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Abstract
We suggest two related conjectures dealing with the existence of spanning irregular subgraphs of graphs.
The first asserts that any d-regular graph on n vertices contains a spanning subgraph in which the number
of vertices of each degree between 0 and d deviates from n

d+1 by at most 2. The second is that every graph
on n vertices with minimum degree δ contains a spanning subgraph in which the number of vertices
of each degree does not exceed n

δ+1 + 2. Both conjectures remain open, but we prove several asymptotic
relaxations for graphs with a large number of vertices n. In particular we show that if d3 log n≤ o(n) then
every d-regular graph with n vertices contains a spanning subgraph in which the number of vertices of
each degree between 0 and d is (1+ o(1)) n

d+1 . We also prove that any graph with n vertices and minimum
degree δ contains a spanning subgraph in which no degree is repeated more than (1+ o(1)) n

δ+1 + 2 times.

Keywords: irregular subgraph; repeated degrees
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1. Introduction
All graphs considered here are simple, that is, contain no loops and no parallel edges. For a graph
G and a non-negative integer k, let m(G, k) denote the number of vertices of degree k in G, and
let m(G)=maxk m(G, k) denote the maximum number of vertices of the same degree in G. One
of the basic facts in Graph Theory is the statement that for every graph G with at least 2 vertices,
m(G)≥ 2. In this paper, we suggest the following two related conjectures.

Conjecture 1.1. Every d-regular graph G on n vertices contains a spanning subgraph H so that for
every k, 0≤ k≤ d,

⌈∣∣∣m(H, k)− n
d+1

∣∣∣⌉ ≤ 2.

Conjecture 1.2. Every graph Gwith n vertices andminimum degree δ contains a spanning subgraph
H satisfying �m(H)− n

δ+1� ≤ 2.

If true, both conjectures are tight. One example showing it is the vertex disjoint union of two
cycles of length 4. There are also many examples showing that an extra additive 1 is needed even
when n

d+1 is an integer. Indeed, if G is any d-regular graph with n vertices, then by the pigeonhole
principle, for any spanning subgraph H of G, m(H)≥ n

d+1 , as the degree of each vertex of H is
an integer between 0 and d. If, in addition, n is divisible by d + 1, then the equality m(H)= n

d+1
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is possible only if m(H, k)= n
d+1 for any 0≤ k≤ d. However, this is impossible if

(
� d+1

2 	
)

n
d+1 is

odd, as the number of vertices of odd degree in H must be even. Note that a small value of m(H)
can be viewed as a measure of the irregularity of the graph H. Thus both conjectures address the
question of the existence of highly irregular subgraphs of graphs, stating that with this interpreta-
tion every graph G contains a spanning subgraph H which is nearly as irregular as the degrees of
G permit.

We have not been able to prove any of the two conjectures above, but can establish the follow-
ing results, showing that some natural asymptotic versions of both do hold. In the following two
results the o(1) terms tend to 0 as n tends to infinity.

Theorem 1.3. If d3 log n= o(n) then any d-regular graph with n vertices contains a spanning
subgraph H so that for every 0≤ k≤ d, m(H, k)= (1+ o(1)) n

d+1 .

Theorem 1.4. Any graph with n vertices and minimum degree δ contains a spanning subgraph H
satisfying m(H)≤ (1+ o(1))

⌈
n

δ+1

⌉
+ 2.

In addition, if δ1.24 ≥ n and n is sufficiently large, there is such an H so that m(H)≤
⌈

n
δ+1

⌉
+ 2.

For any values of d or δ and n, without the assumption that n is sufficiently large, we can prove a
weaker universal bound showing that there is always a spanning subgraph H withm(H) bounded
by O(n/δ).

Theorem 1.5. Any d-regular graph G with n vertices contains a spanning subgraph H satisfying
m(H)≤ 8nd + 2.

Theorem 1.6. Any graph G with n vertices and minimum degree δ contains a spanning subgraph H
satisfying m(H)≤ 16n

δ
+ 4.

We can improve the constants 8 and 16 above by a more complicated argument, but since it
is clear that these improved constants are not tight we prefer to present the shorter proofs of the
results above.

Our proofs combine some of the ideas used in the earlier work on the so called irregularity
strength of graphs with techniques from discrepancy theory. The irregularity strength s(G) of a
graph G with at most one isolated vertex and no isolated edges is the smallest integer s so that
one can assign a positive integer weight between 1 and s to each edge of G so that for any two
distinct vertices u and v, the sum of weights of all edges incident with u differs from the sum of
weights of all edges incident with v. This notion was introduced in the 80s in [5]. Faudree and
Lehel conjectured in [7] that there exists an absolute constant C so that for every d-regular graph
G with n vertices, where d ≥ 2, s(G)≤ n

d + C. The notion of irregularity strength and in particular
the Faudree-Lehel conjecture received a considerable amount of attention, see for example
[6, 8, 10–15]. The theorems above improve some of the results in these papers. In particular,
Theorems 1.3 and 1.4 improve a result of [8] which implies that any d-regular graph with n ver-
tices contains a spanning subgraph H satisfying m(H)≤ 2n/d provided d4 log n≤ n. (The result
there is stated in terms of assigning weights 1 and 2 to edges, for regular graphs this is equivalent.)

Theorems 1.4, 1.5 and 1.6 improve another result of [8] which implies that any d-regular graph
with n≥ 10 vertices, where d ≥ 10 log n, contains a spanning subgraphH withm(H)≤ 48 log nn

d ,
as well as a result that for all sufficiently large n any d-regular G contains a spanning H with
m(H)≤ 2 n√

d
. They also strengthen a result in [6] that shows that any d-regular graph on n vertices

contains a spanning H in which the number of vertices with degrees in any interval of length
c1 log n does not exceed c2n log n/d where c2 > c1 are some absolute constants.

Our final results demonstrate a direct connection between the irregularity strength of graphs
and our problem here.
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Theorem 1.7. Let G be a bipartite graph and let s= s(G) be its irregularity strength. Then G con-
tains a spanning subgraph H satisfying m(H)≤ 2s− 1. If G is regular this can be improved to
m(H)≤ 2s− 3.

A similar result, with a somewhat more complicated proof, holds without the assumption that
G is bipartite.

Theorem 1.8. Let G be a graph and let s= s(G) be its irregularity strength. Then G contains a
spanning subgraph H satisfying m(H)≤ 2s. If G is regular this can be improved to m(H)≤ 2s− 2.

The rest of the paper contains the proofs as well as a brief final section suggesting natural
versions of the two conjectures that may be simpler.

2. Proof of Theorem 1.3 and a special case of Theorem 1.4
In this section we prove Theorem 1.3 and describe also a short proof of Theorem 1.4 for the special
case that the minimum degree δ satisfies δ4 = o(n/ log n). The proof of the theorem for larger δ

requires more work, and is presented in Section 5.
We need several combinatorial and probabilistic lemmas. The first is the standard estimate of

Chernoff for Binomial distributions.

