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Abstract

Extending our previous work on eigenvalues of closed surfaces and work of Otal

and Rosas, we show that a complete Riemannian surface S of finite type and Euler

characteristic χ(S) < 0 has at most −χ(S) small eigenvalues.

1. Introduction

For Riemannian metrics on the closed surface S = Sg of genus g > 2, the eigenvalue λ2g−2 =

λ−χ(S) plays a specific role. Buser gave examples of hyperbolic metrics on S such that the first

2g − 2 eigenvalues

0 = λ0 < λ1 6 · · · 6 λ2g−3

are arbitrarily small [Bus77, Satz 1]. On the other hand, Schoen et al. proved that there is a

constant c = c(g) > 0 such that λ2g−2 > c for any Riemannian metric on S with curvature

K 6 −1 [SWY80]. Buser then showed that, for hyperbolic metrics, the constant c can be chosen

to be independent of the genus [Bus10, Theorem 8.1.4]. This development culminated in the

work of Otal and Rosas, who showed that λ2g−2 > λ0(S̃) for any analytic Riemannian metric

on S with curvature K 6 −1, where λ0(S̃) denotes the bottom of the spectrum of the universal

covering surface S̃ of S, endowed with the lifted Riemannian metric [OR09, Théorème 1].

Recall that the bottom of the spectrum of the hyperbolic plane is 1/4 and that we have

λ0(S̃) > 1/4 if K 6 −1; see also (1.1) below.

Dodziuk et al. extended the work of Schoen et al. to the non-compact surfaces Sg,p of genus

g with p > 0 punctures (where 2g + p > 2). They showed that there is a constant c = c(2g + p)

such that complete hyperbolic metrics on Sg,p, of finite or infinite area, have at most 2g +

p − 2 eigenvalues λ, counted with multiplicity, with λ 6 c [DPRS87, Corollary 1.3]. In [OR09,

Théorème 2], Otal and Rosas improve this for complete hyperbolic metrics of finite area to

c = 1/4.

At the end of their article, Otal and Rosas discuss the question whether their results also hold

for smooth Riemannian metrics. In our previous article [BMM16a], we showed this for closed

surfaces and sharpened their bound λ0(S̃). In the present article, we generalize their results to

the case of complete Riemannian metrics on surfaces of finite type with Euler characteristic

χ(S) < 0. We allow the surfaces S to be compact or non-compact and the metrics to have finite

or infinite area. We also allow for non-empty boundary ∂S. In that case, our results refer to the

Dirichlet spectrum.
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1.1 Statement of main results
We say that a surface S with boundary (possibly empty) is of finite type if it is diffeomorphic to
a closed surface with p > 0 points and q > 0 open discs removed. Then S has p ends, represented
by the punctures, and q boundary circles, the boundaries of the deleted open discs. Note that
we are only concerned with the diffeomorphism type of S. Thus a puncture has the same effect
as the removal of a closed disc.

A basis of the neighborhoods of an end of S consists of punctured discs around the
corresponding deleted point. We call these punctured discs funnels and visualize the surface
as a steamboat with the funnels pointing upwards and the rest of the surface below them. As
already emphasized above, we do not distinguish between different conformal types. For example,
in our terminology, a hyperbolic cusp is a funnel.

We assume that S is endowed with a Riemannian metric which is complete with respect to
the associated distance function. The area of the metric may be finite or infinite. We view the
Laplacian ∆ of S as an unbounded operator on the space L2(S) of square-integrable functions

on S with domain the space of smooth functions on S with compact support in the interior
◦
S

of S. Our concern is the spectrum of the Friedrichs extension of ∆, which we call the spectrum
of S. If the boundary of S is empty, a case which we include in our discussion, this is the usual
spectrum of S. Otherwise it is the Dirichlet spectrum of S.

For any Riemannian manifold M , with or without boundary, denote by λ0(M) the bottom of
the spectrum of the Laplacian ∆ on M ; that is,

λ0(M) = inf R(ϕ), (1.1)

where ϕ runs over all non-zero smooth functions on M with compact support in the interior of
M and where R(ϕ) denotes the Rayleigh quotient of ϕ,

R(ϕ) =

∫
M |∇ϕ|

2∫
M ϕ2

. (1.2)

As we mentioned above, the bottom of the spectrum of the hyperbolic plane is 1/4. The bottom
of the spectrum of the Euclidean plane is 0.

To state the main result of the present article, we need to introduce one more notion. Let
S be a surface of finite type, with or without boundary, endowed with a complete Riemannian
metric. Set

Λ(S) = inf
Ω
λ0(Ω), (1.3)

where the infimum is taken over all domains Ω in S which are diffeomorphic to an open disc,
annulus, or cross cap. The work of Brooks [Bro85, Theorem 1] implies that we always have

Λ(S) > λ0(S̃) (1.4)

as we will see in Proposition 3.8. The inequality is strict if S is closed and hyperbolic [Mon14].
More generally, it is strict for any Riemannian metric on a compact surface with non-positive
Euler characteristic; see [BMM16b]. However, the strict inequality Λ(S) > λ0(S̃) does not hold
in general. For example, for a non-compact complete hyperbolic surface S of finite type without
boundary, we have Λ(S) = λ0(S̃) = 1/4 by the special geometry of the ends of S.

We say that an eigenvalue λ of a complete Riemannian metric on a surface S is small if
λ 6 Λ(S). In [BMM16a] we showed that, on a closed surface S with χ(S) < 0, a Riemannian
metric has at most −χ(S) small eigenvalues, counted with multiplicity. The main result of this
article is an extension of the latter result to surfaces of finite type.
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Theorem 1.5. A complete Riemannian metric on a surface S of finite type with χ(S) < 0 has
at most −χ(S) small eigenvalues, counted with multiplicity.

With p, q as further up, the case p = q = 0 corresponds to closed surfaces, treated in
[BMM16a]. The case p > 0, q = 0 (with orientable S) extends [DPRS87, Corollary 1.3] of Dodziuk
et al. and [OR09, Théorème 2] of Otal and Rosas to arbitrary complete Riemannian metrics on
such surfaces. The case p = 0, q > 0 corresponds to the Dirichlet spectrum of compact surfaces
with non-empty boundary.

Using the work of Lax and Phillips on so-called embedded eigenvalues [LP82], we will show
that Theorem 1.5 has the following consequence.

Theorem 1.6. A complete hyperbolic metric with infinite area on a surface S of finite type with
χ(S) < 0 has at most −χ(S) eigenvalues, counted with multiplicity, and all of them are contained
in (0, 1/4).

In the case where the boundary of S is empty, Theorem 1.6 is an almost immediate
consequence of Theorem 1.5 and the work of Lax and Phillips.

The assertion of Theorem 1.6 also holds if the metric is assumed to be complete with curvature
K 6 −1 and to be asymptotically hyperbolic in the sense of Mazzeo [Maz91] on at least one of
its funnels; see our discussion in § 5.

The situation for complete hyperbolic metrics of finite area is much more complicated; see
e.g. [Sar03, § 2 and Conjecture 1].

1.2 Remarks and examples
(i) The bound −χ(S) in Theorems 1.5 and 1.6 is optimal. Indeed, the construction of Buser

in [Bus77] applies to surfaces S of finite type with χ(S) < 0 and shows that, for any ε > 0, there
is a complete hyperbolic metric on any such S (with closed hyperbolic geodesics as boundary
circles if the boundary of S is non-empty) such that S has (at least) −χ(S) eigenvalues λ, counted
with multiplicity, with λ < ε. Furthermore, if S is non-compact, the metric can be chosen to
have finite or infinite area.

(ii) Besides λ0(S̃) and Λ(S), there is another constant which is of interest in our context.
Recall that the spectrum of S is the disjoint union of the discrete and the essential spectrum
of S, where λ ∈ R belongs to the essential spectrum of S if ∆ − λ is not a Fredholm operator.
The essential spectrum of S is a closed subset of [0,∞) with bottom denoted by λess(S). In
Proposition 3.8, we will see that λess(S) > Λ(S) if S is of finite type.

(iii) In [BCD93, Example 4.1], Buser et al. construct examples of complete hyperbolic surfaces
S of infinite type with arbitrarily small λess(S) > 0 which have infinitely many eigenvalues less
than λess(S). Since the eigenvalues are smaller than λess(S), they do not belong to the essential
spectrum of S, and therefore they are of finite multiplicity. Note that zero is not an eigenvalue
of S since the area of S is infinite so that non-zero constant functions are not square integrable.
By Proposition 3.8 and since S̃ is the hyperbolic plane, we also have that Λ(S) > λ0(S̃) = 1/4.

