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Abstract
Modeling multivariate dependence in high dimensions is challenging, with popular solutions constructing multi-
variate copula as a composition of lower dimensional copulas. Pair-copula constructions do so by using bivariate
linking copulas, but their parametrization, in size, being quadratic in the dimension, is not quite parsimonious.
Besides, the number of regular vines grows super-exponentially with the dimension. One parsimonious solution is
factor copulas, and in particular, the one-factor copula is touted for its simplicity – with the number of parameters
linear in the dimension – while being able to cater to asymmetric non-linear dependence in the tails. In this paper,
we add nuance to this claim from the point of view of a popular measure of multivariate tail dependence, the tail
dependence matrix (TDM). We focus on the one-factor copula model with the linking copula belonging to the BB1
family, pointing out later the applicability of our results to a wider class of linking copulas. For this model, we derive
tail dependence coefficients and study their basic properties as functions of the parameters of the linking copulas.
Based on this, we study the representativeness of the class of TDMs supported by this model with respect to the
class of all possible TDMs. We establish that since the parametrization is linear in the dimension, it is no surprise
that the relative volume is zero for dimensions greater than three, and hence, by necessity, we present a novel manner
of evaluating the representativeness that has a combinatorial flavor. We formulate the problem of finding the best
representative one-factor BB1 model given a target TDM and suggest an implementation along with a simulation
study of its performance across dimensions. Finally, we illustrate the results of the paper by modeling rainfall data,
which is relevant in the context of weather-related insurance.

1. Introduction
Multivariate normal distribution, the classical model for incorporating dependence, while able to accom-
modate any valid correlation matrix, by its very nature, imposes normal marginals. Use of copulas, see
Sklar (1959), Embrechts et al. (2011), Jaworski et al. (2010), Joe (2014), Nelsen (2006), and Salvadori
et al. (2007), was driven by the desire to decouple modeling of the marginals and dependence. An early
article, likely the foremost in the actuarial literature, exploring the use of copulas in actuarial applica-
tions is that of Frees and Valdez (1998), with the use of copulas now well established as the primary
tool for dependence modeling – see Bassamboo et al. (2008) (credit risk), Chen et al. (2015) (mortal-
ity risks), Hua et al. (2017) (spatial dependence), Hsieh et al. (2021) (mortality risks), Kularatne et al.
(2021) (general and life insurance), Li et al. (2021) (mortality risks), and Oh et al. (2021) (automobile
insurance).

While Gaussian copula has found many successful uses, see Othus and Li (2010), Renard and Lang
(2007), Song et al. (2009), and Van de Vyver and Van den Bergh (2018), a key feature of Gaussian
dependence is that while it inherits the ability to model a wide range of central dependence from the
multivariate normal distribution it also inherits tail independence. Li (2000) is a pioneering paper that
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introduced the use of the Gaussian copula for modeling credit curves to incorporate default correlation
between credits, with applications in the valuation of credit default swaps. While its simplicity made it
wildly popular, its very popularity and simplicity, coupled with its inability to capture tail dependence,
made its (ab)use far beyond its original intended purpose a contributor to the global financial crisis
of 2008, see Donnelly and Embrechts (2010) and Salmon (2009). The importance of incorporating
tail dependence in modeling has been noticed in many applications, see Blanchet and Davison (2011),
Brechmann et al. (2012), Davis and Mikosch (2009), and Da Silva et al. (2014).

One requires a measure of tail dependence for modeling in the presence of tail dependence. The pop-
ular Pearson’s correlation coefficient, a measure of central dependence, fails to capture tail dependence
see Figure 7.4 of McNeil et al. (2015). Among the various bivariate tail dependence measures, the tail
dependence coefficient is the most widely used measure in the literature. For a random vector (X1, X2),
with copula C(·, ·), the lower tail dependence coefficient, χ (X1, X2), is defined as

χ (X1, X2) := lim
u↓0

C(u, u)

u
,

provided that the limit exists, with the zero limit corresponding to tail independence. The tail depen-
dence matrix (TDM), (χ (Xi, Xj))1≤i,j≤d, is the array of tail dependence coefficients corresponding to a
d-dimensional random vector Xd = (X1, . . . , Xd). The TDM serves as a d-dimensional measure of tail
dependence, akin to the (linear) correlation matrix for central dependence. We denote the set of all
d-dimensional TDMs by Td.

An extension of the Gaussian copula that allows for tail dependence is the t-copula, though imposing
identical dependence in the lower and upper tails. The extension is in the same sense that the multi-
variate t-distribution is an extension of the multivariate normal distribution, with the latter lying at the
ν = ∞ boundary of the former, where ν is the degrees of freedom of a t-distribution. The multivariate
t-distribution we refer to is the distribution of the following ratio, where X and Y are independent:

X√
Y/ν

, where X ∼N (0, R), and Y ∼ χ 2
ν
.

The parameters of a t-copula comprise the correlation matrix of the underlying multivariate normal
and the degrees of freedom of the chi-square distribution. Since a multivariate normal copula exists cor-
responding to every valid correlation matrix, a natural question is if the t-copula is similarly exhaustive
with respect to Td. Interestingly, while the set of correlation matrices is neatly characterized as positive
semidefinite matrices with a unit diagonal, the characterization of the set of TDMs is far more complex.
As observed in Strokorb (2013) and Fiebig et al. (2017), Td is a

(
d
2

)
-dimensional polytope, with explicit

facet representations known only for d ≤ 6. Moreover, even determining if a given matrix belongs to
Td is NP-hard – see Shyamalkumar and Tao (2020) and Janßen et al. (2023). So, given the closed-form
expression for the tail dependence coefficient of a t-copula, see equation (7.38) in McNeil et al. (2015)
or equation (4) in Shyamalkumar and Tao (2022), it essentially follows that the t-copula does not cover
Td. Surprisingly, in Shyamalkumar and Tao (2022), it it is shown that for d = 6, the relative volume of
TDMs supported by t-copula is less than 1% – in this sense, thus providing only a sparse coverage of Td.
Given that the t-copula is parameterized with O(d2) number of parameters, not to mention that it only
represents a small part of Td, there is interest in the construction and study of models allowing for tail
dependence with a more parsimonious parameterization, for example, with the number of parameters
being linear in d.

A classical idea from the broader dependence modeling literature is to employ a linear factor struc-
ture, X = Ld×pVp×1 + ε, where V is a vector of factors with mean 0 and identity variance–covariance
matrix, and ε, the idiosyncratic component, independent of V , has mean 0 and a diagonal variance-
covariance matrix �. Note that this results in the variance–covariance matrix �d×d satisfying � =
LL′ + �, and hence parametrized by d(p + 1) = O(d) number of parameters. The multivariate normal
distribution with the variance-covariance matrix allowing such a decomposition admits such a linear fac-
tor structure with V ∼N (0, I) and ε ∼N (0,�). Similarly, the t-copula with such a correlation matrix
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admits a near-linear factor structure – the non-linearity is with respect to the chi-square random variable
in the denominator.

Such models, even with p = 1, find applications in finance and insurance. For example, in portfo-
lio credit risk modeling, the common factor represents the systematic risk, and the reciprocal of the
denominator represents the common shock the obligors face. The generality is achieved by relaxing the
normality of the systematic and idiosyncratic risk and allowing for a more general class of common
shocks. Bassamboo et al. (2008) models economies where the dependence amongst obligor defaults is
primarily due to common shocks with light-tailed systematic and idiosyncratic risks, whereas Tang et al.
(2019), Chen et al. (2023) allow heavy-tailed systematic and idiosyncratic risks, in particular, to show
that during periods of market stress – like recessions – the exogenous common shocks can be dominated
by the systematic and idiosyncratic risks.

A generalization of the above near-linear factor structure is the factor copula of Krupskii and Joe
(2013), which retains the number of parameters to be O(d). The factor copula model is a conditional
independence model given p latent factors, which are taken, without loss of generality, to be stan-
dard uniform random variables. Specifically, such a factor copula is the joint distribution of marginally
uniform random variable (U1, . . . , Ud), specified by conditional independence given the latent factors
Vi, i = 1, . . . , p, and the conditional distributions of (Ui, V1, . . . , Vp), i = 1, . . . , d, by d many (p + 1)-
dimensional copulas. Clearly, this implies that the parametrization is of size O(d). In many applications,
there are natural candidates for factors; for example, in finance and insurance, these could represent
systemic risk, market risk, sector risk, and common shock, among others. In such cases, the use of a
factor copula is rather natural. But importantly, even otherwise, the factor structure alleviates the paucity
of high-dimensional parametric copulas by allowing construction of them using lower-dimensional
parametric copulas.

The simplest of factor copula models are the one-factor copula models. Theoretically, a single latent
variable model is equivalent to the general p latent variables case, but they are quite distinct from the
practical parametric modeling point of view. In the d-dimensional one-factor copula model, Ui, for
i = 1, . . . , d, are assumed to be conditionally independent given a latent random variable V ∼ U(0, 1).
In particular, the one-factor copula can be expressed as

C(u1, . . . , ud) =
∫ 1

0

d∏
i=1

Ci|0(ui|v)dv, (1.1)

where Ci0(ui, v), for i = 1, . . . , d, are bivariate copulas, and Ci|0(ui|v) := ∂Ci0(ui, v)/∂v, for i = 1, . . . , d,
are the conditional distribution functions. Since Ci0(ui, v), for i = 1, . . . , d, link the random variables Ui

and V , they are referred to as the linking copulas of the one-factor copula models. The popularity of
one-factor copulas partly derives from the fact that the collection of parametric bivariate copula families
is substantially rich in contrast to those catering to higher dimensions.

We note that, more generally, vine copulas allow for the construction of copula models in higher
dimensions, building up by linking together bivariate copulas using the regular vine specification, see
Bedford and Cooke (2001, 2002). See Aas et al. (2009) See Czado and Nagler (2022), for a discussion
of vine copulas in the insurance context, where an application to financial time series in the presence of
tail dependence is discussed. One of the challenges of working with vine copula, see Morales-Napoles
(2010), is that even after fixing the bivariate linking copula family, the choice of the regular vine tree
structure is hard as there are, see Morales-Napoles (2010), as many as d!2(d−2)(d−3)/2−1 of them. This is
an issue that one-factor copula models avoid at the expense of generality. It is worth noting that the
one-factor copula model is a particular case of a C-vine (canonical vine) copula model, where we have
conditional independence in the trees below the first, see Figure 1; see Chapter 3 of Joe (2011).