Lemma 2.1 (Chernoff’s Inequality, c.f., for example, [3], Appendix A). Let B(m, p) denote the
Binomial random variable with parameters m and p, that is, the sum of m independent, identically
distributed Bernoulli random variables, each being 1with probability p and 0with probability 1− p.
Then for every 0< a≤mp, P(X −mp≥ a)≤ e−a2/3mp and P(|X −mp| ≥ a)≤ 2e−a2/3mp. If a≥
mp then P(|X −mp| ≥ a)≤ 2e−a/3.

Another result we need is the following, proved (in a slightly different form) in [8].

Lemma 2.2 ([8]). Let G= (V , E) be a graph and let H be the spanning random subgraph of G
obtained as follows. For each vertex v ∈V let x(v) be a uniform random weight in [0, 1], where all
choices are independent. An edge uv ∈ E is an edge of H iff x(u)+ x(v)> 1. Let v be a vertex of G
and suppose its degree in G is d. Then for every k, 0≤ k≤ d, the probability that the degree of v in H
is k is exactly 1

d+1 .

The (simple) proof given in [8] proceeds by computing the corresponding integral. Here is a
combinatorial proof, avoiding this computation. Let Y = x(v) and let X1, X2, . . . , Xd be the ran-
dom weights of the neighbours of v. Then the random variables 1− Y , X1, X2, . . . , Xd are i.i.d
uniform random variables in [0, 1]. By symmetry, 1− Y is equally likely to be the k+ 1-st largest
among the variables 1− Y , X1, . . . , Xd for all 1≤ k+ 1≤ d + 1, that is, the probability that 1− Y
is smaller than exactly k of the variables Xi is exactly 1/(d + 1). The desired results follows as
1− Y < Xi iff Xi + Y > 1.

We will also use the following well known result of Hajnal and Szemerédi.

Lemma 2.3 ([9]). Any graph with n vertices and maximum degree at most D admits a proper vertex
colouring by D+ 1 colours in which every colour class is of size either �n/(D+ 1)	 or �n/(D+ 1)�.

We are now ready to prove Theorem 1.3 in the following explicit form.

Proposition 2.4. Let G= (V , E) be a d-regular graph on n vertices. Suppose 0< ε < 1/3 and
assume that the following inequality holds.

(d + 1)(d2 + 1)2e−
1
3 ε2�n/(d2+1)	·1/(d+1) < 1. (1)
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Then there is a spanning subgraph H of G so that for every integer k, 0≤ k≤ d,∣∣∣∣m(H, k)− n
d + 1

∣∣∣∣ ≤ ε
n

d + 1
.

Proof. For each vertex v ∈V , let x(v) be a random weight chosen uniformly in [0, 1], where all
choices are independent. Let H be the random spanning subgraph of G consisting of all edges
uv ∈ E that satisfy x(u)+ x(v)> 1. Let G(2) denote the auxiliary graph on the set of vertices V
in which two distinct vertices are adjacent if and only if their distance in G is either 1 or 2. The
maximum degree of G(2) is at most d + d(d − 1)= d2 and hence by Lemma 2.3 the set of vertices
V has a partition into t = d2 + 1 pairwise disjoint subsets V1,V2, . . . ,Vt , where

|Vi| = ni ∈ {�n/(d2 + 1)	, �n/(d2 + 1)�}
for all i and each Vi is an independent set in G(2). Note that this means that the distance in G
between any two distinct vertices u, v ∈Vi is larger than 2. As the degree of each vertex v of G
in H is determined by the random weights assigned to it and to its neighbours, it follows that
for every fixed 0≤ k≤ d, the ni indicator random variables {Zv,k : v ∈Vi} where Zv,k = 1 iff the
degree of v in H is k, are mutually independent. By Lemma 2.2 each Zv,k is a Bernoulli random
variable with expectation 1/(d + 1). For any fixed k as above it thus follows, by Lemma 2.1 and
the assumption inequality (1), that the probability that the number of vertices in Vi whose degree
in H is k deviates from ni/(d + 1) by at least εni/(d + 1) is smaller than 1

(d2+1)(d+1) . By the union
bound over all pairs Vi, k, with positive probability this does not happen for any k and any Vi.
But in this case for every 0≤ k≤ d the total number of vertices with degree k in H deviates from
n/(d + 1) by less than ε

∑
i ni/(d + 1)= εn/(d + 1). This completes the proof. �

Remark: The proof above is similar to the proof of Lemma 7 in [8]. The improved estimate here
is obtained by replacing the application of Azuma’s Inequality in [8] by the argument using the
Hajnal-Szemerédi Theorem (Lemma 2.3), and by an appropriate different choice of parameters.

By a simple modification of the proof of Proposition 2.4 we next prove the following.

Proposition 2.5. Let G= (V , E) be a graph on n vertices with minimum degree δ and maximum
degree �. Suppose 0< ε < 1/3 and assume that the following inequality holds.

(� + 1)(δ� + 1)e−
1
3 ε2�n/(δ�+1)	·1/(δ+1) < 1. (2)

Then there is a spanning subgraph H of G so that

m(H)≤ (1+ ε)
n

δ + 1
.

Proof. Start by modifying G to a graph G′ obtained by repeatedly deleting any edge connecting
two vertices, both of degrees larger than δ, as long as there are such edges. Thus G′ is a spanning
subgraph of G. It has minimum degree δ and every edge in it has at least one end-point of degree
exactly δ. LetG′(2) denote the auxiliary graph on the set of verticesV in which two distinct vertices
are adjacent iff they are either adjacent or have a common neighbour in G′. The maximum degree
in G′(2) is at most

max{δ + δ(� − 1),� + �(δ − 1)} = δ�.

We can now follow the argument in the proof of the previous proposition, splitting V into
δ� + 1 nearly equal pairwise disjoint sets Vi, and defining a spanning random subgraph H of G′
(and hence of G) using independent random uniform weights in [0, 1] as before. Here for every
vertex v and every integer k, the probability that the degree of v inH is k, is at most 1/(δ + 1). This,
the obvious monotonicity, and the fact that the events corresponding to distinct members of Vi
are independent, imply, by Lemma 2.1 and by the assumption inequality (2), that the probability
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that Vi contains at least (1+ ε)|Vi|/(δ + 1) vertices of degree k is smaller than 1
(δ�+1)(�+1) . The

desired result follows from the union bound, as before. �
Similarly, we can prove the following strengthening of the last proposition.

Proposition 2.6. Let G= (V , E) be a graph with at least n vertices, minimum degree δ and max-
imum degree �. Suppose 0< ε < 1/3. Let X ⊂V be a set of n vertices of G and assume that the
inequality (2) holds. Then there is a spanning subgraph H of G so that for every k the number of
vertices in X of degree k in H is at most (1+ ε) n

δ+1 .