(iv) In Examples 3.7(i) and 3.7(ii), we construct complete surfaces of finite type with
curvature K 6 −1, of finite and infinite area, and with empty essential spectrum. Such surfaces
have infinitely many eigenvalues, and all of them are of finite multiplicity. In Example 3.7(iii),
we construct complete non-compact surfaces S of finite type with curvature K 6 0, of finite and
infinite area, with Λ(S) arbitrarily small, and λess(S) = 1/4.
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(v) Our results refer to the standard spectrum of the surface S if ∂S = ∅ and to the Dirichlet
spectrum of S if ∂S 6= ∅. In the latter case, one might also ask for other boundary conditions and,
in particular, for the Neumann condition. In fact, our arguments in the proof of Theorem 1.5 still
apply. However, for the Neumann condition, the constant Λ(S) would have to be replaced by a
corresponding constant ΛN (S), where we would have to consider mixed boundary conditions for
the Laplacian on embedded discs, annuli, and cross caps Ω in S with piecewise smooth boundary

(Neumann condition on ∂Ω ∩ ∂S, Dirichlet condition on ∂Ω ∩
◦
S). As of now, we do not see

interesting estimates for that constant.

In the case where the surface is hyperbolic with periodic geodesics as boundary circles,
doubling S along ∂S would lead to the estimate that the number of Dirichlet eigenvalues
plus the number of Neumann eigenvalues of S below Λ(2S) is bounded by −2χ(S) since the
eigenfunctions on the double 2S split into even and odd ones with respect to the isometry
of 2S which interchanges the two summands of 2S. Via restriction, the first type corresponds
to Neumann eigenfunctions, the second to Dirichlet eigenfunctions on the original S. (This
observation led to [Sch91, Conjecture 2].)

1.3 Structure of the article
In the proof of our main result, Theorem 1.5, our line of arguments is different from the
classical one of Buser [Bus77], Schoen et al. [SWY80], and Dodziuk et al. [DPRS87], who rely on
decompositions of the surface into appropriate pieces and monotonicity properties of eigenvalues.
As in our previous article [BMM16a], we follow the strategy of Otal and Rosas in [OR09], which
involves a careful examination of topological properties of nodal sets and domains of finite linear
combinations of eigenfunctions.

In the cases discussed by Otal and Rosas, the underlying Riemannian metrics are analytic.
Then the corresponding eigenfunctions are analytic functions, and hence also finite linear
combinations of them. It follows that the nodal set Zϕ = {ϕ = 0} of such a linear combination ϕ
is a locally finite graph with analytic edges. In our situation of smooth Riemannian metrics, nodal
sets of eigenfunctions are still locally finite graphs. However, for a finite linear combination ϕ of
eigenfunctions, the regularity of the nodal set Zϕ is not clear anymore. Therefore, we investigate
approximate nodal sets Zϕ(ε) = {|ϕ| 6 ε} instead and, for that reason, have to face a number
of additional problems before we get the main argument of Otal and Rosas to work.

Our line of proof requires extending the corresponding arguments in [BMM16a] from closed
surfaces to surfaces of finite type. In particular, we do not assume that S is compact. Hence
approximate nodal sets Zϕ(ε) and approximate nodal domains, that is, connected components
of S\Zϕ(ε), might not be compact, and we have to face the problem of getting a hand on
the asymptotic structure of approximate nodal sets and domains at infinity. To that end, we
discuss a simultaneous twofold asymptotic behavior, namely the asymptotics of the intersection
of approximate nodal sets and domains with compact subsets K of S for ε → 0 and K → S.
We actually do not consider approximate nodal sets and domains themselves, but need to study
appropriate modifications of them. One of the new technical problems in the non-compact case
is that ±ε might be a regular value of ϕ, but not for a function ψ which is C2-close to ϕ on a
compact subset. Note also that the rather special behavior of nodal lines along hyperbolic cusps,
as used by Otal and Rosas, is not at our disposal.

In addition to the above, we need the following generalization of Cheng’s structure theorem
for nodal lines of eigenfunctions of Schrödinger operators.

Theorem 1.7. Let S be a surface with smooth boundary (possibly empty), endowed with a
Riemannian metric. Let ϕ, V be smooth functions on S and suppose that ϕ vanishes along
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the boundary of S and solves the Schrödinger equation (∆ + V )ϕ = 0. Then the nodal set
Zϕ = {x ∈ S | ϕ(x) = 0} of ϕ is a locally finite graph in S. Moreover:

(i) z ∈ Zϕ ∩
◦
S has valence 2n if and only if ϕ vanishes to order n at z;

(ii) z ∈ Zϕ ∩ ∂S has valence n+ 1 if and only if ϕ vanishes to order n at z.

In both cases, the opening angles between the edges at z are equal to π/n.

For points z ∈ Zϕ ∩
◦
S, this is [Che76, Theorem 2.5]. The case of boundary points is new. We

also note the following consequence of Theorem 1.7.

Corollary 1.8. In the situation of Theorem 1.7, Zϕ is a locally finite union of immersed circles,
line segments with both end points on ∂S, rays with one end point on ∂S, and lines.

The main part of the proof of Theorem 1.5 is contained in § 4 and is concerned with topological
properties of approximate nodal domains and their asymptotic behavior. The analytical part of
the proof is concentrated in Lemma 4.10. To prepare the proof of Theorem 1.5, we collect some
prerequisites from topology in § 2, with Theorem 2.3 and Lemma 2.5 as our main later tools,
and from analysis in § 3. In particular, the latter section contains the proof of Theorem 1.7. The
proof of Theorem 1.6 is contained in § 5.

Mutatis mutandis, our arguments in the proof of Theorem 1.5 remain valid for Schrödinger
operators ∆ + V , where the potential V is non-negative or, more or less equivalently, bounded
from below. In particular, the analog of Theorem 1.5 holds also for such operators.

2. Prerequisites from topology

In this section, we collect some results about the topology of surfaces. We assume throughout
that the concerned surfaces have empty or piecewise smooth boundaries.

Proposition 2.1. The interior of a surface S is of finite type if and only if the fundamental
group of S is finitely generated.

Among the surfaces with boundary (possibly empty) whose interior is of finite type, we
singled out those with compact boundary in the introduction.

For n > 2, denote by Fn the free group in n generators and recall that the commutator
subgroup of F2 is isomorphic to F∞.

Proposition 2.2. For a non-closed surface S, the following are equivalent.

(i) The fundamental group of S is cyclic.

(ii) The fundamental group of S is amenable.

(iii) The fundamental group of S does not contain F2 as a subgroup.

(iv) The interior of S is an open disc, annulus, or cross cap.

We say that a curve in a manifold is a Jordan curve if it is properly embedded. Note that
Jordan curves are closed as subsets of the ambient manifold. We will need the following version
of the Schoenflies theorem (compare with [Bus10, Corollary A.7]).

Theorem 2.3. Any null-homotopic Jordan loop in a surface S bounds an embedded disc in S.
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Corollary 2.4. Let c0 and c1 be Jordan loops in an annulus A which represent the generator
of the fundamental group of A (up to orientation) and which do not intersect. Then c0 and c1

are the boundary circles of an embedded annulus A′ in A.

A subsurface C ⊆ S is called incompressible in S if any closed curve in C, which is homotopic
to zero in S, is already homotopic to zero in C.

Lemma 2.5. Let R be a compact and connected surface (with piecewise smooth boundary ∂R,
possibly empty) which is not homeomorphic to the sphere. Let X be a non-empty incompressible
closed subsurface of R with piecewise smooth boundary ∂X. Assume that ∂X ∩ ∂R is a union
of piecewise smooth segments and circles (possibly empty) and that ∂X and ∂R are transversal,
where they meet. Then

χ(R) 6 χ(X).

In the case of equality, the components of R\
◦
X are annuli, cross caps, and lunes. More precisely,

if C is a component of R\
◦
X that intersects the boundary of R, then C is an annulus attached

to a boundary circle of X or is a lune attached to a part of a boundary circle of X. Otherwise
C is an annulus attached to two boundary circles of X or a cross cap attached to a boundary
circle of X.

Here a lune is a closed disc D whose boundary is subdivided into two subarcs. Attaching a
lune D to X along ∂X means to glue one of the subarcs of the boundary of D to an arc in ∂X.
Then X is isotopic to X ∪D.

Proof of Lemma 2.5. We may assume X ( R. Now by the assumptions on the boundaries of R

and X, there is a closed collar U about ∂R in R such that Y = X\
◦
U is a deformation retract

of X in R. Observe that Y does not intersect ∂R and that the boundaries of R and Y each are
disjoint unions of circles.

If a component D of R\
◦
Y were a closed disc, set c = ∂D, a circle in ∂Y . If c were homotopic

to zero in Y , then there would be a closed disc D′ in Y with ∂D′ = c. Thus D ∪D′ would be an
embedded sphere in R. This is not possible since R is connected and would have to be equal to
that sphere. Thus c is not homotopic to zero in Y , hence neither in R since Y is incompressible

in R. This is a contradiction, and hence no component of R\
◦
Y is a disc. Note also that no

component of R\
◦
Y is a closed surface since R is connected and Y is non-empty.