One-factor copulas, and factor copulas in general, have gained importance in actuarial science, as is
evident from their use across application areas. Hua et al. (2017) employs it for modeling thunderstorm
loss data, with an innovative approach to model nonlinear high-dimensional spatial dependence while
capturing micro-scale dependence and keeping model complexity low. In property insurance, modeling
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Figure 1. A C-vine structure in four dimensions.

hail loss, Gao (2022) introduces a spatial factor copula model to capture spatial dependencies between
real estate properties and aspatial dependence induced by the common shock of experiencing the same
storm. Chen et al. (2015) concerns multi-population mortality modeling, where the first stage of the
model caters to the temporal dependence in a population’s mortality index, using ARMA and GARCH,
and the second stage caters to dependence between the standardized innovations across populations
for a fixed time epoch. It is in this second stage that they employ a single-factor copula model. The
copula model is that of Oh and Patton (2017), which offers a flexible dependence structure with the
ability to model heterogeneity to exchangeability, and tail independence to symmetric or asymmetric
tail dependence. In Hsieh et al. (2021), the interest is in mortality risk management of insurance policy
pools, and it explores the use of factor copulas to model the dependence among the future lifetimes of
insured individuals in an insurance policy pool. In particular, this is used to compute the hedge ratio for
hedging mortality risk in a block of whole-life policies using a life settlement policy block as a hedge.
Beyond mortality modeling, one-factor copula models find application in credit risk management, as
demonstrated by Kolman (2014), who developed an alternative model for portfolio credit risk.

From the above, we see that the factor copula models have arisen naturally as parsimoniously
parameterized models that accommodate nonlinear dependence and asymmetric tail dependence in
high-dimensional data. Also, in a sense, even the simplest of them all, the one-factor copula, has found
successful applications in insurance and finance. This prompted the current study to evaluate the range
of tail dependence one-factor copula models can cater to with respect to the TDM as the measure of tail
dependence. In other words, just the choice of a one-factor copula model implicitly determines a certain
form of tail dependence?

Note that modeling with pair-copula constructions, in general, requires the choice of a parametric
family for the linking copula. Since the analysis to answer the above-posed question is dependent on the
linking copula family, we chose the family of copulas referred to as BB1 (Bivariate-Biparameter), see
Joe and Hu (1996) and section 5.2 of Joe (1997). Our choice was driven by Joe (2014) which on page
220, after a comparative study of tail-dependent copulas, observes that Because of the above properties,
for the modeling with vine and factor copulas, it might be sufficient to consider the BB1, reflected BB1,
and BB7 for the bivariate copula families with asymmetric lower and upper tail dependence. Moreover,
Joe (2011) on page 184 observes that Because of the known concordance ordering only for BB1, the
BB1 family might be preferable over BB4 and BB7 for getting asymmetric tail dependence with vine
copulas. Also, for actuarial interest, we note that Nikoloulopoulos et al. (2012) on page 15 states that
Sensitivity analysis, for extreme value inference of a portfolio, that uses more lower tail dependence than
likelihood-based estimates, can be performed with BB1/BB7 copulas (but not t copulas) in the vine, and
the forecasting can be substantially improved [sic].

In the following, we briefly mention some studies where it has found use. Krupskii and Joe (2020) pro-
poses a copula-based model for non-Gaussian data with time-varying dependence. Their model uses a
static one-factor model with BB1 linking copula and incorporates time-varying dependence by modeling
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the conditional distribution given the factor using the Gaussian copula with a time-varying variance-
covariance matrix. In financial applications, the market indices are natural choices for the latent factor.
In a stress-testing scenario for bond yields and CDS spreads, they find that the use of a tail-dependent
copula like BB1 generates more distressed scenarios. Krupskii and Joe (2013) investigates the efficacy of
one-factor and two-factor models alongside truncated regular-vine models with various choices for the
linking copula. Their one-factor model using the BB1 as the linking copula, and their two-factor model
using the BB1 copula for the first factor and the Frank copula for the second, with independence between
the two factors, are among the best performers according to the AIC. Righi and Ceretta (2013) considers
pair copula construction for modeling multivariate dependence between sector indices in the Brazilian
market surrounding the subprime crisis period. They recommend a D-vine over a C-vine structure, and
for each of the pair copulas, they considered Student’s t, Frank, and many members of the BB and Joe
families. They find that for some of the sector index pairs the BB1 was the preferred copula. De Luca
et al. (2023), again in a pair copula construction setting, find a use for the BB1 copula for studying the
influence of economic sectors on European stock returns employing novel tail dependence-based mea-
sures of influence. Nonfinancial references using BB1 copula include Lazoglou and Anagnostopoulou
(2019) and Lan et al. (2021).

In Section 2, for the one-factor model with the BB1 linking copula family, we derive the tail
dependence coefficients as a function of the linking copula parameters. Also, we establish some basic
properties of this function as it is only implicitly defined. In Section 3, we explore the represen-
tativeness of the class of TDMs generated by the one-factor BB1 copula model. Since even with
O(d2)-parametrized t-copula leads to vanishing relative volume of the set of TDMs generated, with
an O(d)-parameterization of our model, the relative volume is bound to be unsatisfactory. While we
confirm this, we note that even with zero relative volume, the model could well cater to a wide variety
of tail dependencies in an approximate sense. We present a novel manner of evaluating the representa-
tiveness of the set of TDMs supported by our model. While unsatisfactory in this new sense as well, it
gives the modeler using a one-factor model a way to check the appropriateness of the model for his par-
ticular application. In Section 4, we formulate the problem of finding the best representative one-factor
BB1 model given a target TDM and suggest an implementation along with a simulation study of its
performance across dimensions. In Section 5, we model rainfall data using the one-factor BB1 model to
illustrate the use of the results in our study. The analysis presented in this paper is centered around the
lower tail of a one-factor copula model utilizing the BB1 family as the linking copula. While this focus
is admittedly narrow, we explain in Section 6 that our findings have much broader implications.

Notation: Throughout this paper, all vectors and matrices are represented in boldface. The entry
in the i-th row and j-th column of a matrix A is denoted interchangeably by aij or ai,j. We use I to
represent the identity matrix and 0 and 1/J to represent vectors/matrices with all elements equal to 0
and 1, respectively. Since the TDMs are defined by their upper-diagonal elements, the vectorized form
of a matrix in this paper refers to the vector consisting of its upper off-diagonal elements. The vectorized
form of TDMs is used in the context of describing their geometry, for example, Td as a convex polytope.
We denote the indicator function of a set A by IA. When working with matrices, say Am×n = (aij), the
Frobenius norm are denoted by ‖ · ‖, and is defined as ||A|| :=

√∑m
i=1

∑n
j=1 a2

ij.
We focus on the set of TDMs generated by the one-factor model with BB1 family linking copulas.

Let Td
′ denote the set of all d-dimensional TDMs that can be supported by such copulas. We say a TDM

is feasible if it is in Td
′; otherwise, this TDM is infeasible.

2. Tail dependence: one-factor copula model with BB1 family
In the following, we derive the lower tail dependence coefficients for the one-factor copula model with
the BB1 family for the linking copula. To this end, we define the BB1 family of copulas indexed by two
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Figure 2. Normalized contour plots for BB1 family with parameters (θ , δ) = (0.113, 3.80),
(0.585, 0.171), and (2.63, 1.18). The lower and upper tail dependence coefficients are (0.2, 0.8),
(0.5, 0.5), and (0.8, 0.2), respectively.

parameters θ > 0 and δ ≥ 1 as that given by

C(u, v;θ , δ) =
{

1 +
[(

u−θ − 1
)δ + (

v−θ − 1
)δ] 1

δ

}− 1
θ

, (2.1)

see Joe and Hu (1996) and section 5.2 of Joe (1997). This is the copula derived from the bivariate Weibull
distribution of Lu and Bhattacharyya (1990). Also, the BB1 copula is referred to as the generalized
Clayton copula, see page 259 of McNeil et al. (2015).

Remark 2.1. The limiting case of (2.1) as θ approaches zero is the Gumbel copula. It is noteworthy
that as θ → ∞, the limiting copula is the comonotonicity copula u ∧ v, corresponding to U = V .

In Joe and Hu (1996), it is shown that for an Archimedean copula of the form

C(u, v) = η
(
η−1(u) + η−1(v)

)
, (2.2)

the lower tail dependence coefficient equals 2 limx→∞
[
η′(2x)/η′(x)

]
. Since the expression in (2.1) can

be written in the form (2.2) with η(x) = (
1 + x1/δ

)−1/θ ∈ (0, 1] and noting that η−1(x) = (
x−θ − 1

)δ, the
tail dependence coefficient for a BB1 copula equals

2 lim
x→∞

η′(2x)

η′(x)
= 2 lim

x→∞

(
1 + (2x)

1
δ

1 + x
1
δ

)− 1
θ −1

2
1
δ −1 = 2− 1

θδ .

The normalized contour plots in Figure 2 display the ability of the BB1 family to model a variety of tail
dependence.

Henceforth, we consider the case of a one-factor copula with the linking copulas belonging to the
BB1 family with the parameters of the i-th linking copula denoted by θi(> 0), δi( ≥ 1), for i = 1, . . . , d.
The contour plots in Figure 3 display the ability of the one-factor copula with BB1 family as the linking
copula to model a variety of tail dependence. The tail dependence coefficients χij, for 1 ≤ i< j ≤ d, are
given by

χij = lim
u↓0

1

u

∫ 1

0

Ci|0(u|v)Cj|0(u|v)dv = lim
u↓0

∫ 1
u

0

Ci|0(u|uw)Cj|0(u|uw)dw, (2.3)

where

Ci|0(u|uw) =
{[

u−θi − 1

(uw)−θi − 1

]δi
+ 1

} 1
δi

−1

·
{

(uw)θi +
[[

wθi − (uw)θi
]δi + [

1 − (uw)θi
]δi] 1

δi

}− 1
θi

−1

. (2.4)
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Figure 3. Contour plot for one-factor copula with BB1 family as the linking copula with the same
parameters as Figure 2.