Proof. The proof is a slight modification of the previous one. LetG′ be the graph obtained fromG
as before. Let F denote the auxiliary graph on the set of verticesX in which two distinct vertices are
adjacent iff they are either adjacent or have a common neighbour in G′. The maximum degree in
this graph is atmost δ�.We can thus follow the argument in the proof of the previous proposition,
splitting X into δ� + 1 nearly equal pairwise disjoint sets Xi, and defining a spanning random
subgraph H of G′ (and hence of G) using the independent random uniform weights in [0, 1] as
before. �

We can now prove the assertion of Theorem 1.4 provided δ4 = o(n/ log n) in the following
explicit form.

Proposition 2.7. Let G= (V , E) be a graph on n vertices with minimum degree δ. Suppose 0< ε <

1/3. Define D= δ(δ+1)
ε

and assume that the following inequality holds.

(D+ 1)(δD+ 1)e−
1
3 ε2�n/(δD+1)	·1/(δ+1) < 1. (3)

Then there is a spanning subgraph H of G so that

m(H)≤ (1+ 2ε)
n

δ + 1
.

Proof. Let G= (V , E), δ, ε and D be as above. As in the previous proofs we start by modifying G
to a graph G′ obtained by repeatedly deleting any edge connecting two vertices, both of degrees
larger than δ, as long as there are such edges. ThusG′ is a spanning subgraph ofG; it has minimum
degree δ and the set of all its vertices of degree exceeding δ is an independent set. Let A denote the
set of all vertices of degree δ in G′, B the set of all vertices of degrees larger than δ and at most D
in G′ (if there are any), and C the set of all vertices of degree exceeding D. Since all edges from the
vertices of C lead to vertices of A (as B∪ C is an independent set) it follows, by double-counting,
that |C|D< |A|δ ≤ nδ and thus |C| ≤ nδ/D= ε n

δ+1 .
If C = ∅ define G′′ =G′; otherwise let G′′ be the graph obtained from G′ as follows. For every

vertex v ∈ C of degree d(>D) replace v by a set Sv of kv = �d/δ	 new vertices v1, v2, . . . , vkv . Split
the set of neighbours of v in G′ (that are all in A) into kv pairwise disjoint sets N1,N2, . . . ,Nkv ,
each of size at least δ and at most 2δ, and join the vertex vi to all vertices in Ni (1≤ i≤ kv). Thus
G′′ is obtained by splitting all vertices of C, and there is a clear bijection between the edges of G′′
and those of G′. Let X be an arbitrary subset of n vertices of G′′ containing all vertices in A∪ B.
The graph G′′ has minimum degree δ and maximum degree at most D; hence by Proposition 2.6
[which can be applied by the assumption inequality (3)] it has a spanning subgraph H′′ so that
no degree is repeated more than (1+ ε) n

δ+1 times among the vertices of X. Let H be the spanning
subgraph of G′ (and hence of G) consisting of exactly the set of edges of H′′. The degree of each
vertex in A∪ B in H′′ is the same as its degree in H, hence H contains at most (1+ ε) n

δ+1 vertices
of each fixed degree in A∪ B (which is a subset of X). We have no control on the degrees of
the vertices of C in H, but their total number is at most ε n

δ+1 . Therefore m(H)≤ (1+ 2ε) n
δ+1 ,

completing the proof. �
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3. Proof of Theorems 1.5 and 1.6
The main tool in the proofs of Theorems 1.5 and 1.6 is the following result of [1]. A similar
application of this result appears in [13].

Lemma 3.1 ([1]). Let G= (V , E) be a graph. For each vertex v ∈V let deg(v) denote the degree of v
in G. For each vertex v, let a(v) and b(v) be two non-negative integers satisfying

a(v)≤
⌊
deg(v)

2

⌋
≤ b(v)< deg(v) (4)

and

b(v)≤ deg(v)+ a(v)
2

+ 1 and b(v)≤ 2a(v)+ 3. (5)

Then there is a spanning subgraph H of G so that for every vertex v the degree of v in H lies in the
set {a(v), a(v)+ 1, b(v), b(v)+ 1}.

Theorem 1.5 is an easy consequence of this lemma, as we show next.

Proof of Theorem 1.5: Let G= (V , E) be a d-regular graph on n vertices. Since the assertion is
trivial for d ≤ 8 assume d > 8. Put k= �d/4� and split V arbitrarily into k pairwise disjoint sets
of vertices V1, . . . ,Vk, each of size at most �n/k�. For each vertex v ∈Vi define a(v)= �d/2� − i
and b(v)= �d/2� + k− i. It is easy to check that deg(v)= d and each such a(v), b(v) satisfy (4)
and (5). By Lemma 3.1 there is a spanning subgraph H of G in which the degree of every v ∈Vi is
in the set

Si = {�d/2� − i, �d/2� − i+ 1, �d/2� + k− i, �d/2� + k− i+ 1}.
It is easy to check that no integer belongs to more than 2 of the sets Si, implying that m(H)≤

2�n/k� < 8n/d + 2, and completing the proof. �
The proof of Theorem 1.6 is similar, combining the reasoning above with one additional

argument.

Proof of Theorem 1.6: Let G= (V , E) be a graph with n vertices and minimum degree δ.
As the result is trivial for δ ≤ 16, assume δ > 16. Order the vertices of G by degrees, that is, put
V = {v1, v2, . . . , vn}, where the degree of vi is di and d1 ≥ d2 ≥ . . . ≥ dn. Put k= �δ/4� and split
the set of vertices intom= �n/k� blocks B1, B2, . . . , Bm of consecutive vertices in the order above,
each (besides possibly the last) containing k vertices. Thus Bi = {v(i−1)k+1, v(i−1)k+2, . . . , vik} for
all i<m and Bm =V − ∪i<mBi. Fix a block B= Bi; let w1,w2, . . . ,wk denote its vertices and let
f1 ≥ f2 ≥ . . . ≥ fk be their degrees (assume now that B is not the last block). For each vertex wi
define ai = �fi/2� − i, bi = �fi/2� + k− i. For the last block Bm define the numbers ai, bi similarly,
taking only the first |Bm|(≤ k) terms defined as above. Note that the sequence (a1, a2, . . . , ak)
(as well as the possibly shorter one for the last block) is strictly decreasing, and so are the sequences
(a1 + 1, a2 + 1, . . . , ak + 1), (b1, b2, . . . , bk) and (b1 + 1, b2 + 1, . . . , bk + 1). Therefore, no inte-
ger belongs to more than 4 of the sets S(wi)= {ai, ai + 1, bi, bi + 1}, 1≤ i≤ k. Note also that the
numbers deg(v)= fi, a(v)= ai, b(v)= bi satisfy (4) and (5). By Lemma 3.1 there is a spanning sub-
graph H of G in which the degree of every vertex v lies in the corresponding set S(v). Therefore
m(H)≤ 4m< 16n

δ
+ 4, completing the proof. �

4. Proof of Theorems 1.7 and 1.8

Proof of Theorem 1.7: The proof is based on the simple known fact that the incidence matrix
of any bipartite graph is totally unimodular (see, e.g., [17], page 318). Let G= (V , E) be a bipar-
tite graph and let s= s(G) be its irregularity strength. By the definition of s(G) there is a weight
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function assigning to each edge e ∈ E a weight w(e) which is a positive integer between 1 and s, so
that all the sums

∑
e�v w(e), v ∈V are pairwise distinct. Consider the following system of linear

inequalities in the variables x(e), e ∈ E.
0≤ x(e)≤ 1 for all e ∈ E

and ⌊∑
e�v

w(e)
s

⌋
≤

∑
e�v

x(e)≤
⌈∑

e�v

w(e)
s

⌉
for all v ∈V .