From the Mayer–Vietoris sequence, we obtain χ(R) = χ(Y ) + χ(R\
◦
Y ). Since no component

of R\
◦
Y is a disc or a closed surface, we have χ(R\

◦
Y ) 6 0 and hence

χ(R) 6 χ(Y ) = χ(X).

If χ(R) = χ(Y ), we have χ(C) = 0 for each component C of R\
◦
Y . Hence each such C is an

annulus or a cross cap. If C does not intersect U , then C is also a component of R\X.
If C intersects U , it contains the corresponding parts of the boundary of R. Since R is

connected and Y is non-empty, C also contains a part of the boundary of Y . Hence the boundary
of C has more than one component, and hence C is an annulus. Therefore C contains precisely
one boundary circle of R and intersects only the corresponding part of U .

Let C ′ be a component of R\
◦
X that is contained in C. If C ′ contains a component of ∂R,

then C = C ′ and C ′ is an annulus. If C ′ intersects a component of ∂R but does not contain it,
then C\C ′ is a subdomain of C whose boundary components intersects both boundary circles

of C. This is possible only if C\
◦
X consists of attached lunes. 2
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3. Prerequisites from analysis

We let M be a Riemannian manifold, complete or not complete, connected or not connected,

with or without (piecewise smooth) boundary. We denote by Ck(M) the space of Ck-functions

on M , by Ckc (M) ⊆ Ck(M) the space of Ck-functions on M with compact support, and by

Ckcc(M) ⊆ Ckc (M) the space of Ck-functions on M with compact support in the interior
◦
M of M ,

respectively. In the case where the boundary ∂M of M is empty, we have Ckcc(M) = Ckc (M). We

use the term smooth to indicate C∞.

We let L2(M) be the space of square-integrable functions on M and recall that C∞cc (M) is a

dense subspace of L2(M). We denote by H1(M) the space of functions in L2(M) which have a

square-integrable gradient ∇f in the sense of distributions. By the latter we mean that we test

∇f against smooth one-forms on M with compact support in
◦
M . Recall that H1(M) is a Hilbert

space with respect to the H1-norm and denote by H1
0 (M) the closure of C∞cc (M) in H1(M).

Proposition 3.1 (Friedrichs extension). The Laplacian ∆ is self-adjoint as an unbounded

operator on L2(M) with domain the space of ϕ ∈ H1
0 (M) such that ∆ϕ ∈ L2(M) in the sense of

distributions.

Proof. Since H1
0 (M) is dense in L2(M), this follows immediately from the construction of the

Friedrichs extension; compare with [Tay96, §A.8]. 2

We call the spectrum of the Friedrichs extension of ∆ as in Proposition 3.1 the spectrum

of M . Note that, in the case where M has no boundary, this is the usual spectrum of S whereas

it is the Dirichlet spectrum in the case where the boundary of M is non-empty and piecewise

smooth.

Set Ck0 (M) = {ϕ ∈ Ck(M) | ϕ|∂M = 0}, and let Ckc,0(M) be the space of Ck-functions

in Ck0 (M) with compact support. We use a corresponding notation for the space C0,1(M) of

Lipschitz functions on M .

Lemma 3.2. If M is complete as a metric space and the boundary of M is piecewise smooth

(possibly empty), then

C0,1
0 (M) ∩H1(M) ⊆ H1

0 (M).

Proof. Since the boundary of M is piecewise smooth, there is a sequence of functions χn in

C1
c (M) such that 0 6 χn 6 1 and |∇χn| 6 1/n, such that {χn = 1} contains the support of χn−1

in its interior, and such that ∪{χn = 1} = M . With such a sequence, we can reduce the assertion

of Lemma 3.2 to the case of functions in C0,1
c,0 (M) ∩H1(M).

Given a compact set K ⊆ M , there is a sequence of functions χn in C1
c (M) such that

0 6 χn 6 1 and |∇χn| 6 Cn for some constant C = C(K), such that χn = 1 on the set of x ∈ K
with d(x, ∂M) > 2/n, and such that χn = 0 on the set of x ∈ K with d(x, ∂M) 6 1/n.

Now let ϕ ∈ C0,1
c,0 (M)∩H1(M) and K = suppϕ. Choose a sequence of functions χn for K as

above. Then χnϕ → ϕ in H1(M) since the area of the set of x ∈ K with 1/n 6 d(x, ∂M) 6 2/n,

which contains K ∩ supp∇χn, is bounded by A/n for some constant A and since ϕ 6 2B/n

on this set, where B is a Lipschitz constant for ϕ. This reduces the assertion of Lemma 3.2

to the case where the support of ϕ is contained in
◦
M . In this case, the assertion follows from

smoothing. 2
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As in the introduction, let λ0(M) = inf R(ϕ), where the infimum is taken over all non-zero
ϕ ∈ C∞cc (M). Since R is continuous on H1

0 (M)\{0} and C∞cc (M) is dense in H1
0 (M), we have

λ0(M) = inf{R(ϕ) | ϕ ∈ H1
0 (M)\{0}}. (3.3)

Hence λ0(M) is the bottom of the spectrum of the Laplacian. By the definition of λ0, we also
have domain monotonicity,

λ0(M) > λ0(M ′) (3.4)

for any Riemannian manifold M ′ containing M .

Lemma 3.5. A non-zero ϕ ∈ H1
0 (M) satisfies R(ϕ) = λ0(M) if and only if ϕ is an eigenfunction

of the Laplacian with eigenvalue λ0(M).

Proof. By the spectral theorem, we may represent L2(M) as the space L2(X) of square-integrable
functions on a measured space X such that ∆ corresponds to multiplication by a measurable
function f on X. By the definition of λ0(M), we have f > λ0(M) > 0 almost everywhere
on X. 2

For a self-adjoint operator A on a Hilbert space H, the spectrum specA of A can be
decomposed in several ways. By definition, the essential spectrum specessA ⊆ specA consists
of all λ ∈ R such that A− λ id is not a Fredholm operator. The discrete spectrum specdA is the
complement,

specdA = specA\ specessA.

The discrete spectrum consists of eigenvalues of finite multiplicity of A which are isolated points
of specA. The essential spectrum is a closed subset of R.

The following result shows that the essential spectrum of the Laplacian only depends on the
geometry of the underlying manifold at infinity and that the essential spectrum of the Laplacian
is empty if M is compact.

Proposition 3.6. For a complete Riemannian manifold M with compact boundary (possibly
empty), λ ∈ R belongs to the essential spectrum of ∆ if and only if there is a Weyl sequence
for λ, that is, a sequence of functions ϕn in C∞cc (M) such that:

(i) for any compact K ⊆M , suppϕn ∩K = ∅ for all sufficiently large n;

(ii) lim supn→∞ ‖ϕn‖2 > 0 and limn→∞ ‖∆ϕn − λϕn‖2 = 0.

Proof. See the elementary argument in [Bär00, proof of Proposition 1]. 2

Examples 3.7. (i) Let F = {(x, y) | x > 0, y ∈ R/LZ} be a funnel with the expanding hyperbolic
metric dx2 + cosh(x)2 dy2. Let κ : R → R be a monotonic smooth function with κ(x) = −1 for
x 6 1 and κ(x) → −∞ as x → ∞. Suppose that j : R → R solves j′′ + κj = 0 with initial
condition j(0) = 1 and j′(0) = 0. Then j(x) > coshx for all x > 1. Furthermore, the funnel F
with Riemannian metric g = dx2 + j(x)2 dy2 has curvature K(x, y) = κ(x) 6 −1 and infinite
area. By comparison, the Rayleigh quotient with respect to g of any smooth function ϕ with
compact support in the part {x > x0} of the funnel is at least −κ(x0)/4.

Let S be a non-compact surface of finite type. Endow S with a hyperbolic metric which is
expanding along its funnels as above. Replace the hyperbolic metric on the funnels by the above
Riemannian metric g. Then the new Riemannian metric on S is complete with curvature K 6 −1
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and infinite area. By Proposition 3.6 and by what we said above about the Rayleigh quotients,
the essential spectrum of the new Riemannian metric is empty. Hence the eigenspaces of the new
metric are finite dimensional and span L2(S). Therefore S has infinitely many eigenvalues, and
all of them have finite multiplicity.

(ii) As a variation of example (i), suppose now that j is the unique solution of j′′ + κj = 0
which satisfies the boundary condition j(0) = 1 and j(∞) = 0. Then j′(0) < −1 and j(x) <
exp(−x) for all x > 0. The funnel F with Riemannian metric g = dx2 + j(x)2 dy2 has curvature
K(x, y) = κ(x) and finite area. Again by comparison, the Rayleigh quotient with respect to g
of any smooth function ϕ with compact support in the part {x > x0} of the funnel is at least
−κ(x0)/4.