Theorem 2.1. The tail dependence coefficients χij, for 1 ≤ i< j ≤ d, of the one-factor copula with the
linking copula being the Family BB1 are given by

χij =
∫ ∞

0

(
1 + wθiδi

)− 1
θiδi

−1 (
1 + wθjδj

)− 1
θjδj

−1
dw, θi, θj ∈ (0, ∞), δi, δj ≥ 1.

In the case that θi = ∞, and θj ∈ (0, ∞), we have

χij =
∫ 1

0

(1 + wθjδj )
− 1
θjδj

−1
dw = 2

− 1
θjδj .

Finally, if θi = θj = ∞, χij = 1.

Proof. The case when either or both θ ’s equal infinity, the result follows from the fact that the BB1
copula with θ = ∞ is the comonotonic copula. Hence, in this case, the corresponding coordinate(s)
equals the common factor, and χij corresponds to that for the BB1 copula. For the case when θi, θj ∈
(0, ∞), note that the limits of the conditional distributions Ci|0(u|uw), for i = 1, . . . , d, as u approaches
0, are given by

lim
u↓0

Ci|0(u|uw) = (
1 + wθiδi

) 1
δi

−1+ 1
δi

(
− 1
θi

−1
)
= (

1 + wθiδi
)− 1

θiδi
−1

, i = 1, . . . , d. (2.5)

https://doi.org/10.1017/asb.2024.29 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.29


686 Nariankadu Shyamalkumar and Siyang Tao

The result now follows by applying the dominated convergence theorem, as the integrand

w �→ Ci|0(u|uw)Cj|0(u|uw)I(0<uw<1)

is bounded for all u ∈ (0, 1) by the integrable gigj of Lemma A.1 in the appendix. �
Note that the tail dependence coefficients χij, can be expressed as χij =�(θiδi, θjδj), for 1 ≤ i< j ≤ d,

where for 0< x, y<∞,

�(x, y) :=
∫ ∞

0

(1 + wx)
− 1

x −1
(1 + wy)

− 1
y −1 dw,

�(x, ∞) := �(∞, x) := �1(x) :=
∫ 1

0

(1 + wx)− 1
x −1dw = 2− 1

x ,

�(∞, ∞) := 1. (2.6)

Hence, the study of the geometric properties of the set of TDMs generated by the one-factor copula with
the BB1 family for linking copulas, requires study of the symmetric function�. Toward this, we denote
the integrand above by ψ , that is

ψ(x, y, w) := (1 + wx)
− 1

x −1
(1 + wy)

− 1
y −1 , x, y> 0, w ≥ 0.

The proof of the following proposition is in the appendix.

Proposition 2.1. � is a symmetric strictly increasing function on (0, ∞]2 with continuous partial
derivatives.

The following corollary conveniently lists some properties of � that are needed for the results in the
following sections, and the proof can be found in the appendix.

Corollary 2.1. We have the following properties for �:

(i) The interval (0,1] is the the range of �(·, ·).
(ii) If �(x, y) =�(x′, y′) ∈ (0, 1), then sgn(x − x′) + sgn(y − y′) = 0.

3. Representativeness of Td
′ as a subset of Td

To study the geometric properties of Td
′, we define the embedding function �d : Rd

+ → Td
′ by

(�d(x))ij :=
⎧⎨⎩�(xi, xj), 1 ≤ i �= j ≤ d;

1, i = j,

where x = [x1, x2, . . . , xd] ∈R
d
+ is the vector of the parameters defining the tail dependence coefficients,

that is xi := θiδi, for i = 1, . . . , d. Note that Td
′ is the range of �d(Rd

+).
For d = 2, Corollary 2.1 readily shows that T2

′ = (0, 1] ⊂ T2 = [0, 1]. On the other hand, when d ≥ 3,
Td

′ is a strict subset of Td. To see this, we consider MA(1) matrices with unit diagonal, that is, T = (tij),
where tij = Ii=j + αI|i−j|=1, for 1 ≤ i, j ≤ d and α ∈ (0, 1/2]. Any such matrix is a member of Td, for d ≥ 2
(see Section 4.1 of Embrechts et al., 2016 or Proposition 6 of Shyamalkumar and Tao, 2020). However,
its third-order leading principal sub-matrix of the form⎡⎢⎣1 α 0

α 1 α

0 α 1

⎤⎥⎦ , α ∈ (0, 1/2].

is not feasible by Proposition 3.2 below. Therefore, Td \ Td
′ in non-empty.
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In the first subsection, we establish some topological and geometric characteristics of T3
′. The second

subsection introduces an imposed ordering and elaborates on geometric properties for Td
′, d ≥ 4.

3.1. Volume of Td
′ relative to Td

As a starting point, we aim to determine the precise volume of the TDMs generated by the one-factor
copula, using the Family BB1 as the linking copula in a three-dimensional setting. Our analysis begins
with an exploration of a key property concerning the three-dimensional tail dependence coefficients,
which is presented in the following proposition.

Proposition 3.1. Let χ12, χ13, χ23 ∈ (0, 1]. Then,

χ12 =�(x, y), χ13 =�(x, z), and χ23 =�(y, z),

can have at most one solution. Furthermore, if {x, y, z} is the solution, then χ12 ≤ χ13 ≤ χ23 if an only if
x ≤ y ≤ z.

Proof. Suppose that {x, y, z} and {x′, y′, z′} are both solutions to the system of equations. Without loss
of generality, we can assume that x ≥ x′. By Corollary 2.1 (ii), we know that y ≤ y′ and z ≤ z′ from the
first two equations. The third equation shows that y = y′ and z = z′. Hence, x = x′, and the two solutions
are identical.

Now, let {x, y, z} be the solution. The if part follows from monotonicity of � from Proposition 2.1.
For the only if part, let χ12 ≤ χ13 ≤ χ23. Again using monotonicity of �, the first two equations along
with χ12 ≤ χ13 indicate that y ≤ z, and the last two equations similarly imply that x ≤ y. Therefore, we
have x ≤ y ≤ z. �

Before delving into properties of Td
′ at higher dimensions, we further examine the representativeness

of T3
′. Proposition 3.1 establishes that T3

′ displays invariance with respect to permutation of the coor-
dinates. For expositional ease, we hence focus on the subset of the TDMs satisfying χ12 ≤ χ13 ≤ χ23.
This subset, which we denote as O3, takes the form of a tetrahedron with vertices at (0,0,0), (0,0,1),
(0, 1/2, 1/2), and (1,1,1). We further denote the collection of feasible points within O3 by O′

3, that
is O′

3 := T3
′ ∩O3. The volume of O3 (resp. O′

3) is clearly one-sixth that of T3 (resp. T3
′). Figure 4(a)

displays the six cells of T3 belonging to its partition induced by the ordering of the coordinates. The fol-
lowing proposition gives a necessary and sufficient condition for membership in T3

′, and using it derives
its volume.

Proposition 3.2. A matrix of the form⎡⎢⎣1 a b

a 1 c

b c 1

⎤⎥⎦ , 0< a ≤ b ≤ c ≤ 1,

is in T ′
3 if and only if a ≥� (

�−1
1 (b),�−1

1 (c)
)
. Furthermore, the T ′

3 has a volume of about 0.12882,
which is about 26% of the volume of T3.

Proof. For the only if part, by Proposition 2.1, we establish that for any given b =�(x, z) and
c =�(y, z), where 0< b ≤ c ≤ 1, the lower bounds for x and y are determined as �−1

1 (b) and �−1
1 (c),

respectively. Consequently, the lower bound for a =�(x, y) is expressed as �
(
�−1

1 (b),�−1
1 (c)

)
.

For the if part, let a, b, and c satisfy �(�−1
1 (b),�−1

1 (c)) ≤ a ≤ b ≤ c ≤ 1. From Proposition 2.1, we
have � is a symmetric, strictly increasing, and continuous function on (0, ∞]2. Since,

�(�−1
1 (b), 0) = 0, and �(�−1

1 (b), ∞) = b,

using continuity of �, we have the existence of a z ≥�−1
1 (c) satisfying a =�(�−1

1 (b), z). This estab-
lishes that the parameter (�−1

1 (b), z, ∞) corresponds to the TDM with off-diagonal elements of a, b, and
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Figure 4. O3 and the lower bound on χ12 within O′
3.

�(z, ∞). It is noteworthy that �(z, ∞) ≥�(�−1
1 (c), ∞) = c. If �(z, ∞) = c, our proof is complete; we

now focus on the remaining case of c<�(z, ∞) ≤ 1. Consider functions ηa,b : (0, ∞) → (�−1
1 (a), z) and

ηb,b : (0, ∞) → (�−1
1 (b), ∞), defined by

a =�(�−1
1 (b) + x, ηa,b(x)), and b =�(�−1

1 (b) + x, ηb,b(x)),

respectively. Given that � is strictly increasing and smooth, both ηa,b and ηb,b are continuous (see
Lemma A.3 in the Appendix) and strictly decreasing. Defining φ(·) by

φ(x) := �(ηa,b(x), ηb,b(x)), x ∈ (0, ∞),
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we note that
lim
x↓0
φ(x) =�(z, ∞)> c, and lim

x↑∞
φ(x) =�

(
�−1

1 (a),�−1
1 (b)

)
< a ≤ c.

The continuity of �(·, ·), ηa,b and ηb,b, imply the continuity of φ, and hence we have the existence of
z′ > 0 satisfying φ(z′) =�(ηa,b(z′), ηb,b(z′)) = c. Consequently, the TDM with off-diagonal elements a,
b, and c corresponds to the parameters (�−1

1 (b) + z′, ηa,b(z′), ηb,b(z′)).
Recalling that O′

3 is given by
{(�(x, y),�(x, z),�(y, z)), for 0< x ≤ y ≤ z} ,

the curved surface of the lower bound on χ12 is plotted in Figure 4(b). The region above this curved
surface represents O′

3. Through integration across the curved surface and the χ13 − χ23 plane, we can
compute the volume below the surface as:∫ 1

0

∫ c

0

�
(
�−1

1 (b),�−1
1 (c)

)
db dc ≈ 0.145197.