This system has a real solution given by x(e)= w(e)
s for all e ∈ E. Since the V × E incidence

matrix of G is totally unimodular there is an integer solution as well, namely, a solution in which
x(e) ∈ {0, 1} for all e ∈ E. Let H be the spanning subgraph of G consisting of all edges e with
x(e)= 1. For each integer k the vertex v can have degree k in H only if k− 1<

∑
e�v

w(e)
s < k+ 1,

that is, only if the integer
∑

e�v w(e) is strictly between s(k− 1) and s(k+ 1). As there are only
2s− 1 such integers, and the integers

∑
e�v w(e) are pairwise distinct, it follows that m(H, k)≤

2s− 1.
If G is regular one can repeat the above proof replacing w(e) by w(e)− 1 for every e and

replacing s by s− 1. This completes the proof of Theorem 1.7. �
The proof of Theorem 1.8 is similar to the last proof, but requires an additional argument,

as the incidence matrix of a non-bipartite graph is not totally unimodular. We thus prove the
following lemma. Its proof is based on some of the techniques of Discrepancy Theory, following
the approach of Beck and Fiala in [4]. This lemma will also be useful in the proof of Theorem 1.4
described in the next section.

Lemma 4.1. Let G= (V , E) be a graph, and let z : E �→ [0, 1] be a weight function assigning to each
edge e ∈ E a real weight z(e) in [0, 1]. Then there is a function x : E �→ {0, 1} assigning to each edge
an integer value in {0, 1} so that for every v ∈V∑

e�v
z(e)− 1<

∑
e�v

x(e)≤
∑
e�v

z(e)+ 1. (6)

Note that the deviation of 1 in this inequality is tight, as shown by any odd cycle and the
function z assigning weight 1/2 to each of its edges.

Proof. We describe an algorithm for generating the required numbers x(e). Think of these values
as variables. During the algorithm, the variables x(e) will always lie in the continuous interval
[0, 1]. Call a variable x(e) fixed if x(e) ∈ {0, 1}, otherwise call it floating. At the beginning of the
algorithm, some (or all) variables x(e) will possibly be floating, and as the algorithm proceeds,
floating variables will become fixed. Once fixed, a variable does not change anymore during the
algorithm, and at the end all variables will be fixed. For convenience, call an edge e floating iff x(e)
is floating.

For each edge e ∈ E, let ye denote the corresponding column of the V × E incidence matrix of
G, that is, the vector of length |V| defined by ye(v)= 1 if v ∈ e and ye(v)= 0 otherwise.

Start the algorithm with x(e)= z(e) for all e ∈ E. As long as the vectors ye corresponding to the
floating edges e (assuming there are such edges) are not linearly independent over the reals, let∑

e∈E′ ceye = 0 be a linear dependence, where E′ is a set of floating edges and ce �= 0 for all e ∈ E′.
Note that for any real ν, if we replace x(e) by x(e)+ νce then the values of the sums∑

e�v
x(e) for all v ∈V (7)

stay unchanged. As ν varies this determines a line of values of the variables x(e) (in which the
only ones that change are the variables x(e) for e ∈ E′) so that the sums in (7) stay fixed along
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the line. By choosing ν appropriately we can find a point along this line in which all variables stay
in [0, 1] and at least one of the floating variables in E′ reaches 0 or 1. We now update the variables
x(e) as determined by this point, thus fixing at least one of the floating variables. Continuing
in this manner the algorithm finds an assignment of the variables x(e) so that for each v ∈V ,∑

e�v x(e)=
∑

e�v z(e) and the set of vectors ye, e ∈ E′, where E′ is the set of floating edges, is
linearly independent. Note that this implies that the set of edges in each connected component of
the graph (V , E′) is either a tree, or contains exactly one cycle, which is odd.

As long as there is a connected component consisting of floating edges, which is not an odd
cycle or a single edge, let V ′′ be the set of all vertices of such a component whose degree in the
component exceeds 1. Let E′′ be the set of edges of this component (recall that all of these edges
are floating). Consider the following system of linear equations.∑

e�v
x(e)=

∑
e�v

z(e) for all v ∈V ′′. (8)

This system is viewed as one in which the only variables are x(e) for e ∈ E′′. The other x(e)
appearing in the system are already fixed, and are thus considered as constants, and the values
z(e) are also constants. It is easy to check that the number of variables in this system, which is
|E′′|, exceeds the number of equations, which is the number of vertices of degree at least 2 in the
component. Therefore there is a line of solutions, and as before we move to a point on this line
which keeps all variables x(e) in [0, 1] and fixes at least one variable x(e) for some e ∈ E′′, shifting
it to either 0 or 1. Note, crucially, that each of the sums

∑
e�v x(e) for v ∈V ′′ stays unchanged, but

the value of this sum for vertices of degree 1 in the component may change.
Continuing this process we keep reducing the number of floating edges. When the graph of

floating edges contains only connected components which are odd cycles or isolated edges we
finish by rounding each floating variable x(e) to either 0 or 1, whichever is closer to its current
value, where x(e)= 1/2 is always rounded to 1. Once this is done, all variables x(e) are fixed, that
is x(e) ∈ {0, 1} for all e. It remains to show that (6) holds for each v ∈V . To this end note that as
long as the degree of v in the graph consisting of all floating edges is at least 2, and the compo-
nent in which it lies is not an odd cycle, the value of the sum

∑
e�v x(e) stays unchanged (and

is thus equal exactly to
∑

e�v z(e)) even after modifying the variables x(e) in the corresponding
step of the algorithm. Therefore, at the first time the degree of v in this floating graph (the graph
of floating edges) becomes 1, if this ever happens, the sum

∑
e�v x(e) is still exactly

∑
e�v z(e).