Let S be a non-compact surface of finite type, and choose r > 0 such that coth(r) = −j′(0). It
is not hard to see that S minus the parts {x> r} of its funnels carries hyperbolic metrics which are
equal to dx2+j0(x)2 dy2 along the parts {x < r} of its funnels, where j0(x) = sinh(r−x)/ sinh(r).
Then j0(x) = j(x) for x < min{1, r}. Hence any such hyperbolic metric, restricted to S minus the
parts {x > min{1, r}} of its funnels, when combined with g along the funnels, defines a smooth
and complete Riemannian metric on S which has curvature K 6 −1 and finite area. Again, its
essential spectrum is empty, by Proposition 3.6 and by what we said above about the Rayleigh
quotients. Again we obtain that S has infinitely many eigenvalues, and all of them have finite
multiplicity.

(iii) Let S be a complete non-compact hyperbolic surface without boundary. Replace a simple
closed geodesic c in S by a Euclidean cylinder C = {(x, y) | 0 6 x 6 h, y ∈ R/LZ} of height h
and circumference L = L(c) and smooth out the resulting Riemannian metric appropriately. Let
ϕ = ϕ(x) be a non-vanishing smooth function on R with support in [−1, 0]. Then the support
of ϕk,i = ϕ(x/k − i) is in [(i − 1)k, ik] and the Rayleigh quotient of ϕk,i is R(ϕ)/k2. Hence,
given ε > 0, we have R(ϕk,i) < ε if k2 > R(ϕ)/ε. We may also view ϕk,i as a smooth function
on the cylinder C and the surface S if h is sufficiently large. More specifically, given n, choose
h > nk. Then the functions ϕk,1, . . . , ϕk,n have disjoint supports in C and Rayleigh quotients
less than ε. Hence S has at least n eigenvalues which are less than ε. Since C is a cylinder, we
also have Λ(S) < ε. On the other hand, the essential spectrum of S is still contained in [1/4,∞),
by Proposition 3.6 and the special geometry of the ends of S.

Proposition 3.8. For a complete Riemannian metric on a surface S, we have Λ(S) > λ0(S̃). If
S is of finite type, then Λ(S) 6 λess(S).

Proof. Since the ends of surfaces of finite type are funnels and funnels are diffeomorphic to
annuli, we have Λ(S) 6 λess(S) if S is of finite type.

Under a Riemannian covering of complete and connected Riemannian manifolds, the bottom
of the spectrum of the covered manifold is at most the bottom of the spectrum of the
covering manifold; see e.g. [Bro85, p. 101]. Brooks showed that, under a normal Riemannian
covering of complete and connected Riemannian manifolds with an amenable group of covering
transformations, the bottom of the spectrum does not change, provided that the covered manifold
is of finite topological type [Bro85, Theorem 1]. The relevant arguments of Brooks in [Bro85,
proof of Theorem 1] and of Sullivan in [Sul87, proof of Theorem 2.1] remain valid in the more
general case of complete Riemannian manifolds of finite topological type with boundary.

Now in our setting, embedded discs in S lift to embedded discs in S̃ and embedded annuli and
cross caps in S lift to embedded annuli and cross caps in cyclic subcoverings S̄ of S̃. Moreover,
S̄ is either an annulus or a cross cap, in particular of finite topological type. For any such S̄,
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we have λ0(S̄) = λ0(S̃) since cyclic groups are amenable. Hence Λ(S) > λ0(S̃) by the definition

of Λ(S). 2

For a discussion concerning the strictness of the inequality Λ(S) > λ0(S̃), we refer to

[BMM16b].

We finish this section by discussing the proof of Theorem 1.7.

Proof of Theorem 1.7. Recall that non-zero eigenfunctions of the Laplacian cannot vanish of

infinite order at any point; see e.g. [Aro57]. Hence by the main result of [Ber55], at any critical

point z ∈ Zϕ ∩
◦
S of ϕ, there are Riemannian normal coordinates (x, y) about z, a spherical

harmonic p = p(x, y) 6= 0 of some order n > 2, and a constant α ∈ (0, 1) such that

ϕ(x, y) = p(x, y) +O(rn+α),

where we write (x, y) = (r cos θ, r sin θ). By [Che76, Lemma 2.4], there is a local C1-

diffeomorphism Φ about 0 ∈ R2 fixing 0 such that ϕ = p ◦ Φ. Note that, up to a rotation of

the (x, y)-plane, we have

p = p(x, y) = crn cosnθ

for some constant c 6= 0. It follows that the interior nodal set Zϕ∩
◦
S of ϕ is a locally finite graph

with critical points of ϕ as vertices and that the valence of points on Zϕ is as asserted.

It remains to discuss points z ∈ Zϕ ∩ ∂S. Since dimS = 2, there are isothermal coordinates

around z, that is, coordinates (x, y) about z in which the Riemannian metric g of S is conformal to

the Euclidean metric g0: g = fg0 with f = f(x, y)> 0. Then, again since dimS = 2, the associated

Laplacians satisfy f∆ = ∆0, and hence ϕ solves the Schrödinger equation (∆0 + fV )ϕ = 0 in

the domain of the coordinates.

After an appropriate further conformal change of the coordinates, we can assume that the

domain of the coordinates is Bε(0) ∩ {y > 0} such that ∂S corresponds to Bε(0) ∩ {y = 0}.
We consider ϕ and W = fV as functions on B+ = Bε(0) ∩ {y > 0}, where ϕ(x, 0) = 0, and

extend them to functions on Bε(0) by setting ϕ(x, y) = −ϕ(x,−y) and W (x,−y) = W (x, y).

Then ϕ and W are C1,1 and C0,1 on Bε(0), respectively, and ϕ solves (∆0 + W )ϕ = 0 in

B+. Since the reflection about the x-axis is an isometry of the Euclidean plane, we also have

(∆0ϕ)(x, y) = −(∆0ϕ)(x,−y). Hence

(∆0 +W )ϕ(x, y) = −(∆0ϕ)(x,−y)−W (x, y)ϕ(x,−y) = 0

in B− = Bε(0) ∩ {y 6 0}. Since ϕ = 0 along the x-axis, all x-derivatives of ϕ vanish along the

x-axis. Since ϕ solves (∆0 +W )ϕ = 0, the second derivative of ϕ in the y-direction vanishes along

the x-axis as well, and hence ϕ is C2,1. We conclude that ϕ is a strong solution of (∆0 +W )ϕ = 0

on Bε(0), and hence the main result of [Ber55] and [Che76, proof of Lemma 2.4] applies. The

remaining assertions follow as in the case of z ∈ Zϕ ∩
◦
S above. 2

We learned from [HHT09, proof of Theorem 2.3] that the reflection about the x-axis in the

Euclidean plane, which we use in the second part of the above proof, might be helpful in

the discussion of the boundary regularity of solutions of Schrödinger equations.
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4. Estimating the number of small eigenvalues

Throughout this section, let ϕ be a non-vanishing square-integrable smooth function on S which
is a finite linear combination of eigenfunctions with eigenvalues less than or equal to Λ(S). The
set of zeros of ϕ,

Zϕ := {x ∈ S | ϕ(x) = 0}, (4.1)

is called the nodal set of ϕ. The connected components of the complement S\Zϕ are called nodal
domains of ϕ.

We say that ε > 0 is ϕ-regular, if ε and −ε are regular values of ϕ. For any ε > 0, we call

Zϕ(ε) := {x ∈ S | |ϕ(x)| 6 ε} (4.2)

the ε-nodal set of ϕ. We are only interested in the case where ε is ϕ-regular. Then Zϕ(ε)
is a subsurface of S with smooth boundary, may consist of more than one component, and
the boundary components of Zϕ(ε) are embedded smooth circles and lines along which ϕ is
constant ±ε.

Lemma 4.3. For any ϕ-regular ε > 0, consider the function ϕε

ϕε(x) =


ϕ(x)− ε if ϕ(x) > ε,

ϕ(x) + ε if ϕ(x) 6 −ε,
0 otherwise.

Then ϕε ∈ H1(M) and limε→0 ϕε = ϕ in H1(M).

Proof. For all x ∈ S, we have |ϕε(x)| 6 |ϕ(x)|. Hence ϕε is in L2(M). Moreover, ϕε(x) → ϕ(x),
and hence limε→0 ϕε = ϕ in L2(M). Furthermore, ϕε has weak gradient

∇ϕε(x) =

{
∇ϕ(x) if |ϕ(x)| > ε,

0 otherwise.
(4.4)

It follows that ϕε is in H1(M).
As for the claim about the H1-convergence ϕε → ϕ, we note that ϕε = ϕ on S\Zϕ(ε) and

that the family of sets Zϕ(ε) is nested with
⋂
ε>0 Zϕ(ε) = Zϕ. Moreover, ∇ϕε vanishes on Zϕ(ε).