As a result, the volume of O′
3 is approximately 0.021470, and this result, when multiplied by six, yields

the volume of T ′
3. �

Remark 3.1. We observe that O′
3 is not a convex set. This is so as the midpoint of the line segment

between the points (0,0,1) and (1/3, 1/2, 1/2) of O′
3 (i.e. (1/6, 1/4, 3/4)) does not belong to O′

3. This is
verified by referring to Proposition 3.2 and noting that:

�
(
�−1

1 (3/4),�−1
1 (1/4)

)= 0.23> 1/6.

Furthermore, note that the non-convexity of O′
3 implies the non-convexity of T ′

3.

Theorem 3.1. T ′
d has a non-zero volume in R

(d
2)

+ if and only if d ≤ 3.

Proof. Recall that the tail dependence coefficients of a d-dimensional one-factor copula with the
linking copulas from a BB1 family are a function of the d-dimensional vector (θ1δ1, . . . , θdδd) ∈ (0, ∞)d.
Defining,

φ : (0, ∞)d −→ [0, 1](
d
2)

(x1, . . . , xd) �−→ (�(x1, x2),�(x1, x3), . . . ,�(xd−1, xd)) ,

we see that the interior of T ′
d is contained in the range of φ. Note that d< d(d − 1)/2, for d ≥ 4, hence

the domain of φ is in a lower dimensional Euclidean space than its range. Moreover, Proposition 2.1
implies that φ is in C1. Hence, by using Sard’s theorem (see Theorem A.1 of the Appendix), we see that
the range of φ has zero Lebesgue measure in [0, 1](

d
2). �

Remark 3.2. It is important to note that choosing a different linking copula from the BB families listed
in Joe (1997) would lead to a different set of TDMs generated by the one-factor copula for d = 3. In
Table A1 in the Appendix, we provide additional information on related functions and the volume of the
one-factor copula using two other BB families (BB4 and BB7) suggested in Section 8.6 of Joe (2011).
To calculate the volume for the BB4 family, we employed a hit-and-run sampler, a method detailed in
Kroese et al. (2013) and Shyamalkumar and Tao (2022). This approach allowed us to uniformly generate
a sample of 100,000 points from T3, which we then assessed for their feasibility within the BB4 family.
Importantly, it is worth noting that the tail dependence coefficient of the BB7 family adheres to the same
mathematical form as that of the BB1 family. As a result, both families share identical volumes.

3.2. An imposed ordering
In the following, we show that the one-factor structure imposes a rather restrictive partial ordering on
the tail dependence coefficients. While the discussion below is in the case of a BB1 linking copula,

https://doi.org/10.1017/asb.2024.29 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.29


690 Nariankadu Shyamalkumar and Siyang Tao

the development suggests that the phenomenon is more general. We begin by showing that, in general,
on the contrary, all possible orderings of the tail dependence coefficients are possible. In the following
Id := {(1, 2), (1, 3), . . . , (d − 1, d)}, the set of all ordered pairs of positive integers less than or equal
to d.

Theorem 3.2. Given a linear ordering ≺ on Id, there exists a TDM, Td = (tij), such that the mapping
(i, j) ∈ Id �→ tij is strictly increasing in ≺.

Proof. For (i, j) ∈ Id, let 0 ≤ εij ≤ 1/d be such that (i, j) �→ εij is strictly decreasing in ≺, and define
εji := εij. Defining tij := 1/d − εij, for 1 ≤ i< j ≤ d, we see that the mapping (i, j) �→ tij is strictly increas-
ing in ≺. In the following, we will show that Td = (tij) is a TDM. By Theorem 1 of Shyamalkumar and Tao
(2020), it is equivalent to show that Td/d is a Bernoulli Compatible Matrix (BCM). Also, by Corollary
3 therein, this is equivalent to showing the existence of events Ai, i = 1, . . . d, on a probability space
with identical probabilities of 1/d such that tij = Pr

(
Ai|Aj

)
. Toward this, we construct disjoint sets Aij,

for 1 ≤ i< j ≤ d, and Bi, i = 1, . . . d, on a non-atomic probability space with probabilities

Pr
(
Aij

)= 1

d

(
1

d
− εij

)
, and Pr (Bi)= 1

d
−
∑
j �=i

(
1

d2
− εij

d

)
.

This can be done as the sum of the probabilities of the above-mentioned sets are

∑
1≤i<j≤d

Pr
(
Aij

)+
d∑

i=1

Pr (Bi)=
∑

1≤i<j≤d

1

d

(
1

d
− εij

)
+

d∑
i=1

[
1

d
−
∑
j �=i

(
1

d2
− εij

d

)]

= 1 −
∑

1≤i<j≤d

1

d

(
1

d
− εij

)
≤ 1.

With Aji := Aij, for 1 ≤ i< j ≤ d, and

Ai := Bi ∪·
(⋃

·
j �=i

Aij

)
, for i = 1, . . . , d,

we see that Pr (Ai)= 1/d, Ai ∩ Aj = Aij, and hence tij = Pr
(
Ai|Aj

)
satisfies the sought ordering. �

Remark 3.3. From the above, it is easily checked that for ‖ε‖2 ≤ √
2/d2, by Cauchy-Schwartz inequality

we have ‖ε‖1 ≤ 1/d. The latter suffices for the validity of the above construction, and hence the above
proof implies further that the TDM with off-diagonal elements equal to 1/d is in the interior of Td, and
moreover using the fact that Td is a convex polytope we have that the line segment between the extreme
points origin and 1 of Td lies in its interior.

In the following, we assume that the linking copula is the BB1 copula and define ηi := θiδi, i =
1, . . . , d. In the case d = 3, we have the ordering of ηi’s specifying the ordering of the tail dependence
coefficients by the monotonicity of �(·, ·). In particular, if η1 ≤ η2 ≤ η3, then we have χ12 ≤ χ13 ≤ χ23.
For d ≥ 3, the lemma below shows that the ordering of ηis specifies a partial ordering on ordered pairs
(i,j), for 1 ≤ i< j ≤ d, denoted by ≺η, and that the mapping (i, j) �→ χij is non-decreasing with respect to
this partial order. Figure 5(a) contains the Hasse diagram for the partial ordering with non-decreasing
ηis for d = 5 and specifies the partial ordering for d ≤ 5.

For the following development, we require an arbitrarily chosen strict total order on Id. For simplicity,
we use the reverse lexicographic ordering and denote it by ≺rl. The notation used below does suppress
the dependence on ≺rl as we note below that it has little impact on the main conclusion.

Proposition 3.3. Given ηis, we define (i, j) ≺η (k, l) for (i, j), (k, l) ∈ Id if min (ηi, ηj) ≤ min (ηk, ηl) and
max (ηi, ηj) ≤ max (ηk, ηl), with ties broken using ≺rl. The binary relation ≺η is a partial order, and
moreover, the mapping (i, j) �→ χij is non-decreasing with respect to ≺η.
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(a) (b) (c)

Figure 5. Linear ordering of the poset: d = 5; increasing ηis.

Proof. To show that ≺η is a partial order, we need to demonstrate the following properties for any
(i,j), (k, l), (u, v) ∈ Id:

i. Reflexivity: (i, j) ≺η (i, j);
ii. Antisymmetry: If (i, j) ≺η (k, l) and (k, l) ≺η (i, j), then (i, j) = (k, l);
iii. Transitivity: If (i, j) ≺η (k, l) and (k, l) ≺η (u, v), then (i, j) ≺η (u, v).

Part i. follows from the definition of ≺η and that ≺rl is a partial order. For part ii., we have that

min (ηi, ηj) ≤ min (ηk, ηl) ≤ min (ηi, ηj) and max (ηi, ηj) ≤ max (ηk, ηl) ≤ max (ηi, ηj).

Hence, min (ηi, ηj) = min (ηk, ηl) and max (ηi, ηj) = max (ηk, ηl). Since ties are broken (using ≺rl), we
have (i, j) = (k, l). For part iii., the ordering implies that

min (ηi, ηj) ≤ min (ηk, ηl) ≤ min (ηu, ηv) and max (ηi, ηj) ≤ max (ηk, ηl) ≤ max (ηu, ηv).

Hence, since ties are broken using ≺rl, we have (i, j) ≺η (u, v).
The non-decreasing nature of the mapping (i, j) �→ χij with respect to ≺η follows from Proposition

2.1 as for (i, j) ≺η (k, l) we have that

χij =�(ηi, ηj) =�( min (ηi, ηj), max (ηi, ηj))

≤�( min (ηk, ηl), max (ηk, ηl)) =�(ηk, ηl) = χkl. �
On the other hand, given a set of tail dependent coefficients corresponding to a TDM in Td

′, we can
infer the ordering of the underlying ηis as demonstrated by the below proposition.

Proposition 3.4. Let χ̄ := (χ1,2, . . . , χd−1,d) be tail dependence coefficients corresponding to a member
of Td

′, with d ≥ 3. Also, let nχ̄ be the function defined on {1, . . . , d} by

nχ̄ (i) =
d(d−1)/2∑

m=1

2m−1I(im=i or jm=i),

where (im, jm) ∈ Id, for m = 1, . . . , d(d − 1)/2, is defined by χi1,j1 ≤ · · · ≤ χid(d−1)/2,jd(d−1)/2 , with the ties bro-
ken using ≺rl. Then nχ̄ is injective, and ηis underlying χ̄ are non-decreasing with respect to<χ , the strict
total order on {1, . . . , d} under which nχ̄ increasing.

Proof. To show that nχ̄ is injective, assume on the contrary that nχ̄ (i) = nχ̄ (j), for some i< j. Then,
d(d−1)/2∑

m=1

2m−1I(im=i or jm=i) =
d(d−1)/2∑

m=1

2m−1I(im=j or jm=j),

implying that I(im=i or jm=i) = I(im=j or jm=j), for m = 1, . . . , d(d − 1)/2. Since the latter implies that i = j, we
have a contradiction. Thus, nχ̄ is injective.
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Next, we prove that the ηis underlying χ̄ are non-decreasing with respect to the total order <χ . For
i< j in the total order <χ , we have nχ̄ (i)< nχ̄ (j), that is,

d(d−1)/2∑
m=1

2m−1I(im=i or jm=i) <

d(d−1)/2∑
m=1

2m−1I(im=j or jm=j).