Afterwards this sum can change only by the change in the value of the unique floating edge inci-
dent with it, which is less than 1 (as this value has been in the open interval (0, 1) and will end
being either 0 or 1). The only case in which the final sum

∑
e�v x(e) can differ by 1 from

∑
e�v z(e)

is if the final step in which all floating edges incident with v become fixed is a step in which the
connected component of v in the floating graph is an odd cycle, x(e)= 1/2 for both edges of this
component incident with v, and both are rounded to the same value 1. In this case (6) holds with
equality, and in all other cases it holds with a strict inequality. This completes the proof of the
lemma. �
Proof of Theorem 1.8: The proof is similar to that of Theorem 1.7, replacing the argument using
the total unimodularity of the incidence matrix of the graph by Lemma 4.1. Let G= (V , E) be
a graph let s= s(G) be its irregularity strength. Thus there is a weight function assigning to each
edge e ∈ E a weightw(e) which is a positive integer between 1 and s, so that all the sums

∑
e�v w(e),

v ∈V are pairwise distinct. Define z:E �→ [0, 1] by z(e)=w(e)/s for each e ∈ E. By Lemma 4.1 there
is a function x:E �→ {0, 1} so that for every v ∈V (6) holds. Let H be the spanning subgraph of G
consisting of all edges e with x(e)= 1. For each integer k the vertex v can have degree k in H
only if

k− 1≤
∑
e�v

z(e)=
∑
e�v

w(e)
s

< k+ 1,
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that is, only if the integer
∑

e�v w(e) is at least s(k− 1) and strictly smaller than s(k+ 1). As
there are only 2s such integers, and the integers

∑
e�v w(e) are pairwise distinct, it follows that

m(H, k)≤ 2s.
If G is regular one can repeat the above proof replacing w(e) by w(e)− 1 for every e and

replacing s by s− 1. This completes the proof. �

5. Proof of Theorem 1.4
In this section we describe the proof of Theorem 1.4 for all δ and n where n is sufficiently large.
If δ = o((n/ log n)1/4) the assertion of the theorem holds, as proved in Section 2. We thus can and
will assume that δ is larger. In particular it will be convenient to fix a small ε > 0 and assume
that δ ≥ ln2/ε n( ln ln n)1/ε . The argument here is more complicated than the one for smaller δ.
To simplify the presentation we omit, throughout the proof, all floor and ceiling signs whenever
these are not crucial (but leave these signs when this is important). We further assume whenever
this is needed that n is sufficiently large as a function of ε. The explicit version of the theorem we
prove here is the following.

Theorem 5.1. Fix ε ∈ (0, 1/4). Every graph G with n vertices and minimum degree δ with δ ≥
ln2/ε n( ln ln n)1/ε and n sufficiently large in terms of ε contains a spanning subgraph H satisfying

m(H)<

⌈
n
δ

+ 5
√
(n/δ)( ln n)

δ1/4

⌉
+

⌊
2016n ln n ln ln n

δ1+ε

⌋
+ 1.

In particular, when δ1+ε > 2016n ln n ln ln n, and n is sufficiently large, then

m(H)≤ �n/(δ + 1)� + 2.

The constants 5, 2016 and the assumption δ1+ε > 2016n ln n ln ln n can be improved, but as
this will not lead to any significant change in the asymptotic statement given in Theorem 1.4 it is
convenient to prove the result as stated above.

In the proof we assign binary weights to the edges of the graph G, where weight one corre-
sponds to edges in H and zero to non-edges. The weight of a vertex will always be the sum of
weights of the edges incident to it. We use deg(v) to denote the degree of the vertex v in G. By
assumption deg(v)≥ δ for every v.

Put s∗ = δ1/2+ε , k= δ1/2−ε/ ln ln n. By our assumption on δ we have k≥ ln2 n. We will assume
that both s∗ and k are integers, and δ − s∗ is divisible by �√δ	.1 We start by partitioning the
vertices randomly into a big set B and a small set S, where each is further partitioned into
B= B1 . . . ∪ Bδ−s∗ and S= S1 ∪ . . . ∪ Sk. This random partition is achieved in the following way.
LetXv, v ∈V(G) be i.i.d. uniform random variablesXv ∼U[0, 1]. For each integer 1≤ i≤ δ − s∗, if
Xv ∈ [ i−1

δ
, i

δ
), then place v in Bi. For each integer 1≤ j≤ k− 1, ifXv ∈

[
δ−s∗

δ
+ (j−1)s∗

δk , δ−s∗
δ

+ js∗
δk

)
,

place v in Sj; if Xv ∈
[

δ−s∗
δ

+ (k−1)s∗
δk , 1

]
, place v in Sk.

The weight assignment will be done in three steps. The first two steps only concern edges in
B and between B and S. The last step only concerns edges within S. We will randomly label some
edges between S and B to be active and removable. Active edges denote the edges between S and
B that will be assigned weight one in Step 1, and active and removable edges denote ones whose
weights can be modified back to zero in Step 2. For each 1≤ i≤ k, vertex v ∈ Si and its neighbour

1There is always a value of s∗ in the interval [�δ1/2+ε	, �δ1/2+ε	 + √
δ] such that δ − s∗ is divisible by �√δ	. When ε is fixed

and n sufficiently large, such value of s∗ is asymptotically δ1/2+ε .
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u ∈ B, the edge uv is active randomly and independently with probability δ−4s∗i
δ−s∗ . It is removable

randomly and independently with probability 32δ ln n
s∗
√

deg(u)
.

The next lemma shows that the quantities we care about in G are not far from their expected
values with high probability.

Lemma 5.2. Let ε ∈ (0, 1/4). Suppose n is sufficiently large in terms of ε and assume that
δε ≥ ln n ln ln n. Let h : [n]× [δ − s∗]→R be a function h(d, i)= c1(d)i+ c2d + c3

√
d + c4 where

c1(d)≥ 1 for all d ≥ δ and c2, c3, c4 ∈R. Then, with probability at least 1− 7/n2, the following
statements hold simultaneously with the random choices described above.

(i) For any integer 0≤ j≤ n− 1, the number of vertices v ∈ B satisfying h(deg(v), Z(v)) ∈ [j, j+
�√δ	) is at most �√δ	n

δ
+ 4

√
n
δ

· √δ ln n, where Z(v) ∈ [δ − s∗] is the random variable
satisfying v ∈ BZ(v).

(ii) For any vertex v, its degree to S is in the interval [0.5s∗ deg(v)/δ, 1.5s∗ deg(v)/δ].
(iii) For each 1≤ i≤ δ − s∗ and for each vertex v ∈ Bi, its degree to {⋃ Bj, δ − s∗ − i+ 1≤ j≤

δ − s∗} is in
[
i deg(v)

δ
− 12

√
i deg(v)

δ
ln n, i deg(v)

δ
+ 12

√
i deg(v)

δ
ln n

]
.

(iv) For each 1≤ i≤ k and each vertex v ∈ Si, the number of edges between v and B that are active
is in the interval[

(δ − 4s∗i) deg(v)
δ

− √
deg(v) ln n,

(δ − 4s∗i) deg(v)
δ

+ √
deg(v) ln n

]
.

The number of edges between v ∈ S and B that are both active and removable is at most
33(δ−4s∗i) deg(v) ln n√

δs∗ .

(v) For each 1≤ i≤ k and each u ∈ B, the number of edges between u and Si that are active is in
the interval[

s∗ deg(u)
δk

· δ − 4s∗i
δ − s∗

−
√
deg(u)s∗

δk
ln n,

s∗ deg(u)
δk

· δ − 4s∗i
δ − s∗

+
√
deg(u)s∗

δk
ln n

]
.