On the other hand, with respect to the area element of S, the set of points of density of Zϕ has
full measure in Zϕ and ∇ϕ(x) = 0 in any such point. It follows that limε→0∇ϕε = ∇ϕ in L2(M)
and hence that limε→0 ϕε = ϕ in H1(M). 2

In what follows, we assume throughout that ε is ϕ-regular. We say that a disc D in S is an
ε-disc if D is closed in S and

ϕ = +ε and ν(ϕ) > 0 or ϕ = −ε and ν(ϕ) < 0 (4.5)

along the boundary circle ∂D of D, where ν denotes the outer normal of D along ∂D. Note that,
for an ε-disc D, a neighborhood of ∂D inside D is contained in Zϕ(ε), whereas a neighborhood
of ∂D outside D belongs to {ϕ > ε} in the first case in (4.5) and {ϕ 6 −ε} in the second.

The boundary circles of ε-discs are components of {ϕ = ±ε}. Since ε is ϕ-regular, the normal
derivative of ϕ has to be non-zero along {ϕ = ±ε}. The requirements on the normal derivative in
(4.5) fix its sign. As an example where these requirements do not hold, we note that components

1757

https://doi.org/10.1112/S0010437X17007291 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007291


W. Ballmann, H. Matthiesen and S. Mondal

of {ϕ > ε} or {ϕ 6 −ε} might be discs, but never ε-discs. On the other hand, any component of
Zϕ(ε), which is a disc, is also an ε-disc.

By Theorem 2.3, any component C of Zϕ(ε), which is contained in the interior of a closed
disc, is also contained in an ε-disc. More precisely, there is an ε-disc D such that ∂D ⊆ ∂C and
such that C is a neighborhood of ∂D inside D. We let Yϕ(ε) be the union of S\Zϕ(ε) with all
ε-discs. Note that the union might not be disjoint since ε-discs might contain components of
{ϕ > ε} and {ϕ 6 −ε}.

Lemma 4.6. (i) The subsurface Yϕ(ε) is the union of S\
◦
Zϕ(ε) with all components of Zϕ(ε)

which are contained in the interior of closed discs in S.

(ii) The components of Yϕ(ε) are incompressible in S.

Proof. Part (i) follows immediately from what we said above. As for part (ii), suppose that there
is a loop in a component C of Yϕ(ε) which is not contractible in C, but is contractible in S. Then
there is an embedded circle c in the interior of C with that property. By Theorem 2.3, there is
a closed disc D in S with ∂D = c. Since c is not contractible in C, the interior of D contains a
component of S\Yϕ(ε) ⊆ Zϕ(ε). This contradicts part (i). 2

The set of ε-discs is ordered by inclusion. It is important that we have maximal elements in
this ordered set.

Lemma 4.7. If two ε-discs intersect, then they are either identical or one is contained in the
interior of the other. Moreover, any ε-disc is contained in a unique maximal ε-disc and maximal
ε-discs are either identical or disjoint.

Proof. The first statement is clear since ε is ϕ-regular.
Fix an exhaustion of S by compact subsurfaces Sn such that S\Sn consists of cylindrical

neighborhoods of the ends of S and such that ∂Sn intersects the set {ϕ = ±ε} transversally.
Then the boundary components of any Sn are labeled by the ends of S they belong to, any Sn
meets only finitely many components of the set {ϕ = ±ε}, and the sets {ϕ = ±ε} ∩ ∂Sn are
finite.

Let D1 ⊆ D2 ⊆ · · · be an ascending chain of pairwise distinct ε-discs. For n sufficiently large,
we have D1 ⊆ Sn. Then Dl ∩ Sn 6= ∅ and ∂Dl ∩ ∂Sn ⊆ {ϕ = ±ε} ∩ ∂Sn for all l > 1. Moreover,
if ∂Dl ∩ ∂Sn = ∅, then Dl ⊆ Sn. Since ε is ϕ-regular, it follows that the chain of discs is finite.

Let D and D′ be maximal ε-discs and suppose that D ∩D′ 6= ∅. Note that D and D′ each
have only one boundary circle, c and c′. If c = c′, then D = D′ by maximality. If c is contained in
the interior of D′, then c′ is contained in the interior of D, since otherwise D would be contained
in the interior of D′, contradicting maximality. But then D ∪ D′ is a subsurface of S without
boundary which is closed as a subset, and hence D ∪ D′ = S. This is impossible since then
S = D ∪D′ would be a sphere. 2

Lemma 4.8. Each component C of Yϕ(ε) is the union of a component C0 of {ϕ > +ε} or of
{ϕ 6 −ε} together with maximal ε-discs attached to them along common boundary circles. In
particular, ∂C ⊆ ∂C0 and

ϕ|∂C = +ε and ν(ϕ) < 0 if C0 is contained in {ϕ > +ε},
ϕ|∂C = −ε and ν(ϕ) > 0 if C0 is contained in {ϕ 6 −ε},

where ν denotes the outer normal field of C.
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Proof. By Lemma 4.7, Yϕ(ε) is the union of S\Zϕ(ε) with all maximal ε-discs. By the requirement
on the normal derivative in (4.5), the boundary circle c of each maximal ε-disc D is attached to
a component of {ϕ > ε} if ϕ|c = ε and a component of {ϕ 6 −ε} if ϕ|c = −ε, respectively. 2

By Lemma 4.8, we may write Yϕ(ε) as the disjoint union,

Yϕ(ε) = Y +
ϕ (ε) ∪̇Y −ϕ (ε), (4.9)

where Y +
ϕ (ε) and Y −ϕ (ε) consist of the components C of Yϕ(ε) such that the corresponding C0

is contained in {ϕ > +ε} and {ϕ 6 −ε}, respectively.
For the statement of the following lemma, recall Proposition 2.2.

Lemma 4.10. For any sufficiently small ϕ-regular ε > 0, the fundamental group of at least
one component of Yϕ(ε) contains the free group F2 in two generators. Moreover, if ϕ is an
eigenfunction, then each nodal domain C of ϕ is incompressible and the fundamental group of
C contains F2.

Proof. We may assume that Yϕ(ε) 6= S. We suppose first that the Rayleigh quotient R(ϕ) < Λ(S)
and choose δ > 0 such that

R(ϕ) 6 Λ(S)− 2δ. (4.11)

By Lemma 4.3 and since S\Yϕ(ε) ⊆ Zϕ(ε), we have, for any sufficiently small ϕ-regular ε > 0,∑
C

∫
C |∇ϕε|

2∑
C

∫
C ϕ

2
ε

6

∫
S |∇ϕ|

2 dv∫
S ϕ

2 dv
+ δ = R(ϕ) + δ 6 Λ(S)− δ, (4.12)

where the sums run over the components C of Yϕ(ε). We conclude that there is a component C
of Yϕ(ε) such that

R(ϕε|C) =

∫
C |∇ϕε|

2∫
C ϕ

2
ε

6 Λ(S)− δ. (4.13)

Now ϕ is smooth on S, and hence ϕε|C is smooth on C and vanishes along ∂C. Therefore
ϕε|C ∈ H1

0 (C), by Lemma 3.2. Now it follows from the definition of Λ(S) that the interior of
C cannot be diffeomorphic to an open disc, an open annulus, or an open cross cap. Thus the
fundamental group of C contains F2.

Assume now that R(ϕ) = Λ(S). Recall that ϕ is a finite linear combination of eigenfunctions
of S, ϕ =

∑
ciϕi, where ϕi ∈ E is a λi-eigenfunction with λi 6 Λ(S). If there would be an i with

ci 6= 0 and λi < Λ(S), then we would have R(ϕ) < Λ(S), a contradiction. It follows that all λi
with ci 6= 0 are equal to Λ(S), and hence that ϕ is a Λ(S)-eigenfunction.

Suppose now, more generally, that ϕ is an eigenfunction with corresponding eigenvalue λ 6
Λ(S). Then ϕ is smooth on S. By Theorem 1.7, the nodal domains of ϕ have piecewise smooth
boundary. Hence Lemma 3.2 implies that, for any nodal domain C of ϕ, we have ϕ|C ∈ H1

0 (C)
with R(ϕ|C) = λ. In particular, λ0(C) 6 λ.

Let C ′ be a thickening of C, that is, C ′ is a domain in S with piecewise smooth boundary
which contains C in its interior and such that C is a deformation retract of C ′. If the fundamental
group of C does not contain F2, then neither does the fundamental group of C ′, and then

Λ(S) 6 λ0(C ′) 6 λ0(C).

The extension ϕ′ of ϕ|∂C to C ′, setting ϕ′|C′\C = 0, is in H1
0 (M) and in the domain of the

Laplacian of C ′. Moreover, it has Rayleigh quotient R(ϕ′) = λ. Hence Lemma 3.5 applies and
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shows that λ0(C ′) = Λ(S) and ∆ϕ′ = Λ(S)ϕ′. Now ϕ′ does not vanish identically on C, but
vanishes on C ′\C. This is in contradiction to the unique continuation property for Laplace
operators. Hence the fundamental group of any nodal domain of ϕ contains F2.