Hence, arg maxm (im = i or jm = i) ≤ arg maxm (im = j or jm = j). Now, consider two cases. First, if
arg maxm (im = i or jm = i)< arg maxm (im = j or jm = j), then χki ≤ χk

′
i ≤ χkj, where χkj is the largest

value in χ̄ that has j as an index, and χk
′
i is the largest value in χ̄ that has i as an index. By

Proposition 2.1, this implies ηi ≤ ηj. Second, if arg maxm (im = i or jm = i) = arg maxm (im = j or jm =
j) := l, then arg maxm �=l (im = i or jm = i)< arg maxm �=l (im = j or jm = j). This means that χki ≤ χk

′
i ≤ χkj,

where χkj is the second largest value in χ̄ that has j as an index, and χk
′
i is the second largest value

in χ̄ that has i as an index. Hence, by Proposition 2.1, we again have ηi ≤ ηj. In both cases, we have
shown that for i< j in the total order <χ , ηi ≤ ηj. Therefore, the ηis underlying χ̄ are non-decreasing
with respect to the total order <χ . �

Proposition 3.4 implies that Td
′ can be partitioned into d! subsets with each corresponding to a per-

mutation of {1, . . . , d}, consistent with the ordering of the underlying ηis. Note that the use of ≺rl only
is relevant for χ̄ with some tail dependence coefficients assuming the same value. By Proposition 3.3
we see that each of these subsets can be further partitioned corresponding to a permutation of Id, con-
sistent with the ordering of the tail dependence coefficients, and by symmetry we see that there are
(d(d − 1)/2)!/d! such subsets. In the case d = 4, we have 30 such cells of T4 corresponding to the iden-
tity permutation on {1, . . . , d}, denoted by O4, corresponding to an increasing ηis. Interestingly, only
two of them are nonempty if we ignore χ̄ with some tail dependence coefficients assuming the same
value. These correspond to the permutations,

((1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4)) and ((1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)),

consistent, respectively, with

χ12 <χ13 <χ23 <χ14 <χ24 <χ34, and χ12 <χ13 <χ14 <χ23 <χ24 <χ34.

This is so as these are the only permutations corresponding to linear orderings consistent with the partial
order of Figure 5(a). In other words, of the 720 (non-empty interiors by Theorem 3.2 and Remark 3.3)
cells of T4 determined by the ordering <χ , only a mere 48 (2 × 4!) have a non-empty intersection of
their interiors with T4

′. The below theorem generalizes this observation for all d ≥ 3. In Table A2 of the
Appendix, the volumes of these cells of O4 calculated using polymake (see Gawrilow and Joswig, 2000)
are given. It is worth noting that the nonempty cells 1 and 7 – polytopes – share a facet of dimension 5.
The adjacency structure for all 30 polytopes of O4 is depicted in Figure A1 in the Appendix, where
polytopes connected with lines indicate that they share a common facet of dimension 5.

Remark 3.4. For any point in O4, we can find the lower bound of its Euclidean distance to O4
′, the

feasible area under the strict total order <χ , by projecting it onto cells 1 or 7 of the partition O4. For
example, the lower bound from the vertex (1, 0, 0, 0, 0, 1) ∈O4 to cells 1 and 7 is

√
0.8. The lower

bound to the feasible area can be considered as a lower bound to the closest feasible matrix, which we
will discuss in the next section.

For the proof of the theorem, we need the concept of a Young tableaux. A Young tableaux, see Section
5.1.4 of Knuth (1998), is an arrangement of n1 ≥ n2 ≥ . . .≥ nm−1 ≥ nm > 0 distinct integers in an array
of left-justified rows with the i-th row containing ni elements, i = 1, . . .m, such that the elements in
each row are in an increasing order (left to right) and the elements in each column are increasing top to
bottom. Below, find it convenient to refer to the underlying table structure as a Young graph, refer to the
assignment of numbers to the graph as the labeling, and a labeling satisfying the above monotonicity
property as a regular labeling. In Table 1a we depict a Young tableaux corresponding to the (4,2,1)
partition of 7. In Table 1b, we depict a certain version of a shifted Young tableaux in which the i-th row
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Table 1. Young and Thrall tableaux

(a) Young Tableaux (b) Shifted Young Tableaux (c) Thrall Tableaux
1 2 3 5 1 2 3 5 1
4 6 4 6 2 4
7 7 3 6 7

5

Table 2. Not all Young tableaux correspond to a Thrall Tableaux.

(a) Young Tableaux (b) Shifted Young Tableaux (c) Thrall Tableaux
1 3 4 5 1 3 4 5 1
2 6 2 6 3 2
7 7 4 6 7

5

begins at the i-th column, and in Table 1c, we depict the transpose of the shifted Young tableaux which
we will refer to as a Thrall tableaux.

While there is an obvious equivalence between a regular labelings of a Thrall graph and its corre-
sponding shifted Young graph, and such labelings yield a regular labeling of the corresponding Young
graph, Table 2 shows that not all regular labelings of a Young graph yield a regular labeling of its cor-
responding Thrall graph. The following result from Thrall (1952) gives the number of regular labelings
of a Thrall graph.

Theorem 3.3 (Thrall 1952). The number of regular labelings of a Thrall graph associated with ñ =
(n1, . . . , nm), a partition of n, with label set {1, . . . , n} is given by

n!�(ñ)

n1!n2! · · · nm!∇(n1, . . . , nm)
, (3.1)

where n = n1 + · · · + nm,

�(ñ) :=
∏

1≤i<j≤m

(ni − nj), and ∇(ñ) :=
∏

1≤i<j≤m

(ni + nj).

The number of Young tableaux of shape (n1, . . . , nm) is given by, see (34) on page 58 of of Knuth
(1998),

n!�(n1 + m − 1, n2 + m − 2, . . . , nm)

(n1 + m − 1)!(n2 + m − 2)! · · · nm! . (3.2)

Interestingly, the formula in (3.2) was first derived from a group theoretic perspective in Frobenius
(1900), and later a combinatorial proof was given in MacMahon (1909).

Theorem 3.4. For d ≥ 3, of the
(

d
2

)! subsets of Td determined by <χ , the number with nonempty
intersection of their interiors with Td

′ is bounded above by

N(d) := d!
(

d

2

)
!

∏d−2
i=1 i!∏d−1

i=1 (2i − 1)! . (3.3)

In particular, the corresponding proportion decays super-exponentially to zero as

d
∏d−1

i=1 i!∏d−1
i=1 (2i − 1)! ≤ e−�(d2). (3.4)
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Figure 6. Hasse Diagram – n = 4.

Proof. Let us consider, without loss of generality, the interior of the subset of Td, which corresponds
via<χ to the identity permutation on {1, . . . , d}. By Proposition 3.4, points in this interior belonging to
Td

′ have a strictly increasing underlying ηis. Hence, by Propositions 3.3 and 3.1, we have that any such
point is strictly increasing in a strict linear order of Id that is consistent with the partial order implied by
a strictly increasing underlying ηis. This partial order for d = 5 is depicted in Figure 5(a). So the number
of distinct strict total orders corresponding to such points is bounded above by strict linear orders on
Id consistent with the partial order implied by a strictly increasing underlying ηis. So to prove (3.3),
by symmetry with respect to the permutation implied by <χ , it suffices to show that the latter equals
N(d)/d!.

Considering the case d = 5, we see that the number of strict total orders satisfying the partial order
of Figure 5(a) equals the number of regular labelings with {1, . . . , 10} of a Thrall graph such as that
shown in Table 2(c). In general, it should be now clear that we seek the number of regular labelings of
a Thrall graph associated with ñd = (d − 1, d − 2, . . . , 1), a partition of nd = d(d − 1)/2, with label set
{1, . . . , nd}. The proof of (3.3) is completed by an application of Theorem 3.3, and by observing that

�(ñd) =
d−2∏
i=1

i!, and ∇(ñd) =
d−1∏
i=1

(2i − 1)!
i! .

The super-exponential decay conveyed by (3.4) follows from Lemma A.5 in the Appendix. �
While Theorem 3.4 provides an upper bound, it is unlikely that it is exact. Consider a similar problem

of the attainable orderings of {aiaj}1≤i≤j≤n for n positive reals a1 > . . . > an > 0. For the case n = 4, the
corresponding poset is denoted by the following Hasse diagram of Figure 6 (which is isomorphic to
that in Figure 5(a)). But as discussed in Johnston (2014), the number of attainable linear orderings is
10 and not 12 (the total number of linear orderings consistent with the partial order of Figure 6). In this
problem, while the diagonal is involved, the problem is seemingly simpler to analyze than the one we
consider as instead of our�(·, ·) it involves the simpler binary operator, the product. In the specific case
of d = 5, all of the 12 possible linear orderings are attainable.

In Fiebig et al. (2017), they investigate the set of all {0, 1} valued vertices of Td as Td being a convex
set contains the convex hull of such vertices. In fact, Proposition 21 therein shows by such an analysis that
the clique partition polytope is contained in Td. While the non-convexity of T ′

d voids such a rationale,
it is nevertheless interesting as a simple measure of the coverage of Td by Td

′. For this to be meaningful,
for this discussion, we extend the class of BB1 copulas to include the lower tail-independent Gumbel
copula to accommodate lower tail independence (i.e., tail dependence coefficient of zero). We note that
if one of the linking copulae is Gumbel, then the corresponding coordinate is lower tail independent
from the rest of the coordinates. This means that the set of all feasible {0, 1} valued TDMs corresponds
to a subset of coordinates being perfectly tail dependent with each other (tail dependence coefficient of
1; comonotonicity copula; θ = ∞) and the rest of the coordinates being tail independent with the other
d − 1 coordinates. In particular, the set of feasible {0, 1} valued TDMs contains 2d − d members out
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Table 3. The number of {0, 1}-valued and feasible vertices of Td, for
3 ≤ d ≤ 6: although the number of {0, 1}-valued vertices in Td (equal
to the Bell number) increases super-exponentially with the dimension
d, the number of feasible vertices approximately doubles with each
increment in dimension.

d

3 4 5 6
# of vertices 5 15 214 28,895
# of {0, 1}-valued vertices 5 15 52 203
# of feasible vertices 5 12 27 58
Proportion of feasible vertices 100% 80% 13% 0.2%

of the dth Bell number of many such vertices of Td. Using the lower bound for the dth Bell number
provided by Berend and Tassa (2010), we conclude that that the proportion of {0, 1}-valued vertices that
are feasible is bounded above by (

2e log d

d

)d

→ 0, d → ∞

Table 3 presents the exact results for d ≤ 6.