The number of edges between u ∈ B and S that are both active and removable is at least
27

√
deg(u) ln n.

Proof. We first prove (i). Given j and v, since c1(deg(v))≥ 1 as deg(v)≥ δ, there is at most
one integer 1≤ i≤ δ − s∗ such that h(deg(v), i)= c1(deg(v))i+ c2 · deg(v)+ c3

√
deg(v)+ c4 ∈

[j, j+ 1). Thus each vertex independently has probability at most �√δ	/δ to satisfy
h(deg(v), Z(v)) ∈ [j, j+ �√δ	). By Chernoff’s Inequality (Lemma 2.1) and a union bound over
0≤ j≤ n− 1 and v, the probability that (i) is violated is at most n2e−(16(n/δ)(

√
δ) ln n)/(3(n/δ)(

√
δ)) <

n2e−4 ln n = 1/n2.
To prove (ii), note that for each vertex v, each of its neighbours independently has probability

s∗
δ
to be in S. Therefore its expected degree in S is deg(v)s∗

δ
. By Chernoff’s Inequality and a union

bound over v, (ii) is violated with probability at most 2ne−0.25 deg(v)s∗/(3δ) < 1/n2.
To prove (iii), note that for each 1≤ i≤ δ − s∗, each neighbour of v independently has prob-

ability i/δ to be in Bδ−s∗−i+1 ∪ . . . ∪ Bδ−s∗ , and thus the expected number of its neighbours
in Bδ−s∗−i+1 ∪ . . . ∪ Bδ−s∗ is i deg(v)

δ
. By Chernoff’s Inequality, for any positive value μ, given

v ∈ Bi, the probability that (iii) is violated is at most 2e−μ2/(3 max (i deg(v)/δ,μ)). Plugging in μ =
12

√
i deg(v)/δ ln n and noting thatmax (i deg(v)/δ,μ))≤ 12 i deg(v)

δ
ln n, the probability that (iii) is
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violated for v ∈ Bi is at most 2e−12 ln n/3 = 2/n4. By a union bound over all vertices the probability
that (iii) is violated is much smaller than 1/n2.

Similarly we can prove (iv). Given v ∈ Si, each edge incident to v independently has proba-
bility δ−s∗

δ
· δ−4s∗i

δ−s∗ = δ−4s∗i
δ

to be active. Thus the expected number of active edges incident to
v ∈ Si is deg(v)(δ−4s∗i)

δ
. Again by Chernoff’s Inequality and a union bound over v, the first statement

in (iv) is violated with probability at most n2e− deg(v) ln2 n/(3(δ−4s∗i) deg(v)/δ) < n2e− ln2 n/3 < 1/n2.
Similarly, for a neighbour u of v ∈ Si, the edge (v, u) randomly and independently has probabil-
ity δ−4s∗i

δ
32δ ln n

s∗
√

deg(u)
≤ 32(δ−4s∗i) ln n

s∗
√

δ
to be both active and removable. By Chernoff’s Inequality and

a union bound over v the probability that the second statement is violated is much smaller than
1/n2.

(v) is proved in almost the same way. Fix 1≤ i≤ k and u ∈ B. Each edge uv independently has
probability s∗

kδ · δ−4s∗i
δ−s∗ to be active and satisfy v ∈ Si; and it has probability s∗

kδ · δ−4s∗i
δ−s∗ · 32δ ln n

s∗
√

deg(u)
=

32 ln n
k · δ−4s∗i

(δ−s∗)
√

deg(u)
> 30 ln n

k
√

deg(u)
to be both active and removable and incident to Si. Thus for any

u ∈ B the expected number of edges uv with v ∈ S which are both active and removable is at least
30 ln n

√
deg(u). Applying Chernoff’s Inequality and a union bound it follows that the probability

that the statement fails is much smaller than 2/n2. �
Therefore, with probability at least 1− 7/n2 all assertions of Lemma 5.2 hold, where the

function h(deg(v), i) in (i) is

hB(deg(v), i)= i deg(v)
δ

+ s∗ deg(v)
δ

δ − 2s∗(k+ 1)
δ − s∗

− 13
√
deg(v) ln n.

Since deg(v)≥ δ, ks∗ = δ/ ln ln n and by the lower bounds on δ in the assumption, it is easy to
see that hB(d, i)> s∗/2>

√
δ. Note that hB satisfies the requirement of h(d, i) in Lemma 5.2. We

can now proceed assigning weights in {0, 1} to the edges in G in three steps.
In Step 1, we assign the following edges weight one: (1) for all 1≤ i≤ δ − s∗, all the edges

between Bi and {⋃j Bj, δ − s∗ − i+ 1≤ j≤ δ − s∗}; (2) all the active edges between B and S.
In Step 2, the goal is to ensure that each vertex weight appears in at most

�n/δ + 5
√
n/δ

√
ln n/δ1/4� (9)

vertices in B. This is achieved by making two modifications. First ensure that each vertex v in Bi
has weight exactly �hB(deg(v), i)	. By Lemma 5.2 applied with hB(d, i), with probability at least
1− 7/n2 after Step 1, for each 1≤ i≤ δ − s∗, the weight of v ∈ Bi deviates from

i deg(v)
δ

+
k∑

j=1

s∗ deg(v)
δk

· δ − 4s∗j
δ − s∗

= hB(deg(v), i)+ 13
√
deg(v) ln n

by at most k
√

deg(v)s∗
δk ln n+ 12

√
deg(v) ln n< 13

√
deg(v) ln n by Lemma 5.2 (iii) and the first

statement in (v). Thus it is possible to transform the weight of v to exactly �hB(deg(v), i)	 by
reducing the weights of at most 26

√
deg(v) ln n+ 1< 26.5

√
deg(v) ln n (active and removable)

edges from v to S from one to zero.
Suppose this first modification is possible, in the second modification, by Lemma 5.2 (i) and

the fact that hB(deg(v), i)>
√

δ for each vertex v and 1≤ i≤ δ − s∗ and that δ − s∗ is divisible by
�√δ	, we can further reduce the weights of at most 2(

√
δ) edges between each v ∈ B and S ensur-

ing that each integer vertex weight appears in at most �(�√δ	n/δ + 4
√
(n/δ)(

√
δ) ln n)/�√δ	� ≤

�n/δ + 5
√
n/δ

√
ln n/δ1/4� vertices in B, as desired. Indeed, this can be done by considering,

for any fixed admissible j> 1, all vertices whose weight after the first modification lies in
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[(j− 1)(�√δ	), j(�√δ	)). Their weights can be reduced and distributed uniformly among the
possible weights in the interval [(j− 2)(�√δ	), (j− 1)(�√δ	)).