Let C be a nodal domain of ϕ and suppose that C is not incompressible in S. Then there is
a loop c in C which is not homotopic to zero in C, but is homotopic to zero in S. Without loss of

generality, we may assume that c is a Jordan curve in
◦
C. Then c bounds a disc in S, which is not

contained in C, by Theorem 2.3. Again by Theorem 2.3, there would be a nodal domain D of ϕ
whose closure is a closed disc with piecewise smooth boundary and with λ0(D) = Λ(S). This is
impossible, since Λ(S) is not attained on (embedded) closed discs. Hence all nodal domains of
ϕ are incompressible in S.

Let C be a nodal domain and c1, c2 : [0, 1] → C be two loops at a point x ∈ C which generate
a free subgroup F2 ∈ π1(C, x). By Theorem 1.7, we may assume that the images of c1 and c2 are

contained in
◦
C. Without loss of generality, we may also assume that ϕ is positive on

◦
C. Then

◦
C =

⋃
ε>0

{y ∈ C | ϕ(y) > ε}.

Therefore the image of c0 and c1 is contained in {y ∈ C | ϕ(y) > ε} for all sufficiently small
ε > 0. Hence the fundamental group of the component C0 ⊆ C of Yϕ(ε) which contains c0 and
c1 also contains F2. From Lemma 4.8 we conclude that the component of Yϕ(ε) containing C0

contains F2. 2

Say that a component C of Yϕ(ε) is an F2-component if the fundamental group of C
contains F2. By Lemma 4.8, a component C of Y +

ϕ (ε) is an F2-component if and only if there is
a point x in the interior of the corresponding component C0 of {ϕ > ε} and a pair of loops c0

and c1 at x which generate an F2 in π1(C, x) such that c0 and c1 are contained in the interior
of C0; that is, such that ϕ > ε along them. The characterization of F2-components of Y −ϕ (ε) is
analogous.

Lemma 4.14. If K is a compact subsurface of S such that S\K is a cylindrical neighborhood of
the ends of S and C is a component of Yϕ(ε) which is contained in S\K, then the interior of C
is diffeomorphic to an open disc or an open annulus. In particular, we have the following.

(i) Any F2-component of Yϕ(ε) intersects K.

(ii) The subsurface Yϕ(ε) contains only finitely many F2-components.

Components of Yϕ(ε) might be non-compact and might have infinitely many boundary
components. But since they are incompressible in S, their interiors are surfaces of finite type.

Proof of Lemma 4.14. The components of S\K are diffeomorphic to open annuli, hence their
fundamental group is infinite cyclic. Moreover, C is incompressible in S, hence also in the
component of S\K containing it. Therefore the fundamental group of C is either trivial or infinite
cyclic. Now, as a domain in a cylinder, C is orientable. Hence the interior of C is diffeomorphic
to an open disc or an open annulus. 2

We denote by Xϕ(ε) the union of the F2-components of Yϕ(ε) and by X±ϕ (ε) the ones among
them which belong to Y ±ϕ (ε). Then Xϕ(ε) is the disjoint union of X+

ϕ (ε) and X−ϕ (ε).

Lemma 4.15. If ε′ 6 ε are ϕ-regular, then X±ϕ (ε) ⊆ X±ϕ (ε′).
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Proof. By definition, Zϕ(ε′) ⊆ Zϕ(ε). If a component of Zϕ(ε) is contained in the interior of
an embedded closed disc, then also all the components of Zϕ(ε′) it contains. It follows that
Yϕ(ε) ⊆ Yϕ(ε′). By Lemma 4.6(ii), if C is an F2-component of X±ϕ (ε), then also the component
C ′ of X±ϕ (ε′) containing it. Hence Xϕ(ε) ⊆ Xϕ(ε′).

Now let C be a component of X+
ϕ (ε) and suppose that the component C ′ of Xϕ(ε′) containing

C belongs to X−ϕ (ε′). By Lemma 4.8, C is the union of a component C0 of {ϕ > ε} with maximal
ε-discs. Now let x be a point in the interior of C0 and choose loops c0 and c1 in the interior of C0

generating an F2 in π1(C, x); compare with our discussion further up. In particular, ϕ > ε along
c0 and c1. Under the inclusion C → C ′, c0 and c1 cannot be contained in the maximal ε′-discs
belonging to C ′ because they would be homotopic to zero in S otherwise. But then they must meet
{ϕ 6 −ε′}, a contradiction. We conclude that X+

ϕ (ε) ⊆ X+
ϕ (ε′); similarly X−ϕ (ε) ⊆ X−ϕ (ε′). 2

We view the funnels of S as vertical and pointing upwards. In this picture, a Jordan curve c
in a funnel F , which is a generator of the fundamental group of F , cuts S\c in two open pieces,
the set Fc of points above c and the set of remaining points, sometimes called the points below
c. The set of points above c is contained in F and is a funnel around the same end as F , the set
of points below c is not contained in F .

We call Jordan curves in F , which generate the fundamental group of F , cross sections of F .
We say that a cross section c of F is (ϕ, ε)-regular if it meets the curves {ϕ = ±ε} transversally.
By transversality theory, any cross section of F can be approximated by smooth (ϕ, ε)-regular
cross sections of F in any reasonable topology.

Our aim is now to describe the structure of X±ϕ (ε) with respect to F . Let c be a (ϕ, ε)-regular
cross section of F . Then c intersects {ϕ = ε} transversally. We emphasize the following three
cases:

(i) Fc ⊆ X±ϕ (ε);

(ii) c ∩X±ϕ (ε) = ∅;

(iii) c ∩ ∂X±ϕ (ε) 6= ∅.

We now want to normalize the position of a (ϕ, ε)-regular cross section c of F in such a way
that the part of X±ϕ (ε) below c is homotopy equivalent to X±ϕ (ε). If it is possible to choose c such
that case (i) or case (ii) holds, then any such choice will be a normalization. In the remaining
case, c ∩ ∂X±ϕ (ε) 6= ∅ for any choice of cross section of F . Since ε is ϕ-regular, c ∩ {ϕ = ±ε} is
finite. By Lemma 4.8, c ∩ ∂X±ϕ (ε) ⊆ c ∩ {ϕ = ±ε}.

Since {ϕ = ±ε} is a properly embedded submanifold (of dimension 1) of S, the components
of Fc ∩ {ϕ = ±ε} above c are of the following two types: either they are Jordan segments
with endpoints on c or they are Jordan rays with one end on c and escaping to infinity along the
other. We call these components recurrent and escaping, respectively. Since {ϕ = ±ε} is properly
embedded, escaping components in Fc ∩ {ϕ = ±ε} extend continuously as Jordan curves to the
one point compactification of Fc at infinity.

If a is a recurrent component, then there is a segment b in c such that a ∪ b is a null
homotopic Jordan loop in F . The disc bounded by a ∪ b will be called the part of Fc below a.
Since c ∩ {ϕ = ±ε} is finite, there are only finitely many such discs, and they are ordered by
inclusion. The components a above maximal such discs will be called uppermost. We replace the
segments b of c below such maximal discs by the corresponding uppermost components a and
obtain a piecewise smooth cross section of F . Pushing this cross section upwards and smoothing
it appropriately, we arrive at the normalized third case: c is (ϕ, ε)-regular and the interior of
Fc ∩ X±ϕ (ε) is a finite union of open discs, bounded by segments of c, escaping components
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of Fc ∩ ∂X+
ϕ (ε), and, possibly, boundary lines of X±ϕ (ε) which start and end at infinity in F .

Note that boundary circles of X±ϕ (ε) cannot occur, since they would not be null homotopic and
we would be in the second case above.

Remark 4.16. In all three cases, after normalization, the part of X±ϕ (ε) below c is homotopy
equivalent to X±ϕ (ε). With a bit of more work, it would be possible to show that the part of
X±ϕ (ε) below c is a deformation retract of X±ϕ (ε). The technical problem consists in handling the
components of Fc ∩ ∂X+

ϕ (ε) above c which contain boundary lines which come from and return
back to infinity in Fc. These boundary lines cut out infinite peninsulas which are hanging down
from infinity in our picture of Fc. Since we do not need more than homotopy equivalence, we
leave it with these remarks.

Consider a pair (ε,K), where ε > 0 and K is a smooth and compact subdomain of S such
that S\K consists of funnels. Say that the pair (ε,K) is ϕ-regular if ε is ϕ-regular and ∂K
consists of normalized (ϕ, ε)-regular cross sections as above. For any such pair (ε,K), define

Xϕ(ε,K) = Xϕ(ε) ∩K and X±ϕ (ε,K) = X±ϕ (ε) ∩K. (4.17)

Note that Xϕ(ε,K) is the disjoint union X+
ϕ (ε,K) ∪̇X−ϕ (ε,K).

By what we said above, the inclusions X±ϕ (ε,K) → X±ϕ (ε) are homotopy equivalences. Since
K is a deformation retraction of S, Lemma 2.5 implies

χ(S) = χ(K) 6 χ(Xϕ(ε,K)) = χ(X+
ϕ (ε,K)) + χ(X−ϕ (ε,K)) < 0. (4.18)

By Lemma 4.6(ii), the components of Xϕ(ε,K) are incompressible in S. The following result is
an immediate consequence of Lemmas 2.5 and 4.15.