4. Modeling with one-factor copula
From Theorem 3.1, we know that Td

′ has zero volume for d ≥ 4, and moreover, that feasible TDMs are
confined to a relatively few sub-regions of Td. This, in particular, implies that the one-factor copula
model’s ability to handle arbitrary tail dependence is quite limited in higher dimensions, similar to the
findings in the study by Shyamalkumar and Tao (2022) on t-copula. When an actuarial modeler uses the
one-factor copula and relies on actuarial opinion to obtain a target TDM or estimates the TDM using
data, there is a potential issue when the copula is unable to accommodate the target or estimated TDM.
This is because expert opinion and estimates are inherently imprecise, and the modeler may need to
carefully search for a closely approximating TDM within Td

′. In this section, we present an approach for
finding such a TDM.

Given an infeasible d-dimensional target TDM Tg = (tij), we aim to find the closest feasible TDM in
Frobenius norm. To achieve this, we formulate an optimization problem as the following:

minimize hd(x) := 1
2
||�d(x) − Tg||2 = ∑

1≤i<j≤d

[�(xi, xj) − ti,j]2;

subject to x = [x1, x2, . . . , xd] ∈R
d
+.

(4.1)

Here, �d(x) is the TDM generated by the one-factor copula model with parameters x, and �(xi, xj)
denotes the (i,j)-th entry of�d(x). The objective function hd(x) measures the distance between the target
TDM Tg and the TDM generated by the one-factor copula model with parameters x. The optimization
problem is subject to the non-negative constraints on x to ensure the feasibility of the resulting TDM.

Clearly, the definition of� as a definite integral without a closed-form value rules out a closed-form
solution to the above optimization problem. Hence, we must rely on numerical optimization methods to
solve the optimization problem (4.1). The fmincon function of MATLAB (see MathWorks, 2021) finds
local solutions to nonlinear non-convex problems using an interior-point algorithm. It is worth noting
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that by providing the gradient,

∇hd(x) =
(
∂hd(x)

∂x1

, . . . ,
∂hd(x)

∂xd

)
,

where
∂hd(x)

∂xi

=
∑
j �=i

2[�(xi, xj) − ti,j]
∂�(xi, xj)

∂xi

,

we can significantly decrease the computational time. However, the built-in trust-region algorithm of
the fmincon function performs worse; thus, we do not report its results.

To test the algorithm, we do not have a standard TDM test library available for d ≥ 7. Therefore,
we utilize two parametric families of TDMs presented in Shyamalkumar and Tao (2020). Firstly, we
consider the two-sector matrices:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α · · · α γ γ · · · γ
α 1 · · · α γ γ · · · γ
...
...
. . .

...
...
...
. . .

...

α α · · · 1 γ γ · · · γ
γ γ · · · γ 1 β · · · β
γ γ · · · γ β 1 · · · β
...
...
. . .

...
...
...
. . .

...

γ γ · · · γ β β · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎣(1 − α)Id1 + αJd1 γ Jd1×d2

γ Jd2×d1 (1 − β)Id2 + βJd2

⎤⎦ . (4.2)

where (α, β) ∈ [0, 1]2 and γ ∈ [0, γu(α, β)]. The value of γu(α, β) can be computed using a linear pro-
gramming formulation, as detailed in Shyamalkumar and Tao (2020). In this two-section case, it is
natural to model it using a two-factor model. However, in our analysis, we utilize a one-factor copula to
model this situation. Secondly, in order to test the algorithm, we consider the two-dependent matrices
of the form: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α β 0 · · · 0

α 1 α
. . .

. . .
...

β α
. . .

. . .
. . . 0

0
. . .

. . .
. . . α β

...
. . .

. . . α 1 α

0 · · · 0 β α 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.3)

where the matrix of the form (4.3) is in Td if and only if α and β satisfy the following constraints:⎧⎪⎪⎪⎨⎪⎪⎪⎩
α, β ≥ 0;

α + 4β ≤ 2;

2α − β ≤ 1.

(4.4)

It is important to note that all of the matrices of the form (4.3) are not in Td
′, except when α= β = 0, by

Lemma A.6 of the Appendix.
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Figure 7. Testing the performance of the interior-point algorithm: test instances were generated ran-
domly by selecting 25 d × d matrices from two-sector matrices of the form (4.2) and two-dependent
matrices of the form (4.3) for d ∈ {5, 10, . . . , 60}.

All the computations in this section were performed on a computer equipped with a single Intel Quad
Core i7 2.7GHz processor and 16GB of RAM. To investigate the computational performance of the fmin-
con function in MATLAB for both the two-sector and two-dependence cases, we conducted experiments
with various dimensions. For the two-sector case, we considered dimensions d = 5, 10, . . . , 60 and ran-
domly generated 25 pairs of (α, β) ∈ [0, 1]2 for each dimension. We calculated γu(α, β) for each pair and
then randomly generated γ ∈ [0, γu(α, β)]. Similarly, for the two-dependence case, we randomly gener-
ated 25 pairs (α, β) from show convex polytope (4.4) dimensions 5, 10, . . . , 60. For each dimension, we
report the running times across all non-linear instances but in Figure 7.

As shown in the figure, the running times are under four minutes for all instances from both sets
of TDMs, for dimensions up to 60. These experimental results show that the interior-point algorithm
demonstrates good scaling for our problem. It is important to highlight, however, that the running times
exhibit a non-linear, but less than cubic, growth.

5. An application to weather-related insurance
The global increase in both the frequency and severity of natural catastrophes, due to climate change or
otherwise, and accompanying increased competition for food resources with the shrinking of arable land
have contributed to the importance of crop insurance. Excessive rain and, in extreme cases, flooding or
near-drought conditions are key risk events covered by crop insurance, as these can severely disrupt a
farming business. From the point of view of an insurer or a reinsurer with a portfolio of crop insurance
policies spanning a geographical area, an accurate assessment of the dependence structure of rainfall at
different locations, especially in the tails, is a critical input to evaluate the geographical diversification or
lack thereof, the latter affecting both pricing and capital considerations. In the following, we show how
the methodology above can help develop a one-factor copula model that embodies the tail dependence
exhibited in a rainfall dataset. We consider below the daily rainfall data from the European Climate
Assessment & Dataset project (Klein Tank et al., 2002).1 More precisely, we focus on a recent ten-year
data (2011/1/1–2020/12/31) of 33 French cities with 1% of missing value.

1The data set can be downloaded at https://www.ecad.eu/dailydata/predefinedseries.php.
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Figure 8. The L-moments ratio diagrams of some common distributions.

A random vector (X,Y ) of rainfall in two cites on a given day, as suggested by Shimizu (1993), is
modeled as described below:

Pr (X = 0, Y = 0)= λ0; Pr (0< X ≤ x, Y = 0)= λ1F1(x);

Pr (X = 0, 0< Y ≤ y)= λ2F2(y); Pr (0< X ≤ x, 0< Y ≤ y)= λ3F(x, y),

where x, y, λi > 0, i = 0, . . . , 3 satisfy
∑3

i=0 λi = 1, F1 and F2 are univariate continuous distribution func-
tions supported on (0, ∞), and F is a bivariate continuous joint distribution function supported on the
positive quadrant. In the following, as we restrict our interest to the upper tail dependence of rainfall in
each pair of cities, we only need to model the joint cumulative distribution function F.

Our approach is to model F by choosing a one-factor copula with parameters (θ̃ , δ̃) and appropriate
marginals FX and FY . Following Serinaldi (2008), we use the L-moments ratio diagrams (see Hosking
(1990)) for the purpose of choosing an appropriate distribution family for modeling the marginals. In
Figure 8, the L-skewness versus L-kurtosis graph, we plot the 2 × (

33
2

)
empirical estimates from the

marginals of truncated (to (0, ∞)2) bivariate distributions along with the curves from some commonly
used distribution families. Figure 8 suggests the three-parameter Weibull distribution as a good fit. To
estimate the parameters, we use the fact that the Weibull distribution is a reverse Generalized Extreme
Value distribution. This allows us to employ the L-moments-based estimators for the parameters of
Generalized Extreme Value distributions listed in Table 2 of Hosking (1990). These estimators are
conveniently made available on the R statistical environment by the packages lmom and lmomco (see
Hosking, 2019 and Asquith, 2020).

Having estimated the marginals as described above, since we seek a model that captures well the tail
dependence, we begin by estimating the tail dependence matrix. Among many nonparametric estima-
tors for the tail dependence coefficient, the Capéraà-Fougères-Genest estimator of the tail dependence
coefficient (see Capéraà et al., 1997) given by

χ̂CFG = 2 −
n∏

i=1

(
log min (u1,i, u2,i)

log max (u1,i, u2,i)

) 1
2n

,

where n is the sample size, u1,i = F̂X(x1,i), and u2,i = F̂Y(x2,i), for i = 1, . . . , n, shows the best performance
in, for example Frahm et al. (2005). Using this estimator we compute the 33 × 33 estimated TDM,
denoted by T̂CFG

33 , which interestingly is a valid TDM.
On the other hand, there are 236 of 5456, 3 × 3 principal submatrices that are determined to be not

feasible TDMs by Proposition 3.2. It is noteworthy that 236 represents only about 4.3% of 5456, far
smaller a proportion than the 26% relative volume of T3

′ reported in Theorem 3.1. This, in particular,
implies that T̂CFG

33 ∈ T33 \ T33
′, suggesting the use of the Frobenius norm closest one-factor feasible TDM,

say T̃33, to T̂CFG
33 for estimating the parameters of a one-factor copula. As the upper tail-dependence
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coefficient only determines θδ, for our illustrative purposes we fix δ = 1.2, but in practice, one can use
constrained maximum likelihood or any other suitable statistical paradigms.

To illustrate the goodness of fit resulting from the above inference procedure, we consider two sets
of three cities. The first set consisting of Bourges, Nice, and Saint-Girons is chosen as its correspond-
ing principal submatrix of T̂CFG

33 is not in T3
′; this is so as according to Proposition 3.2, infeasibility is

implied by

�
(
�−1

1 (0.0820),�−1
1 (0.2254)

)=� (0.2772, 0.4652)= 0.0325> 0.0003.