It is not difficult to check that these two modifications can be accomplished by reducing only
the weights of some edges which are both active and removable. Indeed, for every vertex v ∈ B
it is only needed to reduce its weight by at most 26.5

√
deg(v) ln n+ 2

√
δ < 27

√
deg(v) ln n. By

Lemma 5.2 (v), the number of edges between v and S which are both active and removable is at
least 27

√
deg(v) ln n, and as all active edges between B and S have weight one prior to Step 2 there

are enough edges whose weights can be reduced from one to zero to allow the two modifications.
In Step 3, we will only adjust the weights of edges within S to ensure that each weight appears

in at most � 2016n ln n ln ln n
δ1+ε 	 + 1 vertices in S. We first use a method developed in a paper in prepa-

ration by the second author and J. Przybyło [16] to identify which vertices in S might have the
same weight. For each vertex v ∈ S, we will define a set L(v) such that v, u ∈ S cannot have the
same weight at the end of Step 3 if u /∈ L(v). We will then show that with high probability all sets
L(v) will not be large.

To start, we relax the problem where the weight of each edge in S can be any real number in
[0, 1]. We first analyse the range of weight for each v ∈ S after adjusting weights in S.

By Lemma 5.2 (iv), after Step 2, since
√
deg(v) ln n≤ deg(v) ln n/

√
δ, the weight of v ∈ Si is at

least the number of edges incident to v which are active but not removable, which is bounded
below by

(δ − 4s∗i) deg(v)
δ

− deg(v) ln n√
δ

− 33(δ − 4s∗i) deg(v) ln n√
δs∗

= deg(v)
((

1− 4s∗i
δ

)(
1− 33 ln n

δε

)
− ln n√

δ

)
≥ deg(v)

(
1− 4s∗i

δ
− 34 ln n

δε

)
.

This is also a lower bound on the weight of v ∈ Si after Step 3. By Lemma 5.2 (ii), the additional
weight each vertex v ∈ S can gain in Step 3 is at most degS(v) · 1≤ 1.5 deg(v)s∗/δ. Again together
with Lemma 5.2 (iv), the weight of v ∈ Si after Step 3 is at most

(
(δ−4s∗i) deg(v)

δ
+ deg(v) ln n√

δ

)
+

1.5 deg(v)s∗/δ = deg(v)
(
1− 4s∗i

δ
+ ln n√

δ
+ 1.5s∗

δ

)
< deg(v)

(
1− 4s∗i

δ
+ 3s∗

δ

)
. In summary, the

weight of v ∈ Si after assigning arbitrary weights in [0, 1] to edges in S is always in the interval

Iv,i =
[
deg(v)

(
1− 4s∗i

δ
− 34 ln n

δε

)
, deg(v)

(
1− 4s∗i

δ
+ 3s∗

δ

)]
. (10)

Therefore, vertex v ∈ Si and u ∈ Sj can have the same weight after Step 3 only if Iv,i ∩ Iu,j �= ∅,
which is equivalent to

deg(v)
(
1− 4s∗i

δ
− 34 ln n

δε

)
≤ deg(u)

(
1− 4s∗j

δ
+ 3s∗

δ

)
; and (11)

deg(u)
(
1− 4s∗j

δ
− 34 ln n

δε

)
≤ deg(v)

(
1− 4s∗i

δ
+ 3s∗

δ

)
. (12)

Let u ∈ L(v) if and only if u �= v, u ∈ S, and both (11) and (12) hold if u ∈ Sj. Clearly u /∈ L(v)
implies the distinct vertices u, v ∈ S have distinct weights.

Claim 5.3. With probability at least 1− 1/n2, |L(v)| ≤ 42n deg(v) ln n
kδ1+ε for all v ∈ S.

Proof. Given v ∈ Si we bound the number of vertices u in L(v) by bounding the number of vertices
u in all sets Sj where j satisfies both inequalities (11) and (12). These two inequalities together
imply
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deg(v)
deg(u)

(
1− 4s∗i

δ
− 34 ln n

δε

)
− 3s∗

δ
≤ 1− 4s∗j

δ
≤ deg(v)

deg(u)

(
1− 4s∗i

δ
+ 3s∗

δ

)
+ 34 ln n

δε
.

This means the value of 4s∗j
δ

can only lie in an interval of length deg(v)
deg(u)

(
3s∗
δ

+ 34 ln n
δε

)
+ 34 ln n

δε +
3s∗
δ

≤ 2 deg(v)
δ

(
3s∗
δ

+ 34 ln n
δε

)
≤ 2 deg(v)

δ
37 ln n

δε where the last inequality uses ε < 1/4. This implies j

can only lie in an interval of length at most δ
4s∗

2 deg(v)
δ

37 ln n
δε = deg(v)

2s∗
37 ln n

δε .
Since with probability s∗

kδ , the vertex u lies in Sj for any given j, the probability that u satisfies
u ∈ Sj for some j with Iv,i ∩ Iu,j �= ∅ is at most

s∗

kδ

(
deg(v)
2s∗

37 ln n
δε

+ 1
)

≤ s∗

kδ
deg(v)
s∗

37 ln n
δε

= 37 deg(v) ln n
kδ1+ε

.

The first inequality uses the fact that ε < 1/4. Thus E[|L(v)|]≤ n 37 deg(v) ln n
kδ1+ε . Since the events

for different vertices u are independent, by Chernoff’s Inequality the probability that |L(v)| ≥
n 42 deg(v) ln n

kδ1+ε is at most n−4. By a union bound over v, the desired result follows. �
We are now ready to adjust the weights of edges in S. First we show there is a desired weighting

with edges in S having fractional weights in {0, 1/4, 1/2, 3/4, 1}.
Claim 5.4. With probability at least 1− 8/n2 one can assign each edge in S a weight in
{0, 1/4, 1/2, 3/4, 1} such that for each vertex v ∈ S, the number of vertices in L(v) whose weight
(including the weight to B) differs from that of v by strictly less than 11/4 is at most � 2016n ln n ln ln n

δ1+ε 	.
In particular, if δ1+ε > 2016n ln n ln ln n, for any two vertices v, u ∈ S where u ∈ L(v), the

difference between the weights of v and u is at least 11/4.

Proof. We use a modified version of the algorithm by Kalkowski, Karoński, and Pfender [10]. All
edge weights in S are initialized to be 1/2.