Lemma 4.19. If (ε,K) and (ε′,K ′) are ϕ-regular with ε′ 6 ε and K ⊆ K ′, then

X±ϕ (ε,K) ⊆ X±ϕ (ε′,K ′) and χ(X±ϕ (ε′,K ′)) 6 χ(X±ϕ (ε,K)).

Moreover, if χ(Xϕ(ε,K)) = χ(Xϕ(ε′,K ′)), then X±ϕ (ε′,K ′) arises from X±ϕ (ε,K) by attaching
annuli, cross caps, and lunes along boundary curves of X±ϕ (ε,K).

As a direct application of (4.18) and Lemma 4.19, we get the following.

Corollary 4.20. There exists a ϕ-regular pair (εϕ,Kϕ) such that

χ(X±ϕ (ε,K)) = χ(X±ϕ (εϕ,Kϕ))

for all ϕ-regular pairs (ε,K) with ε 6 εϕ and Kϕ ⊆ K.

Now we assume throughout that we are in the stable range, that is, we consider ϕ-regular
pairs (ε,K) with ε 6 εϕ and Kϕ ⊆ K. For such a pair (ε,K), we study the isotopy type of
the triples (S,X+

ϕ (ε,K), X−ϕ (ε,K)). Here and below we mean compactly supported topological
isotopy when speaking of isotopy. By the definition of ϕ-regularity and the discussion leading to
it, the isotopy type of (S,X+

ϕ (ε,K), X−ϕ (ε,K)) does not depend on K. Hence to compare it with
the isotopy type of another such triple (S,X+

ϕ (ε′,K ′), X−ϕ (ε′,K ′)), we may assume that ε′ < ε
and that K is contained in the interior of K ′.

Now X±ϕ (ε,K) has two kinds of boundary circles: the first kind consists of boundary circles
in the interior of K, the second kind consists of segments of boundary circles of ∂K concatenated
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with segments of ∂X±ϕ (ε) ⊆ {ϕ = ±ε} that run inside K from ∂K to ∂K. By the definition of
ϕ-regularity, boundary circles of K do not occur as boundary circles of X±ϕ (ε,K). The first kind
of boundary circles of X±ϕ (ε,K) is smooth, the second kind is piecewise smooth with vertices
in the points, where the circle enters or respectively leaves ∂K. The boundary of X±ϕ (ε′,K ′)
consists of the corresponding two kinds of boundary circles.

We start with a closer look at the gluings required to obtain X±ϕ (ε′,K ′) from X±ϕ (ε,K). Since
their Euler characteristics coincide, only annuli, cross caps, and lunes are concerned; compare
with Lemma 2.5. Now ε′ < ε and K is contained in the interior of K ′. Hence the boundaries of
X±ϕ (ε,K) and X±ϕ (ε′,K ′) are disjoint, and therefore no lunes occur.

Suppose that a boundary circle c of X±ϕ (ε,K) bounds a cross cap C in the complement (of
the interior) of X±ϕ (ε,K) in S. Now C decomposes S into two connected regions, the points
inside C and the points outside C. Since ∂C is contained in ∂X±ϕ (ε,K), we conclude that a
curve from a point inside C to a point outside of C∪X±ϕ (ε,K) has to pass through X±ϕ (ε,K). In
particular, C cannot contain points on or beyond boundary circles of K since otherwise it would
also contain the corresponding funnels, a contradiction to the compactness of C. We conclude
that in the gluing required to obtain X±ϕ (ε′,K ′) from X±ϕ (ε,K), the cross caps, including their
boundary circles, are contained in the interior of K. In particular, ϕ = ±ε along their boundary
circles.

Since an annulus has two boundary circles, there are different ways of attaching them and
we need to distinguish two cases. Suppose first that two boundary circles c0 and c1 of X±ϕ (ε,K)
bound a closed annulus A in the complement (of the interior) of X±ϕ (ε,K) in S. Then any curve
from a point inside A to a point outside of A∪X±ϕ (ε,K) has to pass through X±ϕ (ε,K). As in the
case of cross caps, we get that A cannot contain points on or beyond boundary circles of K since
otherwise it would also contain the corresponding funnels, a contradiction to the compactness
of A. We conclude that in the gluing required to obtain X±ϕ (ε′,K ′) from X±ϕ (ε,K), the annuli
A with ∂A ⊆ ∂X±ϕ (ε,K) are contained in the interior of K. In particular, ϕ = ±ε along their
boundary circles.

Finally, an annulus might be glued to X±ϕ (ε,K) along one boundary circle such that the
second boundary circle belongs to the boundary of X±ϕ (ε′,K ′). Such gluings do not change the
isotopy type of X±ϕ (ε′,K ′) in S, but gluings of cross caps and annuli as above do. To remedy
this, attach all annuli and cross caps to X±ϕ (ε,K) which are contained in the interior of K and
have their boundary in X+

ϕ (ε,K) and call the resulting subsurface S±ϕ (ε,K).
Note that no component of Xϕ(ε,K) is contained in any of the attached cross caps and

annuli since the components of Xϕ(ε,K) are incompressible in S and their fundamental groups
contain an F2. Hence

S+
ϕ (ε,K) ∩ S−ϕ (ε,K) = ∅.

Note also that attaching annuli and cross caps does not change the Euler characteristic.

Lemma 4.21. If (ε,K), (ε′,K ′) are ϕ-regular with ε′ 6 ε 6 εϕ and Kϕ ⊆ K ⊆ K ′, then

(S, S+
ϕ (ε,K), S−ϕ (ε,K)) and (S, S+

ϕ (ε′,K ′), S−ϕ (ε′,K ′))

are isotopic in S.

Proof. After the above discussion leading to the definition of S±ϕ (ε,K), we have the following
remaining issues.

If a boundary circle c of X±ϕ (ε,K) bounds a cross cap C in S, then either already
C ⊆ X±ϕ (ε′,K ′) or else an annulus A ⊆ C is attached to c along one of its boundary circles
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and the other boundary circle c′ belongs to the boundary of X±ϕ (ε′,K ′). Then c′ bound a cross
cap C ′ in the complement (of the interior) of A in C and C = A ∪ C ′.

Conversely, if a boundary circle c of X±ϕ (ε′,K ′) bounds a cross cap C ′ in S, then c is contained
in the interior of K ′ and thus ϕ = ±ε′ along c. We conclude that c is a boundary circle of an
annulus A attached to X±ϕ (ε,K) along the other boundary circle of A. Thus C = A ∪ C ′ is a
cross cap in S with ∂C a boundary circle of X±ϕ (ε,K). By the discussion further up we obtain
that C is in the interior of K.

If boundary circles c0 and c1 of X±ϕ (ε,K) bound an annulus A in S, then either already
A ⊆ X±ϕ (ε′,K ′) or else disjoint annuli A0, A1 ⊆ A are attached to c0 and c1, each along one of
its boundary circles, and the other boundary circles c′0 and c′1 bound an annulus A′ ⊆ A between
A0 and A1. Then A = A0 ∪A′ ∪A1.

Conversely, if boundary circles c0 and c1 of X±ϕ (ε′,K ′) bound an annulus A′ in S, then A′

is contained in the interior of K ′ and thus ϕ = ±ε′ along ∂A′. Arguing as in the case of cross
caps, we get annuli A0 and A1 with one boundary circle in X±ϕ (ε,K) and the other equal to c0

and c1, respectively. Thus A = A0 ∪ A′ ∪ A1 is an annulus in S such that ∂A lies in X±ϕ (ε,K).
By the discussion further up we obtain that A is in the interior of K. 2

We call the isotopy type of the triple (S, S+
ϕ (ε,K), S−ϕ (ε,K)) the type of ϕ and the Euler

characteristic of Sϕ(ε,K) the characteristic of ϕ.

Lemma 4.22. Let L be a compact neighborhood of K which contains all the ε-discs with respect
to ϕ which intersect K and such that ∂L is smooth and transversal to {ϕ = ±ε}. Then a
non-trivial finite linear combination ψ of eigenfunctions of S with corresponding eigenvalues less
than or equal to Λ(S), with the same characteristic as ϕ, and sufficiently C2-close to ϕ on L,
has the same type as ϕ.

Proof. If ψ is sufficiently C2-close to ϕ on L, then ±ε are regular values of ψ|L, the curves
ψ|L = ±ε intersect ∂K transversally, and there is a small isotopy of S which leaves K and
∂K invariant which deforms the configuration of curves {ψ = ε} ∩ L and {ψ = −ε} ∩ L to the
configuration of curves {ϕ = ε}∩L respectively {ϕ = −ε}∩L and, therefore, also the subsurfaces
{ψ > ε} ∩K and {ψ 6 −ε} ∩K to the subsurfaces {ϕ > ε} ∩K respectively {ϕ 6 −ε} ∩K.