This matrix, its counterpart in the feasible TDM T̃33, and the corresponding one-factor copula parameters
are given by ⎡⎢⎣ 1 0.0820 0.2254

0.0820 1 0.0003

0.2254 0.0003 1

⎤⎥⎦ ,

⎡⎢⎣ 1 0.1011 0.2459

0.1011 1 0.0776

0.2459 0.0776 1

⎤⎥⎦ , and

⎡⎢⎣1.0032

0.3502

0.6662

⎤⎥⎦ ,

respectively. The above being quite similar suggests a good fit in the upper tails.
In Figure 9, the contour plots of the bivariate marginals from the fitted one-factor copula, with Weibull

marginals, for these three cities being quite alike the contours of the kernel density estimate suggests
a good overall fit. For this plot, we used the function sim1fact in the R package CopulaModel, see Joe
(2014).

The second set of cities consisting of Bourges, Lyon, and Strasbourg was chosen as its corresponding
principal submatrix of T̂CFG

33 is in T3
′; this is so as according to Proposition 3.2, feasibility is implied by

�
(
�−1

1 (0.2620),�−1
1 (0.2842)

)=� (0.5174, 0.5510)= 0.1168< 0.2302.

This matrix, its counterpart in T̃33, and the corresponding one-factor copula parameters are given by⎡⎢⎣ 1 0.2842 0.2620

0.2842 1 0.2302

0.2620 0.2302 1

⎤⎥⎦ ,

⎡⎢⎣ 1 0.2714 0.2772

0.2714 1 0.2267

0.2772 0.2267 1

⎤⎥⎦ , and

⎡⎢⎣1.0032

0.7444

0.7636

⎤⎥⎦ ,

respectively. Note that these matrices are nearly identical. Also, the contour plots of the bivariate
marginals from the fitted one-factor copula for these three cities are similar to the contours of the kernel
density estimate, as shown in Figure 10, suggesting a good overall fit. Relatively speaking, notice that
we see a better alignment of contours in Figure 10 than in Figure 9, agreeing with the observations on
the empirical TDM.

Among the 40,920, 4 × 4 principal submatrices, as expected by Theorem 3.1, none are feasible
as their distance to the nearest feasible matrix using the optimization problem of (4.1) is positive.
Propositions 3.3 and 3.4, by partitioning these matrices into cells depicted in Figure A1, give a qualita-
tive description of proximity to feasibility. In particular, 5691 are located in cells 1 or 7. Additionally,
11,117 matrices are situated in cells adjacent to cells 1 or 7, namely cells 2, 3, 8, and 13. To be precise,
what we mean by the qualitative statement is the stochastic ordering depicted in Figure 11, which plots
the kernel density estimates of the log-squared distance of each member to feasibility categorized by
their membership in the cells. These distances were computed using the optimization problem of (4.1).

Consider the following set of four cities: Strasbourg, Nantes, Troyes, and Caen. Their principal sub-
matrix within T̂CFG

33 is not in the cells 1 or 7 of Table A2. This matrix, its counterpart in T̃33, and the
corresponding one-factor copula parameters are given by⎡⎢⎢⎢⎢⎣

1 0.2553 0.3106 0.2761

0.2553 1 0.2691 0.3451

0.3106 0.2691 1 0.3587

0.2761 0.3451 0.3587 1

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
1 0.2569 0.2801 0.2893

0.2569 1 0.3124 0.3230

0.2801 0.3124 1 0.3538

0.2893 0.3230 0.3538 1

⎤⎥⎥⎥⎥⎦ , and

⎡⎢⎢⎢⎢⎣
0.7636

0.8846

1.0225

1.0881

⎤⎥⎥⎥⎥⎦ .
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Figure 9. Contours of the fitted kernel and one-factor-copula-based distribution (dotted lines).

Proposition 3.4 indicates that T4
′ can be divided into 4! = 24 distinct subsets, each reflecting a per-

mutation of the set {1, 2, 3, 4}, aligning with the sequence of the ηi values. Furthermore, according to
Proposition 3.3, these subsets can be subdivided based on permutations of I4, arranged according to
the tail dependence coefficients. Due to symmetry, this results in 6!/4! = 30 such subdivisions. Notably,
among these, only two subsets are nonempty. Located in cell 9 of Table A2 and Figure A1, the matrix’s
projection falls within cell 1, preserving the ordering of the underlying ηi’s. Given the proximity of the
TDM projection, this is not surprising.
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Figure 10. Contours of the fitted kernel and one-factor-copula-based distribution (dotted lines).

6. Broader implications of our analysis
To begin with, we note that the tail dependence coefficients of the following linking copulas share the
same functional form as that of the BB1 family: Clayton copula (see, section 7.1 of McNeil et al., 2015
or Family B4 in section 5.1 of Joe, 1997), Galambos survival copula (see, section 4.9 of Joe, 2014),
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(a)

(b)

Figure 11. Kernel density estimate plots for the three groups.

BB4 survival copula (see, section 5.2 of Joe, 1997), and BB7 copula (see, Table A1 in the Appendix).
Hence, our results in Section 3 carry over to the one-factor model with these linking copulas as well.

Suppose that the tail dependence coefficient is defined by� :�2 → [0, 1], with the parameter space�
being an interval of R. In other words, we suppose that the i-th coordinate is associated with a parameter
θi (possibly with parametrization, see FDG copulas below) such that the tail dependence coefficient
between the i-th and the j-th coordinate equals �(θi, θj). Further, if � is a symmetric, strictly monotone
(not necessarily increasing) function with continuous derivatives, then the results outlined in Section 3

https://doi.org/10.1017/asb.2024.29 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.29


ASTIN Bulletin 703

materially continue to hold. Only the computation of the volume and the non-convexity of O′
3 referred

to in Remark 3.1 use the specificity of the BB1 copula.
Examples of such linking copulas include the Gumbel survival copula (see, Section 7.1 of McNeil

et al., 2015), B5 survival copula (see, Section 5.1 of Joe, 1997), BB1 survival copula, and BB3 sur-
vival copula (see, Section 5.2 of Joe, 1997). Interestingly, for all of these examples, the tail dependence
coefficient between two coordinates has the form,

�(x, y) :=
∫ ∞

0

[
1 − (

1 + w−x
) 1

x −1
] [

1 − (
1 + w−y

) 1
y −1
]

dw,

with �(x, ∞) := �(∞, x) = 1 −
∫ 1

0

(1 + w−x)
1
x −1dw = 2 − 2

1
x ,

and �(∞, ∞) := 1, 1 ≤ x, y<∞.

Note that the above � is a symmetric strictly increasing function on [1, ∞]2 with continuous partial
derivatives in the interior.

FDG copula family – one-factor copula with Durante Generators – is a one-factor copula model with
the Durante class of copulas, a tractable nonparametric class, as linking copulas. See Mazo et al. (2016)
for the FDG copula and Durante (2006) for the Durante class.

The Durante class of copulas is given by

C(u, v) := (u ∧ v) · f (u ∨ v), u, v ∈ [0, 1]2,

where f : [0, 1] → [0, 1], the generator, is a differentiable increasing function satisfying f (1) = 1 with
u �→ f (u)/u a decreasing function. Note that the copula represents an exchangeable distribution, and by
considering the conditional distribution of X given Y ≤ v, it is easy to see the need for the restrictions
on f with differentiability added for the existence of the density. The lower and upper tail dependence
coefficients are f (0) and 1 − f ′(1), respectively.

It is interesting to note that the bivariate margins of an FDG copula are themselves members of the
Durante class. Hence, if f1 and f2 are the generators of the first two coordinates, then their bivariate
margin is a Durante class copula with generator

u �→ f1(u) · f2(u) + u
∫ 1

u

f1
′(v)f2

′(v)dv.

In particular, f1(0) · f2(0) and (1 − f ′
1(1))(1 − f ′

2(1)) are its lower and upper tail dependence coefficients,
respectively. This implies that the ordering of the tail dependence coefficients of the linking copula
imposes a partial ordering on the tail dependence coefficients of the FDG copula. Some parametric
examples of generators are the Cuadras-Augé generator u �→ u1−θ for θ ∈ [0, 1], Fréchet generator u �→
(1 − θ )u + θ , for θ ∈ [0, 1] and the Durante-exponential generators

u �→ exp

(
uθ − 1

θ

)
, θ > 0.

Finally, since for any copula C, C∗(u1, u2) := C(1 − u1, 1 − u2) also forms a copula, and the lower
tail dependence coefficient with respect to C corresponds to the upper tail dependence coefficient with
respect to C∗, and vice versa, the applicability of our results is invariant to the focus being on the left
or the right tail. Moreover, for copula families like the FDG copula, the results apply to both the tails of
the copula.

7. Conclusion
In statistical modeling with reasonable complexity, it is common that explicit modeling choices sweep
under the carpet implicit model assumptions, some of which may be unjustified. In this study, we
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investigate if this happens in the context of modeling high-dimensional data that exhibits nonlinear tail-
dependence when we use a one-factor copula model with a parametric family for the linking copulas.
Apart from deriving basic tail dependence properties for this mode, we precisely describe the implicit
ordering of the tail dependence coefficients, an implementation of a solution to the formulated optimiza-
tion problem to help model data from a tail dependence perspective and conclude with an illustrative
application.

We believe this paper’s qualitative implications are broad; as a next step, an extension to the
multifactor setting will be interesting as we continue to retain the linear-in-dimension parsimonious
parameterization of the one-factor copula models.
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A. Appendix

Lemma A.1. Ci|0(u|uw) is bounded above by the function gi, for i = 1, . . . , d, respectively, where

gi(w) :=
⎧⎨⎩1, 0 ≤ w ≤ 1;

2
1
δi

−1w−(1+θi), 1<w,

for θi ∈ (0, ∞).

Proof. Since, Ci|0(u|uw) is a conditional distribution function, it is clearly bounded by 1. Hence, it
suffice to consider the case 1<w< (1/u). Since,

u−θi − 1

(uw)−θi − 1
> 1,

the first term of (2.4) is bounded above by 21/δi−1. Using the fact that 1 − (uw)θi ≥ 0, we can bound the
second term of (2.4) above by w−(1+θi), completing the proof. �

The following lemma is a version of Exercise 3.3 in Shorack (2017).

