulation using the above parameters, as shown in Fig. 18(a). According to the target
impedance models in Table III, the optimal duty cycles of the proposed controller corresponding to the
desired stiffness for the soft and stiff objects are obtained as α∗ = 0.7 and α∗ = 0.5 from the mapping,
respectively. The optimal duty cycles of the hybrid controller in ref. [32] are assumed to be the same as
those of the proposed controller.

To proceed, Fig. 18(b) shows the virtual equilibrium and ideal trajectories for the corresponding tar-
get impedance models. The trajectory errors of different controllers for the soft and stiff objects are
illustrated in Fig. 18(c) and (d), where impedance, admittance, and the intermediate controllers corre-
sponding to different duty cycles and the comparison controller in ref. [32] are introduced for the soft
object, while admittance controller is not used for the stiff object because it will cause system insta-
bility. From Fig. 18(c) and (d), it can be seen that at the beginning, admittance controller for the soft
object and the intermediate controller corresponding to α = 0.85 for the stiff object cause relatively large
oscillations due to their stiff characteristic and the uncertainties of the measured interaction force, while
the optimal intermediate controllers have smoother performances and smaller transient tracking errors.
Impedance controller results in large transient and steady-state tracking errors in the two cases due to
its soft characteristic and unmodeled system dynamics, while the optimal intermediate controller has
smaller steady-state errors. In addition, it can be observed that the comparison controller in ref. [32]
initially results in a larger transient tracking error than the proposed controller because it only takes
into account the spring environment and lacks feedforward velocity and acceleration terms in the admit-
tance inner loop controller. From the above results, the proposed optimal intermediate controller chosen
through the mapping exhibits better trajectory tracking performance than impedance, admittance, and
the intermediate controllers corresponding to other duty cycles and the comparison controller in ref. [32]
for the soft and stiff objects. Besides, Figs. 19 and 20 illustrate the control torques of seven robot joints
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Figure 18. (a) Mapping of the optimal duty cycle in the experiment. (b) Virtual equilibrium and ideal
experimental trajectories. The trajectory errors of different controllers for the corresponding target
impedance models for the (c) soft and (d) stiff objects.

using different controllers for the corresponding target impedance models for the soft and stiff objects,
respectively. It can be seen that the switching mechanism of the intermediate controller causes control
torque vibration, which is difficult to completely avoid in practice, but can be limited to an acceptable
range in the experiment by selecting appropriate parameters. Note that the control torque vibration of the
comparison controller in ref. [32] is smaller than that of the proposed controller. One possible reason is
that the admittance inner loop controller in ref. [32] is designed as a PD regulator, so the desired trajec-
tory can be directly obtained during controller switching instead of its second derivative, thus avoiding
integration error.

In summary, the proposed impedance adaptation method can obtain the optimal interaction behavior
for the robot interacting with different second-order environments using the same control parameters
without the accurate environment model; thus, it can be applied in more fields than LQR. The corre-
sponding optimal intermediate controller is selected using the mapping of the optimal duty cycle, which
enables the proposed hybrid system framework to combine the advantages of the good robustness of
impedance control during stiff contact and the high position accuracy of admittance control during soft
contact, thereby achieving better performance than impedance control or admittance control. For the
cost function (60), the optimal implementation performance of the obtained target impedance models in
different second-order environments is achieved. Therefore, the proposed HIAC scheme can solve the
problem of obtaining and implementing optimal interaction behavior in complex unknown environments
effectively.
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Figure 19. Control torques of seven robot joints using different controllers for the corresponding target
impedance models for the soft object. (a) Impedance controller, (b) intermediate controller correspond-
ing to α = 0.3, (c) optimal intermediate controller corresponding to α∗ = 0.7, (d) admittance controller,
and (e) comparison controller.

Figure 20. Control torques of seven robot joints using different controllers for the corresponding target
impedance models for the stiff object. (a) Impedance controller, (b) intermediate controller correspond-
ing to α = 0.2, (c) optimal intermediate controller corresponding to α∗ = 0.5, (d) intermediate controller
corresponding to α = 0.85, (e) and comparison controller.

https://doi.org/10.1017/S0263574723001601 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001601


534 Dexi Ye et al.

6. Conclusion
In this article, a HIAC scheme is developed for robot manipulators to interact with the second-order
unknown environment. An impedance adaptation method with virtual inertia is proposed to make the
manipulators have the optimal interaction behavior described by the second-order target impedance
model without the need for accurate environment dynamics and acceleration feedback. A hybrid system
framework suitable for the second-order environment is proposed to generate a series of intermedi-
ate controllers to interpolate between the responses of impedance control and admittance control by
adjusting the duty cycle of the switching controller. A mapping of the optimal duty cycle is built to
select the optimal intermediate controller to provide the optimal implementation performance for the
obtained target impedance model. Simulation and experimental studies on the Franka EMIKA panda
robot have verified the effectiveness of the proposed HIAC scheme, and the proposed hybrid system
framework shows higher trajectory tracking accuracy than the comparison hybrid controller in the exper-
iment. In practice, robots may need to interact with fast time-varying environments in complex tasks,
and free-space/contact phase switching is inevitable during this process. In future work, we will con-
sider improving our scheme to adapt to interactions with fast time-varying environments and integrating
the free-space/contact phase switching controller [13] into our framework to deal with the impact and
force overshoots. Moreover, we will be committed to combining our hybrid controllers and the advanced
adaptive impedance controllers [8, 9] to eliminate the impact of system uncertainties and further improve
control performance.
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