Clearly, if a boundary segment of the latter intersects an ε-disc D of ϕ, then D is contained
in L and corresponds under the isotopy to an ε-disc B of ψ. Attaching the parts B ∩K of such
discs, we get a surface T± such that the above isotopy deforms T± to X±ϕ (ε,K). In particular,
the fundamental group of T± contains an F2, T± is incompressible in S and

χ(T±) = χ(X±ϕ (ε,K)).

By changing ε slightly, we can achieve that ε is also ψ-regular. Then, by what we said, T± is
a component of X±ψ (ε,K). Moreover, choosing a ψ-regular (ε,K ′) with K in the interior of K ′,

we have T± ⊆ X±ψ (ε,K ′). Hence X±ψ (ε,K ′) is obtained from T± by attaching annuli, cross caps,

and lunes. Now annuli where both boundary curves are attached to T± and cross caps attached
to T± are contained in the interior of K and belong to S±ψ (ε,K). We (finally) conclude that

(S, S+
ψ (ε,K ′), S−ψ (ε,K ′)) is isotopic to the triple (S, S+

ϕ (ε,K), S−ϕ (ε,K)). 2

End of proof of Theorem 1.5. Let E be a subspace of L2(M) which is generated by finitely many
eigenfunctions with corresponding eigenvalues less than or equal to Λ(S) and denote by S the
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unit sphere in E and by P the projective space of E. Theorem 1.5 follows if any such E has

dimension at most −χ(S).

Since χ(S±ϕ (ε,K)) = χ(X±ϕ (ε,K)), (4.18) and Lemma 4.21 imply that we obtain a partition

of S into the subsets Ai consisting of functions ϕ with characteristic i ∈ {−χ(S), . . . ,−1}. By

definition, ϕ ∈ Ai if and only if −ϕ ∈ Ai. Hence the partition of S into the sets Ai is the preimage

of a partition of P into subsets Bi under the covering projection π : B → P.

Now at least one of the subsurfaces S+
ϕ (ε,K) or S−ϕ (ε,K) is non-empty and has negative

Euler characteristic. Therefore, it follows from [Iva92, Theorem 1.2] that there is no isotopy of S

which interchanges the disjoint subsurfaces S+
ϕ (ε,K) and S−ϕ (ε,K). Hence the type of ϕ ∈ S is

different from the type of −ϕ. Hence by Lemma 4.22, the covering π is trivial over the subsets Ai.
Now P cannot be covered by less than dimE subsets over which π is trivial, by [Sév02, Lemma 8].

We conclude that dimE 6 −χ(S). 2

5. Applying the absence of large eigenvalues

We say that a subset U of the hyperbolic plane is an infinite hinge if it is the region in the

hyperbolic plane bounded by two geodesic rays which issue from a common point. Besides

Theorem 1.5, the other crucial point of our argument in the proof of Theorem 1.6 is the result

of Lax and Phillips that an infinite hinge cannot carry a non-trivial square-integrable solution ϕ

of the equation ∆ϕ = λϕ with λ > 1/4; see [LP82, Theorem 4.8]. Notice that Theorem 4.8 also

applies in dimension two; see the last sentence in [LP82, § 4].

Proof of Theorem 1.6. The proof is straightforward in the case where the boundary of S is empty.

In that case, since the area of S is infinite, S has an end F = {(x, y) | x > 0, y ∈ R/LZ} with

metric dx2 + cosh2(x) dy2. Clearly, any such metric contains an infinite hinge U as above and

hence the restriction of any eigenfunction of S to U is a square-integrable solution of ∆ϕ = λϕ

on U . By the unique continuation principle, it is non-trivial if ϕ is no-trivial, and then λ < 1/4 by

the work of Lax and Phillips. On the other hand, we have Λ(S) > λ0(S̃) by (1.4) and λ0(S̃) = 1/4

since S̃ is the hyperbolic plane. Hence any eigenvalue of S is small. Therefore Theorem 1.5 applies

and shows that S has at most −χ(S) eigenvalues.

The case where the boundary of S is non-empty and the boundary circles of S are closed

geodesics is easy, too. In that case, S also has an end F as above and the same arguments

apply. The difficult part of the proof is the case where the boundary of S is non-empty, but no

restrictions on the geometry of the boundary are assumed. Then S contains at least one funnel

F with infinite area.

Let c be the boundary circle of F . Consider a sequence of points qn in F which diverge to

infinity and let pn be a point in c with distance d(qn, pn) = d(qn, c). Then the minimal geodesic

segment γn from pn to qn is perpendicular to c and γn ∩ c = pn. Since c separates F from S\F ,

we conclude that γn is contained in F . Passing to a subsequence if necessary, the sequence γn
converges to a minimizing geodesic ray γ in F , starting from a point p in c and perpendicular to

c at p. Parametrizing γ by unit speed such that γ(0) = p, we get that d(γ(t), c) = t for all t > 0.

Now cut F along γ to obtain an infinite strip P , bounded by two copies γ0 and γ1 of γ on the

left and right and by c at the bottom, now a smooth curve from p0 = γ0(0) to γ1(0).

For any t > 1, let σt be the unit speed geodesic segment in P starting from γ0(t) and

perpendicular to γ0, parametrized on the maximal possible interval. Since σt never hits γ0 again,

there are three alternatives.
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(i) If σt neither hits γ1 nor c, then γ0 and σt bound an infinite hinge, isometric to a
corresponding hinge in the hyperbolic plane. Then the result of Lax and Phillips and Theorem 1.5
apply to conclude Theorem 1.6.

(ii) Suppose that σt(r) = γ1(s) for some r > 0. Then σt|[0,r] is a Jordan segment in P which
decomposes P into a bounded part containing c and an unbounded part Q. Since the boundary
of Q consists of the three geodesics γ1|[t,∞), σt|[0,r], and γ1|[s,∞), we may think of Q as a part
of the hyperbolic plane. Since the area of Q is infinite, the geodesic rays γ1|[t,∞) and γ1|[s,∞)

cannot be asymptotic. Hence Q contains infinite hinges, and then the result of Lax and Phillips
and Theorem 1.5 apply again to conclude Theorem 1.6.

(iii) Let L be the length of c and parametrize c by unit speed on [0, L]. Suppose that σ1(r1) =
c(u) for some u ∈ (0, L). With t = L + 1, we claim that σt does not hit c. Otherwise we would
have σt(rt) = c(v) for some v ∈ (u, L). Furthermore, since γ0 is minimizing to c, we have rt > t.
Now the geodesic segments γ0|[1,t], σ1|[0,r1], and σt|[0,rt] together with c|[u,v] bound a disc which
we may view as a part of the hyperbolic plane. Since σ1 and σt are perpendicular to γ0, we
conclude that

d(σ1(r1), σt(rt)) > d(σ1(0), σt(0)) = L.

Since c|[u,v] connects σ1(r1) with σt(rt), this contradicts L(c) = L. Hence σt satisfies one of the
first two alternatives. 2

In [Maz91], Mazzeo introduced the notion of asymptotically hyperbolic Riemannian metrics.
In our setting, we now view a funnel F of S as a cylinder [0, 1) × R/Z with a boundary circle
z = {1}×R/Z at infinity. We consider Riemannian metrics on F of the form g = ρ−2h, where ρ
is a smooth function on Z = [0, 1] × R/Z with {ρ = 0} = z and dρ 6= 0 along z and where h is
a Riemannian metric on Z. Note that because of the factor ρ−2, such a metric is complete on F
with the boundary circle z located at infinity. By the proposition of [Maz88, p. 311], the curvature
of g tends to −(∂ρ/∂ν)2 when approaching z, where ∂ρ/∂ν denotes the h-normal derivative of
ρ along z. Now it follows from [Maz91, Theorem 16] (see also the remark on locality in the first
paragraph of [Maz91, § IV]) that F cannot carry a non-trivial L2-solution ϕ of ∆ϕ = λϕ with
λ > 1/4 if |∂ρ/∂ν| = 1 along z (or, more generally, if |∂ρ/∂ν| > 1 along z such that {|∂ρ/∂ν| = 1}
contains a non-empty open subarc of z).

Theorem 5.1. Let S be a surface of finite type with a complete Riemannian metric with K 6 −1
and with at least one asymptotically hyperbolic funnel F as above such that |∂ρ/∂ν| = 1 along z.
Then S has at most −χ(S) eigenvalues, counted with multiplicity, and all of them are contained
in (0, 1/4).

Proof. By what we said above, S does not have eigenvalues greater than or equal to 1/4. On the
other hand, since K 6 −1, we have Λ(S) > λ0(S̃) > 1/4. Hence all eigenvalues of S are small.
By Theorem 1.5, there are at most −χ(S) of them. Since the area of S is infinite, 0 is not an
eigenvalue, and hence all eigenvalues of S are contained in (0, 1/4). 2
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