Lemma A.2. Let X(t, ·) be a measurable function on the measure space (�, A,μ) for each t ∈ [a, b].
Moreover, for a.e. ω, the partial derivative ∂

∂t
X(t,ω) exists for all t in the non-degenerate interval [a,b],

and that ∣∣∣∣ ∂∂t
X(t,ω)

∣∣∣∣≤ Y(ω), for all t ∈ [a, b],

for an integrable Y. Then
d

dt

∫
�

X(t,ω)dμ(ω) =
∫
�

[
∂

∂t
X(t,ω)

]
dμ(ω).
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Proof of Proposition 2.1. By splitting the integral representation of �(·, ·) (see (2.6)) and change of
variables on the integral part on [1, ∞), we get

�(x, y) =
∫ 1

0

(1 + wx)
− 1

x −1
(1 + wy)

− 1
y −1 dw +

∫ 1

0

w−2
(
1 + w−x

)− 1
x −1 (

1 + w−y
)− 1

y −1
dw

=
∫ 1

0

(
1 + wx+y

)
(1 + wx)

−1/x−1
(1 + wy)

−1/y−1 dw.

This yields, for (x, y) ∈ (0, ∞)2,

�(x, y)<
∫ 1

0

(1 + wx)
−1/x−1

(1 + wy)
−1/y dw<�(x, ∞)<�(∞, ∞) = 1.

Hence, it suffices to show that� has continuous partial derivatives which are positive on (0, ∞)2. Toward
this, we claim that,

∂

∂x
�(x, y) =

∫ 1

0

(
1 + wx+y

)
(1 + wx)

− 1
x −1
(1 + wy)

− 1
y −1

[
ln (1 + wx)

x2

−
(

1 + x(1 − wy)

1 + wx+y

)
wx ln (w)

x(1 + wx)

]
dw. (A1)

Note that the integrand is positive. Hence, it suffices to establish the above expression and its continuity.
Toward this, note that the integrated is bounded by

2
[
x−2 ln 2 + (1 + x−1)wx ln (1/w)

]
, (A2)

and since this is monotone decreasing in x and integrable for x> 0, we have by Lemma A.2 the
validity of (A1) on (0, ∞)2. Moreover, since the integrate in (A1) is continuous, the bound in (A2)
and the dominated convergence theorem together imply the continuity of the partial derivatives of �
on (0, ∞)2. �

Proof. (Corollary 2.1.) Part (i) directly follows from Proposition 2.1. For part (ii), the proof follows
from observing that by Proposition 2.1, x ≥ x′ (resp., x< x′) implies y ≤ y′ (resp., y> y′). �
Lemma A.3. Let 0< a ≤ b< 1 and w ∈ (�−1

1 (a), ∞] such that a =�(�−1
1 (b), w), and define the

function ηa,b : (0, ∞) → (�−1
1 (a), w) as a =�(�−1

1 (b) + x, ηa,b(x)). Then the function ηa,b is continuous.

Proof. Let s> 0, ε > 0, and u := ηa,b(s/2) ∨ (�−1
1 (b) + s + ε). According to Lemma A.4, with α

increasing in its first argument and β decreasing, we have

α(�−1
1 (a), y) ≤ ∂

∂y
�(x, y) ≤ β (�−1

1 (a)
)

:= M, ∀x, y ∈ [�−1
1 (a), u

]2
.

The continuity of α(�−1
1 (a), ·) implies that

m := min
y∈[�−1

1 (a),u]
α(�−1

1 (a), y)> 0.

For δ := min{s/2, mε/M} and t ∈ (s − δ, s + δ), we observe that

m|ηa,b(t) − ηa,b(s)| ≤ |�(�−1
1 (b) + t, ηa,b(s)) −�(�−1

1 (b) + t, ηa,b(t))|
= |�(�−1

1 (b) + t, ηa,b(s)) − a|
= |�(�−1

1 (b) + t, ηa,b(s)) −�(�−1
1 (b) + s, ηa,b(s))| ≤ M|t − s|.

This implies |ηa,b(t) − ηa,b(s)| ≤ M
m
|t − s|< ε, demonstrating the continuity of ηa,b on (0, ∞). �
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Lemma A.4. A lower and an upper bound for the partial derivative ∂

∂y
�(x, y) are given by functions

α(x, y) and β(y), where

α(x, y) := 2−(1/x+1/y+3)

y(y + 1)2
, and β(y) := 2

[
y−2 ln 2 + (y + y2)−1

]
, for y> 0, respectively.

Proof. By (A1), we establish a lower bound of ∂

∂y
�(x, y) as

∂

∂y
�(x, y) ≥ −2−(1/x+1/y+3)

y

∫ 1

0

wy ln (w)dw = α(x, y).

Similarly, according to equation (A2), the upper bound is calculated to be

∂

∂y
�(x, y) ≤

∫ 1

0

2
[
y−2 ln 2 + (1 + y−1)wy ln (1/w)

]
dw = β(y).

�
Theorem A.1 (Sard’s Theorem). Let f : Rn →R

m be Ck, where k ≥ max{n − m + 1, 1}. Let M ⊆R
n

denote the critical set of f, which is the set of points x ∈R
n at which the Jacobian matrix of f has rank

<m. Then the image f(M) has Lebesgue measure 0 in R
m.

Lemma A.5. For d ≥ 3, we have

d
∏d−1

i=1 i!∏d−1
i=1 (2i − 1)! ≤ e−�(d2). (A3)

Proof. We use a looser version of the bound presented in Robbins (1955) that the following is valid
for all positive integers n:

√
2πn · nne−n < n!<√

2πn · nne−n+1.

Then

d
∏d−1

i=1 i!∏d−1
i=1 (2i − 1)! ≤ d

∏d−1
i=1

√
2π i · iie−i+1∏d−1

i=1

√
2π (2i − 1) · (2i − 1)2i−1e−2i+1

= d
d−1∏
i=1

ei

(2 − 1/i)i+1/2(2i − 1)i−1

≤ ded(d−1)/2−1

1.5d(d−1)/2+(d−1)/2−1(2e)d(d−3)/2−1
= ded

3d(d−3)/2−11.5(3d−1)/2

≤ d3−(d2−5d)/2−1. �
The following lemma follows directly from Proposition 3.2.

Lemma A.6. If ⎡⎢⎣1 a b

a 1 0

b 0 1

⎤⎥⎦ (A4)

is in T ′
3, then at least one of a and b must be equal to zero.
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Table A1. Related functions and the approximate volume of the one-factor copula family with the linking copula being the BB4 and BB7 families.

Family BB4 BB7

C(u, v;θi, δi),

i = 1, 2, 3.

{
u−θi + v−θi − 1 − [

(u−θi − 1)−δi + (v−θi − 1)−δi]− 1
δi

}− 1
θi

,

θi ≥ 0, δi > 0.

1 −
{

1 −
[(

1 − (1 − u)θi
)−δi + (

1 − (1 − v)θi
)−δi − 1

]− 1
δi

} 1
θi

,

θi ≥ 1, δi > 0.

Ci|0(u|uw),

i = 1, 2, 3.

{
wθi + 1 − (uw)θi − [

(wθi − (uw)θi )−δi + (1 − (uw)θi )−δi]− 1
δi

}− 1
θi

−1

·
{

1 −
[

1 +
(

u−θi −1
(uw)−θi −1

)−δi
]− 1

δi
−1
}

{[
1−(1−uw)θi

1−(1−u))θi

]δi + 1 − (1 − (1 − uw)θi )δi
}− 1

δi
−1

·
{

(1 − uw)−θi −
[(

(1−uw)θi

1−(1−u)θi

)δi + (
(1−uw)θi

1−(1−uw))θi

)δi − (1 − uw)θiδi

]− 1
δi

} 1
θi

−1

lim
u↓0

Ci|0(u|uw),

i = 1, 2, 3.

[
1 + wθi − (1 + w−θiδi )− 1

δi

]− 1
θi

−1 [
1 − (1 + w−θiδi )− 1

δi
−1
]

(1 + wδi )− 1
δi

−1

χij,

1 ≤ i< j ≤ 3.

∫ ∞
0

[
1 + wθi − (1 + w−θiδi )− 1

δi

]− 1
θi

−1 [
1 − (1 + w−θiδi )− 1

δi
−1
]

·
[
1 + wθj − (1 + w−θjδj )

− 1
δj

]− 1
θj

−1 [
1 − (1 + w−θjδj )

− 1
δj

−1
]

dw

∫ ∞
0

(
1 + wδi

)− 1
δi

−1 (
1 + wδj

)− 1
δj

−1
dw
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Table A2. 30 cells of the sub-partition O4. The reported value in the volume
column is the volume of each cell multiplied by 207,360.

Cell # Ascending order of the indices Vol.
1 12 13 23 14 24 34 31
2 13 12 23 14 24 34 24
3 12 23 13 14 24 34 27
4 13 23 12 14 24 34 22
5 23 12 13 14 24 34 17
6 23 13 12 14 24 34 17
7 12 13 14 23 24 34 72
8 13 12 14 23 24 34 54
9 12 23 14 13 24 34 32
10 13 23 14 12 24 34 28
11 23 12 14 13 24 34 18
12 23 13 14 12 24 34 18
13 12 14 13 23 24 34 81
14 13 14 12 23 24 34 81
15 12 14 23 13 24 34 43
16 13 14 23 12 24 34 47
17 23 14 12 13 24 34 18
18 23 14 13 12 24 34 18
19 14 12 13 23 24 34 56
20 14 13 12 23 24 34 76
21 14 12 23 13 24 34 28
22 14 13 23 12 24 34 41
23 14 23 12 13 24 34 24
24 14 23 13 12 24 34 27
25 13 23 14 24 12 34 48
26 23 13 14 24 12 34 36
27 13 14 23 24 12 34 72
28 23 14 13 24 12 34 36
29 14 13 23 24 12 34 63
30 14 23 13 24 12 34 45
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Figure A1. Adjacency structure for the 30 cells of the sub-partition O4. Cells connected with edges
share a common facet of dimension 5. The feasible points of O4

′ are contained in cells 1 and 7.
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