Order the vertices of S arbitrarily as v1, v2, . . . and process them sequentially starting from v1.
When processing vi, we will find a set �vi of the form { 12a4 , 12a+1

4 } for some a ∈Z, such that
throughout the later stages of the algorithm, �vi will stay unchanged and the weight of vi will
always stay in �vi . Suppose we are processing vi for i≥ 1. For each forward edge, that is, edge
vivj where j> i if exists, we allow to change the edge weight by increasing it by 0 or 1/4; for
each backward edge vivj where j< i if exists, we allow to change the weight by adding an ele-
ment of {−1/4, 0, 1/4}, where if the current weight of vj is the maximum value in �vj , we can
only change this backward edge by adding a member of {−1/4, 0}, whereas if the current weight
of vj is the minimum value in �vj , we can only change this backward edge by adding a member
of {0, 1/4}. This rule guarantees the weight of vj which has been processed always stays in �vj .
Furthermore, by all combinations of the allowable changes, the weight of vi can achieve any value
in an arithmetic progression Pi with common difference 1/4 and of length degS (vi). In addition,
by our constraints on the structure of the sets �vi , a vertex vi has weight in �vi = { 12a4 , 12a+1

4 }
if and only if vi has weight in Jvi = { 12a4 , 12a+1

4 , 12a+2
4 , . . . , 12a+11

4 }. Thus there must be a set
{ 12b4 , 12b+1

4 , 12b+2
4 , . . . , 12b+11

4 } ⊂ Pi for some b ∈Z which is shared by at most �|L(v)|/((|Pi| −
22)/12)	 sets Jvj for vj ∈ L(v) and j< i. Fix such a set { 12b4 , 12b+1

4 , 12b+2
4 , . . . , 12b+11

4 } ⊂ Pi as Jvi
and then ensure that the weight of vi lies in { 12b4 , 12b+1

4 } = �vi by adjusting the weights of forward
and backward edges appropriately, and then continue to vi+1. By Claim 5.3 and Lemma 5.2 (ii)
which implies that |Pi| ≥ 0.5s∗ deg(v)/δ,

|L(v)|/((|Pi| − 22)/12)<
12 · 42n deg(v) ln n

kδ1+ε

0.25 deg(v)s∗/δ
= 48 · 42n

k
ln n
δεs∗

= 2016n ln n ln ln n
δ1+ε
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where the equality is by plugging in ks∗ = δ/ ln ln n. Therefore we have shown that each set Jvi can
be shared by at most � 2016n ln n ln ln n

δ1+ε 	 other Jvj for vj ∈ L(vi). Furthermore, if Jv is different from Ju
which implies Jv is disjoint from Ju, then since the weight of v is in �v ⊂ Jv and the weight of u is
in �u ⊂ Ju, the difference between the weights of u and v is at least 11/4. Lastly, notice that each
edge changes its weight at most twice (once as a forward edge and once as a backward edge), so
all edge weights in S stay in {0, 1/4, 1/2, 3/4, 1}. Therefore the first statement holds. The second
statement holds by noticing that when δ1+ε > 2016n ln n ln ln n, then � 2016n ln n ln ln n

δ1+ε 	 = 0. �
Suppose δε ≥ ln2 n ln ln n. We are now ready to finish the construction and the proof. Suppose

z(e) are the current weights of edges e in E(G) where when e ∈ E(S), z(e) ∈ {0, 1/4, 1/2, 3/4, 1}
and when e /∈ E(S), z(e) ∈ {0, 1}. We now show that we can change the edge weights in S to be in
{0, 1} so that each weight is shared by at most � 2016n ln n ln ln n

δ1+ε 	 + 1 vertices in S. To achieve this,
we apply Lemma 4.1 to the induced subgraph on S to conclude that there is a binary weighting
x : E(G)→ {0, 1} such that x(e)= z(e) for e /∈ E(S), and for each v ∈ S,∑

e�v
z(e)− 1<

∑
e�v

x(e)≤
∑
e�v

z(e)+ 1. (13)

We now bound the number of vertices in S sharing the same weight. Given v ∈ S, if a different
vertex u ∈ S satisfies

∑
e�v x(e)=

∑
e�u x(e), then u ∈ L(v). Furthermore, by the triangle inequality

and (13),

0=
∣∣∣∣∣
∑
e�v

x(e)−
∑
e�u

x(e)

∣∣∣∣∣ ≥
∣∣∣∣∣
∑
e�v

z(e)−
∑
e�u

z(e)

∣∣∣∣∣ − 2,

which implies | ∑e�v z(e)−
∑

e�u z(e)| ≤ 2< 11/4. By Claim 5.4, there are at most
� 2016n ln n ln ln n

δ1+ε 	 different u ∈ L(v) with | ∑e�v z(e)−
∑

e�u z(e)| < 11/4. Thus each weight
with respect to x is shared by at most � 2016n ln n ln ln n

δ1+ε 	 + 1 vertices in S, as desired.
We have shown in (9) in Step 2 that the number of vertices in B with the same weight is

at most �n/δ + 5
√
n/δ

√
ln n/δ1/4�, and note that weights of vertices in B do not change after

Step 2. Therefore we have shown that there is a spanning subgraph H of G (corresponding to
the edges with x(e)= 1) satisfying m(H)≤

⌈
n/δ + 5

√
n/δ

√
ln n/δ1/4

⌉
+

⌊
2016n ln n ln ln n

δ1+ε

⌋
+ 1.

This completes the proof of the first statement in Theorem 5.1. In case δ1+ε > 2016n ln n ln ln n,
m(H)≤ �n/δ + 5

√
n/δ

√
ln n/δ1/4� + 1= �n/(δ + 1)+ n/(δ(δ + 1))+ 5

√
n/δ

√
ln n/δ1/4� + 1.

Since δ1+ε > 2016n ln n ln ln n, the value of n/(δ(δ + 1))+ 5
√
n/δ

√
ln n/δ1/4 is arbitrarily small

when n is sufficiently large. Thus in this case,m(H)≤ �n/(δ + 1)� + 2, as needed.
To see the first statement in Theorem 1.4 holds, notice that when δ1+ε ≥ 2016n ln n ln ln n then

it is implied by the second statement in Theorem 5.1. Otherwise it follows from the first state-
ment of this theorem and the fact that we may assume that δ ≥ �((n/ log n)1/4) by the results in
Section 2, that m(H)≤ (n/δ)(1+ o(1))= (n/(δ + 1))(1+ o(1)). The second statement in
Theorem 1.4 holds since the condition δ1.24 ≥ n implies that for sufficiently large n, δ1.245 >

2016n ln n ln ln n and the desired result follows from the second statement in Theorem 5.1.

6. Open problems
The two Conjectures 1.1 and 1.2 remain open, although we have established some weaker asymp-
totic versions. It is possible that the constant 2 in both conjectures can even be replaced by 1
provided the number of vertices in the graphs considered is large. As proved by Axenovich and
Füredi in [2] this is indeed the case for Conjecture 1.2 provided δ ≥ 7n/8+ cn3/4 for an appro-
priate absolute constant c. It may be interesting to prove that the assertions of the two conjectures
hold if we replace the constant 2 in each of them by some absolute constant C. It will also be nice
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to prove that every d-regular graph on n vertices, where d = o(n), contains a spanning subgraph
H in which every degree between 0 and d appears (1+ o(1)) n

d+1 times, even when d is nearly lin-
ear in n. As is the case throughout the paper, the o(1)-term here tends to 0 as n tends to infinity.
Finally, Theorems 1.7 and 1.8 suggest the question of deciding whether or not there is an abso-
lute constant C so that every graph G (with a finite irregularity strength s(G)) contains a spanning
subgraph H satisfyingm(H)≤ s(G)+ C.
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